
N -widths, sup-infs, and optimality ratios for the
k-version of the isogeometric finite element method

John A. Evans, Yuri Bazilevs, Ivo Babuška, and Thomas J.R. Hughes

Abstract

We begin the mathematical study of the k-method utilizing the theory of Kolmogorov n-
widths. The k-method is a finite element technique where spline basis functions of higher-
order continuity are employed. It is a fundamental feature of the new field of isogeometric
analysis. In previous works, it has been shown that using the k-method has many advantages
over the classical finite element method in application areas such as structural dynamics,
wave propagation, and turbulence.

The Kolmogorov n-width and sup-inf were introduced as tools to assess the effectiveness
of approximating functions. In this paper, we investigate the approximation properties of the
k-method with these tools. Following a review of theoretical results, we conduct a numerical
study in which we compute the n-width and sup-inf for a number of one-dimensional cases.
This study sheds further light on the approximation properties of the k-method. We finish
this paper with a comparison study of the k-method and the classical finite element method
and an analysis of the robustness of polynomial approximation.

1 Introduction

In this paper we present a theoretical and computational framework that allows one to
examine approximation properties of a prescribed discretization. The framework presented
in this paper is based on the theory of Kolmogorov n-widths. This theory defines and gives
a characterization of optimal n-dimensional spaces for approximating function classes and
their associated errors. N -widths are a well-explored subject in approximation theory, but
they are not as familiar to the finite element and computational mechanics communities.

A practically useful concept that emerges from the theory of n-widths is the sup-inf. Sup-
infs quantify the error induced by a particular discretization in approximating a given class of
functions. In the context of Hilbert spaces, sup-infs can be directly computed by way of the
solution of a variational eigenproblem. As error is exactly quantified, sup-infs can distinguish
between two methods of the same approximation order. Although such distinctions are rarely
made in classical approximation theory of finite elements, we feel that such comparisons are
necessary, primarily due to the advent of new computational technologies. For example, C0-
and C1-continuous quadratic finite elements deliver the same asymptotic convergence rate,
but the size of the approximation errors for the two classes of functions will be different.
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By comparing the sup-inf to the n-width, we are able to assess the performance of a given
approximation space with respect to the optimal discretization.

Recently Babuska et al. [4] made use of n-widths and sup-infs to assess approximation
properties of functions employed in generalized finite element methods. In this paper, we
apply this framework to the study of one-dimensional spline spaces of variable order and
continuity. Particular instantiations of these spaces include classical C0-continuous finite
elements as well as global polynomials. The emphasis of our study is spline functions of
maximal continuity. Such functions are the basis of the k-version of the isogeometric finite
element method. The concept of isogeometric analysis was first introduced in [21]. The
developments of [21] aimed at unifying geometrical modeling and analysis for engineering
applications. Although the development of isogeometric analysis was driven by the need
of a tighter link between computer-aided design and computer-aided analysis, using spline
functions in analysis has proven to be beneficial from the standpoint of solution accuracy.
Recent results in structural vibrations [15, 16], wave propagation [22], and turbulent flow
[1, 8] indicate that on a per-degree-of-freedom basis, discretizations of higher continuity are
superior to their C0-continuous counterparts.

In Section 2, we give an overview of spline functions, their construction, and their prop-
erties and define four discrete function spaces used for the analysis in this paper. In Section
3, we outline particular function classes of interest that arise in the study of partial differen-
tial equations that we wish to approximate with spline functions. These classes of interest
include standard Sobolev spaces, Sobolev spaces with periodic boundary conditions, and
Jacobi-weighted Sobolev spaces. In Section 4, we introduce terminology and concepts and
state classical results of the theory of n-widths and sup-infs. In this section, we also present
known theoretical results on the optimality of splines for function classes of interest. In
Section 5, we outline a computational framework for the evaluation of n-widths and sup-infs
and apply this framework to a number of one-dimensional cases. In Section 6, we draw
conclusions based on our studies.

2 Splines

This section gives a very brief overview of univariate B-splines and periodic splines. B-splines
were first introduced by Schoenberg in 1946 [28] in the attempt of developing piecewise poly-
nomials with prescribed smoothness properties. In his 1972 paper, de Boor [11] introduced a
simple and stable recursion formula for evaluating them, and since then, B-splines have been
a standard in the numerical analysis and computer-aided geometric design communities. For
an overview of splines, their properties, and robust algorithms for evaluating their values and
derivatives, see de Boor [12] and Schumaker [29]. For an introductory text on non-uniform
rational B-splines (NURBS), see Rogers [27], while more detailed treatments are given in
the books of Piegl and Tiller [25] and Cohen, Riesenfeld, and Elber [14]. For the application
of splines to finite element analysis, see Höllig [20] and Hughes, Cottrell, and Bazilevs [21].

A B-spline basis is comprised of piecewise polynomials joined with prescribed continuity.
In order to define a B-spline basis of polynomial order p in one dimension one needs the notion
of a knot vector. A knot vector in one dimension is a set of coordinates in the parametric
space, written as Ξ = {ξ1, ξ2, · · · , ξn+p+1}, where i is the knot index, i = 1, 2, . . . , n+ p+ 1,
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ξi ∈ R is a knot, ξ1 ≤ ξ2 ≤ . . . ≤ ξn+p+1, and n is the total number of basis functions.
Given Ξ and p, B-spline basis functions are constructed recursively starting with piecewise

constants (p = 0):

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(1)

For p = 1, 2, 3, . . ., they are defined by

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Bi+1,p−1(ξ). (2)

When ξi+p − ξi = 0, ξ−ξi

ξi+p−ξi
is taken to be zero, and similarly, when ξi+p+1 − ξi+1 = 0,

ξi+p+1−ξ

ξi+p+1−ξi+1
is taken to be zero.

We define
S(n, p,Ξ) = span {B1,p(ξ), B2,p(ξ), . . . , Bn,p} (3)

to be a B-spline space of dimension n with degree p and built using knot vector Ξ. B-spline
basis functions form a partition of unity, each one is compactly supported on the interval
[ξi, ξi+p+1], and they are point-wise non-negative. These properties are important and make
these functions attractive for use in analysis.

The first and last knots are called end knots, and the other knots are called interior knots.
Note that knots may be repeated. A knot vector is said to be open if its end knots have
multiplicity p+1. Basis functions formed from an open knot vector are interpolatory at end
knots of the parametric interval but they are not, in general, interpolatory at interior knots.
Basis functions of order p have p− 1 continuous derivatives at non-repeated knots. If a knot
has multiplicity k, then the number of continuous derivatives decreases by k − 1. When the
multiplicity of a knot is exactly p, the basis function is interpolatory and only C0-continuous
at that knot.

Periodic splines are constructed from B-splines subject to periodic boundary conditions.
If one desires a periodic spline space that is Cs−1 at the end knots, one must directly enforce
this constraint onto the associated B-spline space by restricting the first s− 1 derivatives at
the end knots to be equal.

The above constructions (1)-(2) encompass a large class of functions. All the finite
dimensional spaces considered in this paper may be expressed using particular instantiations
of the knot vector Ξ. In particular, we define the following discrete spline spaces:

• K(n, k, a, b) is the B-spline space of dimension n and degree k corresponding to an open
knot vector Ξ with end knots located at a and b (with b > a) and with equispaced and
non-repeated interior knots. Because the interior knots are distinct, the functions in this
space attain maximal continuity at interior knots. That is, K(n, k, a, b) ⊂ Ck−1(a, b).

• Kper(n, k, a, b) is the periodic spline space of dimension n and degree k corresponding
to the open knot vector Ξ with end knots located at a and b and with equispaced
and non-repeated interior knots, subject to periodic boundary conditions of maximal
continuity. Namely, if u ∈ Kper(n, k, a, b), then

D(i)u(a) = D(i)u(b), ∀i = 1, 2, . . . , k − 1. (4)
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This space is known as the space of uniform periodic splines. Maximal order of conti-
nuity at all knots is attained in this case.

• P (n, p, a, b) is the B-spline space of dimension n and degree p corresponding to the
open knot vector Ξ with end knots located at a and b, b > a, and with equispaced
interior knots, each of which is repeated p− 1 times. This is a space of standard finite
element functions of degree p that are C0-continuous at knots.

• P(n, a, b) is the B-spline space of dimension n and degree n − 1 corresponding to the
open knot vector Ξ with end knots located at a and b, b > a, and with no interior knots.
This is a space of global polynomials of degree n− 1.

In this paper, we define the k-version of the isogeometric finite element method or, in
short, the k-method as the analysis method exploiting full continuity of the basis functions
across distinct knots (and hence results from knot vectors with non-repeated interior knots).
Alternatively, we define the classical finite element method as the analysis method where only
C0-continuity is enforced across interior knots. With these definitions, we see that the spaces
K(n, k, a, b) and Kper(n, k, a, b) correspond to the k-method while the space P (n, p, a, b) cor-
responds to the classical finite element method of degree p. The space P(n, a, b) corresponds
to the spectral method or the p-version of the finite element method and is a special case
of both the classical finite element and k-methods, the case where no interior knots exist.
Examples of these spaces are illustrated in Figure 1.

3 Function spaces

In this section, we introduce a number of function spaces which arise in the study of elliptic
partial differential equations. Solutions to such equations often live in these function spaces,
depending of course on the regularity of the underlying problem and associated boundary
conditions.

3.1 Sobolev spaces

Let Ω ⊂ R be an open domain. For an integer m ≥ 0, we use the notation

Hm(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all α = 0, . . . ,m

}
. (5)

The Sobolev space Hm(Ω) is a Hilbert space with inner-product

(u, v)Hm(Ω) =
m∑

α=0

(Dαu,Dαv)L2(Ω) (6)

and induced-norm ‖u‖Hm(Ω) = (u, u)
1/2
Hm(Ω). By the Rellich-Kondrachov theorem, Hk(Ω) is

dense and compactly embedded in Hj(Ω) for j < k. Throughout this paper, we will use the
notation

Bm (Ω) =
{
u ∈ Hm (Ω) : ‖u‖Hm(Ω) ≤ 1

}
, (7)
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Figure 1: Top Left: The B-spline space K(6, 2, 0, 4). Top Right: The uniform periodic spline
space Kper(4, 3, 0, 4). Bottom Left: The B-spline space P (9, 2, 0, 4). Bottom Right: The
B-spline space P(5, 0, 4).

B̃m (Ω) =
{
u ∈ Hm (Ω) : ‖Dmu‖L2(Ω) ≤ 1.

}
(8)

Note that Bm (Ω) is the unit ball of Hm(Ω). We will find that the set B̃m (Ω) is well-suited
to theoretical analysis while the unit ball Bm (Ω) is amenable to numerics.

Sobolev spaces are among the most common encountered while studying elliptic bound-
ary value problems. Results such as the elliptic regularity theorem state that suitable weak
solutions to elliptic problems live in higher-order Sobolev spaces, so it is important to un-
derstand approximability in terms of such spaces.

3.2 Periodic Sobolev spaces

To begin, recall that by the Sobolev embedding theorems, Hm(0, 2π) ⊂ Cm−1([0, 2π]). Hence,
for an integer m ≥ 0, we may define the periodic Sobolev space

Hm
per(0, 2π) =

{
u ∈ Hm(0, 2π) : Diu(0) = Diu(2π) for i = 0, 1, . . . ,m− 1

}
. (9)

Further, we will use the notation

Bm
per (0, 2π) =

{
u ∈ Hm

per (0, 2π) : ‖u‖Hm(0,2π) ≤ 1
}

(10)

and
B̃m

per (0, 2π) =
{
u ∈ Hm

per (0, 2π) : ‖Dmu‖L2(0,2π) ≤ 1
}
. (11)
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We know Hm
per(0, 2π) is a complete subspace of Hm(0, 2π). Hence, it is a Hilbert space

equipped with the inner product (u, v)Hm(0,2π). Furthermore, we have that Hk
per(0, 2π) is

dense and compactly embedded in Hj
per(0, 2π) for j < k. Note that H0

per(0, 2π) = L2(0, 2π).
Periodic Sobolev spaces, while not as common as Sobolev spaces, appear in a number

of applications. Common applications where such spaces are employed include wave prop-
agation and turbulence, two areas where k-methods have shown much promise. We shall
demonstrate later in this paper that k-methods exhibit good behavior when approximating
functions from these spaces.

3.3 Weighted Sobolev spaces

The study of weighted Sobolev spaces has become increasingly popular in the numerical
analysis community. Their use has been of particular interest to those employing the classical
p- and hp-refinement strategies [6, 7, 10, 30, 17]. Weighted Sobolev spaces are constructed as
to allow functions with singularities in their domain. As such, they are a natural setting for
solutions to problems with corners [3] and non-smooth boundaries (e.g. the ubiquituous L-
shaped domain). Since such solutions do not live in higher-order classical Sobolev spaces, we
cannot use classical theoretical results to characterize the convergence behavior of finite
element approximations. Instead, alternative spaces must be sought out, and weighted
Sobolev spaces are a prime candidate for such a task. Approximation theory and numerical
results have shown that global polynomials have good approximation behavior for weighted
Sobolev spaces when the weight is a measure of the distance from the boundary.

Let α ∈ R such that α > −1. Let

ρα(x) = (1− x2)α. (12)

We define L2
α(−1, 1) to be the space of measurable functions which are L2-integrable with

respect to the measure ρα(x)dx. That is, if D′(−1, 1) is the space of distributions,

L2
α(−1, 1) =

{
u ∈ D′(−1, 1) : ‖u‖L2

α(−1,1) =

(∫ 1

−1

|u(x)|2ρα(x)dx

)1/2

< +∞

}
. (13)

L2
α(−1, 1) is a Hilbert space equipped with the inner product

(u, v)L2
α(−1,1) =

∫ 1

−1

u(x)v(x)ρα(x)dx. (14)

We note L2
0(−1, 1) = L2(−1, 1).

Let m ≥ 0 be an integer such that α−m > −1. We define the Jacobi-weighted Sobolev
space V m

α (−1, 1) by

V m
α (−1, 1) =

u ∈ D′(−1, 1) : ‖u‖V m
α (−1,1) =

(
m∑

k=0

‖Dku‖2
L2

α+k−m(−1,1)

)1/2

< +∞

 , (15)

equipped with the inner product

(u, v)V m
α (−1,1) =

m∑
k=0

(Dku,Dkv)L2
α+k−m(−1,1). (16)
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The spaces V k
α+k(−1, 1) are compactly embedded and dense in V j

α+j(−1, 1) for j < k (see

[19] for a proof), and the spaces V k
k (−1, 1) are the well-known Legendre-weighted Sobolev

spaces. Finally, we denote

Bm,α
w (−1, 1) =

{
u ∈ V m

α (−1, 1) : ‖u‖V m
α (−1,1) ≤ 1

}
. (17)

to be the unit ball of the Jacobi-weighted Sobolev space V m
α (−1, 1).

We immediately see that the Jacobi-weighted Sobolev spaces allow for singularities at
the points -1 and 1. For example, the function arcsin(x), whose derivative is 1√

1−x2 , lives

in V 1
1 (−1, 1) but not in H1(−1, 1). Further, functions of the form (1 − x)a(1 + x)b with

−1
2
< a, b < 1, one-dimensional models of solutions encountered in multi-dimensional linear

elasticity boundary value problems posed on polyhedral domains, also live in certain Jacobi-
weighted Sobolev spaces. The benefit of studying Jacobi-weighted Sobolev spaces is thus
apparent.

4 Theory of n-widths and sup-infs

When investigating the effectiveness of a Galerkin or Petrov-Galerkin method, we must first
ask how well our chosen basis can represent the exact solution. This question belongs to the
realm of approximation theory. In this section, we introduce terminology and concepts to
assess the effectiveness of spline-based finite element methods.

4.1 Basic terminology

Let X be a normed linear space with norm ‖ · ‖X , and let Xn be any n-dimensional subspace
of X. For each x ∈ X, we define E(x,Xn;X) to be the distance of the n-dimensional
subspace of Xn from x, namely

E(x,Xn;X) = inf
yn∈Xn

‖x− yn‖X . (18)

The concept of distance is illustrated in Figure 2. If there exists a y∗ ∈ Xn for which
E(x,Xn;X) = ‖x − y∗‖X , then y∗ is called the best approximation to x from Xn. If X is
a Hilbert space, then y∗ exists and is uniquely defined. Using the finite element method
for a symmetric elliptic partial differential equation, one obtains the best approximation in
terms of the energy norm. Hence, it is of importance to understand how large the quantity
E(x,Xn;X) can become.

We are not usually interested in just the distance of Xn from some arbitrary x ∈ X;
instead, we are interested in how well the space approximates a subset A of X. To this end,
we define E(A,Xn;X) to be the deviation of A ⊂ X from Xn, namely

E(A,Xn;X) = sup
x∈A

inf
yn∈Xn

‖x− yn‖X . (19)

The notion of deviation is illustrated in Figure 3. We shall also refer to E(A,Xn;X) as the
sup-inf for A and Xn. The sup-inf gives us a measure of how well an n-dimensional space
Xn approximates the “worst” member x ∈ A.
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X
n
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y*

x

X

Figure 2: The distance of Xn from a point x ∈ X. In this particular case, y∗ is the best
approximation.

Given two n-dimensional subspaces Xn and Yn of X, we consider the comparison ratio

κ (A,Xn, Yn;X) =
E(A,Xn;X)

E(A, Yn;X)
(20)

in terms of which we can assess the effectiveness of Xn as compared to Yn in approximating
the set A (as introduced by Babuška et al. in [4]). If κ ≈ 1, we have no strong reason to
prefer one subspace over the other. On the other hand, if κ� 1, we prefer Xn, and if κ� 1,
we prefer Yn.

The above criterion is useful for comparing the approximation properties of two spaces,
but we are often more interested in comparing multiple spaces. A natural question to ask is
how an n-dimensional subspace Xn ⊂ X compares with all other n-dimensional subspaces of
X. This question can be answered with the notion of n-width, first proposed by Kolmogorov
[23]. The Kolmogorov n-width is defined as

dn(A;X) = inf {E(A,Xn;X) : Xn is an n-dimensional subspace of X} (21)

or, equivalently,
dn(A;X) = inf

Xn⊂X
dim Xn=n

sup
x∈A

inf
yn∈Xn

‖x− yn‖X . (22)

An n-dimensional subspace X̃n ⊂ X is said to be optimal if

E(A, X̃n;X) = dn(A;X). (23)

Given a specific n-dimensional subspace Xn ⊂ X, we can now assess its effectiveness by
considering the optimality ratio

Λ (A,Xn;X) ≡ E(A,Xn;X)

dn(A;X)
=
E(A,Xn;X)

E(A, X̃n;X)
. (24)
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Figure 3: The deviation or sup-inf of Xn from a set A ⊂ X. In this particular case, the
sup-inf is achieved with the two points x∗ ∈ A, y∗ ∈ Xn. That is, E(A,Xn;X) = ‖x∗−y∗‖X .

We see that the ratio Λ compares Xn with the optimal subspace, and therefore Λ ≥ 1. It is
a rare occasion that Λ = 1, and much research has been devoted to the search for optimal
subspaces. In fact, it is often impossible to obtain dn(A;X) and determine the existence of
optimal subspaces. If we restrict ourselves to a Hilbert space setting, however, we obtain
a variational tool by which we can calculate dn(A;X) and a corresponding optimal subspace.

Remark 4.1. In general, we may not know precisely where the solution to a partial differ-
ential equation lies (that is, we may not know a space A where x is a priori), but we may
know several candidate spaces where the solution may be. By analyzing optimality ratios for
these different spaces, we can evaluate the effectiveness of an approximation space across a
broad spectrum of situations. Hence, we can determine if a particular approximation space
is “good for all seasons.”

We finish this subsection with one more definition. Let X1, X2, . . . be a sequence of
subsets of X such that dim Xi = i. If there exists a constant M ∈ R such that

E(A,Xi;X) ≤Mdi(A;X) (25)

for every i ∈ N, then the subspaces {Xn}∞n=1 are asymptotically optimal subspaces. Much of
approximation theory research is spent determining if sequences of subspaces are asymptot-
ically optimal. We feel that it is also important to understand the potential size of M . For
example, if M = 10100, the asymptotically optimal sequence is probably not desirable for
the purposes of approximation.
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4.2 Characterization of n-widths and sup-infs in a Hilbert space
setting

We now restrict ourselves to a Hilbert space setting. In doing so, we obtain a number of
powerful results. We present here six theorems, the first four of which will be useful for
theoretical calculations while the last two lend themselves to numerical computation.

Let H be a Hilbert space with inner product (u, v)H and induced norm ‖u‖H . Let
K : H → H be a compact linear operator. We define BK to be the image of the unit ball of
H under K:

BK = {u ∈ H : u = Kv, v ∈ H, ‖v‖H ≤ 1} . (26)

Suppose K is the solution operator of a linear partial differential equation. The set BK then
represents the set of all solutions subject to an appropriately bounded forcing.

We are interested in the quantity

dn(BK ;H) = inf
Xn⊂H

dim Xn=n

sup
u∈BK

inf
vn∈Xn

‖u− vn‖H . (27)

Before proceeding, recall the following classical duality result. It will be instrumental in
arriving at a mechanism for computing (27).

Lemma 4.1. Let Xn denote an n-dimensional subspace of H and v ∈ H. Then

inf
vn∈Xn

‖v − vn‖H = sup
f∈H
f 6=0

(f,Xn)H=0

(v, f)H

‖f‖H

(28)

where (f,Xn)H = 0 indicates that f is orthogonal to each element vn ∈ Xn.

Proof. Let πn be the H-projection onto Xn. That is, for every u ∈ H, let πnu be the unique
member of Xn such that

‖u− πnu‖H = inf
vn∈Xn

‖u− vn‖H . (29)

Recall from functional analysis that πn is a unique bounded self-adjoint linear surjection.
Then, one can write

inf
vn∈Xn

‖v − vn‖H = ‖(I − πn)v‖H

= sup
f∈H

‖f‖H=1

((I − πn)v, f)H

= sup
f∈H

‖f‖H=1

(v, (I − πn)f)H

= sup
f∈H

‖f‖H=1
(f,Xn)H=0

(v, f)H . (30)

Result (28) follows. 2
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The next theorem characterizes the quantity (27) and an associated optimal subspace.

Theorem 4.1. Let
µ1 ≥ µ2 ≥ . . .↘ +0, ψ1, ψ2, . . . , (31)

denote the eigenvalues and eigenvectors of the self-adjoint, non-negative, compact operator
KK∗. Then for n = 1, 2, . . . ,

dn(BK ;H) = µ
1/2
n+1 (32)

and
X̃n = span {ψ1, . . . , ψn} (33)

is an optimal subspace for dn(BK ;H).

Proof. By definition,

dn(BK ;H) = inf
Xn⊂H

dim Xn=n

sup
v∈H

‖v‖H=1

inf
vn∈Xn

‖Kv − vn‖H . (34)

By Lemma 4.1,

inf
vn∈Xn

‖Kv − vn‖H = sup
f∈H
f 6=0

(f,Xn)H=0

(Kv, f)H

‖f‖H

(35)

for every v ∈ H. It follows that

dn(BK ;H) = inf
Xn⊂H

dim Xn=n

sup
v∈H

‖v‖H=1

sup
f∈H
f 6=0

(f,Xn)H=0

(Kv, f)H

‖f‖H

= inf
Xn⊂H

dim Xn=n

sup
f∈H
f 6=0

(f,Xn)H=0

sup
v∈H

‖v‖H=1

(v,K∗f)H

‖f‖H

= inf
Xn⊂H

dim Xn=n

sup
f∈H
f 6=0

(f,Xn)H=0

‖K∗f‖H

‖f‖H

=

 inf
Xn⊂H

dim Xn=n

sup
f∈H
f 6=0

(f,Xn)H=0

(KK∗f, f)H

(f, f)H


1/2

. (36)

This final expression is the well-known Rayleigh-Ritz characterization of the square root of
the (n+ 1)st largest eigenvalue (µ

1/2
n+1) of KK∗, and the infimum in the above expression is

obtained by the choice span{ψ1, . . . , ψn}. Results (32) and (33) follow. 2
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Example 4.1. (Sturm-Liouville Problems) Consider the following second-order regular
Sturm-Liouville problem:

−(pu′)′ + qu = f on (a, b), (37)

α1u(a)− α2u
′(a) = 0, (38)

β1u(b) + β2u
′(b) = 0, (39)

where (·)′ denotes a derivative operator, f ∈ L2(a, b), p ∈ C1[a, b], p > 0, q ∈ C0[a, b], q ≥ 0,
and α1, α2, β1, β2 > 0. The solution u is unique and can be written as

u(x) = (Kf)(x) =

∫ b

a

G(x, y)f(y)dy, (40)

where G(x, y) is the Green’s function and K is the solution (i.e. Green’s) operator. Noting
that K : L2(a, b) → L2(a, b) is a compact operator, we see Theorem 4.1 yields optimal dis-
crete spaces for the approximation of the solution of the Sturm-Liouville problem.

There are also optimal subspaces other than the ones given in (33). In fact, for a num-
ber of cases, optimal subspaces can be selected to be spline subspaces. We will discuss a
number of these later on in this paper. For compact operators that can be characterized as
the action of an integrable kernel (as in Example 4.1), we have another mechanism through
which we can arrive at optimal subspaces. In particular, for general integral operators with a
non-degenerate totally positive kernel (see [24] for definition) we have the following theorem.

Theorem 4.2. Let K(x, y) be a non-degenerate totally positive kernel on (a, b)× (a, b) and
let the operator K : L2(a, b) → L2(a, b) be defined as

(Kf)(x) =

∫ b

a

K(x, y)f(y)dy, ∀f ∈ L2(a, b). (41)

By construction, the operator K is compact. Let a < ξ1 < ξ2 < · · · < ξn < b denote the
zeros of the (n + 1)st eigenvector of K. Then the following subspace is also optimal for
dn(BK ;L2(a, b)):

X̂n = span{K(·, ξ1), K(·, ξ2), . . . , K(·, ξn)}. (42)

Proof. The proof is due to Melkman and Micchelli. See [24].

The next theorem characterizes n-widths and associated optimal subspaces for sets which
may be described as the direct sum of a finite-dimensional space and the image of a compact
operator. Such sets are of direct relevance to Hilbert spaces without boundary conditions.

Theorem 4.3. Let K(x, y) and K be as in Theorem 4.2. Let

Br
K = {v(x) : v(x) =

r∑
i=1

aiki(x) + (Kf)(x), f ∈ L2(a, b), ai ∈ R} (43)
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such that ki(x) and K(x, y) satisfy certain non-degenerate total positivity requirements (see
[24] for details). Then:

dn

(
Br

K ;L2(a, b)
)

=

{
∞, n < r,

µ
1/2
n−r+1, n ≥ r,

(44)

and the following spaces are optimal for dn (Br
K ;L2(a, b)):

X̃n = span {k1, k2, . . . , kr, ψ1, ψ2, . . . , ψn−r} (45)

and
X̂n = span {k1, k2, . . . , kr, K(·, ξ1), K(·, ξ2), . . . , K(·, ξn−r)} . (46)

Proof. See [24].

Example 4.2. (Optimality of Splines) It is well-known that any function v(x) ∈ B̃s(0, 1)
can be written as

v(x) =
s−1∑
i=0

Div(0)

i!
xi +

1

(s− 1)!

∫ 1

0

(x− y)s−1
+ f(y)dy, (47)

where f = Dsv ∈ L2(0, 1) and

(z)+ =

{
z if z > 0
0 otherwise

. (48)

Immediately applying Theorem 4.3, one finds that the space

span
{
1, x, x2, . . . , xs−1, (x− ξ1)

s−1
+ , (x− ξ2)

s−1
+ , . . . , (x− ξn−s)

s−1
+

}
(49)

is an optimal subspace for dn(B̃s(0, 1), L2(0, 1)). Above, as usual, 0 < ξ1 < . . . < ξn−s < 1
denote the zeros of the (n− s+ 1)st eigenvector of operator K defined by

Kf(x) =

∫ 1

0

(x− y)s−1
+ f(y)dy. (50)

One finds that the space given by (49) is the space of B-splines of order s− 1 corresponding
to the open knot vector Ξ = {0, . . . , 0, ξ1, . . . , ξn−s, 1, . . . , 1} (that is, the space S(n, s−1,Ξ)).
These knot locations are fixed for every choice of s and n and are, in general, non-uniform.
However, these locations are symmetric relative to the midpoint of (0,1). These locations are
generally hard to obtain since to the best of the authors’ knowledge explicit closed-form ex-
pressions for the eigenfunctions, and, as a result, their zeros, are not known. It will be shown
in the numerical computations section of this paper that choosing a uniform partition of the
knot vector leads to nearly optimal approximation properties of the resultant B-spline spaces.
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Our next result pertains to functions induced by a 2π-periodic continuous kernel.

Theorem 4.4. Let D(x) be a real 2π-periodic function with the following Fourier series
representation:

D(x) =
∞∑

n=−∞

ane
inx, (51)

where i =
√
−1 and |an| = |a−n|. Suppose D(x) satisfies certain positivity conditions as

outlined in Chapter 6 of [26] (known collectively as Property B). Further define

BD =
{
v(x) : v(x) = c+D ∗ f(x), f ∈ L2(0, 2π), ‖f‖L2(0,2π) ≤ 1, f ⊥ 1, c ∈ R

}
(52)

where

D ∗ f(x) =

∫ 2π

0

D(x− y)f(y)dy. (53)

Then,

d0

(
BD;L2(0, 2π)

)
= ∞, (54)

d2n−1

(
BD;L2(0, 2π)

)
= d2n

(
BD;L2(0, 2π)

)
= |an|, n ≥ 1, (55)

and two corresponding optimal subspaces are

X̃2n−1 = span {1, cos(x), sin(x), . . . , cos((n− 1)x), sin((n− 1)x)} (56)

and

X̂2n =

{
v(x) : v(x) = b0 +

2n∑
j=1

bjD(x− (j − 1)π/n) such that
2n∑

j=1

bj = 0

}
. (57)

Proof. The proof is due to Pinkus. See [26].

Example 4.3. (Optimality of Periodic Splines) Any function in the space B̃s
per(0, 2π)

may be written as

v(x) = c+
1

π

∫ 2π

0

Bs(x− y)f(y)dy, (58)

where f = Dsv ∈ L2(0, 2π), c =
∫ 2π

0
v(y)dy,

∫ 2π

0
f(y)dy = 0, and Bs is defined by

Bs(x) =
∞∑

n=1

cos(nx− (sπ/2))

ns
. (59)

It is easy to establish that Bs is a 2π-periodic spline (the so-called Bernoulli monospline)
of order s that is Cs−2 at the point 0 and has polynomial representation over the interval
[0, 2π) (see [26] for a further discussion). Invoking Theorem 4.4, one finds that for s > 1,

d0

(
B̃s

per(0, 2π);L2(0, 2π)
)

= ∞, (60)

d2n−1

(
B̃s

per(0, 2π);L2(0, 2π)
)

= d2n

(
B̃s

per(0, 2π);L2(0, 2π)
)

= n−s, n ≥ 1, (61)
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and

X̂2n =

{
v(x) : v(x) = b0 +

2n∑
j=1

bjBs(x− (j − 1)π/n) such that
2n∑

j=1

bj = 0

}
(62)

is an associated optimal subspace for d2n

(
B̃s

per(0, 2π);L2(0, 2π)
)
. With some quick analysis,

one further finds that X̂2n = Kper(2n, s − 1, 0, 2π). This result is quite powerful. Uniform
periodic spline spaces are very easy to construct, and this result reveals that they are in fact
optimal. Later on in this paper, we will see through the use of numerics a robustness result
to complement this accuracy result.

While Theorems 4.1 through 4.4 are useful for the theoretical derivation of n-widths
and corresponding subspaces (as illustrated in Examples 4.1 through 4.3), it is in general
not possible to explicitly represent a function class of interest as the image of a compact
operator. Furthermore, calculating the eigenvalues and eigenfunctions of a compact operator
is a cumbersome and difficult task, and we are also often interested in the computation of sup-
infs for particular approximation spaces. In what follows, we give a variational framework
that gives a characterization of n-widths that is amenable to direct computation and allows
for a direct computation of the approximation power of any finite-dimensional space in terms
of the sup-inf and optimality ratio.

Let V be a Hilbert space with inner product (u, v)V and induced norm ‖u‖V . Let V be
dense and compactly embedded in H. We define BV to be the unit ball of V :

BV = {u ∈ V : ‖u‖V ≤ 1} . (63)

We are now interested in the quantity

dn(BV ;H) = inf
Xn⊂H

dim Xn=n

sup
u∈BV

inf
vn∈Xn

‖u− vn‖H (64)

whose value and corresponding optimal subspace can be characterized by the eigenpairs of
the following eigenvalue problem:{

λ ∈ R, u ∈ V, u 6= 0,
(u, v)H = λ(u, v)V , for all v ∈ V. (65)

Since V is compact in H, we know problem (65) has eigenvalues and orthogonal eigenvectors

λ1 ≥ λ2 ≥ · · · ↘ +0, u1, u2, . . . , (66)

where the eigenvectors are chosen to satisfy

(ui, uj)H = λi(ui, uj)V = λiδij. (67)

We now prove a fundamental theorem on n-widths. It was also used for the computations
in [4], and an alternative derivation may be found in [2].
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Theorem 4.5. For n = 1, 2, . . .,

dn(BV ;H) = λ
1/2
n+1 (68)

and
X̃n = span {u1, . . . , un} (69)

is an optimal subspace for dn(B;H).

Proof. For v ∈ H, we let Lv ∈ V ∗ be the functional defined by

Lv(w) = (w, v)H , for all w ∈ V. (70)

By the Riesz Representation theorem, there exists a unique zv ∈ V such that

(w, zv)V = Lv(w), for all w ∈ V. (71)

We define the operator S : H → V by Sv = zv for all v ∈ H. One can easily show S is a
linear, bounded operator which maps from H into V . Let T : H → H be defined by

Tv = Sv (72)

for all v ∈ H. Since V is compact in H, it follows that T is a compact operator, and one can
also show T is self-adjoint and positive. We then know T has eigenvalues and eigenvectors

µ1 ≥ µ2 ≥ · · · ↘ +0, ψ1, ψ2, . . . , (73)

with µi > 0, and it is easy to show that µi = λi and ψi = ui in Equation (66).
From basic Hilbert space theory, we know T has a unique positive, self-adjoint square

root T 1/2. Further, one can show T 1/2 is also self-adjoint for the inner-product (·, ·)V . We
then have

‖T 1/2u‖2
V = (Tu, u)V = ‖u‖2

H for all u ∈ V (74)

and, by density, ‖T 1/2u‖V = ‖u‖H for all u ∈ H. It follows that BV is the image of the unit
ball of H under T 1/2. Results (68) and (69) follow from Theorem 4.1. 2

Example 4.4. (Optimality of Polynomials in Jacobi-weighted Spaces) The space of
polynomials P(n,−1, 1) is an optimal subspace for the n-width dn(Bm,m+α

w (−1, 1);L2
α(−1, 1))

as the Jacobi polynomials are the corresponding eigenvectors of (69).

We have so far characterized n-widths and optimal subspaces in terms of the eigenpairs
of certain eigenvalue problems. We can employ a similar technique to compute sup-infs. Let
Xn be an n-dimensional subspace of H. Let πn be the H-projection onto Xn. Consider the
eigenvalue problem{

λ̃ ∈ R, ũ ∈ V, ũ 6= 0,

((I − πn) ũ, (I − πn) v)H = λ̃(ũ, v)V , for all v ∈ V. (75)
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We know (75) is a well-posed eigenvalue problem (with up to n zero eigenvalues) whose
nonzero eigenvalues satisfy

λ̃1 ≥ λ̃2 ≥ . . .↘ +0. (76)

The largest eigenvalue, λ̃1, is the Rayleigh quotient characterized by

λ̃1 = sup
u∈V

‖u− πnu‖2
H

‖u‖2
V

. (77)

From this expression, we immediately have the following theorem characterizing the sup-inf
E(BV , Xn;H).

Theorem 4.6 If λ̃1 is the largest eigenvalue of (75), then

E(BV , Xn;H) = λ̃
1/2
1 . (78)

Theorems 4.5 and 4.6 provide a variational framework through which we may numerically
compute n-widths and sup-infs. Such a framework is ideal for finite element technologies.

4.3 Relation of sup-infs to Galerkin a priori error estimates

We finish this section by establishing a relationship between sup-infs and Galerkin a priori
error estimates. This motivates the computation of n-widths and sup-infs as a means of
assessing the effectiveness of a finite element basis.

Let Ω ⊂ Rd be an open domain. Let B : H1(Ω)×H1(Ω) → R be a continuous, coercive
bilinear functional and F ∈ (H1(Ω))∗. Consider the variational problem:

Find u ∈ H1(Ω) such that

B(u, v) = F (v), for all v ∈ H1(Ω). (79)

The variational formulation of many linear elliptic second-order partial-differential equations
can be written in the form of (79). The Lax-Milgram theorem gives the existence and
uniqueness of a weak solution u, provided that continuity and coercivity of the bilinear form
B holds.

The Galerkin method involves choosing an n-dimensional subspace Xn of H1(Ω) with
which we will approximate the weak solution. The resulting finite-dimensional problem is:

Find un ∈ Xn such that

B(un, vn) = F (vn), for all vn ∈ Xn. (80)

One can easily show that (80) has a unique solution un, and if M and γ are the continuity
and coercivity constants for B, we have the inequality

‖u− un‖H1(Ω) ≤
M

γ
inf

vn∈Xn

‖u− vn‖H1(Ω) =
M

γ
E(u,Xn;H1(Ω)). (81)
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The above is the most primitive Galerkin a priori error estimate. If our bilinear form is
symmetric, we can develop an additional estimate based on the energy norm where the
continuity and coercivity constants are both one. The focus of much of the theory of finite
elements is to obtain upper bounds on the size of E(u,Xn;H1(Ω)).

Provided that the boundary of Ω and parameters of our bilinear form and F are smooth
enough, we can use the elliptic regularity theorem to show our solution u lives in a higher-
order Sobolev space Hm(Ω). We then have the upper bound

‖u− un‖H1(Ω) ≤ M

γ
E(Bm(Ω), Xn;H1(Ω))‖u‖Hm(Ω). (82)

The sup-inf E(Bm(Ω), Xn;H1(Ω)) can be computed directly from (78). Traditionally, finite
element theorists have instead employed other means to estimate its size (e.g., the Bramble-
Hilbert lemma [13]). In fact, employing a Galerkin method to solve the eigenproblem for
E(Bm(Ω), Xn;H1(Ω)) requires the use of a finite-dimensional subspace of Hm(Ω). With
classical finite element analysis, this is impossible. On, the other hand, the computation can
be completed with higher-order continuous functions as in the k-method.

We feel that the ability to directly compute the sup-inf E(Bm(Ω), Xn;H1(Ω)) with the aid
of the k-method is quite powerful. It allows the finite element theorist to numerically analyze
the approximation power of a chosen basis and compare it with other choices. Further, by
analyzing trends in E(Bm(Ω), Xn;H1(Ω)), one can more easily derive theoretical results for
finite element spaces. In the following section, we will discuss the numerical computation of
sup-infs using Galerkin finite element methods and reveal some results in the context of the
classical finite element and k-methods.

5 Numerical approximation results for spline spaces

In this section, we utilize the framework developed in Subsection 4.2 to numerically compute
n-widths and sup-infs for spline spaces in the context of a number of function spaces. Fol-
lowing an in-depth analysis of the k-method using this framework and the new concept of an
optimality surface, we conduct a comparison study between the classical finite element and
k-methods and uncover some interesting results which may help explain some of the recent
successes of the k-method. We finish with a short analysis of the robustness of polynomial
approximation using the spectral method.

5.1 Galerkin approximation of n-widths and sup-infs

As usual, we assume H and V are Hilbert spaces such that V is dense and compactly
embedded in H, BV is the unit ball of V , and Xn ⊂ H such that dim(Xn) = n. We are
interested in numerically approximating the n-width dn(BV ;H) and sup-inf E(BV , Xn;H),
through which we may then approximate the optimality ratio. We will approximate these
quantities using the Galerkin method.

Choose Xm ⊂ V such that dim(Xm) = m, where m � n. Galerkin approximations to
the eigenvalues of (65) and (75) are found by solving the following finite-dimensional eigen-
problems:
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Find u ∈ Xm, ζ ∈ R such that

(u, v)H = ζ (u, v)V , for v ∈ Xm. (83)

Find ũ ∈ Xm, ζ̃ ∈ R such that

((I − πn)ũ, (I − πn)v)H = ζ̃ (ũ, v)V , for v ∈ Xm. (84)

We rewrite (83) and (84) as matrix eigenproblems. Such a form is well-suited for numerical
computation as many numerical solvers exist for generalized matrix eigenproblems. We will
discuss numerical details for our particular systems shortly.

Assume that
{
Nh

i

}n

i=1
and (N ′

i)
m
i=1 are bases for the spaces Xn and Xm respectively. For

each u ∈ Xm, write u = [uj], where uj is the coefficient of u with respect to the basis function
N ′

j. We define H = [Hi,j] to be the n× n matrix such that

Hi,j = (Nh
i , N

h
j )H , (85)

M = [Mi,j] and K = [Ki,j] to be the m×m matrices such that

Mi,j = (N ′
i , N

′
j)H and (86)

Ki,j = (N ′
i , N

′
j)V , (87)

T = [Ti,j] to be the n×m matrix such that

Ti,j = (Nh
i , N

′
j)H , (88)

and M̃ = [Mi,j] to be the m×m matrix such that

M̃ = M−TTH−1T. (89)

We know that K and M are positive definite and M̃ is positive semi-definite. The generalized
matrix eigenproblems

Mu = ζKu (90)

and
M̃u = ζ̃Ku (91)

are equivalent to (83) and (84). Let

ñ = dim
(
null

(
M̃
))

= dim (Xm ∩Xn) . (92)

Then (90) and (91) have nonzero eigenvalues ζ1 ≥ . . . ≥ ζm > 0 and ζ̃1 ≥ . . . ≥ ζ̃m−ñ > 0,
respectively. The Galerkin estimates for the n-width and sup-inf are respectively

dn(BV ;H) ≈ ζ
1/2
n+1,

E(BV , Xn;H) ≈ ζ̃
1/2
1 .

(93)
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We finish here with some a priori estimates for the error of our approximations. We
define the sets

Uj = {u ∈ V : u is a generalized eigenvector of (65) corresponding to λj, ‖u‖V = 1} (94)

and

Ũj =
{
ũ ∈ V : ũ is a generalized eigenvector of (75) corresponding to λ̃j, ‖ũ‖V = 1

}
. (95)

Because of the Rayleigh-Ritz characterization of the eigenvalues of (65) and (75) and their
Galerkin counterparts, we further have the inequalities

ζj ≤ λj (96)

and
ζ̃j ≤ λ̃j. (97)

These inequalities state that the discrete eigenvalues are smaller or equal in magnitude than
the exact eigenvalues. By Theorem 8.3 of [5] and Equations (96) and (97), we obtain the
estimates

1 ≤ λn+1

ζn+1

≤ C1 (E (Un+1, Xm;H))2 + 1 (98)

and

1 ≤ λ̃1

ζ̃1
≤ C2

(
E
(
Ũ1, Xm;H

))2

+ 1 (99)

where C1 is a positive constant which depends on H and V and C2 is a positive constant
which depends on H, V , and Xn. Note that C1 and C2 do not depend on Xm. From these
estimates, we immediately have

1 ≤ dn(BV ;H)

ζ
1/2
n+1

≤
(
C1 (E (Un+1, Xm;H))2 + 1

)1/2
(100)

and

1 ≤ E(BV , Xn;H)

ζ̃
1/2
1

≤
(
C2

(
E
(
Ũ1, Xm;H

))2

+ 1

)1/2

. (101)

Equations (100) and (101) characterize the convergence of our Galerkin method as m→∞.

5.2 A spline-based finite element framework and implementational
details

In this paper, we are interested in the case when H and V correspond to properly weighted
Sobolev spaces and Xn is a given spline space. Since classical finite elements do not live in
higher-order Sobolev spaces, we employ k-version finite elements to approximate (65) and
(75) by the Galerkin method.

In spline-based finite element analysis, elements are interpreted as the span between two
consecutive knots. With such a notion, an element-by-element assembly can be conducted
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Element:                         E                                        E + 1

   Sub-element:          e        e + 1      e + 2    e + 3      e + 4      e + 5     e + 6     e + 7

!
i
= "

j !
i+1

= "
j+4

!
i+2

= "
j+8

!
j+1

!
j+2

!
j+3 !

j+5
!
j+6

!
j+7

Figure 4: Superconnectivity: The knot vector H = {ηj} for a spline space Xm is constructed
from the knot vector Ξ = {ξi} of a spline space Xn. An element superconnectivity is readily
inferred, with parent element E having children elements e through e+3 and parent element
E + 1 having children elements e+ 4 through e+ 7.

in the usual sense to construct the matrices discussed in the previous subsection. If the knot
vector for the trial space Xm is a simple refinement of the knot vector for the spline space Xn,
an element superconnectivity can be constructed, greatly simplifying the assembly process.
This superconnectivity concept is illustrated in Figure 4. By analyzing this figure we see each
element corresponding to the knot vector of Xm is completely contained in a unique element
of the knot vector of Xn. Such a relationship establishes the notion of children elements (the
elements corresponding to Xm) and parent elements (the elements corresponding to Xn).
To build our matrices, we then have two nested loops in our assembly process: (1) an outer
loop over our parent elements, and (2) an inner loop over the parent’s associated children
elements. This structure is especially useful for easy construction of the matrix T which
couples the spaces Xn and Xm.

Since splines have compact support, the matrices H, M, K, and T have a sparse, banded
structure. The matrix M̃, on the other hand, is often fully populated. Hence, it is advanta-
geous to employ algorithms which will allow us never to directly construct M̃. Such a feat
could be accomplished through the use of iterative linear solvers within our eigensolver. In
fact, an inverse-free preconditioned Krylov subspace symmetric eigensolver specifically de-
signed for systems such as (90) and (91) has been recently introduced by Golub and Ye [18].
We feel that such a solver would be ideal for multi-dimensional computations. However, in
one dimension, the matrices are small enough such that direct eigensolvers may be employed
effectively.

We employed the QR method for the eigensolves in this paper. In one dimension, the
matrix K is fast to directly invert due to its tightly banded structure and an explicit ex-
pression for the matrix M̃ is also easily obtained. Further, we found the QR method to be
a robust, stable, and quick method in one dimension.

For the following computations, we utilized C5 sextic splines for the trial spaces in
Galerkin’s method. For each eigenvalue problem, we increased the size m of the space Xm

until convergence was reached. We found that that for most computations, a sufficient size
satisfied the ratio m

n
≥ 5. However, for some of the calculations, a larger m was necessary. In

particular, it was especially difficult to converge some of the results for the case of singular
Sobolev spaces. We feel that this might be due to the lack of smoothness associated with
these spaces.
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5.3 Numerically computed optimality surfaces for the k-method

In this subsection, we numerically compute optimality surfaces for the k-method. Given
n, the number of degrees of freedom for a spline space, an optimality surface is a bivariate
function of s, the smoothness of the function space to be approximated, and k, the polynomial
order of the spline space. The optimality surface returns for each s and k the optimality
ratio for the spline space of order k in approximating the function space of smoothness s.

By analyzing trends in the optimality surface, one can determine two traits: accuracy
and robustness. Accuracy is a measure of how close the optimality surface is to one at a
point. Hence, accuracy is an indicator of how close to optimal a spline space is for a given
smooth function space. Robustness, on the other hand, is a measure of how far one can
drift on the optimality surface from an optimal (or near optimal) point without losing much
accuracy. This definition will become clearer as we discuss our numerical results.

5.3.1 L2 optimality surfaces: Sobolev spaces

We first compute optimality surfaces for the case of approximating Sobolev spaces in the
L2 norm. The reader may ask why we are using approximations in the L2 norm as opposed
the H1 norm or semi-norm as is standard in finite elements. The reasoning for this choice
is simple: when measuring errors in the H1 semi-norm, we are simply measuring the error
of the derivative in the L2 norm. Consequently, by measuring how well piecewise constants
approximate H1(0, 1) in the L2 norm, we are in fact also measuring how well piecewise linears
approximate the Sobolev space H2(0, 1) in the H1 semi-norm. Since the derivatives of spline
functions of maximal continuity are again spline functions of maximal continuity, a similar
relationship holds for higher-order splines.

Before discussing our numerical results, let us recall the accuracy result stated in Ex-
ample 4.2: there exist spline spaces of order s − 1 which are optimal for the n-width
dn

(
B̃s(0, 1);L2(0, 1)

)
. Hence, we expect that splines of order s − 1 are nearly optimal in

approximating functions in Hs. As the order of our splines is increased above s − 1, we
might expect our approximation properties to deteriorate as we are incorporating functions
of higher regularity than the space we are trying to approximate. However, we shall see that
there is little or no deterioration. As the order of our splines is decreased below s − 1, we
expect our approximation properties to deteriorate rapidly.

We have computed the optimality ratio Λ
(
Bs(0, 1), K(n, k, 0, 1);L2(0, 1)

)
for the cases of

n = 10, 20, and 30 and reported the results in Figures 5, 6, and 7 respectively. For purposes
of ease of visualization, we have capped off the optimality surface plots at the value Λ = 10.
We immediately see that as expected, uniform spline spaces of order s−1 are nearly optimal
in approximating functions in Hs. This is the accuracy result we were looking for, and we
have colored the corresponding cells in Figures 5, 6, and 7 to highlight this result. However,
we also have a strong robustness result: uniform spline spaces of order k > s− 1 are nearly
optimal in approximating Hs as well. In fact, we see little increase in the optimality ratio
as the polynomial order k is increased, and this increase becomes smaller as the number of
degrees of freedom is increased. This indicates that there is very little penalty for choosing
too smooth a spline space in solving a partial differential equation with the finite element
method. Finally, as expected, we see that if we choose splines with lower order than optimal,
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 2.8e+05 4.5e+03 1.0e+02 3.5e+00 2.0e+00 2.3e+00
s = 4 1.4e+04 2.3e+02 5.2e+00 1.6e+00 1.9e+00 2.1e+00
s = 3 6.3e+02 1.0e+01 1.3e+00 1.6e+00 1.8e+00 1.9e+00
s = 2 2.5e+01 1.1e+00 1.3e+00 1.4e+00 1.5e+00 1.6e+00
s =1 1.0e+00 1.1e+00 1.2e+00 1.2e+00 1.3e+00 1.3e+00

Figure 5: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the Hs unit ball with 10 degrees of freedom

our results rapidly deteriorate.
Comparing our results for n = 10, 20, and 30, we find another powerful result. Provided

that k ≥ s− 1, we find that the optimality ratio Λ
(
Bs(0, 1), K(n, k, 0, 1);L2(0, 1)

)
decreases

with increasing n. This seems to indicate that in the limit as n→∞, uniform spline spaces
of sufficient order are in fact optimal spaces for approximating Sobolev spaces. This result
is not entirely surprising. Through the course of numerically analyzing the optimal knot
locations as indicated in Example 4.2, we found that the knots become more equispaced as
the number of degrees of freedom was increased. Hence, we make the following conjecture
regarding the asymptotic accuracy of higher-order k-methods.

Conjecture 5.1. (Optimality of Splines in the Limit) For fixed non-negative integers
k, s satisfying k ≥ s− 1, the following relationship holds:

lim
n→∞

Λ
(
Bs(0, 1), K(n, k, 0, 1);L2(0, 1)

)
= 1. (102)

We feel a further analysis of the conjecture warrants merit, and such an analysis might
prove to be instrumental to advancing spline-based finite element approximation theory.
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 8.2e+06 5.8e+04 5.4e+02 7.0e+00 1.6e+00 2.0e+00
s = 4 1.6e+05 1.1e+03 1.1e+01 1.3e+00 1.6e+00 1.9e+00
s = 3 3.0e+03 2.1e+01 1.1e+00 1.3e+00 1.6e+00 1.8e+00
s = 2 5.2e+01 1.0e+00 1.1e+00 1.3e+00 1.4e+00 1.5e+00
s = 1 1.0e+00 1.0e+00 1.1e+00 1.1e+00 1.2e+00 1.2e+00

Figure 6: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the Hs unit ball with 20 degrees of freedom

5.3.2 L2 optimality surfaces: periodic Sobolev spaces

We continue this subsection by computing optimality surfaces for the case of approximating
periodic Sobolev spaces in the L2 norm. We consider separately the cases of even and odd
numbers of degrees of freedom. The reason for this will become clear in the sequel.

Case 1: Even number of degrees of freedom

Example 4.3 demonstrated that for s ≥ 2 and for even numbers of degrees of freedom,
periodic splines of order s − 1 were optimal in approximating B̃s

per(0, 2π) in the L2 norm.
Thus, the main question for periodic spline spaces of even dimension is robustness : what
happens to our approximation properties as the order of our splines is increased? The
previous results in regards to standard Sobolev spaces suggest that increasing our polynomial
order has little effect on our approximability, and our numerical results here hint at an even
stronger result for periodic splines.

As before, we have computed the optimality ratio Λ
(
Bs

per(0, 2π), Kper(n, k, 0, 2π);L2(0, 2π)
)

for the cases of n = 10, 20, and 30 and reported the results in Figures 8, 9, and 10. By
analyzing the figures, we immediately see the remarkable accuracy result: for k ≥ s − 1
and n even, uniform periodic splines of order k are optimal in approximating the unit ball
Bs

per(0, 2π) of Hs
per(0, 2π). Analogous to the Sobolev case analyzed earlier, we have colored

the corresponding cells in Figures 8, 9, and 10 to highlight this result.
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 5.0e+07 2.3e+05 1.3e+03 7.6e+00 1.4e+00 1.7e+00
s = 4 6.0e+05 2.8e+03 1.6e+01 1.2e+00 1.4e+00 1.6e+00
s = 3 7.0e+03 3.2e+01 1.1e+00 1.2e+00 1.3e+00 1.5e+00
s = 2 7.9e+01 1.0e+00 1.1e+00 1.2e+00 1.3e+00 1.3e+00
s = 1 1.0e+00 1.0e+00 1.1e+00 1.1e+00 1.1e+00 1.2e+00

Figure 7: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the Hs unit ball with 30 degrees of freedom

Conjecture 5.2. (Optimality of Periodic Splines) For non-negative integers k, s satis-
fying k ≥ s− 1, the relationship

Λ
(
Bs

per(0, 1), K(n, k, 0, 1);L2(0, 1)
)

= 1 (103)

holds for all even n ∈ N.

Conjecture 5.2 suggests that the periodic k-method has essentially identical approxi-
mation powers as the Fourier spectral method. However, unlike the spectral method, the
k-method employs functions with compact support and hence results in sparse systems, even
for the case of nonlinear problems. As such systems lead themselves well to robust, parallel
solvers, the periodic k-method, with its spectral accuracy properties, is an accurate and effi-
cient method for a number of application areas (as we have in fact already seen in turbulence
[1, 8]).

Analyzing Figures 8, 9, and 10 more closely, we see that for the most part, spline spaces
with lower than optimal polynomial order and hence lower continuity have poor approxi-
mation properties. However, we do witness some pre-asymptotic behavior in the associated
optimality surfaces. For example, for n = 10, we find that spline functions of order 1 are
optimal for approximating H3(0, 2π), while for n = 10 and 20, spline functions of order 2
are optimal for approximating H4(0, 2π). We have colored the corresponding cells in Figures
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 3.3e+02 2.7e+01 2.1e+00 1.0e+00 1.0e+00 1.0e+00
s = 4 6.7e+01 5.5e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
s = 3 1.3e+01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
s = 2 2.7e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
s = 1 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Figure 8: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the Hs

per unit ball with 10 degrees of freedom

8, 9, and 10 a lighter shade of gray to highlight this interesting result. This pre-asymptotic
behavior suggests possible advantages to employing lower-order spline spaces for small num-
bers of degrees of freedom, but a further analysis should be conducted before any clear
conclusions are made.

Case 2: Odd number of degrees of freedom

The situation changes when periodic spaces of odd dimension are employed. No theoret-
ical results concerning the optimality of these spaces exist. Nonetheless, one would expect
a similar behavior to that of classical Sobolev spaces. That is, for odd numbers of degrees
of freedom, one expects periodic splines of order s − 1 to be near optimal in approximat-
ing Hs

per(0, 2π) and that increasing the polynomial order slightly decreases the accuracy.
Numerical results, however, paint a nicer picture.

In Figure 11, we have plotted the optimality ratio Λ
(
Bs

per(0, 2π), Kper(n, k, 0, 2π);L2(0, 2π)
)

for n = 15. From this picture, we confirm that periodic spline spaces of order s − 1 and
odd dimension are nearly optimal in approximating Hs

per(0, 2π), but increasing the poly-
nomial order, contrary to what we expected, actually improves our accuracy. This result
further validates what we have already seen: the k-method is an accurate and robust solu-
tion methodology. Increasing the order and continuity of spline finite elements allows one to
capture smoother functions more accurately without hampering approximability of rougher
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 5.3e+03 1.9e+02 7.8e+00 1.0e+00 1.0e+00 1.0e+00
s = 4 5.3e+02 1.9e+01 1.0e+00 1.0e+00 1.0e+00 1.0e+00
s = 3 5.3e+01 1.9e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
s = 2 5.3e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
s = 1 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Figure 9: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the Hs

per unit ball with 20 degrees of freedom

functions (and in this case, it improves accuracy all around).

5.3.3 L2 optimality surfaces: Weighted Sobolev spaces

We next compute optimality surfaces for the case of approximating weighted Sobolev spaces
in the L2 norm. The spaces we consider here are the Legendre-weighted Sobolev spaces
V s

s (−1, 1). In Example 4.4, we showed that polynomial spaces are optimal in approximating
such spaces, so we are interested in the accuracy of lower-order splines. Such results will
indicate how well the k-method can approximate singularities in finite element solutions.
As no mathematical theory has yet been done in the context of using the k-method for
approximating singular solutions, the results here are new and present possible research
opportunities.

We have computed the optimality ratio Λ
(
Bs,s

w (−1, 1), K(n, k,−1, 1);L2(−1, 1)
)

for the
cases of n = 10, 20, and 30 and reported the results in Figures 12, 13, and 14. As expected,
for each s, the ratios decrease as the order k of the splines is increased, and for fixed k and s,
the ratio increases as the number of splines n is increased. What is promising is the fact that
for each s, the ratios seem to decrease in a rapid fashion. As such, fairly low-order splines
can exhibit good behavior in approximating non-smooth functions. Analyzing the figures,
we find a good rule of thumb is to employ splines of at least order s when approximating the
space V s

s (−1, 1). We find that increasing the order beyond this point does little in terms of
improving accuracy while decreasing the order beyond this limit tends to drastically degrade
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 2.7e+04 6.3e+02 1.8e+01 1.0e+00 1.0e+00 1.0e+00
s = 4 1.8e+03 4.2e+01 1.2e+00 1.0e+00 1.0e+00 1.0e+00
s = 3 1.2e+02 2.8e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
s = 2 7.9e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
s = 1 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Figure 10: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the Hs

per unit ball with 30 degrees of freedom

accuracy. Of course, a more rigorous analysis of this case would provide much more intuition
as to choosing an appropriate measure as to which splines to employ in different situations.

5.3.4 H1 optimality surfaces: Sobolev spaces

We finish this subsection by computing optimality surfaces for the case of approximating
Sobolev spaces in the H1 norm. We feel this is an important case as many a priori finite
element error estimates are in terms of theH1 norm of the solution as opposed to the L2 norm
of the derivative of the solution. However, as most theoretical results for n-widths involve
compact operators of L2 (such as Theorems 4.1 through Theorem 4.4), not much work has
been done in the context of analytically finding optimal spaces for the H1 counterpart. On
the other hand, Theorems 4.5 and 4.6 may still be employed in order to determine n-widths
and sup-infs computationally.

We have computed the optimality ratio Λ
(
Bs(0, 1), K(n, k, 0, 1);H1(0, 1)

)
for the cases

of n = 10, 20, and 30 and reported the results in Figures 15, 16, and 17. We find that the
optimality surfaces share the same characteristics as those corresponding to the L2 norm,
namely that splines of order k ≥ s− 1 are nearly optimal in approximating functions in Hs.
Indeed, preliminary numerical experiments reveal that these same characteristics hold for
higher-order Sobolev norms as well. We thus present the following conjecture as a general-
ization of Conjecture 5.1.
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 1.6e+03 9.0e+01 6.0e+00 1.3e+00 1.2e+00 1.2e+00
s = 4 2.2e+02 1.2e+01 1.3e+00 1.2e+00 1.2e+00 1.1e+00
s = 3 3.1e+01 1.7e+00 1.2e+00 1.1e+00 1.1e+00 1.1e+00
s = 2 4.5e+00 1.1e+00 1.1e+00 1.1e+00 1.1e+00 1.1e+00
s = 1 1.1e+00 1.1e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Figure 11: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the Hs

per unit ball with 15 degrees of freedom

Conjecture 5.3. (Optimality of Splines in the Limit for General Sobolev Norms)
For fixed non-negative integers r, k, s satisfying k ≥ s−1 and s > r, the following relationship
holds:

lim
n→∞

Λ
(
Bs(0, 1), K(n, k, 0, 1);Hr(0, 1)

)
= 1. (104)

5.3.5 Discussion

The preceding results indicate that the k-method is an accurate and robust method of
approximating a large class of functions. In the context of Sobolev and periodic Sobolev
spaces, we witnessed that spline spaces are nearly optimal and that increasing the order
of a spline space improved our approximability of smooth functions without reducing our
accuracy in approximating rough ones. For weighted Sobolev spaces, we saw that increasing
the order of a spline space in fact improved our accuracy in a rapid fashion. These results
validate what we have already seen in numerical simulations: higher-order higher-continuous
spline functions are an accurate and robust candidate for finite element approximation.
Finally, we note that the three conjectures stated the convergence behavior of the k-method
as n → ∞ with k and s fixed. We feel it is also important to study the behavior of the
method given a specific relationship between the number of degrees of freedom and the degree
of the spline functions.
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 1.0e+04 3.2e+02 1.6e+01 1.1e+00 1.0e+00 1.0e+00
s = 4 1.0e+03 3.3e+01 1.7e+00 1.1e+00 1.0e+00 1.0e+00
s = 3 1.0e+02 3.4e+00 1.3e+00 1.0e+00 1.0e+00 1.0e+00
s = 2 1.0e+01 1.7e+00 1.2e+00 1.0e+00 1.0e+00 1.0e+00
s = 1 1.8e+00 1.2e+00 1.1e+00 1.0e+00 1.0e+00 1.0e+00

Figure 12: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the V s

s unit ball with 10 degrees of freedom

5.4 Comparison study of the classical finite element and k-methods
using optimality ratios

In this subsection, we conduct a comparison study of the classical finite element and k-
methods using optimality ratios. As motivation, we know that for sufficiently smooth func-
tions, the following relation holds:

If πn denotes the L2-projector onto an n-dimensional spline space of order s−1 with uniformly
spaced knots, then

‖u− πnu‖L2(0,1) ≤ Cn−s‖u‖Hs(0,1) (105)

where C depends only on the order and continuity of the spline functions [9].

Thus, we know the classical finite element and k-methods share the same asymptotic
approximation behaviors. The questions are: what is C for each of the methods, and how
do they compare? These questions can be answered through the use of the comparison
ratio defined in Equation (20). Note that in this analysis, we compare the methods only
in terms of accuracy as defined by the optimality ratio. We do not include factors such as
computational costs in our comparison metric, but we do feel such factors should be included
when one decides which method to utilize.
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 1.3e+05 2.7e+03 9.2e+01 3.2e+00 1.8e+00 1.3e+00
s = 4 6.7e+03 1.4e+02 4.6e+00 2.4e+00 1.6e+00 1.2e+00
s = 3 3.3e+02 6.7e+00 2.8e+00 1.8e+00 1.4e+00 1.2e+00
s = 2 1.6e+01 3.0e+00 1.9e+00 1.5e+00 1.2e+00 1.1e+00
s = 1 2.4e+00 1.6e+00 1.4e+00 1.2e+00 1.1e+00 1.0e+00

Figure 13: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the V s

s unit ball with 20 degrees of freedom

We have computed the two optimality ratio pairs{
Λ
(
Bs(−1, 1), P (n, s− 1, 0, 1);L2(0, 1)

)
,Λ
(
Bs(−1, 1), K(n, s− 1, 0, 1);L2(0, 1)

)}
, (106){

Λ
(
Bs(−1, 1), P (n, s− 1, 0, 1);H1(0, 1)

)
,Λ
(
Bs(−1, 1), K(n, s− 1, 0, 1), ;H1(0, 1)

)}
(107)

as functions of n for s = 2, 3, and 4 and plotted the results in Figures 18 and 19 respectively.
Note that the classical finite element method is labeled as C0 FEM in both figures.

The two figures show that the k-method outperforms the classical finite element method
for all three polynomial orders on a per degree-of-freedom basis. Further, we see that the
difference between the performance of the k-method and the classical finite element method
grows as a function of the polynomial order. What is more astonishing is that while the
k-method optimality ratio deteriorates as the number of degrees of freedom is increased, the
classical finite element method optimality ratio increases. We feel that a thorough under-
standing of how large the optimality ratio becomes for the classical finite element method for
assorted polynomial orders would be of much interest to the finite element community and
may highlight some of the similarities and differences between the classical finite element
and k-methods.

Another observation we make is that the H1 optimality ratios associated with the k-
method tend to be smaller than the corresponding L2 optimality ratios, while the H1 ratios
associated with the classical finite element method tend to be larger than the associated

31



k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 6.7e+05 1.0e+04 2.8e+02 7.3e+00 3.9e+00 2.6e+00
s = 4 2.2e+04 3.4e+02 9.2e+00 4.6e+00 2.9e+00 2.1e+00
s = 3 7.3e+02 1.1e+01 4.8e+00 3.0e+00 2.1e+00 1.7e+00
s = 2 2.4e+01 4.3e+00 2.7e+00 2.0e+00 1.6e+00 1.4e+00
s = 1 2.9e+00 2.0e+00 1.6e+00 1.4e+00 1.3e+00 1.2e+00

Figure 14: L2 optimality surface and a table of L2 optimality ratios Λ for the k-method in
approximating the V s

s unit ball with 30 degrees of freedom

L2 ratios. This seems to suggest once again that k-methods are a promising candidate for
approximating solutions to second-order elliptic boundary value problems as a natural norm
for such problems is the H1 norm.

An alternative view by which we can compare two spaces is by analyzing the percent error
by which their sup-infs are from the n-width. We refer to this percentage as the optimality
error, and it is defined by

En(A,Xn;X) = 100

(
E(A,Xn;X)− dn(A;X)

dn(A;X)

)
% = 100 (Λ(A,Xn;X)− 1) %. (108)

Returning to Figures 18 and 19, we find that the optimality error is very small for the k-
method and quite large for the classical finite element method. Further, the optimality error
grows in terms of increasing number of degrees of freedom for the classical finite element
method while it diminishes for the k-method. For the case of quadratics approximating
the H3 unit ball in terms of the L2 norm, we find that the optimality error grows to 70%
for the classical finite element method while the error reduces to 7% for the k-method as
the number of degrees of freedom approaches 43. The effect is more pronounced for higher
polynomial orders and higher-order Sobolev norms. For the case of quartics approximating
the H5 unit ball in terms of the H1 norm, the error grows to 488% for the classical finite
element method while the error reduces to 13% for the k-method as the number of degrees
of freedom approaches 49.
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k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 9.6e+03 1.7e+02 4.8e+00 1.6e+00 1.9e+00
s = 4 4.9e+02 8.9e+00 1.3e+00 1.6e+00 1.7e+00
s = 3 2.2e+01 1.1e+00 1.3e+00 1.4e+00 1.5e+00
s = 2 1.0e+00 1.1e+00 1.2e+00 1.2e+00 1.3e+00

Figure 15: H1 optimality surface and a table of H1 optimality ratios Λ for the k-method in
approximating the Hs unit ball with 10 degrees of freedom

5.5 Robustness of polynomial approximation

We finish with a short analysis of the robustness properties of polynomial approximation.
In this study, we consider approximating functions with global polynomials as opposed to
piecewise polynomials as before. Such methods are referred to as spectral methods, and these
may be thought of as the intersection of the classical finite element and k-methods. We know
that high-order polynomials are accurate approximants for smooth functions, but we are now
interested in how accurate high-order polynomials are in approximating rough functions on
a per degree-of-freedom basis.

In Figure 20, we have plotted the optimality ratios Λ
(
Bs(0, 1),P(p + 1, 0, 1);L2(0, 1)

)
for p = 0 through p = 10 and s = 1, 2, 3. We see immediately that for each of these cases,
the optimality ratio is bounded above by 2, and hence high-order polynomials are nearly
optimal approximants. Further, seemingly counter-intuitively, higher-order polynomials are
more accurate in terms of the optimality ratio for spaces of lower smoothness than spaces of
moderate smoothness.

6 Conclusions

In this paper, we have conducted a mathematical study of the k-method utilizing results in
approximation theory. Theoretical results indicate that for many function spaces, higher-
order splines with maximal continuity are optimal approximants with respect to the number
of degrees of freedom, and numerical studies have validated and improved these results.
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k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 1.3e+05 1.0e+03 2.0e+01 1.4e+00 1.6e+00
s = 4 2.7e+03 2.0e+01 1.2e+00 1.4e+00 1.6e+00
s = 3 5.0e+01 1.0e+00 1.2e+00 1.3e+00 1.4e+00
s = 2 1.0e+00 1.0e+00 1.1e+00 1.2e+00 1.2e+00

Figure 16: H1 optimality surface and a table of H1 optimality ratios Λ for the k-method in
approximating the Hs unit ball with 20 degrees of freedom

A numerical comparison of the classical finite element and k-methods revealed that the k-
method has better approximation properties than the classical finite element method on
a per degree-of-freedom basis, further suggesting that the k-method is an accurate and
robust scheme for approximating solutions to partial differential equations. These results
are consistent with observations made previously based on discrete Fourier analysis and the
numerical solutions of boundary value problems [1, 8, 15, 16, 22]. It should be noted, however,
that these comparisons did not take into account other factors such as computation time.
In the future, we hope to extend these results to the multi-dimensional and rational setting
utilizing the theoretical and computational framework we have developed here. In addition,
we hope to analyze the local approximation behavior around singularities and develop a
posteriori error estimation procedures for the k-method.
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k = 1 k = 2 k = 3 k = 4 k = 5

s = 5 5.4e+05 2.6e+03 2.7e+01 1.2e+00 1.4e+00
s = 4 6.6e+03 3.2e+01 1.1e+00 1.2e+00 1.4e+00
s = 3 7.7e+01 1.0e+00 1.1e+00 1.2e+00 1.3e+00
s = 2 1.0e+00 1.0e+00 1.1e+00 1.1e+00 1.1e+00

Figure 17: H1 optimality surface and a table of H1 optimality ratios Λ for the k-method in
approximating the Hs unit ball with 30 degrees of freedom
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[6] Babuška, I., Suri, M.: The h−p version of the finite element method with quasiuniform
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Figure 18: Performance of the classical finite element and k-methods: L2 optimality ratios
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Figure 19: Performance of the classical finite element and k-methods: H1 optimality ratios
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