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Abstract

We describe the development and application of a Finite Element (FE) self-adaptive
hp goal-oriented algorithm for elliptic problems. The algorithm delivers (without any
user interaction) a sequence of optimal hp-grids. This sequence of grids minimizes
the error of a prescribed quantity of interest with respect to the problem size. The
refinement strategy is an extension of the fully automatic, energy-norm based, hp-
adaptive algorithm [9, 17].

We illustrate the efficiency of the method with 2D numerical results. Among other
problems, we apply the goal-oriented hp-adaptive strategy to simulate direct current
(DC) resistivity logging instruments (including Through Casing Resistivity Tools) in
a borehole environment and for the assessment of rock formation properties.



1 Introduction

During the last decades, different algorithms intended to generate optimal grids for solving
relevant engineering problems have been designed and implemented. Among those algo-
rithms, a Finite Element (FE) self-adaptive hp-refinement strategy has recently (2001) been
developed at the Institute for Computational Engineering and Sciences (ICES) of The Uni-
versity of Texas at Austin. The strategy produces automatically a sequence of hp-meshes
that delivers exponential convergence rates in terms of the energy-norm error against the
number of unknowns (as well as the CPU time), independently of the number and type of
singularities of the problem. Thus, it provides high accuracy approximations of solutions
corresponding to a variety of engineering applications. Furthermore, the self-adaptive strat-
egy is problem independent, and can be applied to FE discretizations of H'-, H(curl)-, and
H (div)-spaces, as well as to nonlinear problems (see [9, 17] for details).

However, the energy-norm is a quantity of limited relevance for most engineering ap-
plications, especially when a particular objective is pursued, as for example, to simulate
the electromagnetic response of a petroleum engineering resistivity logging instrument in a
borehole environment. In these instruments, the solution (for example, the electric field) is
typically several orders of magnitude smaller at the receiver antennas than at the transmit-
ter antennas. Thus, small relative errors of the solution in the energy-norm do not imply
small relative errors of the solution at the receiver antennas. Indeed, it is not uncommon to
construct adaptive grids delivering a relative error in the energy-norm below 1% while the
solution at the receiver antennas still contains an error above 1000% (see [15]).

Consequently, a self-adaptive strategy is needed to approximate a specific feature of the
solution. Refinement strategies of this type are called goal-oriented adaptive algorithms [13,
16], and are based on minimizing the error of a prescribed quantity of interest mathematically
expressed in terms of a linear functional (see [5, 11, 14, 13, 16, 18] for details.

In this work, we formulate, implement, and study (both theoretically and numerically) a
number of self-adaptive goal-oriented algorithms intended to solve elliptic problems. These
algorithms are an extension of the fully automatic (energy-norm based) hp-adaptive strategy
described in [9, 17], and a continuation of concepts presented in [21]. Several 2D applications,
including simulation of a logging Through Casing Resistivity Tool (TCRT) [12, 19], illustrate
the efficiency and performance of the goal-oriented hp-adaptive strategy.

The organization of this document is as follows. In Section 2, we introduce the steady-
state Maxwell’s equations, which are the governing equations of our DC resistivity logging
applications of interest. A family of goal-oriented h and hp self-adaptive algorithms for
elliptic problems are presented in Section 3. The corresponding details of implementation
are discussed in the same Section. In section 4, we describe our logging DC applications of



interest. Simulations and numerical results for these applications are shown in Section 5.
Finally, in Section 6 we draw the main conclusions, and outline future lines of research.

This paper also contains three appendices. In appendix A, we derive the exact solution
of two problems used for testing purposes: radiation of a point source into a homogeneous
medium, and through casing. In appendix B, we describe a postprocessing formula to extract
point values from a Finite Element (FE) solution. Finally, Appendix C contains numerical
2D results that compare the efficiency of each of the self-adaptive algorithms, and describe
the corresponding final A or Ap-grids.

2 Maxwell’s Equations

2.1 Time-harmonic Maxwell’s equations

Assuming a time-harmonic dependence of the form e/**, with w denoting the angular fre-
quency, Maxwell’s equations can be written as

VxH =(oc+jw)E+J Ampere’s Law,

V x E = —jwu H Faraday’s Law,

V. (eE) =p Gauss’ Law of Electricity, and 21)
V- -(uH) =0 Gauss’ Law of Magnetism.

Here H and E denote the magnetic and electric field, respectively, J is a prescribed, im-
pressed current source, €, u, and o stand for dielectric permittivity, magnetic permeability,
and electrical conductivity of the medium, respectively, and p denotes the electric charge
distribution.

The equations described in (2.1) are to be understood in the distributional sense, i.e.
they are satisfied in the classical sense in subdomains of regular material data, but they also
imply appropriate interface conditions across material interfaces.

Energy considerations lead to the assumption that both electric field E and magnetic field
H must be square integrable. This is not true for the charge distribution which may include
irregular (Dirac’s type) terms corresponding to surface charges accumulated over material
interfaces. Similarly, the impressed current may be an irregular distribution including surface
currents contributions.

Maxwell’s equations are not independent. Taking the curl of Faraday’s Law yields the
Gauss’ Law of magnetism. By taking the curl of Ampere’s Law, and by utilizing Gauss’



Electric Law we arrive at the so called continuity equation,
V- (0E)+jwp+V-J=0. (2.2)

Maxwell’s equations are to be satisfied in the whole space minus domains occupied by perfect
conductors. A perfect conductor is an idealization of highly conductive media. In a region
where 0 — oo, the corresponding electric field converges to zero. Faraday’s law implies that
the tangential component of the electric field E must remain continuous across material
interfaces. Consequently, the tangential component of electric field must vanish along the
Perfect Electric Conductor (PEC) boundary. The same Faraday’s law implies that the
normal component of the magnetic field on the PEC boundary must vanish. The subdomains
occupied by PEC are eliminated from the solution domain and replaced with the PEC
boundary conditions, namely,

nxE=0 mn-H=0. (2.3)

The tangential component of magnetic field (surface current) and normal component of the
electric field need not be zero, and may be determined a-posteriori.

2.2 Steady State Maxwell’s equations

At Direct Current (DC, i.e., w = 0), the time-harmonic Maxwell’s equations reduce to,

VxH =cE+J Ampere’s Law,
V x E =0 Faraday’s Law,
(2.4)
V.-(eE) =p Gauss’ Law of Electricity, and
V. -(uH) =0 Gauss’ Law of Magnetism.
Similarly, the continuity equation reduces to,
V- (cE)+V-J=0. (2.5)

For simplicity, we shall assume that the solution domain is simply connected. Faraday’s law
implies that there exists a scalar potential v such that,

E=-Vu. (2.6)

The continuity law (here understood in the distributional sense) implies that, in the sub-
domain occupied by conductive media, the potential must satisfy the so called conductive
media equation, i.e.,

V- (oVu)=-V-J, (2.7)



accompanied by homogeneous! Neumann boundary condition on the conductive/non-conductive
material interface,

ou

—=0. 2.8
7 on (2.8)

The PEC boundary condition n x E = 0 implies that the potential must be constant along

each connected component of the PEC boundary. If the PEC boundary is connected, we may

assume that the constant is equal zero. This results in the homogeneous Dirichlet boundary
condition,

u=0. (2.9)

Once the solution in the conductive region has been determined, the potential in the non-
conductive part of the domain can be determined by solving the electrostatics equation,

-V - (eVu) =p, (2.10)

resulting from Gauss’ Electric Law, accompanied by the Dirichlet boundary condition v = u,
on the non-conductive region boundary. Here u is constant on a PEC boundary and equal
to the solution in the conductive region on the conductive/non-conductive interface. The
charge p must be known a priori.

In this paper, we focus our attention to the solution of the conductive media equation in
the conductive region only.

2.3 Variational Formulation

By multiplying equation (2.7) by test function £ € H*(€2), and by integrating by parts over
the domain €2, we obtain the following variational formulation:

Find v € H'(Q) such that:
/avuvng:/v-Jgdv+/ e qs vee m(Q),
Q Q o 0

n

(2.11)

where H'(Q) = {u € L*(Q) : Vu € L*(Q)} is the space of admissible solutions (potentials).
Notice that solution of problem (2.11) is not unique. In order to obtain a unique solution,
we introduce an essential (Dirichlet) boundary condition (BC) in some region I'p of the

1Unless the normal component of the impressed current is discontinuous across the material interface. In

such a case, 09% = [n - J] where [n - J] denotes the jump of the normal component of J



computational domain 2. At this point, we also introduce a natural (Neumann) boundary
condition (BC) in some region I'y of the computational domain Q. It then follows that:

Find u € up + H5(Q) such that:

2.12
/QUVUVSdV:/QV-JSdV—F/FNgde Ve € HL(Q) | (2.12)

where n is the unit normal outward (with respect ) vector, up is a lift (typically up = 0)

of the essential boundary condition data up (denoted with the same symbol), g = aa—u is a

n
prescribed flux on 'y, and H5(Q) = {u € L*(Q) :ulr, = 0,Vu € L*(Q)} is the space of
admissible test functions associated with problem (2.12).

2.4  Cylindrical Coordinates and Axisymmetric Problems
Using cylindrical coordinates (p, ¢, z), problem (2.12) becomes:

Find v € up + V such that:

| oVuNE pdpdidz = [ V-3 €pdpdvdz+ [ gEds eV, (2.13)
Q 0 .

0
where V. ={u:Q — R :u|r, =0 /\u| p dpdz < 0o / \—\2 \a—u\2) p dpdz < oo}
z
Notice that the Jacobian dS of the surface integral in terms of cyhndrlcal coordinates depends

upon the particular surface S under consideration.

For the Petroleum Engineering applications entertained in this paper, we assume that
both the logging instrument and the rock formation are axisymmetric (invariant with respect
to the azimuthal component ¢). Under this assumption, and dividing (2.13) by a factor of
27, we derive the following formulation in terms of cylindrical coordinates (p, z):

Find v € up + V such that:

oudé  Oudt 8(pJp) (2.14)
/Qa(apaerazaz)dd /Q< 5 )§dpdz—i—/ o——gdz

Remark 1. At the axis of symmetry (p = 0), no BC should be added since there is no
boundary in the original 3D problem. From the computational point of view, this effect can
be achieved by artificially adding a homogeneous natural (Neumann) BC. 1



3 Goal-Oriented Adaptivity

We are interested in solving the variational problem (2.14), that we state here in terms of
bilinear form b, and linear form f:

Find u e up +V
(3.15)

bu,v) = f(v) YveV.

Here

e up is a lift of the essential (Dirichlet) BC data.
e 1/ is a Hilbert space.
e f € V’is a linear and continuous functional on V.

e ) is a bilinear and symmetric form (assumed to be coercive and continuous in the
space V). Thus, we can define an inner product on V' as (u,v) := b(u,v), with the
corresponding norm denoted by ||u]|.

Given an hp-FE subspace V3, C V, we discretize (3.15) as follows:

{ Find Upp € Up + Vhp (3 16)

b(uhp,'uhp) = f(Uhp) \V/Uhp € Vhp .
The objective of goal-oriented adaptivity is to construct an optimal hp-grid, in the sense

that it minimizes the problem size needed to achieve a given tolerance error for a given
quantity of interest L € V'. By recalling the linearity of L, we have:

E = L(u) — L(upp) = L(u — upy) = L(e) , (3.17)
where e = u — uy, denotes the error function. By defining the residual rp, € V" as rp,(v) =

f(v) = b(upp, v) = b(u — upp, v) = b(e,v), we look for the solution of the dual problem:

Find w eV
(3.18)

b(v,w)=L(v) YveV.

Using the Lax-Milgram theorem we conclude that problem (3.18) has a unique solution in
V. The solution, w, is usually referred to as the influence function.



By discretizing (3.18) via, for example, V3, C V, we obtain:

Find wy, € V}
{ e = (3.19)

b(vhp,whp) = L(’Uhp) Vvhp S Vhp .

Due to the symmetry of the bilinear form b and the use of the same space V}, for solving
both (3.16) and (3.19), it is only necessary to factorize the system of linear equations once.
Thus, the extra cost of solving (3.19) reduces to only one backward and forward substitution
(if a direct solver is used).

By orthogonality of e with respect to Vj, (in the b-inner product), we have b(e, vy,) =0
for all vy, € Vj,. Defining € = €(vp,) = w — vpy,, we obtain :

E = L(e) = ble, ) . (3.20)

Once the error E in the quantity of interest has been determined in terms of the bilinear
form, we wish to obtain a sharp upper bound for | £ | that utilizes only local and computable
quantities. Then, a self-adaptive algorithm intended to minimize this bound will be defined.

First, using a similar procedure to the one described in [9], we approximate u and w

oD _p+1» Which have been obtained by solving iteratively

the corresponding linear system of equations associated with the FE subspace V% ple

the remainder of this paper, u and w will denote the fine grid solutions of the direct and

with fine grid functions un wh

In

dual problems (u = u B and w = w bt respectively), and we will restrict ourselves to
discrete FE spaces only.

Next, we bound the error in the quantity of interest by a sum of element contributions.
Let bx be defined as bi (ug,vg) = b(ug,vi) for all ug, vk € Vi, where Vi C V. It then
follows that:

| E =l be,e) [< 3 | bx(ese) | (3.21)

where summation over K indicates summation over elements. The inner product and norm
associated with the bilinear form by will be denoted as (-, )k and || - ||k, respectively.

Projection based interpolation operator. At this point, we introduce the projection-
based interpolation operator Iy, : V. — V},, defined in [8], and used in [9, 17] for the
construction of the fully automatic energy-norm based hp-adaptive algorithm. We define
Py, 1 V. — V,, as the b-projection, and we denote up, = Ppyu. Then, (3.21) becomes:

[E1< Y brlene) |= 3 | bl — iy, &)+ bie (M — Py | - (3.22)
K K

8



Given an element K, it is expected that | bx (Ilp,u — Pyyu, €) | will be negligible compared
to | bx(u — ppu, €) |. Under this assumption, we conclude that:

| E 12> | br(u—pu,e) | . (3.23)
K

In particular, for € = w — II,w, we have:

| E =) | oxe(u = pu, w — Tpw) | (3.24)
K

By applying the parallelogram law to the last equation, we obtain the next upper bound for
| E|:

1 L. U
[Bl= g llle+eli —le—elkl, (3.25)
K

where € = u — Ij,u, and € = w — II,w. A second upper bound for | E | can be obtained
from Cauchy-Schwartz inequality as follows:

| E =€ el € e (3.26)

In the following subsection we define two families of self-adaptive goal oriented algorithms:
one for h-FE spaces, and a second one for hp-FE spaces.

3.1 A Self-Adaptive Goal-Oriented h-Refinement Algorithm

This adaptive algorithm iterates according to the following steps:

1. Solve the direct and dual problems on a given h grid (with arbitrary distribution of p)
and the corresponding globally h refined grid (h/2), to obtain wy, wy, up/2, and wps.

2. For each element K, compute

| (unje — un) 4+ (w2 — wa) 1% = || (wn2 — un) — (waye — wn) x| (3.27)

as an indicator of the error in the goal.

3. Refine those elements contributing with 66% or more of the maximum element error
by performing anisotropic refinements if the error is almost one-dimensional.



Notice that for h-adaptive algorithms, only an error indicator (one number per element)
is necessary to decide which elements should be refined. Thus, there is no need to use the
projection based interpolation operator. On the other hand, for Ap-adaptive algorithms the
full error function (and not just one number per element) is needed to decide between different
h and p refinements. For such hp-algorithms, we employ the projection based interpolation
operator.

3.2 A Self-Adaptive Goal-Oriented hp-Refinement Algorithm

In this section, we define two goal-oriented hp self-adaptive algorithms that utilize the main
ideas of the fully automatic (energy-norm based) hp-adaptive algorithm presented in [9,
17]. We start by recalling the main objective of the self-adaptive (energy-norm based) hp-
refinement strategy, which consists of solving the following maximization problem:

Find an optimal h~p—grid in the following sense:
u =TI u |3, — |u—HfLA;u 3 & (3.28)

AN ’

hp = argmax
hp K

where
® U=uUn s the fine grid solution,

e AN > 0 is the increment in the number of unknowns from grid hp to grid f/L]\), and

e |- |1k is the H'-seminorm for element K.

Similarly, for goal-oriented hp-adaptivity, we propose the following two algorithms based
on estimates (3.25) and (3.26):

Find an optimal hp-grid in the following sense:

| (utw) =T (w4 w) [f e — | (u—w) = I (u—w) 34|

hp = arg HZ%X; AN (3.29)
[ (utw) = T8 (w4 w) [ e = [ (v —w) =18 (u—w) [{ x|
AN

Find an optimal h~p—grid in the following sense:

|u—Hthu l1x - | w—Hthw l1.x

hp = argmax AN (3.30)

1K

1,K ° | w — Hth |1,K
P

AN ’

10



where:

¢ U= Uh iy and w = w b ppp ATe the fine grid solutions corresponding to the direct and
dual problems,

e AN > 0 is the increment in the number of unknowns from grid Ap to grid f/L]\o, and

e |- |1k is the H'-seminorm for element K.

Implementation of both goal-oriented hp-adaptive algorithms is based on the optimization
procedure used for energy-norm hp-adaptivity [17].

Implementation details. In what follows, we discuss the main implementation details
needed to extend the fully automatic (energy norm based) hp-adaptive algorithm [9] to a
fully automatic goal-oriented hp-adaptive algorithm.

1. First, the solution w of the dual problem in the fine grid is necessary. This goal can be
attained either by using a direct (frontal) solver or an iterative (two-grid) solver (see
[15]).

2. Subsequently, we should treat both solutions as satisfying two different partial differ-
ential equations (PDE’s). In the case of algorithm (3.29), we select functions u + w
and u — w as the solutions of the system of two (undefined) PDE’s. In the case of
algorithm (3.30), u and w will be the corresponding solutions.

3. We proceed to redefine the evaluation of the error. For algorithm (3.29), we replace
the H'-seminorm error evaluation of a two dimensional function (] u; — Iyuy |3 + |
uy — Mppus [3) by the following quantity: | | (u + w) — Ipy(u +w) |3 — | (v —w) —
I, (u —w) |? |. For algorithm (3.30), we replace the H'-seminorm error evaluation of
a two dimensional function by | v — pyu |1 - | w — Hppw |5

4. After these small modifications, the energy-norm based adaptive algorithm may now
be utilized as a fully automatic goal-oriented hp-adaptive algorithm.

Appendix C provides a comparison between different energy-norm and goal-oriented

based adaptive h- and hp-algorithms.

4 Direct Current (DC) Logging Applications

In this section, we introduce two DC problems corresponding to different resistivity borehole
logging applications.

11



4.1 A DC Borehole Resistivity Logging Model Problem

We consider the following geometry, sources, receivers, and materials (illustrated in Fig. 1):

e A domain Q = R?.

e One 10 cm-long (infinitely thin) source electrode located on the axis of symmetry and
moving along the z-axis.

e Four 5 cm-long (infinitely thin) receiving electrodes located 50 cm, 100 cm, 150 cm,
and 200 cm above the source electrode, on the axis of symmetry.

e Material I:

1. acylinder ; of radius 10 cm surrounding the axis of axisymmetry (2; = {(p, ¢, 2) :
p <10 cm}),

2. with resistivity R=0.1 Q- m.
e Material II:

1. a subdomain Q;; defined by Q;; = {(p,¢,2) : p>10cm, 0 cm < z < 100 cm},
2. with resistivity R=1 Q- m.

o Material III:

1. a subdomain Q;; defined by Q= {(p,¢,2) : p>10cm, =50 cm < z <
0 cm},

2. with resistivity R=10000 2- m.
e Material IV:

1. a subdomain Qjy defined by Qpy = {(p,¢,2) : p>10cm, z < =50 cm or z >
100 cm},

2. with resistivity R=100 €2- m.

12
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Figure 1: Geometry of the DC resistivity borehole logging model problem. The problem
consists of one transmitter and four receiver electrodes, a conductive borehole (R = 0.1 2-m),
and four layers in the formation material with varying resistivities (from R =1 -m up to
R = 10000 Q- m).

The source electrode. In this problem, we are interested in modeling a Dirac’s delta
point source given by d(p — 0)d(z — 2p), where z is a point along the z-axis. A point source
modeled with a Dirac’s delta will result in a solution with infinite energy, and therefore,
it should not be modeled directly with our Ap-adaptive FE code. Both energy- and goal-
driven adaptive mesh optimization algorithms are based on the assumption that the load
(also for the dual problem) defines a functional that is continuous in the energy space, with
the resulting solutions having finite energy.? One possible solution is to “smear” the point
source over a finite region,

Az
0<p<&, |Z—Z(]’<7, (431)
2This does not mean that finite elements, in general, cannot be used to model solutions with infinite
energy. One possibility is to change the norm in which the convergence is assessed, switching either to
fractional Sobolev spaces or Banach spaces WP with p # 2, see [20]. Another possibility is to use the
singular component method, see [2]
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assuming that the impressed source current J satisfies

1
V-J=!{ Vo

0 otherwise,

A
<a, |z — 2| < 2z
pa o=zl <5 (4.32)

where Vol = ma?Az is the volume occupied by the source electrode.

Remark 2. One can always find a particular impressed current J = (J,, Jy, J,) satisfying
the condition above, e.g.,

r

Accordingly, by integrating the source term by parts, we obtain
/V-Jng:-/J-ngv+/ n.JEdS, (4.34)
v v v

where V' is the volume occupied by the antenna. The first integral on the right-hand side of
this last equation tends to zero as a tends to zero, i.e.,

J-ved A 0 1
/ Vedv = 27T/ /Az/2 2ra?Az dp pdz = 0. (4:35)

In addition, the boundary integral is independent of parameter a. This is shown as follows:

Az/2 2 1 Az/2
n~J§dS:27r/ a / £dz. (4.36)

dz = —
oV —Az/2 27ra2Azg TAL ~Az/2

We discuss the possibility of dropping the first term in the goal-oriented computations in a
subsequent section of this paper. i

Objective. The objective of the simulation is to determine the electric current I between
two receiving electrodes, given by:
AV L,
I= / Edl = —0/ Vudz = —0o a—udz = o(u(a) — u(b)) (4.37)
z

where a and b are the locations (in the z-axis) of the two receiving electrodes, and R = 1/o
is the resistivity. Functional [ : V' — R defined by I(u) = o(u(a) — u(b)) is not continuous
(in the energy norm). We shall replace it by a “regularized functional” obtained using an
extraction formula described in Appendix B.

14



Computational domain. The problem is formulated in R®. Construction of infinite el-
ements (see [10, 6, 7] for details), or other techniques are unnecessary because the solution

decays as — for r — oco. We may simply truncate the domain at a large distance, and

or
apply PEC (or Neumann) boundary condition along the truncated boundary.

4.2 Through Casing Resistivity Tool (TCRT) Problem

We consider the following geometry, sources, receivers, and materials (illustrated in Fig. 2).

e A domain Q = R3.

e One 10 cm-long (infinitely thin) source electrode located on the axis of symmetry and
moving along the z-axis.

e Three 5 cm-long (infinitely thin) receiving electrodes located 150 cm, 175 ¢cm, and 200
cm above the source electrode, on the axis of symmetry.

o Material I:

1. acylinder Q; of radius 10 cm surrounding the axis of symmetry (Q; = {(p, ¢, 2) :
p <10 cm}),

2. with resistivity R=0.1 Q- m.
e Material II:

1. a steel casing ;7 of width 1.27 cm surrounding the borehole (2;; = {(p, ¢, 2) :
10 cm < p < 11.27 cm}),

2. with resistivity R=0.000001 Q- m = 1075 Q- m .
e Material III:

1. a subdomain €;;; defined by Qr; = {(p,¢,2) : p>1127cm, 0 cm < z <
100 cm},

2. with resistivity R=1 Q- m.
e Material IV:

1. a subdomain €y defined by Qv = {(p,¢,2) : p>11.27Tcm, =50 cm < z <
0 cm},

2. with resistivity R=10000 €2- m.

15



e Material V:

1. a subdomain Qy defined by Qy = {(p,#,2) : p>11.27cm, z < =50 cm or z >
100 cm},

2. with resistivity R=100 - m.

The source electrode is excited according to formula (4.33) by the impressed surface

0,0

tJ =
curren (2V0 L

—

25cm.25 cm.
—

150 cm.
100 cm.

50 cm.

S
£
£
o
gt
o

Figure 2: Geometry of a Through Casing Resistivity Tool (TCRT) problem. The model
consists of one transmitter and three receiver electrodes, a conductive borehole (R = 0.1 Q-
m), a metallic casing (R = 0.000001 2 - m), and four layers in the formation material with
varying resistivities (from R =1 -m to R = 10000 2 - m).

Objective. The objective of the simulation is to determine the second difference of the
potential A2V between the three receiving electrodes, i.e.,
A?V = (u(ay) — u(az)) — (u(az) — u(as)) , (4.38)

where a1, as, and as are the locations of the three receiving electrodes.
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The functional A? : V — R defined by A?(u) = u(a;) — 2u(az) +wu(as) is not continuous
and we will again replace it with a post-processing formula (see Appendix B).

5 Numerical Results

In this section, we solve our two Petroleum Engineering applications of interest presented in
Section 4 using the self-adaptive hp goal-oriented algorithm (3.30).

5.1 A DC Resistivity Logging Model Problem

We first define a stopping criterion for our goal-oriented hp self-adaptive strategy. Then, we
study numerically the effect that the size of the computational domain has on the quality of
the solution. Next, a graph illustrating the exponential convergence of the hp goal-oriented
self-adaptive strategy (in terms of the problem size vs. quantity of interest I) is displayed
along with a number of amplifications of the corresponding final hp-grid. Finally, we present
the main results describing the final depth profiles of the solution for our DC application.

Stopping criteria. The objective of this simulation is to calculate the electric current I;
between two adjacent receiving electrodes. For a stopping criterion, we will demand that a
certain tolerance error TOL in the quantity of interest I; (on the decibel scale) be met. More
precisely, if IFX4CT represents the electric current corresponding to the exact solution, we
want to find I/'F such that:

1101og,o I]F — 101og,o IFP*4°T| < TOL . (5.39)

K3 (2

Equivalently, we have:

_TOL IZFE TOL
1070 < b <1070 (5.40)

By subtracting the unity from the above inequality, we obtain the following result:

FE _ JEXACT
10~k _ 1 < 1

TOL

<1075 —1. (5.41)

%
EXACT
Ii

The above condition will be satisfied if the relative error on the quantity of interest is such
that:

’[zFE _ [iEXACT‘

roL _row
| [FXACT| <max{100 —1,1—-10""1 }. (5.42)
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Table 1 shows the relation between the relative error of I in percent, and the absolute error
of I in the decibel scale.

Absolute Error (Decibel Scale) | Relative Error (in %)
107% dB 2.30%107° %
10~° dB 2.30%107* %
10~* dB 2.30% 1072 %
0.001 dB 0.02303 %

0.01 dB 0.23053 %
0.1 dB 2.32930 %
1dB 25.8925 %
10 dB 900.000 %

Table 1: Relation between absolute errors (in the decibel scale) and relative errors (in per-
cent), according to formula (5.42).

Size of source electrode and computational domain. The size of the source electrode
is dictated by the geometry of the logging tool, in our case, 10 cm.

In order to study the effect of the size of the computational domain on the quality of
the solution, Fig. 3 displays the relative error in percent of the quantity of interest I with
respect to the distance (in meters) from the receiving electrodes (located at 150 and 200 cm.
above the source electrode) to the closest boundary. By selecting this distance as 100 m, we
guarantee a relative error on I below 0.1%.

Goal-oriented adaptivity achieves exponential convergence rates. As mentioned
in previous sections, the self-adaptive hp goal-oriented strategy produces a sequence of grids
that converges exponentially in terms of the problem size (number of unknowns of the linear
system of equations) vs. the relative error in the quantity of interest (in our case, the electric
current I). In order to illustrate the importance of this theoretical result via numerical
experimentation, we consider our DC logging problem with the source electrode located at
z = —1 m, and two receiving electrodes located at z = 0 and z = 0.5 m, respectively. In
Fig. 4, we display the convergence history of |L(e)| = |Ws/2p+1 — Vayp| (blue curve), and
the more stable upper bound estimate of |L(e)| given by equation (3.26) (red curve). Notice
that with less than 15,000 unknowns, we obtain a relative error of I below 0.00001%, i.e., a
discretization error below 1076 dB.

In Figures 5, 6, and 7 we display amplifications of the corresponding final hp-grid in
the vicinity of three of the singularities of the problem. Notice the very strong singularity

18



-10'

Relative Error of | (in %)

10° 10" 10° 10°
Distance (in meters)

Figure 3: Borehole DC resistivity logging model problem. Size of computational domain (in
meters) vs. the relative error (in percent) of the quantity of interest /.

located at point (p = 0.1 m,z = 0 m) (Fig. 5), where three different materials with highly
varying conductive properties meet.

Final Logs. At this point, we describe the main result of our computations for the borehole
DC resistivity logging model problem, i.e., the electric current on the receiving electrodes as
we move the logging instrument along the vertical direction (z-axis). This result is displayed
in Fig. 8 (left), where the horizontal axis corresponds to the electric current in the decibel
scale, while the vertical axis corresponds to the vertical position (measured every 3 ¢m) of the
receiving electrode. Curves with different colors correspond to different quantities of interest:
light blue, dark blue, and black indicate the electric current between the first and second
(I12), second and third (I53), and third and fourth (I34) receiving electrodes, respectively.
In Fig. 8 (right), we display second differences of the potential, i.e. (I12 — Is3)/0 (red) and
(Is3 — I34) /0 (magenta), respectively.

5.2 Through Casing Resistivity Tool (TCRT) Problem

In order to solve numerically the TCRT problem described in Section 4.2, it is necessary to
overcome the following challenges:

1. To model materials with varying coefficients of up to ten orders of magnitude (10'°).
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Figure 4: Borehole DC resistivity logging model problem. Convergence history using goal-
oriented hp-adaptivity. Number of unknowns vs. the relative error (in percent) of the
quantity of interest I.

2. To solve the problem in a large computational domain. Due to the presence of steel
casing, a large modeling error may be introduced if we consider a domain that is not
large enough. Our numerical results indicate the need of a computational domain of
size larger than three miles in the vertical direction (if an error below 1% is desired).

3. To calculate second-order differences of the potential at the receiving electrodes. This
quantity of interest is up to nine orders of magnitude smaller than the solution itself.
In this context, energy-norm based adaptive techniques are inappropriate, and goal-
oriented adaptivity becomes essential.

In the remainder of this section, we describe our stopping criterion. We also compare
our numerical solution vs. the analytical solution presented in Section A for a formation
composed by a single homogeneous material, and we present the final log corresponding to
our TCRT problem.
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Figure 5: Final hp-grid for the borehole DC resistivity logging model problem. Progressive
amplifications by factors of 1 (1st row left), 10 (1st row right), 100 (2nd row left), 1000 (2nd
row right), 10* (3rd row left), 105 (3rd row right), 10° (bottom row left), and 10" (bottom
row right) toward a singularity located at (p = 0.1 m,z = 0 m). Different colors indicate
different polynomial orders of approximation, ranging from 1 (blue) to 8 (pink).
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Figure 6: Final hp-grid for the borehole DC resistivity logging model problem. Progressive
amplifications by factors of 1 (1st row left), 10 (1st row right), 100 (2nd row left), 1000
(2nd row right), 10* (bottom row left), and 10° (bottom row right) toward a singularity
located at (p = 0.1 m,z = —0.5 m). Different colors indicate different polynomial orders of
approximation, ranging from 1 (blue) to 8 (pink).

Stopping criteria. For our stopping criterion, we will demand that the relative error in
the quantity of interest (second difference of potential) be below 0.25%.

Agreement between numerical and analytical solutions . We compare two approx-
imate solutions for the TCRT problem:
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Figure 7: Final hp-grid for the borehole DC resistivity logging model problem. Progressive
amplifications by factors of 1 (1st row left), 10 (1st row right), 100 (2nd row left), 1000 (2nd
row right), 10* (bottom row left), and 10° (bottom row right) toward a singularity located at

(p = 0.1 m,z=1m). Different colors indicate different polynomial orders of approximation,
ranging from 1 (blue) to 8 (pink).

FEM

1. Solution u , obtained using the fully automatic goal-oriented hp-FE algorithm, and

ANALYTICAL

2. Solution u , obtained by evaluating numerically the analytical solution de-

scribed in Appendix A.

E

For the solution uf*™ we estimated the discretization error by comparing the solution of

the problem in a given hp-grid against the corresponding globally refined grid, i.e., in the
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Figure 8: DC resistivity logging model problem. Left-hand panel: Electric current (Amperes
in decibel scale) vs. position in the z-axis of the first receiving electrode (in meters). Right-
hand panel: Second difference of potential (Volts in decibel scale) vs. position in the z-
axis of the second receiving electrode (in meters). Curves with different colors describe
the measurement of electric current or second difference of potential for different receiving
electrodes.

grid h/2,p + 1. Using this reliable error estimate, we obtained a relative error in the second
difference of the potential below 0.01%.
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uANALYTICAL wwag computed numerically using a special evaluation of premultiplied

Bessel functions (using D.E. Amos’ libraries [1]), and adaptive integration based on Folin
and Simpson’s rules. Due to round-off errors, we were not able to guarantee a relative error
below 1% in most cases. Notice that 10 — 13 digits of the exact solution may be needed in
order to guarantee a relative error in the second difference of the potential below 1%.

From this discussion it follows that, paradoxically, our FE solution is more reliable than
the numerical evaluation of the analytical solution. Comparative results are displayed in
Table 2.

Casing Resistivity: 107° Q - m.

Formation Resistivity | 1Q-m. | 10 Q-m. | 100 Q2 - m.
ul'EM —73.89228 | —79.2206 | —84.4104
yANALYTICAL —73.89233 | —79.2173 | —84.5906
Casing Resistivity: 1077 Q - m.
Formation Resistivity | 1€ -m. 10 Q- m.
uF'EM —89.21715 | —94.5940
yANALYTICAL —89.24749 | —105.0936

Table 2: TCRT problem. Second difference of the potential (Volts in decibel scale) for two
solutions, one obtained using the FEM, and the other obtained with the numerical evaluation
of the analytical solution.

Final log. At this point, we present the main result of our computations for the TCRT
problem, i.e., the second difference of the potential on the receiving electrodes as we move
the logging instrument in the z direction. This result is displayed in Fig. 9 (left), where
the horizontal axis corresponds to the second difference of the potential in Volts in the
decibel scale. The vertical axis indicates the vertical position (measured every 3 ¢m) of the
second receiving electrode. If we consider a casing of resistivity 1077 € - m (as opposed to
1075 © - m), similar results are obtained, with the exception that the scales will be shifted
by approximately 16.6 dB, see Fig. 9 (right).

Finally, in Fig. 10 we display the error and number of unknowns of the associated system
of linear equations vs. position in the z-axis of the second receiving electrode. With fewer
than 9000 unknowns, we guarantee a relative error in the second difference of potential
below 0.25 %. Notice that the number of unknowns grows with respect to the position of
the receiving electrode. This is because as we moved the logging instrument (from bottom
to top) we employed the grid from the previous position as our starting point.
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is equal to 1076 Q- m (left panel) and 1077 © - m (right panel), respectively
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6 Conclusions and Future Work

In this paper, we have designed, implemented, and studied both theoretically and numerically
a family of goal-oriented self-adaptive algorithms. These algorithms produce automatically
(without any user interaction) a sequence of optimal h or hp-grids, intended to minimize the
error of a prescribed quantity of interest with respect to the problem size. Comparative nu-
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merical results illustrate the superior convergence of self-adaptive goal-oriented hp-adaptive
algorithms with respect to both goal-oriented h-adaptivity, and energy-norm based h- and
hp-adaptivity (see Appendix C).

The goal-oriented hp-adaptive algorithm combines goal-oriented adaptivity (thus, a par-
ticular feature of the solution is pursued) with hp-Finite Elements (delivering exponen-
tial convergence rates). Numerical results showed that the exponential convergence of the
method is as predicted by the theory.

We also applied the fully automatic goal-oriented hp-adaptive strategy to simulate two
Petroleum Engineering applications: a DC resistivity logging instrument in a borehole en-
vironment, and a Trough Casing Resistivity Tool (TCRT). The self-adaptive goal-oriented
hp-FE strategy allowed for extremely accurate simulations of the response of our two logging
applications of interest. Indeed, the method delivers a solution with a discretization error
that is several orders of magnitude below the sensitivity threshold of the actual receiving
electrodes.

A generalization of these algorithms to Helmholtz and Maxwell’s equations will be formu-
lated and implemented in a forthcoming paper. For electrodynamic simulations of borehole
logging instruments, the use of essential. Electromagnetic fields decay exponentially as we
move away from the source antenna(s) (and thus, energy-norm based adaptivity becomes in-
appropriate), and there is an increasing need for the use of goal-oriented adaptive algorithms
to accurately simulate the response of borehole logging instruments.
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A Analytical solutions.

For testing purposes, we derive analytical solutions to two model problems.

A.1 Radiation from a Point Source embedded in a Homogeneous
Medium.

We wish to solve the partial differential equation (in cylindrical coordinates)

10 ou 9%*u
P S TP Ad
pap(apap) 0822 5(p po)d(Z) ) ( 3)

with the decay condition
u(p,z) — 0, asp,z— 00, (A.44)

and an additional condition resulting from the axisymmetry assumption; i.e.,

ou

—(0,2)=0. A.45

~(0.2) (4.45)
The solution can be obtained using the superposition principle, by integrating the funda-

mental solution:

1 1
= d A .46
u(x) Ao /c |x — Xo > ( )

where ¢ denotes the circular source. In anticipation of the next problem, we shall use a
solution technique based on the Fourier transform and Bessel functions.

By taking the Fourier transform in z, we obtain

10 O0u

——_)— 2~ — —

—o(

where @ is the Fourier transform of u. The solution of (A.47) consists of two branches

5 ai(p) 0<p<po
i(p) =4 , (A.48)
ts(p) P> po
that are solutions of the homogeneous Ordinary Differential Equation (ODE)
1 ~/ ~ /! 2~
— (@ +pu")+kiu=0, (A.49)
p
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with the additional interface conditions:

ti1(po) = t2(po)
L (A.50)

2w poo

11/1(/)0) - 71/2(;00) =

Multiplying (A.49) by p?, and using the change of variables = p- k., we obtain the modified
Bessel equation:

2~

220"+ zt — 2?0 =0. (A.51)

The corresponding space of solutions is given by the span of any two linearly independent
solutions of (A.51). For example:

where C and (5 are constants to be determined, I, and K are the so called Bessel functions
of imaginary argument, also referred to as the modified Bessel Functions.

Consequently,
a1 (p, k) = Cilo(k.p) + CaKo(k.p) , and (A.53)

If k£, > 0 (thus k.p > 0) condition (A.45) implies Cy = 0, and condition (A.44) implies
C3 =0. If k, <0 conditions (A.45), and (A.44) imply a non-trivial combination of complex
valued constants C; ,7 = 1...4. This indicates that the choice of the two linearly indepen-
dent solutions made in (A.52) is inadequate to represent the solution when k, < 0 (in the
sense that algebraic derivations as well as computations become both rather challenging and
tedious). Furthermore, Kj is not symmetric (Ko(x) # Ko(—x)), and by using the repre-
sentation (A.53)-(A.54) we lose the symmetry properties of @(k,). Therefore, we select the
following new representation for our solution:

u(p, kz) = Cilo(|k:|p) + C2Ko(|k=p) - (A.55)
Accordingly, in terms of 4; and s, we have:

i (p, k=) = Cilo(|k=|p) + CoKo(|k=|p) , and (A.56)
ta(p, k=) = Cslo(|k=|p) + CaKo(|k=p) - (A.57)
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Now, for every k, condition (A.45) implies Cy = 0, and condition (A.44) implies C3 = 0.
Finally, condition (A.50) implies:

01]0(|kz|p0) == C4KQ(|kz|p0) s and (A58)
1 1
k. [Ch (k.| po) + CaK1 (k. = — : A.59
[C L ([k=]po) KK (|k=|po)] 27 27 o0 ( )
To derive the last equation, we have used the identities:
Io([k=1po) = [k:| 11 (|k=]po) (A.60)
1 1
; z :_sz kz 5 d~/ — = —F— . A.61
Ko([k:|po) k2| K1([k:|po) , and @\ (po) — @(po) NI, (A.61)
By solving the linear system of two equations given by (A.58), and (A.59) we obtain
1 1 Io(|k=|po)
Cy = , and A.62
" V2 dmoplk] Kol o) (o) + KR oo o]0 462
Ko(|k=]po)
C,=0C—————. A.63
I (P (A
Using the Wronskian relationship (Io(x)K;(z) + I (x)Ko(x) = 1/z), we conclude
~ K0(|kz‘p0)
U1(p, kz) = W[o(‘kz‘p) s and (A64)
_ _ Lo([k:[po)
ta(p, k) = WKO(VMP) : (A.65)

Application of the inverse Fourier transform yields the final solution, namely,

1 oo .
ul(ﬂa Z) = —/—/ al(p> kz) eXp]kz.Z dkz 0< P < pPo
u(p, z) = 127T o ' . (A.66)
us(p, 2) = V2r /_oo s (p, k2) exp”™* dk. p > po

Remark 3. By taking the limit py — 0, we can recover the solution corresponding to the
point source. Branch u; disappears, and 4y = % becomes:

U 1
Thus,
© Ko(klo) 2 e 1
= _ 2% = = — A
u(p) /_Oo ity P dk, 4%20/0 Ko(k,p) cos (k.z)dk, ol (A.68)
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where R = Nk In the last line, we have used the following two observations:
p?+z

e The absolute value is a symmetric function (and thus Ko(|k.|p) = Ko(| — k.|p)).

e For any symmetric function f(z), we have:

/Oo f(z)exp’™ dx = /OOO f(—z)exp 7™ dx + /OOO f(z)exp’™ dx = (A.69)

2 /0 T f(@)cos (z2)dz . (A.70)

Remark 4. For a source electrode of finite size, 2L, the corresponding interface condition

2sin(|k,|L
ﬁ, (A.59) becomes |k,|[C111(|k.|po) + CaEK 1 (|k2|po)] =

, and (A.68) simplifies to:

becomes @y (pg) — Uy(po) =

1 2sin(|k.|L)

V2r ALmpoo
u(p,2) = — /mSin(|kz|L)K(|k|)cos(|k 12)dk (A.71)
P2l = 9020 Jo |k.|L OUI=1P ? s ’
1

A.2 Radiation of a Point Source Through Steel Casing.

At this point, we consider a Through Casing Resistivity Tool (TCRT) problem with a single
formation material. That is, we have a source point electrode located at (p = 0,z = 0)
radiating into a region with three different conductivities: oy (for r < p;), o9 (for p; < p <
p2), and o3 (for ps < p), respectively. According to (A.55), we may consider:

a1 (p, k) = Cilo(|k.|p) + CoaKo(|k:|p) , (A.72)
to(p, k) = Cslo(|k.|p) + CaKo(|k.|p) , and (A.73)
uz(p, k.) = Cslo(|k.|p) + CeKo(|k:|p) - (A.74)

The decaying boundary condition at infinity implies Cs = 0. Accordint to eq. (A.67), the
source term at p = 0 translates into the condition:

1

“ = onpitg,

(A.75)

34



The remaining four interface conditions that are needed to determine C'i, C3, Cy, and Cy

are:

i (p1) = U2(p1) (A.76)

s (p2) = us(p2) (A.77)

o1y (p1) = oaliy(p1) , and (A.78)

02ls(p2) = o3is(p2) - (A.79)

Equations (A.76) and (A.78) imply:

Cilo([k=|p1) + Colo([k=|p1) = Cslo(|kz|p1) + Cao(|kz|p1) , and (A.80)

Cili([kz|p1) — Coli(|kz|p1) = p1[Calo([k:|p1) + Calo(|k:|p1)] (A.81)
where po1 = 03/01. By solving for C3 and Cy, we obtain:

Cy = [1 = A ([kalp) L([k=lpn)]Co + [AFo(Jhelpn) Ka([Relpn)]Ca , and (A82)

Cy = [Alp(|k:|p) L1 (k2] p1)]Cr + [1 = Alo([k2|p1) K1 (k2 |p1)]Cy (A.83)

where A = (1 — 1/p91)|k.|p1. Similarly, using equations (A.77) and (A.79), and solving for
(5 and (4, we obtain:

Cs = [BKo(|k:|p2) K1(|k=]p2)]Cs , and (A.84)
C4 = [1 - BIO(lkZIPQ)Kl(‘kzIPQ)]CG ) <A85)

where B = (1 — u32)|k.|p2, and pzs = 03/03. The system of equations (A.82), (A.83), (A.84),
and (A.85) leads to the following solution for C:

—AKo(|k2|p1) K1(|k.|p1)Co —BKo(|k|p2) K1(|k=|p2)
o (1 — ALo(|k-|p1) Ki(|k=|p1))Co 1 — Blo(|k:|p2) K1(|k:|p2) (A.86)
1 — .
‘ 1 — AKo(|kz|p1) 11 (|k-|p1) —BKo(|k|p2) K1(|k=|p2) ‘
—Alo(|k.|p1) (k=] p1) 1 — Blo(|k:|p2) K1 (]k-|p2)

Finally, by combining (A.72), (A.75), and (A.86), we obtain the explicit solution for the
potential along the borehole.

B Extraction of Point Values from a Finite Element
(FE) Solution.

Quantities of interest (q.o0..) (4.37) and (4.38) represented in terms of point values are
not continuous functionals in the energy space. Consequently, convergence in energy does
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not imply convergence of point values. Additionally, since the q.0.i. functionals represent
the load of the dual problem, the solution of the dual problem has infinite energy and
the convergence analysis cannot be performed in the energy-norm. Because our hp-adaptive
algorithm is based on minimizing interpolation errors measured in the energy-norm, solutions
to both primal and dual problems should exhibit finite energy.

One way to avoid the problem with the q.0.i defined in terms of point values, is to modify
the g.0.i. This can be achieved by considering finite-size antennas. After all, the induced
current is measured with finite-size antennas. An alternative solution that avoids determining
the (finite) size of the antennas consists of using a mathematical post-processing.

The idea of mathematical post-processing is to replace the original q.0.i. with a contin-
uwous functional coinciding with the original one for a class of functions that includes the
solution of our problem. The new functional can then be evaluated for the FE solution.
Because the FE solution converges to the exact one in the energy-norm, the post-processed
value will converge to the exact value with the same convergence rates. Intuitively, fast
convergence in energy is translated into fast convergence of q.o0.i.

The extraction (post-processing) formulas proposed by Babuska and Miller [3, 4], con-
structed for elliptic problems with piecewise constant material data, perfectly suit our goals.

Let S, = S.(x) be a ball of radius € centered at x. Let €, be a subdomain of Q with
constant materials coefficients, and such that S, C €),. Using Green’s first identity, we

obtain:

/ Vuve dV — — / Aug dV + / 5 ds + —g ds . (B.87)

;C_Se Q(L'_SG 8Qx
where n is the unit normal outward vector. By interchanging u and £ in the last equation,
we obtain:
0 0
/ VEVU dV = — / acudv+ [ Luasy [ Luas. (B.88)
Q— 5. Q. —Se 9Se an " 00 an "

By subtracting (B.88) from (B.87), we derive Green’s second identity, namely,

ou 0& ou o0&

0= [ Atu-Augav Me_ Byds De_ Sds B.89

+—5Se Su uk dV+ as. On on" i 09, On an" ( )

Next, we select & = £p+&p, where Ep is the fundamental solution of problem Au = §(x) on

Q,, and & is a smooth cut-off function such that &y|sq, = —E&r|aq,, and —— 850 |an = a;F laq, -
Using the definition of &, yields:

ou 05
—&dS = udS=0. B.90
/BQE 8n§ 09 on " ( )
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Also, since & is smooth and & is the fundamental solution of the Laplace operator in R,
we obtain (using spherical coordinates)

ou B ou, 1 9 . e—0
/ase & 45 = | o+ &) sin(0) dod =20, (B.91)
%u dsS = ue’sin(6) dode
as. On os. 4me? (B.92)
8&) 2 . e—0 . '
+/8$e a—nue sin(0) dfdp — u(x) + 0 = u(x) .

Since u is the FE solution of equation (2.7) with V -J = 0, we have that Au|qg, ~ 0. Also,
Aépla,-s. = 0. Then, we obtain

/ AfudV = / Abou dV =8 / Abou dV | (B.93)
Qr—Se Qp—Se Qg

/ Aug dV = 0. (B.94)
Qz—Se

By substituting (B.90), (B.91), (B.92), (B.93), and (B.94), into (B.89) we conclude that

u(x) = / Aéu dV = 27r/ A&ou p dpdz . (B.95)
Qy Qg
This post-processing formula is only valid for functions u such that Au = 0 in €2,.
It still remains necessary to construct a smooth function &, such that &ylaq, = —&r|sq,
0 0
and 8—50 0, = —ﬁ o0,- This function &, is not unique. Several techniques can be used
n n

to construct it. For example, we can use transfinite interpolation with Hermite blending
functions [22]. To illustrate this, we show the construction of &y for a 2D unit square domain
Q, =1[0,1]%

Hermite Interpolation. We define the following Hermite Interpolation polynomials de-
fined in the unit interval s € [0, 1]:

hi =hy(s) =2s>—3s*+1,
hi = ho(s) = s —2s* + s,
(B.96)
h§ = ha(s) = —2s% + 3s? | and
hi = hy(s) = s* — s*
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These cubic polynomials exhibit the following properties:

Let p1, p2, p3, and pyg be the four corner points of the 2D unit square.

construct the following bi-cubic polynomials:

ul(z,) = Er(Pa)HHY + S (py)ght + a; (pu)hih + 55 (Pr)h3hS .
2 T y éF T y 85}7 1Y aQé-F 1Y
Ub<.’ll'7y) 6F(p2>h’ h’ am ( )h h’ ay ( 2)h‘3h‘2 + axay(pz)hélhﬂ )
wi(z,y) = ()l + 2F (pa)hiht + O5F (pyyhrht + T5F (p ey
oA ox oy 374 Oxdy 4t
u(,y) = Er(pahihl + 2 (oot + OF (pnrnt + C5F (b ey
b 9 8{[‘ ay 174 axay 2144

w(z,y) = up(2,y) +ui(z,y) +ui(z,y) + up(z,y) -

Now, let eq, es, e3, and e4 be the four edges of the 2D unit square. We define:

W) = (6 — et + (G — S0t
W(w.9) = (6 — wleahs + (55 — S |eh
) = (€ = wlet + (55 = S0l
ul(e,) = (6 — w)leah + (8 — 2| s
ue(z,y) = up(z,y) + ul(z, y) + ul(z, y) + ui(z,y) .

Finally, &(z,y) = —(up(z,y) + ue(x,y)) has the following properties:

o0 — a

Soloa = —Erloa I ——|aq

and &(x,y) is smooth (&, € C*(Q)).
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C Comparative results

In this appendix, we describe a comparative study based on numerical experimentation of
different adaptive strategies for the case when a particular feature of the solution is pursued.
More precisely, we are interested in minimizing the error of the FE solution evaluated at
a specific point. Typically, special averaging functions (called mollifiers) are used to define
a continuous linear functional L € V' utilized as the quantity of interest (see [16]) to be
minimized. Also, special post-processing techniques may be used, as the one presented in
Section B. In this appendix, for simplicity, we define the following quantity of interest:

L(e) @ /Q e()dz | (C.101)

where 2; is a small subdomain containing the target point x; where an approximation of the
solution is desired.

Two elliptic problems are used to perform this numerical study: an L-shape domain
problem, and an orthotropic heat conduction problem in a thermal battery. For each model
problem, we describe the geometry, governing equations, material coefficients, and boundary
conditions. We also display the exact or approximate solution, and we briefly explain the
relevance of each problem in this research. Then, based on these two problems, we describe
results obtained by comparing different adaptive strategies.

C.1 L-Shape Domain Problem

We want to solve Laplace equation (—Awu = 0) with essential (Dirichlet) BC (possibly, non-
homogeneous) corresponding to the exact solution u = r?/3sin(20/3 + 7/3), expressed in
terms of cylindrical coordinates. The geometry ([—1,0] x [0, 1]+10, 1] x [0, 1]+ [0, 1] x [-1,0])
of the computational domain along with the exact solution are displayed in Fig. 11.

This problem has a reentrant corner located at the origin, thereby producing a singu-
larity on the solution. We are interested in the FE solution at the proximity of the point
(—1/2,1/2). We select the functional L given by (C.101) with ; = [-0.5625, —0.4375] x
[0.4375,0.5625] as our quantity of interest.

Fig. 12 displays the convergence history for both the pointwise error and the quantity of
interest error, yielded by different self-adaptive algorithms. Fig. 13 describes the convergence
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R

Figure 11: Exact solution of the L-shape domain problem

history of the upper bound U of | £ |, given by

h-goal: U =" |u—uy |7k
K
hp-goal 1 (3.29): U = Z| | (u+w) — Hth(u + w) |fK
K
— | (u—w) =T}, (u —w) [§ ¢ |

hp-goal 2 (3.30): U= |u—Ipu k- |w—Tw|ix .
K

(C.102)

Final hp-grids for different self-adaptive algorithms are shown in Figures 14, and 15.

C.2 Orthotropic Heat Conduction Battery

We present now a benchmark problem proposed by Sandia®, in which we solve the heat
equation in a thermal battery with large and orthotropic jumps in the material coefficients
(up to six orders of magnitude). The Geometry ([0,8.4] x [0,24]) of the computational
domain along with an approximation of the unknown exact solution are displayed in Fig.
16.

This problem is governed by the heat conduction equation V(KVu) = f (k) where K is
given by:

K® 0
0 KW®

Y

K=K® = l (C.103)

3Sandia National Laboratories, USA
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Figure 12: L-shape domain problem. Pointwise convergence (left panel) and convergence
of quantity of interest | L(e) | (right panel) obtained using different automatic refinement
strategies. 'hp-goal 1’ and "hp-goal 2’ correspond to hp-algorithms (3.29) and (3.30) respec-

tively.
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Figure 13: L-shape domain problem. Convergence history of the upper bound U of | E |
corresponding to different goal-oriented algorithms.

For each material k, we define:

0, k=1 25,
1, k=2 7,

fB =01 k=3 KWM=< 5
0, k=4 0.2
0, k=5 0.05,

W‘W‘W‘WW‘
U = W N =

k) _
K?S)_

25, k=1

0.8, k=2

0.0001, k=3 (C.104)
0.2, k=4

0.05, k=5
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Figure 14: L-shape domain problem. Final h-grids containing 5177 (left panel) and 6691
(right panel) unknowns (degrees of freedom) obtained with the fully automatic energy norm

based (left panel) and goal-oriented based (right panel) h-adaptive algorithms.
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colors indicate different polynomial orders of approximation,

Figure 15: L-shape domain problem. Final hp-grids containing 7392
(pink).

(right panel) unknowns

(C.105)

Y
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— g — oW
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Figure 16: Geometry (left panel) and FE solution (right panel) of the orthotropic heat
conduction problem in a thermal battery.

where
0, i=1 0, i=1
: 1, 1=2 3, 1=2
(7)) _ ) (i) _ )
o' = 9 -3 g 2 i3 (C.106)

? Y

This problem exhibits several singularities of different strength. We are interested in the
FE solution in the proximity of point (8.2,0.4), located at the southeast part of the domain.
More precisely, we select the functional L given by (C.101) with €; = [8.0,8.4] x [0.0,0.8] as
the quantity of interest.

Fig. 17 shows the convergence history of the pointwise error and the quantity of interest
error for different self-adaptive algorithms. Fig. 18 shows the convergence history of the
upper bound U of | E |, given by (C.102).

Final hp-grids (and their amplifications) for different self-adaptive algorithms are dis-
played in Figures 19, 20, 21, and 22.

C.3 Conclusions from This Appendix:

From the comparative numerical study described above, we conclude the following;:

e When a particular feature of the solution is desired, goal-oriented adaptivity delivers
significantly better results than energy-norm based adaptivity. In addition, as the ratio
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Figure 17: Orthotropic heat conduction problem. Pointwise convergence (left panel) and

convergence of quantity of interest | L(e) | (right panel) obtained using different automatic

refinement strategies. hp-goal 1 and hp-goal 2 correspond to hp-algorithms (3.29) and (3.30),
respectively.
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Figure 18: Orthotropic heat conduction problem. Convergence history of the upper bound
U of | E | corresponding to different goal-oriented algorithms.

between the value of the quantity of interest and the energy of the solution increases,
the more essential becomes the use of goal-oriented algorithms.
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Figure 19: Orthotropic heat conduction problem. Final hp-grids containing 7353 (left panel)
and 6605 (right panel) unknowns (degrees of freedom) obtained with the fully automatic
energy-norm based (left panel) and goal-oriented based (right panel) hp-adaptive algorithms.
Different colors indicate different polynomial orders of approximation, ranging from 1 (blue)
to 8 (pink).

e Since convergence of hp-adaptive methods is exponential (as opposed to algebraic con-
vergence of h-adaptive methods), results obtained with hp-adaptive algorithms are
considerably more accurate than results obtained with h-adaptive algorithms.

e The two goal-oriented hp-adaptive algorithms considered in this paper (3.29), and
(3.30) provide similar results.
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Figure 20: Orthotropic heat conduction problem. Progressive amplifications toward a sin-
gularity located at point (18.8,6.1) by factors of 1, 10, 100, and 10000 (from top to bottom)
of the final h-grids obtained with the fully automatic energy norm based (left panel) and
goal-oriented based (right panel) h-adaptive algorithms.
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Figure 21: Orthotropic heat conduction problem. Progressive amplifications toward a sin-
gularity located at point (18.8,6.1) by factors of 1 (top), 10 (middle), and 100 (bottom)
of the final hp-grids obtained with the fully automatic energy norm based (left panel) and
goal-oriented based (right panel) hp-adaptive algorithms. Different colors indicate different
polynomial orders of approximation, ranging from 1 (blue) to 8 (pink).
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Figure 22: Orthotropic heat conduction problem. Progressive amplifications toward a sin-
gularity located at point (18.8,6.1) by factors of 1000 (top), 10000 (middle), and 100000
(bottom) of the final hp-grids obtained with the fully automatic energy norm based (left
panel) and goal-oriented based (right panel) hp-adaptive algorithms. Different colors indi-
cate different polynomial orders of approximation, ranging from 1 (blue) to 8 (pink).
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