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Abstract

Equivalence of Babuška’s and Brezzi’s stability conditions for mixed variational formula-
tions is discussed. In particular, the Brezzi’s conditions are derived from the Babuška’s condi-
tion.

1 Introduction

The following notes were prepared for a TICAM seminar, I gave almost five years ago, to mark the

(then) 30th anniversary of the ground breaking result of Prof. Ivo Babuška [1], and the oncoming

(then) 30th anniversary of the famous result of Prof. Franco Brezzi [2] for saddle point problems.

After the over thirty years, the inf sup condition, referred to as the Babuška-Brezzi (BB) condition (at

least in the Finite Element community), remains to be a crucial tool in understanding and designing

mixed discretizations.

The seminar was addressed to TICAM graduate students with a goal to explain the various

versions of the inf sup conditions, and discuss the equivalence of Babuška’s and Brezzi’s stability

conditions for mixed problems. The “working horse” of the underlying algebra is the possibility

of switching the order of variables in the inf sup condition, and this was the main point, I tried to

elucidate in my presentation.

Additionally, I had decided to include in the presentation the nice result of Xu and Zikatanov

(reproducing the original result of Kato), showing how to eliminate constant “one” in Babuška’s

estimate (result valid for Hilbert spaces only). Contrary to presentation in [5], I had set up the
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whole framework in reflexive Banach spaces, and focused on showing how Babuška’s condition

implies Brezzi’s conditions. In the presentation I use the language of bilinear forms but all results

generalize in a straightforward way to sesquilinear forms as well.

The presented results are over 30 years old, and there is nothing new in the following notes

written simply in response to several students and colleagues who have asked for a copy of the

seminar notes. And to Ivo and Franco, let this be a part of a happy celebration of their famous

contributions.

2 Bilinear forms

We begin by recalling fundamental facts considering bilinear and sesquilinear forms in reflexive

Banach spaces. For detailed proofs consult, e.g. [3].

Bilinear (sesquilinear) form. Let U, V be two reflexive real (complex) Banach spaces with cor-

responding norms ‖u‖ = ‖u‖U , ‖v‖ = ‖v‖V . A function,

U × V 3 (u, v) → b(u, v) ∈ IR(IC) ,

is called a bilinear (sesquilinear) form if b(u, v) is linear in u and linear (antilinear) in v.

Continuity. The following conditions are equivalent to each other.

b(u, v) is continuous,

b(u, v) is continuous at (0, 0),

∃M > 0 : |b(u, v) ≤ M‖u‖ ‖v‖ ,

|b(u, v)| ≤ ‖b‖ ‖u‖ ‖v‖ .

Here ‖b‖ denotes the norm of the bilinear form 1 defined as follows,

|b‖ = inf {M : |b(u, v)| ≤ M‖u‖ ‖v‖}

= sup
u6=0,v 6=0

|b(u, v)|

‖u‖ ‖v‖

= sup
‖u‖=1, ‖v‖=1

|b(u, v)| .

The infimum and supremum above are actually attained, and can be replaced with minimum and

maximum.
1The bilinear forms themselves form a reflexive Banach space
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Operators associated with bilinear forms. Every continuous bilinear form generates two corre-

sponding continuous operators,

B : U → V ′ < Bu, v >V ′×V = b(u, v) ∀u ∈ U, v ∈ V

B′ : V → U ′ < B′v, u >U ′×U = b(u, v) ∀u ∈ U, v ∈ V .

If we identify spaces U, V with their biduals U ′′, V ′′, operator B′ is conjugate to operator B and,

analogously, operator B is conjugate to operator B ′, e.g.,

< Bu, v >V ′×V = b(u, v) =< B′v, u >U ′×U=< u, B′v >U ′′×U ′ .

Bounded below operators. The following conditions are equivalent to each other.

∃γ > 0 : ‖Bu‖V ′ ≥ γ‖u‖U ,

∃γ > 0 : sup
v 6=0

| < Bu, v > |

‖v‖
≥ γ‖u‖ ,

inf
u6=0

sup
v 6=0

|b(u, v)|

‖u‖ ‖v‖
=: γ > 0 .

The operator B : U → V ′ is said to be bounded below. Constant γ in the last condition is called the

inf sup constant. The inf and sup are actually attained and can be replaced with min and max.

THEOREM 1

Let operator B be bounded below and its conjugate B ′ be injective, i.e.

b(u, v) = 0 ∀u ⇒ v = 0 .

Then operator B′ is bounded below as well, and the two inf sup constants are equal,

inf
u6=0

sup
v 6=0

|b(u, v)|

‖u‖ ‖v‖
= inf

v 6=0
sup
u6=0

|b(u, v)|

‖u‖ ‖v‖
=: γ > 0 .

Proof: By Banach Closed Range Theorem, see e.g. [3], page 476, operator B has a continuous

inverse B−1 : V ′ → U , and

‖B−1‖ =
1

γ
.

By standard property for conjugate operators, see [3], page 472,

• the conjugate operator has a continuous inverse (B ′)−1 : U ′ → V as well,

• (B′)−1 = (B−1)′, and

‖(B′)−1‖ = ‖(B−1)′‖ = ‖B−1‖ =
1

γ
.
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What if conjugate operator B ′ is not injective? In this case, we take the null space of operator

B′,

V0 = N (B′) = {v ∈ V : b(u, v) = 0 ∀u ∈ U} ,

and consider quotient space V/V0 with the norm,

‖[v]‖V/V0
= inf

v0∈V0

‖v + v0‖V .

The quotient space is again a reflexive Banach space, see e.g. [3], page 478. In place of the original

bilinear form, we introduce a bilinear form defined on the quotient space,

b(u, [v]) = b(u, w), where w ∈ [v] is an arbitrary representative.

The new bilinear form is well-defined and continuous. We repeat the whole reasoning to arrive at a

more general result.

THEOREM 2

Let operator B be bounded below. Then

inf
[v]6=0

sup
u6=0

|b(u, [v])|

‖u‖ ‖[v]‖
= inf

u6=0
sup
[v]6=0

|b(u, [v])|

‖u‖ ‖[v]‖

= inf
u6=0

sup
v 6=0

|b(u, v)|

‖u‖ ‖v‖
=: γ > 0 .

Thus, in the general case, we can still switch the order of arguments in the inf sup condition, but

at the expense of introducing the equivalence classes and the corresponding quotient space norm.

3 Babuška’s Theorem

Let Uh ⊂ U be a one-parameter family of trial subspaces, and let Vh be a corresponding family

of test spaces of the same dimension, dimVh = dimUh, (not necessarily subspaces of V ), with

corresponding norms ‖uh‖ = ‖uh‖U and ‖vh‖ = ‖vh‖Vh
. Assume, we are given a family of

continuous bilinear forms,
bh(u, vh), u ∈ U, vh ∈ Vh

|bh(u, vh)| ≤ ‖bh‖ ‖u‖ ‖vh‖ ,

and we set to solve the (generalized) projection problem,
{

uh ∈ Uh

bh(uh, vh) = bh(u, vh) ∀vh ∈ Vh .
(3.1)
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THEOREM 3

Ivo Babuška, [1]

Suppose, the discrete inf sup condition holds,

inf
uh∈Uh

sup
vh∈Vh

|bh(uh, vh)|

‖uh‖ ‖vh‖
=: γh > 0 .

Then

• Projection problem (3.1) has a unique solution uh, and

‖uh‖ ≤
‖bh‖

γh
‖u‖ . (3.2)

• We have the following estimate,

‖u − uh‖ ≤

(

1 +
‖bh‖

γh

)

inf
wh∈Uh

‖u − wh‖ . (3.3)

Proof: The uniqueness (and, therefore, existence) of the solution, as well as stability estimate

(3.2) follow immediately from the inf sup condition.

Using the discrete inf sup condition, we have,

γh‖uh − wh‖ ≤ sup
vh 6=0

|b(uh − wh, vh)|

‖vh‖

= sup
vh 6=0

|b(u − wh, vh)|

‖vh‖
≤ ‖bh‖‖u − wh‖ ,

and, by triangle inequality,

‖u − uh‖ ≤ ‖u − wh‖ + ‖wh − uh‖

≤

(

1 +
‖bh‖

γh

)

‖u − wh‖ .

The quantity on the right-hand side in estimate (3.3) is known as the best approximation error.

In the case of a Hilbert space, estimate (3.3) can be improved [5].

THEOREM 4

Let U be a Hilbert space with inner product (·, ·)U , and let all the assumptions of the previous

theorem hold. Then

‖u − uh‖ ≤
‖bh‖

γh
inf

wh∈Uh

‖u − wh‖ . (3.4)
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Lemma 1

Tosio Kato, [4]

Let X ⊂ U be a subspace of Hilbert space U , and let P denote a non-trivial linear projection onto

X , i.e.

P : U → X, P 2 = P P 6= 0, I .

Then

‖I − P‖ = ‖P‖ .

We present two alternative proofs of the result following [4] and [5].

Proof: (Kato)

Step 1: Since I − P is also a projection, it is sufficient to prove that,

‖P‖ ≤ ‖I − P‖ .

Step 2: Since I − P 6= 0, ‖I − P‖ ≥ 1. If ‖P‖ = 1, the inequality above holds. It is sufficient,

therefore, to consider the case when ‖P‖ > 1.

Step 3: Let 1 < a < ‖P‖ be an arbitrary constant. Definition of the operator norm implies that

there exists u 6= 0 such that

‖Pu‖ ≥ a‖u‖ .

Let X be the range of P . Project u onto the range and consider,

v = (u,
Pu

|Pu‖
)

Pu

|Pu‖
,

(comp. Fig. 1). The Pythagoras theorem implies that,

‖v‖2 = ‖u‖2 −
|(u, Pu)|2

‖Pu‖2
.

Also, (I − P )v = (I − P )u. We claim that,

‖(I − P )v‖2

‖v‖2
=

‖(I − P )u‖2‖Pu‖2

‖u‖2‖Pu‖2 − |(u, Pu)|2
≥

‖Pu‖2

‖u‖2
≥ a2 .

The middle inequality is equivalent to,

‖(I − P )u‖2‖u‖2 ≥ ‖u‖2‖Pu‖2 − |(u, Pu)|2 ,
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v

Pu

u
(I−P)u

Figure 1: Kato’s idea: choice of vector v

which, in turn is equivalent to,

(‖u‖2 + <(u, Pu))2 −<(u, Pu)2 ≥ |(u, Pu)|2 .

Step 4: Taking supremum with respect constant a, we finish the proof.

Proof: (Xu,Zikatanov)

Case 1: dimU = 2, P 6= 0. See Fig. 2 for notation.

x

ey

e
x

X

Y

uy

Figure 2: Linear projection in a two-dimensional space

Let X = R(P ) = N (I − P ) and Y = N (P ) = R(I − P ), and let u ∈ U . Decomposing
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vector u into its X and Y components, we have

u = x + y = xex + yey, Pu = x .

Here ex, ey are unit vectors of components x ∈ X and y ∈ Y , respectively. Denote the

corresponding co-basis by e
x, ey. Expressing co-basis vector e

x in the original basis, we

write

e
x = αex + βey .

Upon multiplying both sides with e
x and e

y, we learn that α = ‖ex‖2, β = (ex, ey) and,

consequently,

e
x = ‖ex‖2

ex + (ex, ey)ey .

Multiplying, in turn, both sides with ex, we get

1 = ‖ex‖2‖ex‖
2 + (ex, ey)(ex, ey) , (3.5)

or,

‖ex‖‖e
x‖ = [1 − (ex, ey)(e

x, ey)]
1

2 .

An analogous result holds for vector ey.

Now, Pu = x = xex = (u, ex)ex. So,

‖Pu‖ = |(u, ex)|‖ex‖ ≤ ‖ex‖‖e
x‖ ‖u‖ .

Set u = e
x to learn that, actually, ‖P‖ = ‖ex‖‖e

x‖.

Similarly, ‖I − P‖ = ‖ey‖‖ey‖ and , by (3.5),

‖P‖ = ‖I − P‖ .

Case 2: Space U arbitrary. Let u ∈ U , ‖u‖ = 1, be an arbitrary unit vector. Consider the at most

two-dimensional space U0 = span{u, Pu}. If dimU0 = 2, we have by the two-dimensional

result,
‖(I − P )u‖U = ‖(I − P )u‖U0

≤ ‖I − P‖L(U0,U0)

= ‖P‖L(U0,U0) = sup
u0∈U0,‖u0‖=1

‖Pu0‖

≤ sup
u∈U,‖u‖=1

‖Pu‖ = ‖P‖L(U,U) .

If dimU0 = 1 then it must be Pu = αu, for some α and, consequently, Pu = P 2u = αPu.

Thus, either (I − P )u = u or (I − P )u = 0. In both cases, ‖(I − P )u‖ is bounded by

‖P‖ which is always ≥ 1. We have proved, therefore, that ‖I − P‖ ≤ ‖P‖. Reversing the

argument,

‖P‖ = ‖I − (I − P )‖ ≤ ‖I − P‖ ,

and, therefore, the two norms must be equal.
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REMARK 1 It is easy to construct a 2D counterexample for ‖I − P‖ 6= ‖P‖ in a non-Hilbert

Banach space.

Proof of Theorem 4. Let Ph : U → Uh, u → uh be the projection operator defined by (3.1).

Then
‖u − uh‖ = ‖u − Phu‖

= ‖u − wh − Ph(u − wh)‖

= ‖(I − Ph)(u − wh)‖

≤ ‖I − Ph‖ ‖u − wh‖ = ‖Ph‖ ‖u − wh‖

=
‖bh‖

γh
‖u − wh‖ .

4 Brezzi’s theorem

We turn now to Hilbert spaces only. Let V, Q be two Hilbert spaces, and let

a(u, v) u, v ∈ V ,

b(p, v) p ∈ Q, v ∈ V ,

be two continuous bilinear forms. Consider a mixed variational problem,

{

a(u, v) + b(p, v) = f(v) ∀v ∈ V

b(q, u) = g(q) ∀q ∈ Q ,
(4.6)

where f ∈ V ′, g ∈ Q′. Typical examples of the mixed formulation include saddle point problems

where a(u, v) represents an energy and b(q, u) is a constraint.

Assume, we are given a family of finite-dimensional subspaces Vh ⊂ V, Qh ⊂ Q, and consider

the corresponding Galerkin approximation,

{

a(uh, vh) + b(ph, vh) = f(vh) ∀vh ∈ Vh

b(qh, uh) = g(qh) ∀qh ∈ Qh .
(4.7)

If linear forms f(v), g(q) are defined by left-hand sides of (4.6), the problem above is a special case

of (3.3).
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Introduce the subspace of finite element functions vh ∈ Vh that satisfy the discrete constraint,

Vh,0 = {vh ∈ Vh : b(qh, vh) = 0 ∀qh ∈ Qh} . (4.8)

THEOREM 5

Franco Brezzi, [2]

Assume the following discrete stability conditions are satisfied:

• An inf sup condition relating spaces Qh and Vh,

inf
qh 6=0

sup
vh 6=0

|b(qh, vh)|

‖qh‖ ‖vh‖
=: βh > 0 (4.9)

• inf sup in the kernel condition,

inf
06=uh,0∈Vh,0

sup
06=vh,0∈Vh,0

|a(uh,0, vh,0)|

‖uh,0‖ ‖vh,0‖
=: αh > 0 . (4.10)

Then, there exist a constant Ch, depending solely upon stability constants βh,αh and continuity

constant ‖a‖ such that

‖u − uh‖U + ‖p − ph‖Q ≤ Ch inf
wh∈Vh,rh∈Qh

(‖u − wh‖U + ‖p − rh‖Q) . (4.11)

The proof of the theorem will be given in the next section.

5 Is Babuška equivalent to Brezzi ?

Introducing group variables (u, p), (v, q) and a big bilinear form,

B((u, p), (v, q)) = a(u, v) + b(p, v) + b(q, u) ,

we can recast Brezzi’s mixed problem into Babuska’s formulation,

B((uh, ph), (vh, qh)) = B((u, p), (vh, qh)) ∀(vh, qh) ∈ Vh × Qh .

The actual goal of this note is to investigate the relation between the two sets of stability conditions.
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Brezzi ⇒ Babuška

We shall proceed in three steps. For simplicity, we shall drop index h in the notation.

Step1: Changing order of variables in (4.9), see section 2, we get

inf
[v]6=0

sup
q 6=0

|b(q, v)|

‖q‖‖[v]‖
= β .

Let u0 be the orthogonal projection of u onto V0. Then

‖u − u0‖ = inf
w0∈V0

‖u − w0‖ = ‖[u]‖ ≤
1

β
‖g‖ ,

where f , and later g are defined by (4.6).

Step 2: Restricting ourselves to test functions v = v0 ∈ V0 in (4.6)1, we get

a(u0, v0) = f(v0) ∀v0 ∈ V0 .

Thus, the inf sup in the kernel condition implies that

α‖u0‖ ≤ sup
v0∈V0

|a(u0, v0)|

‖v0‖
= sup

v0∈V0

|f(v0)|

‖v0‖
≤ ‖f‖ ,

and, consequently, ‖u0‖ ≤ 1
α‖f‖. By triangle inequality we get,

‖u‖ ≤ ‖u − u0‖ + ‖u0‖ ≤
1

α
‖f‖ +

1

β
‖g‖ .

Step 3: Rewrite (4.6)1 as

b(p, v) = f(v) − a(u, v) .

Then

β‖p‖ ≤ sup
v 6=0

|b(p, v)|

‖v‖
= sup

v 6=0

|f(v) − a(u, v)|

‖v‖

≤ ‖f‖ + ‖a‖ ‖u‖

≤ ‖f‖ + ‖a‖

(

1

α
‖f‖ +

1

β
‖g‖

)

.

Thus,

‖p‖ ≤
1

β

(

1 +
‖a‖

α

)

‖f‖ +
‖a‖

β2
‖g‖ .

Summing all up, we get the final stability result,

‖u‖ + ‖p‖ ≤

{

1

β

(

1 +
‖a‖

α

)

+
1

α

}

‖f‖ +

{

1

β

(

1 +
‖a‖

β

)}

‖g‖ .
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In the end, we can conclude that Brezzi’s stability conditions (plus continuity of form a2) imply

Babuška’s stability condition and, with the l1-norm used for the group variable, we have the follow-

ing estimate for the Babuška’s inf sup constant in terms of the Brezzi’s constants,

1

γ
≤ max

{

1

β

(

1 +
‖a‖

α

)

+
1

α
,
1

β

(

1 +
‖a‖

β

)}

.

For a more elegant estimate in terms of the l2-norm used for the group variable, see [5].

Babuška ⇒ Brezzi

This was the actual question that had intrigued me. Can we, in particular, derive Brezzi’s conditions

from the Babuška’s condition, without guessing them?

So, let us assume the inf sup condition for the big bilinear form,

sup
v 6=0,q 6=0

|a(u, v) + b(p, v) + b(q, u)|

‖v‖ + ‖q‖
≥ γ (‖u‖ + ‖p‖) . (5.12)

The first observation is easy. We set u = 0 in (5.12), and observe that the resulting supremum is

attained for q = 0, to get the first Brezzi’s condition,

sup
v 6=0

|b(p, v)|

‖v‖
≥ γ‖p‖ ,

getting a bound β ≥ γ.

Now, condition (5.12) implies that system (4.6) has a unique solution for any right-hand side

f, g. Set g = 0 and restrict test functions in the first equation to v = v0 ∈ V0, comp. (4.8). We can

conclude that equation,
{

u0 ∈ V0

a(u0, v0) = f(v0) ∀v0 ∈ V0 ,

has a unique solution. The corresponding operator (matrix in the finite-dimensional setting) and its

transpose are non-singular.

Now, restricting ourselves in (5.12) to u = u0 ∈ V0, we get,

sup
v 6=0,q 6=0

|a(u0, v) + b(p, v)|

‖v‖ + ‖q‖
≥ γ (‖u0‖ + ‖p‖) .

Observing that the supremum is attained for q = 0, we conclude that,

inf
u0 6=0,p6=0

sup
v 6=0

|a(u0, v) + b(p, v)|

(‖u0‖ + ‖p‖)‖v‖
≥ γ .

2I believe, one cannot eliminate this assumption
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We restrict now our big bilinear form to the Cartesian product (V0 × Q) × (V × {0}). Reversing

the order of variables in the inf sup condition above, we get

inf
[v]6=0

sup
u0 6=0,p6=0

|a(u0, v) + b(p, v)|

(‖u0‖ + ‖p‖)‖[v]‖
≥ γ . (5.13)

Here, the equivalence class [v] is defined using the subspace

V00 = {v ∈ V : a(u0, v) + b(p, v) = 0 ∀u0 ∈ V0, ∀p ∈ Q}

= {v0 ∈ V0 : a(u0, v0) = 0 ∀u0 ∈ V0} .

But, by the argument above, space V00 is trivial and, therefore, condition (5.13) reduces to

inf
v 6=0

sup
u0 6=0,p6=0

|a(u0, v) + b(p, v)|

(‖u0‖ + ‖p‖)‖v‖
≥ γ .

Taking v = v0 ∈ V0, we conclude that

inf
v0 6=0

sup
u0 6=0

|a(u0, v0)|

‖u0‖‖v0‖
≥ γ ,

or, equivalently,

inf
u0 6=0

sup
v0 6=0

|a(u0, v0)|

‖u0‖‖v0‖
≥ γ .

Thus, Babuška’s stability condition implies also Brezzi’s inf sup in the kernel condition, with a

bound for constant α : α ≥ γ .
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