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Abstract. Determining optimal locations and operation parameters for wells in oil and gas
reservoirs has a potentially high economic impact. Finding these optima depends on a complex
combination of geological, petrophysical, flow regimen, and economical parameters that are
hard to grasp intuitively. On the other hand, automatic approaches have in the past been ham-
pered by the overwhelming computational cost of running thousands of potential cases using
reservoir simulator, given that each of these runs can take on the order of hours. Therefore,
the key issue to such automatic optimization is the development of algorithms that find good
solutions with a minimum number of function evaluations. In this work, we compare and
analyze the efficiency, effectiveness, and reliability of several optimization algorithms for the
well placement problem. In particular, we consider the Simultaneous Perturbation Stochastic
Approximation (SPSA), Finite Difference Gradient (FDG), and Very Fast Simulated Anneal-
ing (VFSA) algorithms. None of these algorithms guarantees to find the optimal solution, but
we show that both SPSA and VFSA are very efficient in finding nearly optimal solutions with
a high probability. We illustrate this with a set of numerical experiments based on real data for
single and multiple well placement problems.

Keywords: well placement, reservoir optimization, reservoir simulation, stochastic optimiza-
tion, SPSA, simulated annealing, VFSA

1. Introduction

The placement, operation scheduling, and optimization of one or many wells
during a given period of the reservoir production life has been a focus of atten-
tion of oil production companies and environmental agencies in the last years.
In the petroleum engineering scenario, the basic premise of this problem is to
achieve the maximum revenue from oil and gas while minimizing operating
costs, subject to different geological and economical constraints. This is a
challenging problem since it requires many large scale reservoir simulations
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and needs to take into account uncertainty in the reservoir description. Even
if a large number of scenarios is considered and analyzedby experienced en-
gineers, the procedure is in most cases inefficient and delivers solutions far
from the optimal one. Consequently, important economical losses may result.

Optimization algorithms provide a systematic way to explore a broader
set of scenarios and aim at finding very good or optimal ones for some given
conditions. In conjunction with specialists, these algorithms provide a pow-
erful mean to reduce the risk in decision-making. Nevertheless, the major
drawback in using optimization algorithms is the cost of repeatedly evaluating
different exploitation scenarios by numerical simulation based on a complex
set of coupled nonlinear partial differential equations on hundreds of thou-
sands to millions of gridblocks. Therefore, the major challenge in relying on
automatic optimization algorithms is finding methods that are efficient and
robust in delivering a set of nearly optimal solutions.

In the past, a number of algorithms has been devised and analyzed for op-
timization and inverse problems in reservoir simulation, see e.g. [26, 33, 46].
These problems basically fall within four categories: (1) history matching; (2)
well location; (3) production scheduling; and, (4) surface facility design. In
the particular case of the well placement problem, the use of optimization al-
gorithms began to be reported about 10 years ago, see e.g. [4, 35]. Since then,
increasingly complicated cases have been reported in the literature, mainly in
the directions of complex well models (type, number, orientation), character-
istics of the reservoir under study, and the numerical approaches employed for
its simulation [5, 14, 13, 29, 43, 44]. From an optimization standpoint, most
algorithms employed so far are either stochastic or heuristic approaches; in
particular, this includes simulated annealing (SA) [4] and genetic algorithms
(GA) [14, 44]. Some of them have also been combined with deterministic ap-
proaches to provide a fast convergence close to the solution; for instance, GA
with polytope and tabu search [5] and GA with neural networks [14, 7]. In all
cases, the authors point out that all these algorithms are still computationally
demanding for large scale applications.

In this work, we introduce the simultaneous perturbation stochastic ap-
proximation (SPSA) method to the well placement problem, and compare its
properties with other, better known algorithms. The SPSA algorithm can be
seen as a stochastic version of the steepest descent method where a stochastic
vector replaces the gradient vector computed using point-wise finite differ-
ence approximations in each of the directions associated with the decision
variables. This generates a highly efficient method since the number of func-
tion evaluations per step does not depend on the dimension of the search
space. Despite the fact that the algorithm has a local search character in its
simplest form, the stochastic components of the algorithm are capable of de-
livering nearly optimal solutions in relatively few steps. Hence, we show that
this approach is more efficient than other traditional algorithms employed for
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the well placement problem. Moreover, the capability of the SPSA algorithm
to adapt easily from local search to global search makes it attractive for future
hybrid implementations.

This paper is organized as follows: Section 2 reviews the components that
are used for the solution of the well placement problem: (1) the reservoir
model and the parallel reservoir simulator used for forward modelling; (2) the
economic revenue function to optimize; and, (3) the optimization algorithms
considered under this comparative study. Section 3 shows an exhaustive and
comparative treatment of these algorithms based on the placement of one
well. Section 4 extends the previous numerical analysis to the placement of
multiple wells. Section 5 summarizes the results of the present work and
discusses possible directions of further research.

2. Problem description and approaches

In this study, we pose the following optimization question: at which position
should a (set of) new injection/production wells be placed to maximize the
economic revenue of production in the future? We first detail the description
of the reservoir simulator that allows the evaluation of this economic revenue
objective function. We then proceed to describe the objective function and
its dependence on coefficients such as costs for injection and production. We
end the section by describing the algorithms that were considered for solving
this optimization problem.

2.1. DESCRIPTION AND SOLUTION OF THE OIL RESERVOIR MODEL

For the purpose of this paper, we restrict our analysis to reservoirs that can be
described by a two-phase, oil-water model. This model can be formulated as
the following set of partial differential equations for the conservation of mass
of each phase ��������� (oil and water):

	�
�������
	�� ������� � ��� � � (1)

Here,
�

is the porosity of the porous medium,
� �

is the concentration
of the phase � , and � � represents the source/sink term (production/injection
wells). The fluxes � � are defined using Darcy’s law [15] which, with gravity
ignored, reads as � � ��!#" �%$'&(� �*) � , where " � denotes the density of the
phase,

$
the permeability tensor,

&+�
the mobility of the phase, and ) � the

pressure of phase � . Additional equations specifying volume, capillary, and
state constraints are added, and boundary and initial conditions complement
the system, see [2, 15]. Finally,

� � �-, � " � with , � denoting saturation of
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a phase. The resulting system for this formulation is
	 
� " � , ���	�� ! ��� 
 " � $'& � � ) ��� ��� � � (2)

In this paper we consider wells that either produce (a mixture of) oil and
water, or at which water is injected. At an injection well, the source term � �
is nonnegative (we use the notation � ���� � � � to make this explicit). At a
production well, both ��� and � � may be non-positive and we denote this by
���� � � ! � � . In practice, both injection and production rates are subject to
control, and thus to optimization; however, in this paper we assume that rates
are indirectly defined through the specification of the bottom hole pressure
(BHP). These rates are used for evaluating the objective function and are not
decision parameters in our optimization problem.

This model is discretized in space using the expanded mixed finite element
method which, in the case considered in this paper, is numerically equivalent
to the cell-centered finite difference approach [1, 36]. In time, we use a fully
implicit formulation solved at every time step with a Newton-Krylov method
preconditioned with algebraic multigrid.

The discrete model is solved with the IPARS (Integrated Parallel Accu-
rate Reservoir Simulator) software developed at the Center for Subsurface
Modelling at The University of Texas at Austin (see, e.g., [25, 31, 34, 40,
42]). IPARS is a parallel reservoir simulation framework that allows for dif-
ferent algorithms or formulations (IMPES, fully implicit), different physics
(compositional, gas-oil-water, air-water and one-phase flow) and different
discretizations in different parts of the domain by means of the multiblock
approach [24, 23, 32, 41, 45]. It offers sophisticated simulation components
that encapsulate complex mathematical models of the physical interaction
in the subsurface such as geomechanics and chemical processes, and which
execute on parallel and distributed systems. Solvers employ state-of-the-art
techniques for nonlinear and linear problems including Newton-Krylov meth-
ods enhanced with multigrid, two-stage and physics-based preconditioners
[20, 21]. It can also handle an arbitrary number of wells each with one or
more completion intervals.

2.2. ECONOMIC MODEL

In general, the economic value of production is a function of the time of
production and of injection and production rates in the reservoir. It takes into
account costs such as well drilling, oil prices, costs of injection, extraction,
and disposal of water and of the hydrocarbons, as well as associated operating
costs. We assume here that operation and drilling costs are independent of the
well locations and therefore a constant part of our objective function that can
be omitted for the purpose of optimization.
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We then define our objective function by summing up, over the time hori-
zon

��� ����� , the revenues from produced oil over all production wells, and
subtracting the costs of disposing produced water and the cost of injecting
water. The result is the net present value (NPV) function�	� 
�
 � ��! � �

�� ���� ����� �����������! #" � � �� 
 ��� ! " �%$ �'& �#� � �� 
 ����(*)
! �&,+�-.� ��������� " �/$ &,+�- � �� 
 ���10 
�2 �43 � �65�7 � � (3)

where � �� and � �� are production rates for oil and water, respectively, and � ��
are water injection rates, each in barrel per day. The coefficients " � , " �%$ �'& �8�and " �/$ &,+�- are the prices of oil and the costs of disposing and injecting water,
in units of dollars per barrel each. The term 3 represents the interest rate per
day, and the exponential factor takes into account that the drilling costs have
to be paid up front and have to be paid off with interest. The function

�9� 
�
 �
is the negative total NPV, as our algorithms will be searching for a minimum;
this then amounts to maximizing the (positive) revenue.

If no confusion is possible, we drop the subscript from
�:�

when we com-
pare function evaluations for the same time horizon � but different well
locations



. Note that

� 
�
 �
depends on the locations



of the wells in two

ways. First, the injection rates of wells, and thus their associated costs, depend
on their location if the bottom hole pressure (BHP) is prescribed. Secondly,
the production rates of the wells as well as their water-oil ratio depend on
where water is injected and where producers are located.

We remark that in practice, realistic objective functions would also include
other factors that would render it more complex (see, e.g., [6, 9]). The general
form would be the same, however.

2.3. THE OPTIMIZATION PROBLEM

With the model and objective function described above, the optimization
problem is stated as follows: find optimal well locations


%;
such that
 ; �=<?>.@BADCFE�?G?H � 
�
 � � (4)

subject to the flow variables used in
� 
�
 �

satisfying model (1)–(2). The pa-
rameter space for optimization ) is the set of possible well locations. Since
we discretize the model shown above for solution on a computer, possible
well locations are only a discrete set of points on an integer lattice, rather
than a continuum, and optimization algorithms have to take this into account.
We fix the bottom hole pressure (BHP) operating conditions at all wells.
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However, in general the BHP and possibly other parameters could vary and
become an element of ) as well.

In the rest of the section, we briefly describe all the optimization algo-
rithms that we compare for their performance on the problem outlined above.
The implementation of these algorithms uses a Grid enabled software frame-
work previously described in [3, 19, 30].

2.3.1. An integer SPSA algorithm
The first optimization algorithm we consider is an integer version of the Si-
multaneous Perturbation Stochastic Approximation (SPSA) method. SPSA
was first introduced by Spall [38, 39] and uses the following idea: in any
given iteration, choose a random direction in search space. By using two
evaluation points in this and the opposite direction, determine if the function
values increase or decrease in this direction, and get an estimate of the value
of the derivative of the objective function in this direction. Then take a step in
the descent direction with a step length that is the product of the approximate
value of the derivative, and a factor that decreases with successive iterations.

Appealing properties of this algorithm are that it uses only two function
evaluations per iteration, and that each update is in a descent direction. In
particular, the first of these properties makes it attractive compared to a stan-
dard finite difference approximation of the gradient of the objective function,
which takes at least

� � 2
function evaluations for a function of

�
variables.

Numerous improvements of this algorithm are possible, including computing
approximations to the Hessian, and averaging over several random directions,
see [39].

In its basic form as outlined above, SPSA can only operate on unbounded
continuous sets, and is thus unsuited for optimization on our bounded integer
lattice ) . A modified SPSA algorithm for such problems was first proposed
and analyzed in [10, 11]. While their method involved fixed gain step lengths
and did not incorporate bounds, both points are easily integrated. In order
to describe our algorithm, let us define � ��� to be the operator that rounds a
real number to the next integer of larger magnitude. Furthermore, let � be
the operator that maps every point outside the bounds of our optimization
domain onto the closest point in ) and does not modify points inside these
bounds. Then the integer SPSA algorithm which we use for the computations
in this paper is stated as follows (for simplicity of notation, we assume that
we optimize over the lattice of all integers within the bounds described by � ,
rather than an arbitrarily spaced lattice):

ALGORITHM 2.1 (Integer SPSA).

1 Set � � 2
, � � � �F2 � 2 ��� � � �	� ��


.

2 ������������ $������
or convergence has not been reached 7 �
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2.1 Choose a random search direction ��� , with

 ��� � ����� ! 2 � � 2	� � 2�


� 
 �
.

2.2 Compute " � � ����� � ����� � ���� .

2.3 Evaluate
� � � � 
 � 
�
 � � " ����� ��� and

�
� � � 
 � 
�
 �%! " ����� ��� .

2.4 Compute an approximation to the magnitude of the gradient by ��� �
 � � ! �
�
����� � 
�
 � � " �	��� � ! � 
�
 ��! " �	��� ��� .

2.5 Set

 � ��� � � 
�
 �%! � �!�"�#� � ��� � .

2.6 Set � � � � 2
.

end While

A few comments are in order. The exponents � and � control the speed
with which the monotonically decreasing gain sequences defined in step 2.2
converge to zero. This controls the step lengths the algorithm takes. The
sequence � ��� �

is required to decay at a faster rate than � " � �
to prevent in-

stabilities due to the numerical cancellation of significant digits. Therefore,
�%$ � to ensure &('�*)  ��� � " � �,+ . Typical values for � and � are listed
in step 1, a more in depth discussion on their definition is given in [39]. The
parameters " and � are chosen to to scale step lengths agains the size of the
search space ) .

As can be seen in step 2.1, the entries of the vector �-� are generated fol-
lowing a Bernoulli ( . 2

) distribution. This vector represents the simultaneous
perturbation applied to all search space components in approximating the gra-
dient at step 2.4. It can be shown that the expected value of this approximate
gradient converges indeed to the true gradient for continuous problems.

Compared to the standard SPSA algorithm [39], our algorithm differs in
the following steps: First, rounding the step length " � in step 2.2 makes sure
that the function evaluations in step 2.3 only happen on lattice points (note
that ��� is already a lattice vector). Likewise, the rounding operation in the
update step 2.5 makes sure that the new iterate is a lattice point. In both cases,
we round up to the next integer to avoid zero step lengths that would stall the
algorithm. Second, using the projector in steps 2.3–2.5 ensures that all iterates
are within the bounds of our parameter space.

2.3.2. An integer finite difference gradient algorithm
The second algorithm is a finite difference gradient (FDG) algorithm that
shares most of the properties of the SPSA algorithm discussed above. In
particular, we use the same methods to determine the step lengths for function
evaluation and iterate update (including the same constants for � , � ) and
the same convergence criterion. However, instead of a random direction, we
compute the search direction by a two-sided finite difference approximation
of the gradient in an component-wise fashion.
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ALGORITHM 2.2 (Integer Finite Difference Algorithm).

1 Set � � 2
, � � � �F2 � 2 ��� � � �	� ��


.

2 ������������ $ ����� or convergence has not been reached 7 �
2.1 Compute " � � ����� � ����� � ���� .

2.2 Set evaluation points �
�& � � 
�
 � . " � � & � with ��& the unit vector in

direction � � 2 � � � � � � .

2.3 Evaluate
� �& � � 


�
�& � .

2.4 Compute the gradient approximation � by �9& � 
 � �& ! �
�& �����

�
�& !

� �& �
.

2.5 Set

 � ��� � � 
�
 �%! � �!�"� � � .

2.6 Set � � � � 2
.

end while

In step 2.5, the rounding operation � � � � � is understood to act on each
component of the vector ����� separately. This algorithm requires


 �
function

evaluations per iteration, in contrast to the 2 evaluations in the SPSA method,
but we can expect better search directions from it.

Note that this algorithm is closely related to the Finite Difference Stochas-
tic Approximation (FDSA) algorithm proposed in [39]. In fact, in the absence
of noise in the objective function, the two algorithms are the same.

2.3.3. Very fast simulated annealing (VFSA)
The third algorithm is the Very Fast Simulated Annealing (VFSA). This al-
gorithm shares the property of other stochastic approximation algorithms in
relying only on function evaluations. Simulated annealing attempts to math-
ematically capture the cooling process of a material by allowing random
changes to the optimization parameters if this reduces the energy (objective
function) of the system. While the temperature is high, changes that increase
the energy are also likely to be accepted, but as the system cools (anneals),
such changes are less and less likely to be accepted.

Standard simulated annealing randomly samples the entire search space
and moves to a new point if either the function (temperature) value is lower
there; or, if it is higher, the new point is accepted with a certain probability that
decreases over over time (controlled by the temperature decreasing with time)
and by the amount by which the new function value would be worse than the
old one. On the other hand, VFSA also restricts the search space over time,
by increasing the probability for sampling points closer rather than farther
away from the present point as the temperature decreases. The first of these
two parts of VFSA ensures that as iterations proceed we are more likely to
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accept only steps that reduce the objective function, whereas the second part
effectively limits the search to the local neighborhood of our present iterate as
we approach convergence. The rates by which these two probabilities change
are controlled by the “schedule” for the temperature parameter; this schedule
is used for tuning the algorithm.

VFSA has been used successfully in several geophysical inversion appli-
cations [8, 37]. Alternative description of the algorithm can be found in [18].

2.3.4. Other optimization methods
In addition to the previous optimization algorithms, we have included two
popular algorithms in some of the comparisons below: The Nelder-Mead
(N-M) simplex algorithm and genetic algorithms (GA). Both of these ap-
proaches are gradient-free and are important algorithms for non-convex or
non-differentiable objective functions. We will only provide a brief overview
over their construction, and refer to the references listed below.

The Nelder-Mead algorithm (also called simplex or polytope algorithm)
keeps its present state in the form of

� � 2
points for an

�
-dimensional

search space. In each step, it tries to replace one of the points by a new one,
by using the values of the objective function at the existing vertices to define
a direction of likely decent. It then evaluates points along this direction and
if it finds such a point subject to certain conditions, will use it to replace
one of the vertices of the simplex. If no such point can be found, the entire
simplex is shrunk. This procedure was employed in [5, 14] as part of a hybrid
optimization strategy for the solution of the well placement problem. More
information on the N-M algorithm can be found in [22] and in the original
paper [28].

The general family of evolutionary algorithms is based on the idea of
modelling the selection process of natural evolution. Starting from a number
of “individuals” (points in search space), the next generation of individuals
is obtained by eliminating the least fit (as measured by the objective func-
tion) and allowing the fittest to reproduce. Reproduction involves generating
the “genome” of a child (a representation of its point in search space) by
randomly picking elements of both parents’ genome. In addition, random
mutations are introduced to sample a larger part of search space.

The literature of GA is vast; here we only mention [12, 27]. In the context
of the well placement problem, it has been one of the most popular optimiza-
tion algorithms of choice; see e.g., [14, 44] and the references therein.
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Figure 1. Permeability field showing the positions of current wells. The symbols ‘ � ’ and ‘
�

’
indicate injection and producer wells, respectively.

3. Results for placement of a single well

3.1. THE RESERVOIR MODEL

We consider a relatively simple 2D reservoir
� � � � ������� � �	�

� � ��
 2 
?� � of
roughly 25 million ft � , which is discretized by

� 2
�
�
� spatial grid blocks of

�
�

ft length along each horizontal direction, and a depth of 
�

ft. Within this
reservoir, we fix the location of five wells (two injectors and three producers,
see Fig. 1) and want to optimize the location of a third injector well. Since
the model consists of 3904 grid blocks, the set of possible well locations over
which we optimize is the integer lattice ) � � � � � 2 
?� � 
?� � � � � � ������� � �

�
� � � � 2 
?� � 
?� � � � � � ��
 � � � �

of cell midpoints. The reservoir under study is lo-
cated at a depth of 1 km ( ��

���
ft) and corresponds to a 2D section extracted

from the Gulf of Mexico. The porosity has been fixed at
� � � � 


but the
reservoir has a heterogeneous permeability field as shown in Figure 1. The
relative permeability and capillary pressure curves correspond to a single type
of rock. The reservoir is assumed to be surrounded by impermeable rock; that
is, fluxes are zero at the boundary. The fluids are initially in equilibrium with
water pressures set to 2600 psi and oil saturation to

� ���
. For this initial case,

an opposite-corner well distribution was defined as shown in Figure 1.
For the objective function (3), cost coefficients were chosen as follows:" � � 


� , " �%$ �'& �#� � 2��

 and " �/$ &,+�- � 


. We chose an interest rate 3 of
2 ��� �� �F2

per year.
We undertook to generate a realistic data set for evaluation of optimiza-

tion algorithms by computing economic revenues for all 3904 (i.e., 64 � 61)
possible well locations, and for 200 different time horizons � between 200
and 2000 days. (The data for different time horizons can be obtained from
the simulation by simply restricting the upper bound of the integral in (3).)
Figure 2 shows the saturation and pressure field distribution after 2000 days
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Figure 2. Left: Oil saturation at the end of the simulation for the original distribution of five
wells. Right: Oil pressure.
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Figure 3. Search space response surface: Expected (positive) revenue �
�����������
	��

for all
possible well locations

	���
, as well as a few nearly optimal points found by SPSA.

of simulation. Plots of
� � 
�
 �

for given values of � are shown in figures 3 and
4. As can be expected, the maxima move away from the producer wells as the
time horizon grows, since closeby injection wells may flood producer wells
if the time horizon is chosen large enough, thus diminishing the economic
return.

Each simulation for a particular



took approximately 20 minutes on a
Linux PC with a 2GHz AMD Athlon processor, for a total of 2000 CPU
hours. Computations were performed in parallel on the Lonestar cluster at the
Texas Advanced Computing Center (TACC). It is clear that, for more realistic
computations, optimization algorithms have to rely only on single function
evaluations, rather than evaluating the complete solution space. Hence, the
number of function evaluations will be an important criterion in comparing
the different optimization algorithms below.
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Figure 4. Surface plots of the (positive) revenue �
��� �
	��

for
���������

(top-left), � �	�	�
(top-right), � ����� (bottom-left), 
 �	��� (bottom-right) days.

Note that while it would in general be desirable to compute the global
optimum, we will usually be content if the algorithm finds a solution that is
almost as good. This is important in the present context where the revenue
surface plotted in Figure 3 has 72 local optima, with the global optimum
being

� 
�
 � � 
 � 
?� � � 
?� � � � ! 2�� � � � � � � 2 ��� . However, there are 5 more
local extrema within only half a percent of this optimal value, which makes
finding the global optimum rather complicated.

Another reason to be content with good local optima is that, in general,
our knowledge of a reservoir is incomplete. The actual function values and
locations of optima are therefore subject to uncertainty, and it is more mean-
ingful to ask for statistical properties of solutions found by optimization algo-
rithms. Since the particular data set created for this paper is complete, we will
therefore mostly be concerned with considering the results of running large
numbers of optimization runs to infer how a single run with only a limited
number of function evaluations would perform. In particular, we will com-
pare the average quality of optima found by optimization algorithms with the
global optimum, as well as the number of function evaluations the algorithms
take.

3.2. PERFORMANCE INDICATORS

In order to compare the convergence properties of each of the optimization
algorithms, three main performance indicators were considered: (1) effec-
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tiveness (how close the algorithm gets to the global minimum on average);
(2) efficiency (running time) of an algorithm measured by the number of
function evaluations required; and, (3) reliability of the algorithms, mea-
sured by the number of successes in finding the global minimum, or at least
approaching it sufficiently close.

In order to compute these indicators, we started each algorithm from every
possible location


 & in the set ) , and for each of these N optimization runs
record the point �
 & where it terminated, the function value

� 
 �
 & � at this point,
and the number

$ & of function evaluations until the algorithm terminated.
Since the algorithms may require multiple function evaluations at the same
point we also record the number

� & of unique function evaluations (function
evaluations can be cached and repeated function evaluations are therefore
inexpensive steps). Note that in this setting, we would have �
 & � 
 ;

for an
algorithm that always finds the global optimum.

The effectiveness is then measured in terms of the average value of the
best function evaluation

�� � ��& ) �
� 
 �
 & �� �

(5)

and how close is this value to
� 
�
 ; �

. The efficiency is given by the following
two measures

�$ �
��& ) �
$ &� � �� �

�� & ) �
� &� � (6)

Finally, reliability or robustness can be expressed in terms of percentile
values. A � -percentile is defined as the value that is exceeded by a fraction �
of results

� 
 �
 & � ; in particular, ���


is the value such that
� 
 �
 & �	� �
�


in 50%

of runs (and similar for the 95 percentile ��� � ).

3.3. RESULTS FOR THE INTEGER SPSA ALGORITHM

In all our examples, we choose " � 
 ���*� 
 � 2 � � � , and terminate the iteration
if there is no progress over a number of iterations, measured by the criterion� 
 �+! 
 �

��
� ��� , where we set � � � ����� 


. All these quantities are stated for
the unit integer lattice, and are appropriately scaled to the actual lattice ) in
our problem. Note that the values for � stated above lead to initial step lengths
on the order of 20 on the unit lattice since �*� 
?� � �� where

��*� 2 � � � 2 � �
is an

order-of-magnitude estimate of the size of gradients, with
2 � �

being typical
function values and

2 � �
being roughly the diameter of the unit lattice domain.

The white marks in Figure 3 indicate the best well positions found by the
SPSA algorithm when started from seven different points on the top-left to
bottom-right diagonal of the domain. As can be seen, SPSA is able to find
very good well locations from arbitrary starting points, even though there is
no guarantee that it finds the global optimum every time. Note, however, that
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Figure 5. Probability surface for the SPSA algorithm stopping at a given point
	

for the
corresponding objective functions shown in Fig. 4.

the SPSA algorithm can be modified to perform a global search by injected
noise, although we did not pursue this idea here for the sake of algorithmic
simplicity.

As stated above, the answers to both the effectiveness and reliability ques-
tions are closely related to the probability with which the algorithm termi-
nates at any given given point


 � ) . For the three functions
� � '' 
�
 � ,� � � ' 
�
 � , � � '' 
�
 � shown in Fig. 4, this probability of stopping at



is shown

in Fig. 5. It is obvious that the locations where the algorithm stops are close
to the (local) optima of the solution surface.

The statistical qualities of termination points of the integer SPSA algo-
rithm are summarized in Table I for the four data sets at ��� 


� �
,
2 � � �

,
2


� �

,
?� � �
days. The table shows that on average the stopping position is only a few

percent worse than the global optimum. The
� �  and ��� � values are important

in the decision how often to restart the optimization algorithm from different
starting positions. Such restarts may be deemed necessary since the algorithm
does not always stop at the global optimum, and we may want to improve on
the result of a single run by starting from a different position and taking the
better guess. While the � � � value reveals what value of

� 
 �
 & � we can expect
from a single run in 95% of cases (“almost certainly”), the � �


value indicates

what value we can expect from the better of two runs started independently.
Despite the fact that both � � � and � �


are still relatively close to

� 
�
 ; �
, the

conclusion from these values is that to be within a few percent of the optimal
value one run is not enough, while two are. Finally, the last two columns
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Table I. Statistical properties of termination points of the integer SPSA algorithm.

� � � �
	 � � �� � ��� �� ������ �� � �	 �

� �	� � 
�
 �� ��� � ��� � 
�
 � ����� � ��� � 
�
 �	
 ��� � ��� � 
�
 ������� � ��� � 
�
 
 � 
�
 
� ���	� ���
 ��� � � ��� ���
 � � 
 � � ��� ���
 ��� ��� � ��� � � 
 � � � � � ��� � ��
 � ��� 
 �
� � �	� ����
 
	
 ��� � ��� ����
 � �	� � � ��� ����
 � � � � � ��� ����
 
��� � � ��� � � 
 � ��� 
 �

 ���	� � ��
 � ��� � � ��� � ��
 ���	��� � ��� � ��
 � �� � � ��� � ��
 � �� � � ��� ��� 
 � ��� 
 


Table II. Statistical properties of termination points of the integer Finite Difference
Gradient algorithm.

� � � �
	 � � �� � ��� �� ������ �� � �	 �

� �	� � 
�
 �� ��� � ��� � 
�
 � � � � � ��� � 
�
 � ��� � � ��� � 
�
 
 � 
 � � ��� � 
�
  
���
 �
� ���	� ���
 ��� � � � � ���
 
�
	
 � � � � ���
 ��� ��� � � � � � 
 ��� 
 � � � � ��� 
 � 
���
 �
� � �	� ����
 
	
 ��� � � � ����
 � ����� � � � ����
 � ����� � � � ����
 
 ��� � � � � ��� 
 � � 
�
 �

 ���	� � ��
 � ��� � � � � � ��
 �  
 � � � � � ��
 � � ��� � � � � ��
 � ��� � � � � ��� 
 � � ��
 �

indicate that the algorithm, on average, only needs 37-52 function evaluations
to converge; furthermore, if we cache previously computed values, only 30-
42 function evaluations will be required. The worst of these numbers are for��� 


� �
days, where maxima are located in only a few places; the best results

are for � � 
?� � �
days, in which case maxima are distributed along a long

arc across the reservoir domain.

3.4. RESULTS FOR THE INTEGER FDG ALGORITHM

Table II show the results obtained for the FDG algorithm described in Sec-
tion 2.3.2. From the table, it is obvious that for earlier times, the algorithm
needs less function evaluations than SPSA. However, it also produces worse
results, being significantly farther away from the global optimum on average.
The reason for this is seen in Fig. 6 where we show the termination points of
the algorithm: it is apparent that the algorithm quite frequently gets caught
in local optima, at least much more frequently than the SPSA algorithm
for which results are shown in Fig. 5. This leads to early termination of
the algorithm and results in suboptimal overall results. Hence, as it is ex-
pected from a non-convex or non-differentiable objective function, accurate
or noise-free gradient computations does not necessarily lead to a high level
of effectiveness, efficiency and reliability in the search for a (nearly) global
optimal solution.
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Figure 6. Probability surface for the FDG algorithm stopping at a given point
	

for the
corresponding objective functions shown in Fig. 4.

3.5. RESULTS FOR VFSA

Table III and Fig. 7 show the results for the VFSA algorithm of Section 2.3.3.
As can be seen from the table, the results obtained with this algorithm are
more reliable and effective than for the other methods, albeit at the cost of
a higher number of function evaluations (i.e., poor efficiency). Nevertheless,
these results can be further improved: by using a stretched cooling schedule
(resulting in a further increase in the number of function evaluations) the al-
gorithm find the global optimum in 95% of our runs even though only 10-15%
of the elements of the search space are actually sampled. VFSA thus offers
tuning possibilities for finding global optima that other, local algorithms do
not have. The differences are particularly pronounced in the � � � column sug-
gesting the more global character of the VFSA algorithms compared to the
SPSA and FDG algorithms.

3.6. OTHER OPTIMIZATION ALGORITHMS AND COMPARISON OF

ALGORITHMS

For completeness, we include comparisons with the Nelder-Mead (N-M) and
Genetic Algorithm (GA) approaches. Using the revenue surface information
defined on each of the 

� �
� points, we were able to test these algorithms with-

out relying in further IPARS runs. Since the efficiency is measured in terms
of function evaluations, CPU time was not a major concern and additional
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Figure 7. Probability surface for the VFSA algorithm stopping at a given point
	

for the
corresponding four objective functions shown in Fig. 4.

Table III. Statistical properties of termination points of the VFSA algorithm.

� � � �
	 � � �� � � � �� � ���� �� � �	 �

� �	� � 
�
 �� ��� � � � � 
�
 ��� 
 � � � � � 
�
 � � � � � � � � 
�
 ��� � � � � � � ��
 � ��
 �
� ���	� ���
 ��� � � ��� ���
 ���  � � ��� ���
  � � � � ��� ���
 � 
 � � � ��� ���
 �  � 
 �
� � �	� ����
 
	
 ��� � ��� ����
 � ����� � ��� ����
 � � 
 � � ��� ����
 �� � � � ��� � ��
 � ��
 �

 ���	� � ��
 � ��� � � � � � ��
 � � ��� � � � � ��
 � � ��� � � � � ��
 � � � � � � � ��� 
 �  � 
 �

experiments turn out to be affordable in other computational settings such as
Matlab.

The Nelder-Mead (N-M) algorithm runs were based on the Matlab in-
trinsic function fminsearch. For the optional argument list, we set the
nonlinear tolerance to

� �
� and defined the maximum number of iterations

to
2 � �

. For the GA tests, we relied on the GAOT toolbox developed by
Houck et al. [16]. The ga function of this toolbox allows the definition of
different starting populations, crossover and mutation functions among other
amenities. In our runs, we specified an initial population of 8 individuals,
a maximum number of 40 generations and the same nonlinear tolerance as
specified for the N-M algorithm. Since, we always started with 8 individuals,
the algorithm was rerun 488 times to reproduce the coverage of the 3904
different points. The rest of the ga arguments were set to the default values.
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Table IV. Comparison of different optimization algorithms for the
objective function at

� � 
 �	��� days.

Method
�� � ��� �� ������ �� �

� ��� � ��
 � � � � � ��� � ��
 ��� � � � ��� ����
 � ����� � � � ����
 �
���

� ��
 ������� � � � � ��
 ��� 
 � � � � � ��
 � � ��� � � � � � ��
 �
���
	 � � ��
 � � ��� � � � � ��
 � � ��� � � � � ��
 � � � � � � � �	� 
 �
��� � � ��
 �  
 � � � � � ��
 � � ��� � � � � ��
 � ��� � � � � ��� 
 �
	 � 	 � � ��
 ���	� � � ��� � ��
 � �� � � ��� � ��
 � �� � � ��� ��� 
 �

In both cases, the implementations only provided the number of function
evaluations

$ & , but not the number of unique evaluations
� & ; the comparison

will therefore only be made with the former.
Table IV summarizes the comparison for all optimization algorithms for� � 
?� � �

days. Clearly, the N-M turns out to be the worst one since it fre-
quently hit the maximum number of function evaluations without retrieving
competitive solutions to the other approaches. This is mainly due to the fact
that the simplex tended to shrink very fast and the algorithm got prematurely
stuck without approaching any local or global minimum. The GA shows
a more effective and reliable solution but still falls short of the numbers
displayed by both the SPSA and VFSA algorithms. It is the least efficient
one and shows difficulties in finding an improved solution after a few trials,
as the � �


column indicates. Slight improvements were found by increasing

the initial population and tuning the rate of mutations; however, the authors
found that the tuning of this algorithm was not particularly obvious for this
particular problem.

As conclusion of this section, we state that the SPSA algorithm is the most
efficient one in finding good solutions. VFSA can be made to find even better
solutions, but it requires significantly more function evaluations to do so.

4. Results for placing multiple wells

In the previous section we have considered optimizing the placement of a
single well. The case was simple enough that we could exhaustively evaluate
all elements of the search space in order to find the global maximum and to
evaluate how different optimization algorithms perform. In this section, we
consider the more complicated case that we want to optimize the placement
of several wells at once. Based on the previous results and on computing
time limitations, we restrict our attention to the SPSA, FDG, and VFSA
algorithms. The parameters defined for each of them remained unchanged.
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Figure 8. Search space response surface for placing a fourth injector when keeping the
positions of the other six wells fixed.

4.1. PLACING TWO WELLS AT ONCE

In an initial test, we tried to place not only one but two new injector wells into
the reservoir, for a total of four injectors and three producers. We compared
our optimization algorithms for this, now four-dimensional, problem with the
following simple strategy: take the locations of the five fixed wells used in
the last section, and place a third injector at the optimal location determined
��� � ��� � � � � 
 � 
?� � � 
?� �

in the previous section; then find the optimal location
for a fourth injector using the same techniques. Thus, we solved a sequence
of two two-dimensional problems instead of the four-dimensional one.

The search space response surface for placing the fourth well is shown
in Fig. 8. In addition to the dips in all the same places as before, the sur-
face has an additional drepression in the vicinity of where the third injector
was placed, indicating that the fourth injector should not be too close to
the third one. The optimal location for this fourth injector is ��� � ��� �

� �
� 
?� � � 
 � � � �

, with an integrated revenue of
� 
�
 � � ! 2�� 
 � 2 � 
 � 2 � � at


 �
� 
 � 
?� � � 
?� � 
?� � � 
 � � � �

, i.e. roughly 13% better than the result with only three
injectors.

It is obvious that the optimum of the full, four-dimensional problem must
be at least as good as that of the simpler, sequential one. However, despite
extensive computations and finding above locations multiple times, we were
unable to find positions for the two wells that would yield a better result than
that given above. We believe that by mere chance, the simplified problem
may have the same optimum as the full one. We therefore turn to a more
challenging problem of optimizing the locations of all seven wells at once,
which we describe in the next section. However, it is worth noting that a
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Figure 9. The best well arrangements found by the best four runs of SPSA from random loca-
tions, along with their revenue values. Producer well locations are marked with ‘ � ’, injectors
with ‘ � ’.

sequential well placement approach as above may be useful to obtain a good
initial guess for the simultaneous well placement.

4.2. PLACING SEVEN WELLS AT ONCE

As a final example, we consider the simultaneous placement of all four in-
jectors and three producers at once, i.e. without fixing the positions of any
of them. The search space for this problem has, taking into account sym-
metries due to identical results when exchanging wells of the same type,
approximately �

�

�
 � 2 � ��� elements, clearly far too many for an exhaustive

search.
The results for this show a clear improvement over the well locations de-

rived above: the best set of well locations found generates integrated revenues
up to

� 
�
 � � ! 2��	� 
 � ��� � 2 � � , i.e. more than 30% better than the best result
presented in the last section. We started twenty SPSA runs from different
random arrangements of wells; out of these, 11 runs reached function values
of ! 2�� 
 � 2 � � or better within the first 150 function evaluations. The respective
best well location arrangements together with their function values for the
best 4 runs are shown in Fig. 9. All these well arrangements clearly make
sense, with producers and injectors separated, and injectors aligned into pat-
terns that form lines driving oil into the producers. In fact, the arrangements
resemble standard patterns for producer and injector lineups used in practice,
see for example [17]. It should be noted that each of these arrangements likely
corresponds to a local extremum of the objective function and that further
iterations will not be able to morph one of the patterns into another without
significantly pessimizing the objective function inbetween.

Fig. 10 documents the SPSA run that led to the discovery of the best well
location shown at the left of Fig. 9. In order to see how the algorithm proceeds
for large numbers of iterations, we have switched off the convergence crite-
rion that would otherwise have stopped the algorithm after approximately 80
iterations. From the left part of the figure it is apparent that the algorithm
would have basically converged at that time (the best point found up to then,
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Figure 10. Progress of the SPSA run that led to the well location shown at the left of
Fig. 9. Left: Reduction of objective function as iterations proceed. Right: Corresponding well
arrangements at selected iterations.
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Figure 11. Oil saturations at the end of the simulation for the well configurations of Fig. 10
at function evaluations 0, 20, 40, and 100. Asterisks indicate injector wells, circles producers.

in function evaluation 72, is only half a per cent worse than the best point
found later in evaluation 191), and that good arrangements were already
found after as little as 50 function evaluations. This has to be contrasted to
the FDG algorithm that already takes at least 15 (for the one-sided deriva-
tive approximation) or even 28 (for the two-sided derivative approximation)
function evaluations in each single iteration for this 14-dimensional problem.

The right part of Fig. 10 shows the locations of the seven wells at various
iterations. Fig. 11 also shows the corresponding water saturations at the end of
the simulation period of 2000 days for 4 of these configurations. Obviously,
the main reason that SPSA does not find any well configurations that are
better than the one shown can be qualitatively visualized from the amount of
waterflooding covering the reservoir, so that no additional revenue is possi-
ble: the well configuration found effectively drains the reservoir completely
within the given time horizon.

4.2.1. Comparison with the Integer FDG Algorithm
Compared to the SPSA results above, the FDG algorithm performs signif-
icantly worse: only 7 out of 20 runs started at the same random locations
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Figure 12. Progress of the best FDG (left) and best VFSA (right) runs: Reduction of objective
function as iterations proceed.

reached a function value of ! 2�� 
 � 2 � � or better within the first 150 function
evaluations. In addition, the best function evaluation had a value of ! 2��	� � � � �2 � �

, roughly 0.6% worse than the best result obtained by SPSA. The resulting
configuration is almost identical to the last one shown in the rightmost panel
of Fig. 9. The values of the objective function encountered during this run are
shown in the left panel of Fig. 12, to be compared with Fig. 10. It is obvious
that the FDG algorithm requires significantly more function evaluations be-
fore it gets close to its convergence point. The steps in the graph are caused
by the fact that the algorithm samples


 � � 

� points in each iteration before

it moves on to the next iterate; these 28 points are all located close to each
other and therefore have similar function values.

4.3. COMPARISON WITH THE VFSA ALGORITHM

The VFSA algorithm performed very well. In addition to 13 out of 20 runs
that reached a best function value of ! 2�� 
 � 2 � � or better within the first 150
function evaluations, it also scored the best function value found in all our
runs with

� 
�
 � � ! 2��	� 
��
 � � 2 � � . This best run is documented in the right
panel of Fig. 12. The raggedness of the plot comes from the fact that VFSA
does not only sample close-by points, but also ones that are farther away and
therefore have significantly different function values than the presently best
point. The well pattern corresponding to the best solution is again similar to
the leftmost one shown in Fig. 9.

In comparison with the other algorithms discussed above, VSFA finds
solutions that are at least as good, and finds them with a high frequency.
However, it needs more function evaluations than SPSA to get to function
values that are close to the very best found in our experiments.
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5. Conclusions and outlook

In this work, we have investigated the performance of different optimization
algorithms for the problem of placing wells in an oil reservoir. The testcases
we have considered are (1) the two-dimensional problem of placing one well
into a reservoir in which 6 others have already been placed at fixed positions,
and (2) the 14-dimensional problem of determining the best positions of all
7 of these wells at the same time. For the first of these problems, all possi-
ble well locations have been explored exhaustively in order to determine the
statistical properties of optimization algorithms when started from randomly
chosen locations. This allowed us to compare how algorithms perform on
average, when no prior knowledge is available to determine good starting
positions for the algorithms, as well as near-best and near-worst case be-
haviors. While the virtue of the second testcase obviously is its complexity,
the strength of the first is that we know the exact optimum and all other
function values, which allows us to do in-depth comparisons of the different
algorithms.

On these testcases, we compared the Simultaneous Perturbation Stochastic
Approximation (SPSA), Finite Difference Gradient (FDG), Very Fast Simu-
lated Annealing (VFSA), and, for the first testcase, the Nelder-Mead simplex
and a Genetic Algorithm optimization methods. For the rather simple, first
testcase both SPSA and VFSA reliably found very good solutions, and are
significantly better than all the other algorithms; however, their different prop-
erties allow them to be tailored to different situations: while SPSA was very
efficient in finding good solutions with a minimum of function evaluations,
VFSA can be tweaked to find the global optimum almost always, at the
expense of more function evaluations.

These observations also hold for the second, significantly more complex
testcase. There, both SPSA and VFSA performed markedly better than the
FDG algorithm. Both algorithms found good solutions in most of the runs
that were started from different initial positions. Again, SPSA was more
efficient in finding good positions for the seven wells in very few (around
50) function evaluations, while VFSA obtained good locations more reliably
but with more function evaluations. FDG performed worse than the two other
algorithms mainly because the high dimensionality of the problem requires
too many function evaluations per iteration to let FDG be competitive.

While the results presented in this work are a good indication as to which
algorithms will perform well on more complex problems, more experiments
are needed in this direction. In particular, the fact that we have only chosen
the location of wells as decision variables is not sufficient to model the re-
ality of oil reservoir management. For this, we would also have to allow for
varying pumping rates, different and more complex well types, and different
completion times of wells. In addition, constraints need to be placed on the
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system, such as maximal and minimal capacities of surface facilities, and the
reservoir description must be more complex than the relatively simple 2d case
we chose here in order to keep computing time within a range where different
algorithms can be easily compared. Also, it will be interesting to investigate
the effects of uncertainty in the reservoir description on the performance
of algorithms; for example, we expect that averaging over several possible
realizations of a stochastic reservoir model may smooth out the objective
function, which would probably aid the FDG algorithm more than the other
methods. Research in these directions is presently underway, and we will
continue to investigate which algorithms are best suited for more complex
and more realistic descriptions of the oil well placement problem.
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