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GALERKIN FINITE ELEMENT APPROXIMATIONS OF
STOCHASTIC ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

IVO BABUŠKA†, RAÚL TEMPONE§ AND GEORGIOS E. ZOURARIS‡

Abstract. We describe and analyze two numerical methods for a linear elliptic problem with
stochastic coefficients and homogeneous Dirichlet boundary conditions. Here the aim of the com-

putations is to approximate statistical moments of the solution, and in particular we illustrate
on the case of the computation of the expected value of the solution. Since the approximation
of the stochastic coefficients from the elliptic problem is in general not exact, we derive related

a priori error estimates. The first method generates iid approximations of the solution by sam-
pling the coefficients of the equation and using a standard Galerkin finite elements variational
formulation. The Monte Carlo method then uses these approximations to compute correspond-
ing sample averages. The second method is based on a finite dimensional approximation of the
stochastic coefficients, turning the original stochastic problem into a deterministic parametric

elliptic problem. A Galerkin finite element method, of either h or p version, then approximates
the corresponding deterministic solution yielding approximations of the desired statistics. We
include a comparison of the computational work required by each method to achieve a given ac-

curacy. This comparison suggests intuitive conditions for an optimal selection of these methods.
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1. Introduction

The use of computational models has increasingly affected the historical development of engi-
neering products, based on first testing prototypes and then building a final version. Computational
models aim to reduce the cost of the experimental tests as well as to discard faulty designs before
they are built.

Due to the great development in computational resources and scientific computing techniques,
more mathematical models can be solved efficiently. Ideally, this artillery could be used to solve
many classical partial differential equations, the mathematical models we shall focus on here, to
high accuracy. However, in many cases, the information available to solve a given problem is far
from complete and is in general very limited. This is the case when solving a partial differential
equation whose coefficients depend on material properties that are known to some accuracy. The
same may occur with its boundary conditions, and even with the geometry of its domain, see for
example the works [6, 7]. Naturally, since the current engineering trends are toward more reliance
on computational predictions, the need for assessing the level of accuracy in the results grows ac-
cordingly. More than ever, the goal then becomes to represent and propagate the uncertainties from
the available data to the desired result through our partial differential equation. By uncertainty
we mean either intrinsic variability of physical quantities or simply lack of knowledge about some
physical behavior, cf. [47]. If variability is interpreted as randomness then naturally we can apply
probability theory. To be fruitful, probability theory requires considerable empirical information
about the random quantities in question, generally in the form of probability distributions or their
statistical moments. On the other hand, if the only available information comes in the form of
some bounds for the uncertain variables, the description and analysis of uncertainty may be based
on other methods, like e.g. convexity methods cf. [10, 20]. This approach is closely related to the
so called “worst case scenario”. Uncertainties may arise at different levels. They could appear in
the mathematical model, e.g. if we are not sure about the linear behavior of some material, or in
the variables that describe the model, e.g. if the linear coefficient that describes the material is
not completely known -observe that this knowledge may depend on a representative scale of the
model-.

Here we shall discuss the second alternative, and use a probabilistic description for the coeffi-
cient variability, leading us to the study of stochastic differential equations. Although the results
presented on this paper can be generalized to linear elliptic stochastic partial differential equations
we now focus our study on the standard model problem, a second order linear elliptic equation
with homogeneous Dirichlet boundary conditions.

Let D be a convex bounded polygonal domain in Rd and (Ω,F , P ) be a complete probability
space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1]
is a probability measure. Consider the stochastic linear elliptic boundary value problem: find a
stochastic function, u : Ω×D → R, such that P -almost everywhere in Ω, or in other words almost
surely (a.s.), we have

(1.1)
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) on D,

u(ω, ·) = 0, on ∂D.
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Here a, f : Ω×D → R are stochastic functions. If we denote by B(D) the Borel σ-algebra generated
by the open subsets of D, then a, f are assumed measurable with the σ-algebras (F ⊗B(D)) and
B(R). Here we work with the natural σ-algebra F = σ(a, f), which is the smallest one that makes
both a and f measurable functions. On what follows we shall assume that a is bounded and
uniformly coercive, i.e.

(1.2) ∃ amin, amax ∈ (0,+∞) : P
(
ω ∈ Ω : a(ω, x) ∈ [amin, amax], ∀x ∈ D

)
= 1

To ensure regularity of the solution u we assume also that a has a uniformly bounded and continuous
first derivative, i.e. there exists a real deterministic constant C such that

(1.3) P
(
ω ∈ Ω : a(ω, ·) ∈ C1(D) and max

D

|∇xa(ω, ·)| < C
)

= 1.

In addition, the right hand side in (1.1) satisfies

(1.4)
∫

Ω

∫
D

f2(ω, x)dx dP (ω) < +∞ which implies
∫
D

f2(ω, x)dx < +∞ a.s.

Stochastic differential equations driven by the Wiener process have been widely applied in
Mathematical Finance, see [33, 35, 43]. On the other hand, stochastic partial differential equations
have been more popular to model physical phenomena, e.g. random vibrations, seismic activity,
oil reservoir management, composite materials, etc, see [4, 19, 21, 25, 31, 32, 34, 48, 52] and
the references therein. Solving a stochastic partial differential equation entails finding the joint
probability distribution of the solution, which is a hard problem. In practice we shall usually be
satisfied with much less, namely the computation of some moments, e.g. the expected value of the
solution, or some probability related to a given event, e.g. the probability of some eventual failure,
cf. [30, 39].

Whenever we approximate a given stochastic partial differential equation, a corresponding dis-
cretization error exists. The data uncertainties, the discretization error and the error from solving
the discretized equations inaccurately add to the uncertainty in the result. Thus, it seems of little
use to make one of them small when the others are relatively large, e.g. to solve the equations
with high accuracy if the data is largely inaccurate. Moreover, quantifying the uncertainty in
computer based simulations is also important for the eventual validation of the results. Without
such quantification, validation becomes arbitrary, cf. [2, 42, 45, 47].

Depending on the structure of the noise that drives an elliptic partial stochastic differential
equation, there are different numerical approximations. For example, when the size of the noise
is relatively small, a Neumann expansion around the mean value of the equation’s operator is
a popular alternative. It requires only the solution of standard deterministic partial differential
equations, the number of them being equal to the number of terms in the expansion. Equivalently,
a Taylor expansion of the solution around its mean value with respect to the noise yields the same
result. Similarly, the work [34] uses formal Taylor expansions up to second order of the solution
but does not study their convergence properties. Recently, the work [5] proposed a perturbation
method with successive approximations. It also proves that uniform coercivity of the diffusion is
sufficient for the convergence of the perturbation method.

When only the load is stochastic, it is also possible to derive deterministic equations for the
statistical moments of the solution. This case was analyzed in [3, 37] and more recently in the
work [49], where a new method to solve these equations with optimal complexity is presented.

On the other hand, the work by Babuška et al. [16, 17] and by Ghanem and Spanos [25]
address the general case where all the coefficients are stochastic. Both approaches transform the
original stochastic problem into a deterministic one with higher dimensions, and they differ in the
choice of the approximating functional spaces. The work [16] uses finite elements to approximate
the noise dependence of the solution, while [23, 25] uses a formal expansion in terms of Hermite
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polynomials. The approximation error from these numerical methods can be then bounded in
terms of deterministic quantitites.

Monte Carlo methods are both general and simple to code and they are naturally suited for
parallelization. They generate a set of independent identically distributed (iid) approximations
of the solution by sampling the coefficients of the equation, using a spatial discretization of the
partial differential equation, e.g. by a Galerkin Finite Elements formulation. Then, using these
approximations we can compute corresponding sample averages of the desired statistics. Monte
Carlo methods have a rate of convergence that may be considered slow, but its computational work
grows only like a polynomial with respect to the number of random variables present in the problem.
It is worth mentioning that in particular cases their convergence can be accelerated by variance
reduction techniques [33]. The convergence rate of the Monte Carlo method is interpreted in
probability sense and a practical estimate of its error needs an a posteriori estimate of the variance
of the sampled random variable, which in turns requires an a priori bound on higher statistical
moments, cf. the Berry Esseen Theorem in [18]. Besides this, if the probability density of a random
variable is smooth, the convergence rate of the Monte Carlo method for the approximation of its
expected value can be improved, cf. [41, 55]. Quasi Monte Carlo methods, see [14, 50, 51], offer
a way to get a better convergence rate than the one of the Monte Carlo method, although this
advantage seems to deteriorate in general when the number of the number of random variables
present in the problem becomes large.

Another way to provide a notion of stochastic partial differential equations is based on the
Wick product and the Wiener chaos expansion, see [31] and [56]. This approach yields solutions in
Kondratiev spaces of stochastic distributions and are based on a different interpretation of (1.1);
the solutions proposed in [31] and [56] are not the same as those arising from (2.3). The choice
between (2.3) and [31] is a modeling decision, based on the physical situation under study. For
example, with the Wick product we have E[a�u] = E[a]E[u] regardless on the correlation between
a and f , whereas this is in general not true with the usual product. A numerical approximation
for Wick stochastic linear elliptic partial differential equations is studied in [54], yielding a priori
convergence rates.

This work studies the case of stochastic linear elliptic partial differential equations with ran-
dom diffusion and load coefficients stating and proving conditions for existence and uniqueness
of solutions. For example, to obtain a meaningful numerical solution for (1.1) its diffusion coeffi-
cient should be uniformly coercive. This work compares a Monte Carlo Galerkin method with the
Stochastic Galerkin Finite Element method introduced in [16] and introduces a related p-version,
providing theoretical a priori convergence analysis in each case. A priori estimates are useful to
characterize the convergence, and ultimately they provide information to compare the number of
operations required by numerical methods. The conclusion for now is that if the noise is described
by a small number of random parameters or if the accuracy requirement is sufficiently strict, then
a Stochastic Galerkin method is to be preferred, otherwise a Monte Carlo Galerkin method seems
still to be the best choice. It is worth mentioning that the development of numerical methods
for stochastic differential equations is still very much ongoing, and better numerical methods are
expected to appear.

The rest of the paper is organized as follows.
Section 2 introduces the basic notation and proves the existence and uniqueness for solutions,

as well as perturbation estimates in energy norm with respect to perturbations in the stochastic
coefficients of the equation, i.e. modeling error estimates. The approximation of the coefficients in
(1.1) is done by means of the Karhunen-Loève expansion, see [38]. We assume that a finite number
of terms of such an expansion have been identified by a statistical procedure, see [40, 57, 58], and
base the numerical approximations on such information. Once the coefficient approximation step
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is done, the stochastic problem is transformed into a parametric elliptic problem and it is natural
to apply finite element techniques to construct related numerical methods.

Section 3 defines some deterministic finite element subspaces and gives their approximation
properties. Tensor product of deterministic finite element subspaces are used to construct the
Stochastic Galerkin finite element approximation.

Sections 5 and 6 present two versions of Galerkin finite element approximations for the sto-
chastic partial differential equation under study. These versions differ only in the choice of the
approximation subspaces, namely in the direction of the parameter related with the noise represen-
tation. Section 5 uses polynomial approximation with fixed degree, while Section 6 uses polynomial
approximation with increasingly higher degree, proving the standard exponential convergence with
respect to degree p, cf. [27]. Beside this, precise implementation details are included in Section 7
to ensure minimal computational cost in both cases.

On the other hand, the Monte Carlo Galerkin finite element approximation is based on first
sampling the coefficients in the stochastic partial differential equation and then approximating
the corresponding realization of the solution. Section 4 studies convergence of the Monte Carlo
Galerkin finite element method for the approximation of the expected value of the solution.

To characterize the convergence of the numerical approximations, a priori error estimates are
developed for each of the methods described in this work. Using this information, Section 8
compares the asymptotical computational work required by each of the approximations, giving
some intuition on their possible application.

2. Theoretical Aspects of the Continuous Problem

2.1. Notation and function spaces. Let m ∈ N, D be an open, connected and convex subset
of Rm with polygonal boundary ∂D. Denote the volume of D by |D| ≡

∫
D

1dx. For s ∈ N and
1 ≤ p ≤ +∞, let W s,q(D) be the Sobolev space of functions having generalized derivatives up
to order s in the space Lq(D). Using the standard multi-index notation, α = (α1, . . . , αd) is a
d−tuple of non-negative integers and the length of α is given by |α| =

∑d
i=1 αi. The Sobolev norm

of v ∈W s,q(D) will be denoted by

‖v‖W s,q(D) =
{ ∑
|α|≤s

∫
D

|∂αv|q dx

}1/q

, 1 ≤ q < +∞,

and
‖v‖W s,∞(D) = max

|α|≤s

(
ess sup

D
|∂αv|

)
.

We shall write Hs(D)≡W s,2(D) and omit the index 2 from the symbol of its norm, i.e., ‖·‖Hs(D) =
‖ · ‖W s,2(D). As usual, the function space H1

0 (D) is the subspace of H1(D) consisting of functions
which vanish at the boundary of D in the sense of trace, equipped with the norm ‖v‖H1

0 (D) ={∫
D
|∇v|2 dx

}1/2. Whenever s = 0 we shall keep the notation with Lq(D) instead of W 0,q(D). For
the sake of generality, sometimes we shall let H be a Hilbert space with inner product (·, ·)

H
. In

that case we shall also denote the dual space of H, H ′, that contains linear bounded functionals,
L : H → R, and is endowed with the operator norm ‖L‖H′ = sup0 6=v∈H

L(v)
‖v‖H

.

Since stochastic functions have intrinsically different structure with respect to ω and with respect
to x, the analysis of numerical approximations requires tensor spaces. Let H1,H2 be Hilbert
spaces. The tensor space H1⊗H2 is the completion of formal sums u(y, x) =

∑
i=1,...,n vi(y)wi(x),

{vi} ⊂ H1, {wi} ⊂ H2, with respect to the inner product (u, û)H1⊗H2 =
∑
i,j(vi, v̂j)H1(wi, ŵj)H2 .

For example, let us consider two domains, y ∈ Γ, x ∈ D and the tensor space L2(Γ)⊗H1(D), with
5



tensor inner product

(u, û)L2(Γ)⊗H1(D) =
∫

Γ

(∫
D

u(y, x)û(y, x)dx
)
dy +

∫
Γ

(∫
D

∇xu(y, x) · ∇xû(y, x)dx
)
dy.

Thus, if u ∈ L2(Γ) ⊗ Hk(D) then u(y, ·) ∈ Hk(D) a.e. on Γ and u(·, x) ∈ L2(Γ) a.e. on D.
Moreover, we have the isomorphism L2(Γ) ⊗ Hk(D) ' L2(Γ;Hk(D)) ' Hk(D;L2(Γ)) with the
definitions

L2(Γ;Hk(D)) =
{
v : Γ×D → R | v is strongly measurable and

∫
Γ

‖v(y, ·)‖2Hk(D) < +∞
}
,

Hk(D;L2(Γ)) =
{
v : Γ×D → R | v is strongly measurable, ∀|α| ≤ k ∃ ∂αv ∈ L2(Γ)⊗ L2(D) and∫

Γ

∫
D

∂αv(y, x)ϕ(y, x)dxdy = (−1)|α|
∫

Γ

∫
D

v(y, x)∂αϕ(y, x)dxdy, ∀ϕ ∈ C∞0 (Γ×D)
}
.

Similar constructions can be done for tensor product of Banach spaces, although the norm for the
tensor space used to obtain the completion of the formal sums has to be defined explicitly on each
case. Here the Banach space C(Γ;H) comprises all continuous functions u : Γ → H with the norm
‖u‖C(Γ;H) ≡ supy∈Γ ‖u(y)‖H . Similar definitions apply to the spaces Ck(Γ;H), k = 1, . . ., cf. [22]
p. 285.

Let Y be an RN -valued random variable in (Ω,F , P ). If Y ∈ L1
P (Ω) we denote its expected

value by

E[Y ] =
∫

Ω

Y (ω)dP (ω) =
∫

RN

y dµY (y).

where µY is the distribution measure for Y , defined for the Borel sets b̃ ∈ B(RN), by µY (b̃) ≡
P (Y −1(b̃)). If µY is absolutely continuous with respect to the Lebesgue measure then there exists
a density function ρY : R → [0,+∞), such that

E[Y ] =
∫

RN

y ρY (y)dy.

Analogously, whenever Yi ∈ L2
P (Ω) for i = 1, . . . , d the covariance matrix of Y , Cov[Y ] ∈ Rd×d,

is defined by Cov[Y ](i, j) = Cov(Yi, Yj) = E[(Yi − E[Yi])(Yj − E[Yj ])], i, j = 1, . . . , d. Besides
this, whenever u(ω, x) is a stochastic process the positive semi definite function Cov[u](x1, x2) =
Cov[u(x1), u(x2)] = Cov[u(x2), u(x1)] is the covariance function of the stochastic process u.

To introduce the notion of stochastic Sobolev spaces we first recall the definition of stochastic
weak derivatives. Let v ∈ L2

P (Ω)⊗ L2(D), then the α stochastic weak derivative of v, w = ∂αv ∈
L2
P (Ω)⊗ L2(D), satisfies∫

D

v(ω, x)∂αφ(x)dx = (−1)|α|
∫
D

w(ω, x)φ(x)dx, ∀φ ∈ C∞0 (D), a.s.

We shall work with stochastic Sobolev spaces W̃ s,q(D) = LqP (Ω,W s,q(D)) containing stochastic
functions, v : Ω ×D → R, that are measurable with respect to the product σ-algebra F ⊗ B(D)
and equipped with the averaged norms

‖v‖
W̃ s,q(D)

= E[‖v‖qW s,q(D)]
1/q = E[

∑
|α|≤s

∫
D

|∂αv|qdx]1/q, 1 ≤ q < +∞

and
‖v‖

W̃ s,∞(D)
= max
|α|≤s

(
ess sup

Ω×D
|∂αv|

)
.
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Observe that if v ∈ W̃ s,q(D) then v(ω, ·) ∈W s,q(D) a.s. and ∂αv(·, x) ∈ LqP (Ω) a.e. on D for |α| ≤
s. Whenever q = 2, the above space is a Hilbert space, i.e. W̃ s,2(D) = H̃s(D) ' L2

P (Ω)⊗Hs(D).

2.2. Existence and uniqueness for the solution of a linear stochastic elliptic problem.
In this section, we discuss some issues related to the formulation of the elliptic boundary value
problem (1.1) and its solution. We also develop perturbation estimates corresponding to a change
in the coefficients of (1.1). These perturbation estimates are both useful to analyze modeling errors
and to develop discretization error estimates. Let us consider the tensor product Hilbert space
H = H̃1

0 (D) ' L2
P (Ω;H1

0 (D)) endowed with the inner product (v, u)H ≡ E[
∫
D
∇v · ∇udx]. Define

the bilinear form, B : H × H → R, by B(v, w) ≡ E[
∫
D
a∇v · ∇wdx], ∀v, w ∈ H. The standard

assumption (1.2) yields both the continuity and the coercivity of B, i.e.

(2.1) |B(v, w)| ≤ amax ‖v‖H ‖w‖H , ∀v, w ∈ H,

and

(2.2) amin ‖v‖2H ≤ B(v, v), ∀v ∈ H.

A direct application of the Lax-Milgram Lemma, cf. [13], implies the existence and uniqueness for
the solution to the variational formulation: find u ∈ H such that

(2.3) B(u, v) = L(v), ∀v ∈ H.

Here L(v) ≡ E[
∫
D
fvdx],∀v ∈ H defines a bounded linear functional since the random field f

satisfies (1.4). Since the domain D is convex and bounded and assumptions (1.2), (1.3) on the
diffusion a hold, the theory of elliptic regularity, cf. [1, 22], implies that the solution of (1.1)
satisfies u(ω, ·) ∈ H2(D) ∩H1

0 (D) a.s. Moreover, standard arguments from measure theory show
that the solution to (2.3) also solves (1.1). The formulation (2.3) together with assumption (2.10)
on finite dimensional noise give the basis for the Stochastic Galerkin Finite element (SGFEM)
method introduced in Sections 5 and 6, while formulation (1.1) is the basis for the Monte Carlo
Galerkin Finite element (MCGFEM) method, discussed in Section 4.

2.3. Continuity with respect to the coefficients a and f . Usually in practical problems the
information about the stochastic processes a and f is only limited. For example, we may only
have approximations for their expectations and covariance functions to use in the implementation
of a numerical method for (1.1). Moreover, due to some efficiency considerations, sometimes it
may be even useful to use an approximation of a and f . Therefore, an additional approximation
error, of modeling type, appears in the computations together with the usual discretization error.
For implementation details, see [57, 58, 24, 32, 8]. In the next proposition we consider a weak
formulation with perturbed bilinear form and functional, and estimate the size of the corresponding
perturbation in the solution with the energy norm.

Proposition 2.1. Let (H, (·, ·)H) be a Hilbert space. Consider two symmetric bilinear forms B, B̂ :
H × H → R that are H−coercive and bounded, i.e. there exist real constants 0 < amin ≤ amax
such that

(2.4) amin ‖v‖2H ≤ min
{
B(v, v), B̂(v, v)

}
, ∀v ∈ H,

and

(2.5) max
{
|B(v, w)|, |B̂(v, w)|

}
≤ amax ‖v‖H ‖w‖H , ∀v, w ∈ H.

We assume that the above bilinear forms are comparable, i.e. there exist a constant γ such that

(2.6) |(B − B̂)(v, w)| ≤ γ ‖v‖H ‖w‖H , ∀v, w ∈ H.
7



Consider two bounded linear functionals, L, L̂ ∈ H ′ and let u, û ∈ H be the solutions of the problems
B(u, v) = L(v), ∀v ∈ H,

B̂(û, v) = L̂(v), ∀v ∈ H.
Then there holds

(2.7) ‖u− û‖H ≤ 1
amin

(‖L − L̂‖H′ +
γ

amin
‖L̂‖H′)

Proof. Since by Lax-Milgram’s lemma u and û are well defined we can consider their difference
e ≡ u− û. Then

B(e, e) = B(e, u)− B(e, û)

= L(e)− B(e, û)

= L(e) + (B̂ − B)(e, û)− B̂(e, û)

= (L − L̂)(e) + (B̂ − B)(e, û)

≤ (‖L − L̂‖H′ + γ‖û‖H)‖e‖H .

Since we have ‖û‖H ≤ 1
amin

‖L̂‖H′ and ‖e‖2H ≤ 1
amin

B(e, e) (2.7) follows.
Remark 2.1. The proof of the previous lemma gives

‖u− û‖2H ≤ 1
amin

(‖L − L̂‖H′‖u− û‖H + |(B̂ − B)(u− û, û)|).

If in addition we know that there exist Banach spaces, V1, V2, and positive constants, C, γ′ such
that
‖ · ‖V1 ≤ C‖ · ‖H and

(2.8) |(B̂ − B)(u, v)| ≤ γ′‖u‖V1‖v‖V2 , ∀u ∈ V1, v ∈ V2

then

(2.9) ‖u− û‖H ≤ 1
amin

(‖L − L̂‖H′ + Cγ′‖u‖V2).

We shall see that there are cases where it is not possible to apply (2.7) but (2.9) is still valid. Next
we consider a sequence of problems like (2.3) with approximate coefficients. A direct application
of Proposition 2.1 yields the following convergence result.
Corollary 2.1 (Convergence result). Consider the Hilbert space H = H̃1

0 (D), two convergent
sequences of stochastic processes, {an}, {fn}, satisfying

0 < amin ≤ an ≤ amax <∞, (P ⊗ dx) a.e. on D × Ω, ‖an − a‖L̃∞(D) → 0

and
‖fn − f‖L̃2(D) → 0.

Then the stochastic processes u and un, defined by

E[
∫
D

an∇un · ∇vdx] = E[
∫
D

fnvdx], ∀v ∈ H

E[
∫
D

a∇u · ∇vdx] = E[
∫
D

fvdx], ∀v ∈ H,

satisfy
‖u− un‖H̃1

0 (D) ≤
CD

amin
(‖fn − f‖L̃2(D)

+ 1
amin

‖a− an‖L̃∞(D))‖f‖L̃2(D))) → 0.
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Following a similar line as in the previous Corollary, we now apply (2.9) to produce an alternative
convergence estimate. This result requires a weaker approximation of the diffusion coefficient,
namely in L̃2p(D), 1 ≤ p < +∞, but needs more regularity from the solution u.
Corollary 2.2 (Second convergence result). Let 1 < p < +∞ with 1/p + 1/q = 1. Assume all
the hypothesis from the previous corollary except that related with the convergence of the sequence
{an}, which satisfies instead

‖an − a‖L̃2p(D) → 0.

Besides this, assume that the solution u belongs to the stochastic Sobolev space W̃ 1,2q(D). Then

‖u− un‖H̃1
0 (D) ≤

1
amin

(CD‖fn − f‖L̃2(D)

+ ‖a− an‖L̃2p(D)‖u‖W̃ 1,2q(D)
) → 0.

Proof. Let V1 = H. Then in order to apply (2.9) it is enough to bound the difference of bilinear
forms

|
∫
D

E[(a− â)∇u · ∇v]dx| ≤
(∫

D

E[(a− â)2|∇u|2]dx
)1/2(∫

D

E[|∇v|2]dx
)1/2

≤
(∫

D

E[(a− â)2p]dx
)1/2p(∫

D

E[|∇u|2q]dx
)1/2q

(
∫
D

E[|∇v|2]dx)1/2.

Remark 2.2 (Sufficient conditions for the hypothesis of the previous corollaries). Here we recall the
Karhunen-Loève expansion, a suitable tool for the approximation of stochastic processes. Consider
a stochastic process a with continuous covariance function, Cov[a] : D × D → R. Besides this,
let {(λi, bi)}∞i=1 denote the sequence of eigenpairs associated with the compact self adjoint operator
that maps

f ∈ L2(D) 7→
∫
D

Cov[a](x, ·)f(x)dx ∈ L2(D).

Its non-negative eigenvalues,
√∫

D×D (Cov[a](x1, x2))
2
dx1 dx2 ≥ λ1 ≥ λ2 ≥ . . . ≥ 0 satisfy∑+∞

i=1 λi =
∫
D
V ar[a](x)dx. The corresponding eigenfunctions are orthonormal, i.e.

∫
D
bi(x)bj(x)dx =

δij. The truncated Karhunen-Loève expansion of the stochastic process a, cf. [38, 57, 58], is

aN̂ (ω, x) = E[a](x) +
N̂∑
i=1

√
λibi(x)Yi(ω)

where the real random variables, {Yi}∞i=1, are mutually uncorrelated, have mean zero and unit
variance. These random variables are uniquely determined by

Yi(ω) =
1√
λi

∫
D

(a(ω, x)− E[a](x))bi(x)dx.

for λi > 0. Then, by Mercer’s theorem cf. [46], p. 245, we have

sup
x∈D

E[(a− aN̂ )2](x) = sup
x∈D

+∞∑
i=N̂+1

λib
2
i (x) → 0, as N̂ →∞.

If in addition,
• the images Yi(Ω), i = 1, . . . , are uniformly bounded in R
• the eigenfunctions bi are smooth, which is the case when the covariance function is smooth,

and uniformly bounded functions, and
• the eigenvalues have the decay λi = O( 1

1+is ) for some s > 1,
9



then ‖a− aN̂‖L̃∞(D) → 0. Notice that for larger values of s we can also obtain the convergence of

higher spatial derivatives of aN̂ in L̃∞(D). The last two conditions can be readily verified once the
covariance function of a is known. However, observe that it is also necessary to verify the uniform
coercivity of aN̂ , which depends on the probability distributions of Yi, i = 1, . . .

2.4. Finite dimensional noise case. In many problems the source of the randomness can be ap-
proximated using just a small number of mutually uncorrelated, sometimes mutually independent,
random variables. Take for example the case of a truncated Karhunen-Loève expansion described
previously. Whenever the coefficients a and f are independent their corresponding truncated
Karhunen-Loève expansions can be computed as in Remark 2.2. Otherwise a joint Karhunen-Loève
expansion of a and f has to be computed, taking into account their joint covariance structure.
Assumption 2.1 (Finite dimensional and independent noise). Whenever we apply some numerical
method to solve (1.1) we assume that the coefficients used in the computations satisfy

(2.10) a(ω, x) = a(Y1(ω), . . . , YN (ω), x) and f(ω, x) = f(Y1(ω), . . . , YN (ω), x)

where {Yj}Nj=1 are real random variables with mean value zero, unit variance, are mutually inde-
pendent, and their images, Γi,N ≡ Yi(Ω) are bounded intervals in R for i = 1, . . . , N . Moreover,
we assume that each Yi has a density function ρi : Γi,N → R+ for i = 1, . . . , N .

In the sequel we use the notations ρ(y) = ΠN
i=1ρi(yi) ∀y ∈ Γ for the joint probability density of

(Y1, . . . , YN ) and Γ ≡ ΠN
i=1Γi,N ⊂ RN for the support of such probability density.

After making assumption (2.10), we have by Doob-Dynkin’s lemma, cf. [43], that u, the solution
corresponding to the stochastic partial differential equation (1.1) can be described by just a finite
number of random variables, i.e. u(ω, x) = u(Y1(ω), . . . , YN (ω), x). The number N has to be
large enough so that the approximation error is sufficiently small. Now the goal is to approximate
the function u(y, x). In addition, the stochastic variational formulation (2.3) has a deterministic
equivalent in the following: find u ∈ L2

ρ(Γ)⊗H1
0 (D) such that

(2.11)∫
Γ

ρ(y)
∫
D

a(y, x)∇u(y, x) · ∇v(y, x)dxdy =
∫

Γ

ρ(y)
∫
D

f(y, x)v(y, x)dxdy, ∀ v ∈ L2
ρ(Γ)⊗H1

0 (D).

In this work the gradient notation, ∇, always means differentiation with respect to x ∈ D only
unless otherwise stated. The corresponding strong formulation for the problem now becomes an
elliptic partial differential equation with an N -dimensional parameter, i.e.

−∇ · (a(y, x) ∇u(y, x)) =f(y, x) ∀(y, x) ∈ Γ×D,

u(y, x) =0 ∀(y, x) ∈ Γ× ∂D.
(2.12)

Making Assumption (2.10) is a crucial step, turning the original stochastic elliptic equation (1.1)
into a deterministic parametric elliptic one and allowing the use of finite element and finite differ-
ence techniques to approximate the solution of the resulting deterministic problem.

Truncation of the outcomes set, Γ
For computational reasons, it may be useful to compute the solution of (2.12) in a subdomain with
strictly positive probability, Γ0 ⊂ Γ, e.g. to save computational work. Beside this, for the sake of
the definition and analysis of the numerical methods, we assume the probability density of Y to
be strictly positive in Γ0. In that case, we shall approximate the function

E[u(Y, ·) 1{Y ∈Γ0}] = E[u(Y, ·)|Y ∈ Γ0] P (Y ∈ Γ0)

instead of the original E[u]. If ū is an approximation of u in Γ0 then we have the splitting

(2.13)
‖E[u(Y, ·)]− E[ū(Y, ·) 1{Y ∈Γ0}]‖

≤ ‖E[u(Y, ·)]− E[u(Y, ·) 1{Y ∈Γ0}]‖+ ‖E[u(Y, ·)− ū(Y, ·)|Y ∈ Γ0]‖P (Y ∈ Γ0)
10



Property 2.2 below gives an estimate for the first error contribution, related to the truncation of Γ.
The second error contribution in (2.13) is the discretization error and it will be analyzed for each
numerical approximation, see Sections 4, 5 and 6. In those Sections we shall simplify the notation
by writing Γ = Γ0 and work with the corresponding conditional probability space.

Property 2.2. Let u be the solution of the problem (2.12), then there exists a constant C such
that ∥∥E[u(Y, ·)]−E[u(Y, ·) 1{Y ∈Γ}]

∥∥
H1

0 (D)
≤ C

√
P (Y /∈ Γ0) ‖f‖L2

ρ(Γ\Γ0)⊗L2(D)(2.14)

Proof. To derive (2.14), it is enough to estimate∫
D

∣∣∣∣∫
Γ\Γ0

ρ(y)∇u(y, x)dy
∣∣∣∣2 dx ≤P (Y ∈ Γ\Γ0)

∫
D

∫
Γ\Γ0

ρ(y)|∇u(y, x)|2dydx

≤P (Y ∈ Γ\Γ0)
CD
amin

∫
Γ\Γ0

ρ(y)
∫
D

|f(y, x)|2dx dy.

Remark 2.3. Let us assume that the components of the vector Y , {Yj}N
j=1, are random variables

with bounded m0-th moment. Also, we assume that Γ0 = ΠN
j=1[−ȳj , ȳj ] where {ȳj}N

j=1 are positive
real numbers. Using Markov’s inequality (cf. [11]) we have

P (Y /∈ Γ0) = 1−
N∏
j=1

P (|Yj | ≤ ȳj) ≤ 1−
N∏
j=1

(
1− 1

(ȳj)m0
E
[
|Yj |m0

])
.

Remark 2.4. If each of the independent random variables Yi, i = 1, . . . , N has a continuous
probability density, ρi, let Fi(x) =

∫ x
−∞ ρi(y)dy and define the mutually independent and uniformly

distributed random variables Zi(ω) ≡ Fi(Yi(ω)) ∼ U(0, 1), i = 1, . . . , N . Consider for i = 1, . . . , N ,
F−1
i : [0, 1] → Γi and let y(z) ≡ (F−1

1 (z1), . . . , F−1
N (zN )), ã(z, x) ≡ a(y(z), x) and f̃(z, x) ≡

f(y(z), x). Now we can equivalently reformulate (2.11) to: find ũ ∈ L2([0, 1]N )⊗H1
0 (D) such that

(2.15)∫
[0,1]N

∫
D

ã(z, x)∇ũ(z, x)·∇v(z, x)dxdz =
∫

[0,1]N

∫
D

f̃(z, x)v(z, x)dxdz, ∀ v ∈ L2([0, 1]N )⊗H1
0 (D).

Thus, depending on the features of a particular problem, one may discretize (2.11) or (2.15), and
apply the numerical methods and the analysis included in this work.

3. The finite element spaces

In this section, first we consider standard finite element spaces on the spatial set D ⊂ Rd and
the outcomes set Γ ⊂ RN , separately. Then we define tensor product finite element spaces on
the set Γ × D which we will use to construct approximations of the solution of the parametric
boundary value problem (2.12). The section concludes with some useful approximation properties
of the tensor finite element spaces.

3.1. Finite element spaces on the spatial set D ⊂ Rd: h−version. Consider a family of piece-
wise linear (continuous) finite element approximation spaces, Xd

h ⊂ H1
0 (D), based on conforming

triangulations (of simplices), T dh , of the convex polyhedral domain, D ⊂ Rd, with a maximum
mesh spacing parameter h > 0. We shall always assume that the triangulations are nondegenerate
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(sometimes also called regular), cf. [13] p.106. Then, (cf. [13], [15], [44]) the finite element spaces
Xd
h satisfy the standard approximation estimate, namely that for all v ∈ H2(D) ∩H1

0 (D)

min
χ∈Xd

h

‖v − χ‖H1
0 (D) ≤ C h ‖v‖H2(D),(3.1)

where C > 0 is a constant independent from v and h.

3.2. Tensor product finite element spaces on the outcomes set Γ ⊂ RN : k−version. Let
Γ =

∏N
j=1 Γj be as in Subsection 2.4. Consider a partition of Γ consisting of a finite number of

disjoint RN -boxes, γ =
∏N
j=1(a

γ
j , b

γ
j ), with (aγj , b

γ
j ) ⊆ Γj for j = 1, . . . , N . The mesh spacing pa-

rameters, kj > 0, are defined by kj ≡ maxγ |bγj −a
γ
j |, for 1 ≤ j ≤ N . For every non-negative integer

q ∈ N consider the finite element approximation space of (discontinuous) piecewise polynomials
with degree at most q on each direction, Y N,q

k ⊂ L2(Γ). Thus, if ϕ ∈ Y N,q
k its restriction to each

of the partition boxes satisfies ϕ|γ ∈ span
( N

Π
j=1

y
αj

j : αj ∈ N and αj ≤ q, j = 1, . . . , N
)
.

The finite element spaces Y N,q
k have (cf. Section 4.6 in [13]) the following approximation prop-

erty: for all v ∈ Hq+1(Γ)

(3.2) min
ϕ∈Y N,q

k

‖v − ϕ‖L2(Γ) ≤ C
N∑
j=1

(kj)q+1 ‖∂q+1
yj

v‖L2(Γ)

where C > 0 is a constant independent of v and kj > 0.

3.3. Tensor product finite element spaces on Γ×D: k×h−version. Here, we shall discuss
some approximation properties of the following tensor product finite element spaces

(3.3) Y N,q
k ⊗Xd

h ≡
{
ψ = ψ(y, x) ∈ L2(Γ×D) : ψ ∈ span

(
ϕ(y)χ(x) : ϕ ∈ Y N,q

k , χ ∈ Xd
h

)}
.

with Xd
h and Y N,q

k as in Subsections 3.1 and 3.2.
For later use we recall the standard L2− projection operators ΠN,q

k : L2(Γ) → Y N,q
k by

(3.4) (ΠN,q
k w − w,ϕ)L2(Γ) = 0, ∀ϕ ∈ Y N,q

k , ∀w ∈ L2(Γ),

and the H1
0 projection operator Rd

h : H1
0 (D) → Xd

h by

(3.5) (∇Rd
hv − v,∇χ)L2(D) = 0, ∀χ ∈ Xd

h, ∀v ∈ H1
0 (D).

Estimates (3.1) and (3.2) imply

(3.6)

‖v −Rd
hv‖H1

0 (D) ≤ C h ‖v‖H2(D),

‖w −ΠN,q
k w‖L2(Γ) ≤ C

N∑
j=1

(kj)q+1 ‖∂q+1
yj

w‖L2(Γ).

for all v ∈ H2(D) ∩H1
0 (D) and w ∈ Hq+1(Γ).

We now present an approximation property for the tensor product finite element spaces defined
in (3.3) which is a direct implication of the approximation properties of the spaces Y N,q

k and Xd
h.

Proposition 3.1. Let q be a nonnegative integer. Then, there exists a constant C > 0 depending
only on d, N and q, such that

inf
ψ∈Y N,q

k ⊗Xd
h

‖v − ψ‖L2(Γ;H1
0 (D)) ≤C

{
h ‖v‖L2(Γ;H2(D)) +

N∑
j=1

(kj)q+1 ‖∂q+1
yj

v‖L2(Γ;H1
0 (D))

}
(3.7)

for all v ∈ Cq+1(Γ;H2(D) ∩H1
0 (D)).
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Proof. Since ΠN,q
k (Rhv) ∈ Y qk ⊗Xd

h, using (3.6) we obtain

inf
ψ∈Y q

k ⊗X
d
h

‖v − ψ‖L2(Γ;H1
0 (D)) ≤‖v −ΠN,q

k (Rhv)‖L2(Γ;H1
0 (D))

≤‖v −Rhv‖L2(Γ;H1
0 (D)) + ‖Rhv −ΠN,q

k (Rhv)‖L2(Γ;H1
0 (D))

≤C h ‖v‖L2(Γ;H2(D)) + ‖Rhv −ΠN,q
k (Rhv)‖L2(Γ;H1

0 (D)).

(3.8)

Applying the estimate (3.2) and using the boundedness of Rh in H1
0 (D) yields

‖Rhv −ΠN,q
k (Rhv)‖L2(Γ;H1

0 (D)) ≤ ‖v −ΠN,q
k v‖L2(Γ;H1

0 (D)) ≤
N∑
j=1

(kj)q+1 ‖∂q+1
yj

v‖L2(Γ)⊗H1
0 (D).

The estimate (3.7) follows combining (3.8) with the last estimate.

3.4. Tensor product finite element spaces on Γ×D: p×h−version. Consider again the set
Γ = Γ1 × . . .× ΓN ⊂ RN , a multi-index p = (p1, . . . , pN ) and the tensor finite element space

Zp =
N⊗
i=1

Zpi

i

where the one dimensional global polynomial subspaces, Zpi

i , are defined by

Zpi

i = {v : Γi → R : v ∈ span(ys, s = 0, . . . , pi)} , i = 1, . . . , N.

Here, the basic tool for approximation are the following tensor product finite element spaces

(3.9) Zp ⊗Xd
h ≡

{
ψ = ψ(y, x) ∈ L2(Γ×D) : ψ ∈ span

(
ϕ(y)χ(x) : ϕ ∈ Zp, χ ∈ Xd

h

)}
.

Similarly to Subsection 3.3, the p×h−version has the following spatial approximation property
Proposition 3.2. Let v ∈ L2(Γ;H2(D)∩H1

0 (D)) then there exists a constant C > 0 independent
of v and h such that

inf
ψ∈L2(Γ)⊗Xd

h

‖v − ψ‖L2(Γ;H1
0 (D)) ≤ C h ‖v‖L2(Γ;H2(D))

The approximation properties in the y−direction will be studied in Section 6.

4. The Monte Carlo Galerkin Finite Element Method

In this section we describe the use of the standard Monte Carlo Galerkin Finite Element Method
(MCGFEM) to construct approximations to some solution statistics. These approximations are
based on sample averages of independent, identically distributed realizations corresponding to
sample coefficient functions. For each realization of the coefficients a realization of the approximate
solution is computed with standard finite element spaces. Our discussion will be based on the
approximation of the expected value function E[u(Y, ·)] by a sample average of M realizations of
an approximate solution uh(Y, ·). The stochastic coefficients depend on the noise as described in
Subsection 2.4 and we simply use the notation a(ω, ·), meaning a(Y (ω), ·).
Formulation of the Monte Carlo Galerkin Finite Element Method (MCGFEM):
- Give a number of realizations, M , a piecewise linear finite element space on D, Xd

h, as defined in
subsection 3.1.
- For each j = 1, . . . ,M sample iid realizations of the diffusion a(ωj , ·), the load f(ωj , ·) and find
a corresponding approximation uh(ωj ; ·) ∈ Xd

h such that

(4.1) Bωj
(uh(ωj , ·), χ) ≡

∫
D

a(ωj , ·)∇uh(ωj , ·) · ∇χdx = (f(ωj , ·), χ), ∀χ ∈ Xd
h.

- Finally use the sample average 1
M

∑M
j=1 uh(ωj ; ·) to approximate E[u].

13



Here we only consider the case where Xd
h is the same for all realizations, i.e. the spatial trian-

gulation is deterministic. The computational error naturally separates into the two parts

(4.2) E[u]− 1
M

M∑
j=1

uh(ωj , ·) =
(
E
[
u
]
− E

[
uh
])

+
(
E[uh]−

1
M

M∑
j=1

uh(ωj , ·)
)
≡ Eh + ES .

The size of the spatial triangulation controls the space discretization error Eh, cf. Proposition 4.2,
while the number of realizations, M of uh, controls the statistical error ES .

To study the behavior of the statistical error, let us first consider the random variable ‖ES‖L2(D)

which, due to the independence of the realizations ωj , j = 1, . . . ,M , satisfies the estimate

M E
[
‖ES‖2H1

0 (D)

]
≤ ‖uh‖2H̃1

0 (D)
≤
(
CD
amin

)2

‖f‖2
L̃2(D)

.(4.3)

and a similar result also holds in L2(D). Then, thanks to (4.3) we have that, for either H = L2(D)
or H = H1

0 (D), the statistical error ES tends a.s. to zero as we increase the number of realizations,
i.e.

Proposition 4.1. Suppose that there exist a constant C > 0 independent from M and h such that
the statistical error in H norm satisfies

(4.4) M E[‖ES‖2H ] ≤ C, ∀M,h.

Then, taking the number of realizations increasingly from the set {2k : k ∈ N}, we have for any
α ∈ (0, 1/2) and any choice of mesh size h

lim
M→∞

Mα‖ES‖H = 0 a.s.

Proof. Let ε > 0. Then (4.4) and Markov’s inequality give

P (Mα‖ES‖H > ε) ≤ E[M2α‖ES‖2H ]
ε2

≤ C

ε2M1−2α
.

Thus
∞∑
k=1

P (Mα
k ‖ES‖H > ε) ≤ C

ε2

∞∑
k=1

1
M1−2α
k

≤ C

ε2

∞∑
k=1

1
(21−2α)k

<∞

and Borel-Cantelli’s lemma implies that for any given ε > 0 and α ∈ (0, 1/2)

P (Mα‖ES‖H > ε infinitely often) = 0

which finishes the proof.
Under the same assumptions as in Proposition 4.1 we have that for any given ε > 0 there exist

a constant C > 0 independent from ε, M and h such that

(4.5) P

(
‖ES‖H ≥ ε√

M

)
≤ C

ε2
.

Thus, within a given confidence level we have the usual convergence rate for the Monte Carlo
method, which is independent from the mesh size h. Next we present some error estimates for the
space discretization error, ‖E[u−uh]‖H1

0 (D) and ‖E[u−uh]‖L2(D). The first two lemmata estimate
strong errors, which yield in Remark 4.2 a bound for the spatial discretization error in E[u]. The
proofs are done assuming piecewise linear finite element spaces on regular meshes and follow the
standard arguments for the deterministic case, cf. [13].
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Lemma 4.1. There holds

(4.6) ‖
√
a∇(u− uh)‖L2(D) ≤ C h‖u‖H2(D), a.s.

(4.7) ‖u− uh‖L2(D) ≤ C h2‖u‖H2(D), a.s.

Proof. Let ω ∈ Ω. Then

Bω(e, e) =Bω(e, u−Rd
hu)

≤amax ‖e‖H1
0 (D) ‖∇(u−Rd

hu)‖L2(D)

≤ C h ‖e‖H1
0 (D)‖u‖H2(D)

(4.8)

and the use of the uniform coercivity assumption (1.2) yields (4.6). To prove (4.7) we follow a
standard duality argument. Let ω ∈ Ω, then consider the continuous dual problem

Bω(ϕ, v) = (e, v), ∀ v ∈ H1
0 (D)

and then we use elliptic regularity, ‖ϕ‖H2(D) ≤ C‖e‖L2(D). Notice that the constant of elliptic
regularity depends in general on ω and we have used assumption (1.3) to control it uniformly.

Therefore,
‖e‖2L2(D) =Bω(ϕ, e)

=Bω(ϕ−Rd
hϕ, e)

≤amax‖e‖H1
0 (D)‖ϕ−Rd

hϕ‖H1
0 (D)

≤‖e‖H1
0 (D)Ch‖ϕ‖H2(D)

≤Ch2‖f‖L2(D)‖e‖L2(D).

A direct application of Lemma 4.1 gives
Proposition 4.2 (Spatial discretization error estimates). There holds

‖E[u]− E[uh]‖H1
0 (D) ≤ E[‖u− uh‖2H1

0 (D)]
1/2 ≤ Ch‖f‖L̃2(D)

and similarly
‖E[u]− E[uh]‖L2(D) ≤ E[‖u− uh‖2L2(D)]

1/2 ≤ Ch2‖f‖L̃2(D).

The results from Proposition 4.2 and estimate (4.5) will be used in Section 8 to compare the
MCGFEM with other discretizations for (1.1).

5. The Stochastic Galerkin Finite Element Method: k×h−version

This section defines and analyzes the k×h−version of the stochastic Galerkin finite element
method (k×h−SGFEM) which, via a Galerkin variational formulation, yields approximations,
ukh ∈ Y Γ,q

k ⊗Xd
h, of the solution u of the parametric elliptic boundary value problem (2.12).

Then, the section ends by showing how to use ukh to construct approximations of the expected
value of u, analyzing the corresponding approximation error.

Formulation of the k×h−SGFEM: Let q ∈ N and Γ be a bounded box in RN . The k × h-
SGFEM approximation is the tensor product, ukh ∈ Y Γ,q

k ⊗Xd
h, such that

(5.1)
∫

Γ

ρ
(
a∇xukh,∇xψ

)
L2(D)

dy =
∫

Γ

ρ
(
f, ψ

)
L2(D)

dy, ∀ ψ ∈ Y Γ,q
k ⊗Xd

h.
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Recall that N ∈ N, ρ : Γ → (0,+∞) is the density function of the vector-valued random variable
Y : Ω → Γ ⊂ RN which has mutually independent components. Hence, the assumption (1.2) on
the random function a(ω, x) ≡ a(Y (ω), x) reads

(5.2) a(y, x) ∈ [amin, amax], ∀(y, x) ∈ Γ×D.

For the case where a is a truncated Karhunen Loève expansion Section 7 discusses how to compute
efficiently ukh, the solution of (5.1), by a double-orthogonal polynomials technique.
To carry out the analysis of the k×h−version, assume that

(5.3) a ∈ Cq+1,1
(
Γ×D

)
and f ∈ Cq+1(Γ;L2(D)),

which is trivially satisfied whenever a and f have the form of a truncated Karhunen Loève expansion
(cf. Section 6). Hence, by Lemma 4.1 in [36], the solution u of (2.12) satisfies

u ∈ Cq+1(Γ;H2(D) ∩H1
0 (D)).

Use (5.2) and (2.12) to obtain

(5.4) ‖u(y, ·)‖H1
0 (D) ≤ CD

amin
‖f(y, ·)‖L2(D), ∀y ∈ Γ,

where CD is the constant of the Poincaré–Friedrichs inequality on D. Also, elliptic regularity yields

(5.5) ‖u(y, ·)‖H2(D) ≤ C0,B ‖f(y, ·)‖L2(D), ∀y ∈ Γ,

where C0,B is a constant which depends on D and ‖a‖L∞(Γ;W 1,∞(D)). Finally, take derivatives with
respect to yj in (2.12), proceed as in the derivation of (5.4), and follow an induction argument
arriving at

(5.6) ‖∂q+1
yj

u(y, ·)‖2H1
0 (D) ≤ Cq+1,B

∑
0≤β≤q+1

‖∂βyj
f(y, ·)‖2L2(D), ∀y ∈ Γ, and 1 ≤ j ≤ N

where Cq+1,B is a constant which depends on q, CD, amin and ‖a‖L∞(D;W q+1,∞(Γ)).
We now derive an a priori error estimate for the k×h−SGFEM in the energy norm, that will

be later used to derive an error estimate for E[u− ukh].
Proposition 5.1. Let u be the solution of the problem (2.12) and ukh ∈ Y Γ,q

k ⊗Xd
h be the k×

h−SGFEM approximations of u defined in (5.1). If (5.3) holds and ρ ∈ L∞(Γ), then

(5.7)

(∫
Γ

ρ ‖
√
a ∇x(u− ukh)‖2L2(D)dy

) 1
2 ≤

C
√
‖a ρ‖L∞(Γ×D)

h‖f‖L2(Γ;L2(D)) +
N∑
j=1

(kj)q+1

√ ∑
0≤β≤q+1

‖∂βyjf‖2L2(Γ;L2(D))


where the constant C depends on q, D, Γ and a, and is independent of k, h and u.

Proof. Let Vkh = Y Γ,q
k ⊗Xd

h and e = u − ukh. Combining (5.1) with (2.12) gives the standard
Galerkin orthogonality

(5.8)
∫

Γ

ρ (a ∇xe,∇xψ)L2(D) dy = 0, ∀ ψ ∈ Vkh,

and thus (∫
Γ

ρ ‖
√
a ∇xe‖2L2(D) dy

) 1
2 ≤ inf

ψ∈Vkh

(∫
Γ

ρ ‖
√
a ∇x(u− ψ)‖2L2(D) dy

) 1
2

≤‖a ρ‖
1
2
L∞(Γ×D) inf

ψ∈Vkh

‖u− ψ‖L2(Γ;H1(D)).

(5.9)
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Using (5.9) and the estimate (3.7) implies(∫
Γ

ρ ‖
√
a ∇xe‖2L2(D) dy

) 1
2 ≤C ‖a ρ‖

1
2
L∞(Γ×D)

{
h ‖u‖L2(Γ;H2(D)) +

N∑
j=1

(kj)q+1 ‖∂q+1
yj

u‖L2(Γ;H1
0 (D))

}
.

The last estimate combined with (5.5) and (5.6) yields (5.7).
As a direct result from (5.7) we obtain

Corollary 5.1 (Convergence result). Under the assumptions of Proposition 5.1 we have

‖E[u(Y, ·)]− E[ukh(Y, ·)]‖H1
0 (D) ≤ C

h+
N∑
j=1

(kj)q+1


with C > 0 independent from u, h and kj.

The next step is to use Proposition 5.1 to estimate the L2(D) error in the approximation of the
expected value of u(Y, ·).
Theorem 5.2. Let u be the solution of the problem (2.12) and ukh ∈ Y Γ,q

k ⊗Xd
h be the k×

h−SGFEM approximations of u defined in (5.1). If (5.3) holds and ρ ∈ L∞(Γ), then

∥∥E[u(Y, ·)]−E[ukh(Y, ·)]
∥∥
L2(D)

≤ C
(
h2 +

N∑
j=1

(kj)2(q+1)
)
‖a ρ‖L∞(Γ×D) ‖f‖L2(D;Hq+1(Γ)).(5.10)

The constant C depends on q, D, Γ and a, and it is independent from k, h and u.

Proof. Let Vkh = Y Γ,q
k ⊗Xd

h, e ≡ u − ukh, and g ≡ E[e(Y, ·)] ∈ H1
0 (D). Then, we consider

û ∈ Cq+1(Γ;H2(D) ∩H1
0 (D)) defined, for y ∈ Γ, as the solution of the following elliptic boundary

value problem

(5.11)
−∇x·(a(y, ·) ∇xû(y, ·)) = g(·) in D,

û(y, ·) = 0 on ∂D.

Then (5.5) reads

(5.12) ‖û(y, ·)‖H2(D) ≤ C0,B ‖g‖L2(D), ∀y ∈ Γ,

and since g is independent from y, the estimate (5.6) for the problem (5.11) reads

(5.13)
∑

|β|≤q+1

‖∂βy û(y, ·)‖2H1(D) ≤ Cq+1,B ‖g‖2L2(D), ∀y ∈ Γ.

Use (5.11) and the orthogonality property (5.8) to obtain∫
Γ

ρ (g, e)L2(D) dy =
∫

Γ

ρ
(
a∇xe,∇x(û− ψ)

)
L2(D)

dy, ∀ψ ∈ Vkh,

which yields, by Cauchy Schwartz inequality,

(5.14) ‖g‖2L2(D) ≤ B̃1 B̃2

with

B̃1 ≡
(∫

Γ

ρ ‖
√
a ∇xe‖2L2(D) dy

) 1
2

and

B̃2 ≡ inf
ψ∈Vkh

(∫
Γ

ρ ‖
√
a ∇x(û− ψ)‖2H1(D) dy

) 1
2
.
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Next, observe that the energy estimate (5.7) gives

(5.15) B̃1 ≤ C

h+
N∑
j=1

(kj)q+1

 ‖a ρ‖
1
2
L∞(Γ×D) ‖f‖L2(D;Hq+1(Γ)).

Finally, use (3.7), (5.12) and (5.13), to bound B̃2 as follows

B̃2 ≤C ‖a ρ‖
1
2
L∞(Γ×D)

{
h
(∫

Γ

‖û‖2H2(D) dy
)1/2

+
N∑
j=1

(kj)q+1
(∫

Γ

‖∂q+1
yj

û‖2H1
0 (D) dy

) 1
2
}

≤C ‖a ρ‖
1
2
L∞(Γ;L∞(D))

h+
N∑
j=1

(kj)q+1

 ‖g‖L2(D).

(5.16)

Combining (5.14), (5.15) and (5.16), the estimate (5.10) follows.

Remark 5.1. Let k ≡ max1≤j≤N kj and assume that u ∈ Cq+1(Γ;Hs+1(D) ∩ H1
0 (D)) for some

integer s ≥ 1, and that Xd
h are standard finite element spaces consisting of continuous piecewise

polynomial functions of degree less or equal to s (cf., e.g., [13], [15], [44]). Then, proceeding in a
similar way we get the estimate

∥∥E[(u(Y, ·)− ukh(Y, ·))]
∥∥
L2(D)

≤ C
(
hs+1 + k

(q+1)(s+1)
s

)
which is a

superconvergence result with respect to k that generalizes the estimate (5.10).

6. The Stochastic Galerkin Finite Element Method: p×h−version

The goal of this section is to introduce and analyze the p×h−version of the SGFEM method, that
uses global polynomials in the y direction instead of piecewise discontinuous ones. This method
yields, cf. Theorem 6.2, an exponential rate of convergence with respect to p, the degree of the
polynomials used for approximation. The work by Gui and Babuška [27] on the h− p versions of
the Finite Element in one dimension inspired the current analysis of the p-version tensor product
approximation in the y direction. The application of the p-version in the y direction is motivated by
the fact that u is infinitely differentiable with respect to y ∈ Γ, cf. Lemma 6.1, and the comparison
of computational work in Section 8. As the k×h−version studied in Section 5, the p-version also
gives a super-convergent approximation of the expected value of the solution, cf. Theorem 6.3.

The basic assumptions for this section are summarized as follows:

Assumption 6.1. Assume that the density function, ρ : Γ → R of the N dimensional random
vector Y , is bounded and that the components of Y are mutually independent. Beside this, the
functions a, f : Γ × D → R are finite Karhunen-Loève expansions, i.e., a(y, x) = E[a](x) +∑N
i=1 bi(x)yi and f(y, x) = E[f ](x) +

∑N
i=1 b̂i(x)yi. Moreover, the uniform coercivity assumption

(1.2) and the right hand side assumption (1.4) yield bi ∈ C1(D), b̂ ∈ L2(D) for i = 1, . . . , N . Use
the notation

Γ̂i ≡
∏

1≤j≤N,j 6=i

Γj

and let ŷi be an arbitrary element of Γ̂i. Then, for each ŷi ∈ Γ̂i let

ãi(ŷi) ≡ min
x∈D

E[a](x) +
∑

1≤j≤N,j 6=i

bj(x)yj
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and assume a slightly stronger uniform coercivity requirement, i.e. there exists a constant ν̃ > 0
such that

νi(ŷi) ≡ ãi(ŷi)− ‖bi‖L∞(D) max
y∈Γi

|y| ≥ ν̃ > 0, ∀ŷi ∈ Γ̂i, i = 1, . . . , N.

Observe that with the above construction we have 0 < ν̃ ≤ amin.
p×h−version of the SGFEM method: Let and Γ be a bounded box in RN . Then for

h ∈ (0, h0) the p×h−version SGFEM approximation is the tensor product uph ∈ Zp ⊗ Xd
h, recall

(3.9), that satisfies

(6.1)
∫

Γ

ρ
(
a∇xu

p
h,∇xχ

)
D
dy =

∫
Γ

ρ
(
f, χ

)
D
dy ∀ χ ∈ Zp ⊗Xd

h.

6.1. Error estimates. To illustrate the convergence of the p-version here we study for the par-
ticular case of the energy error, i.e. consider

‖u− uph‖H =

√∫
Γ

ρ(y)
∫
D

a(y, x)|∇(u− uph)(y, x)|2dxdy

≤
√
‖ρa‖L∞(Γ×D) min

v∈Zp⊗Xd
h

‖u− v‖L2(Γ)⊗H1
0 (D)

≤
√
‖ρa‖L∞(Γ×D)

{
min

v∈Zp⊗H1
0 (D)

‖u− v‖L2(Γ)⊗H1
0 (D) + min

v∈L2(Γ)⊗Xd
h

‖u− v‖L2(Γ)⊗H1
0 (D)

}
.

This bound splits the error into an L2(Γ) approximation error and a standard H1
0 (D) FEM ap-

proximation error. The rest of this section studies the first one, since for the second we can apply
the results from Proposition 3.2. The minimizer

‖u− up‖L2(Γ)⊗H1
0 (D) = min

v∈Zp⊗H1
0 (D)

‖u− v‖L2(Γ)⊗H1
0 (D)

is the projection
up = (Π1 . . .ΠN )u

with Πi : L2(Γ) ⊗ H1
0 (D) → L2(Γ) ⊗ H1

0 (D) being the natural extension of the L2 projection
Π̄i : L2(Γi) → Zpi

i , so the difference u− up splits into

u− up = (1−Π1)u+ . . .+ (Π1 . . .ΠN−1)(1−ΠN )u.

In addition, the boundedness of the projections Πi yields

(6.2) ‖u− up‖L2(Γ)⊗H1
0 (D) ≤

N∑
i=1

‖(1−Πi)u‖L2(Γ)⊗H1
0 (D).

Without loose of generality we now consider the first term on the right hand side of (6.2), since
the other terms have a completely similar behavior. Moreover, since

‖(1−Π1)u‖2L2(Γ)⊗H1
0 (D) =

∫
Γ2×...×ΓN

(∫
Γ1

‖(1−Π1)u(y1, y2, . . . , yN , ·)‖2H1
0 (D)dy1

)
dy2 . . . dyN

it is enough to estimate

(6.3) (E1)2(y2, . . . , yN ) ≡
∫

Γ1

‖(1−Π1)u(y1, y2, . . . , yN , ·)‖2H1
0 (D)dy1

and thus our analysis requires only one dimensional arguments in the y-direction. Let Γ1 =
(ymin, ymax) and consider the map Ψ : (−1, 1) → H1

0 (D) defined by

Ψ(t) = u(y1(t), y2, . . . , yN , ·) ∈ H1
0 (D)
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with the affine transformation, y1 : [−1, 1] → Γ1, y1(t) ≡
(
ymax+ymin

2

)
+
(
ymax−ymin

2

)
t. In the

upcoming estimate of the quantities ‖dn‖H1
0 (D), to be proved in Lemma 6.2, we need to consider

a continuation of Ψ to the complex plane, namely that

Lemma 6.1 (Complex continuation). The function Ψ : [−1, 1] → H1
0 (D) can be analytically

continuated to the complex domain.

Proof. Let t0 ∈ (−1, 1). We shall prove that the real function Ψ can be represented as a power
series for |t − t0| < rt0 , for some rt0 > 0. Since Ψ depends linearly on f , let us assume that
f(y, x) = f(x) only, without loose of generality. Let y(t) = (y1(t), y2, . . . , yN ) and consider the
formal series

uF (t) ≡
+∞∑
j=0

(
|Γ1|(t− t0)

2

)j
uj

with uj ∈ H1
0 (D) satisfying

−∇ · (a(y(t0), x) ∇u0(x)) = f(x), ∀x ∈ D,
u0(x) = 0 ∀x ∈ ∂D,

(6.4)

and for j ≥ 0

−∇ · (a(y(t0), x) ∇uj+1(x)) = ∇ · (b1(x) ∇uj(x)) ∀x ∈ D,
uj+1(x) = 0 ∀x ∈ ∂D.

(6.5)

This construction implies

‖uj+1‖H1
0 (D) ≤

CD‖b1‖L∞(D)

amin
‖uj‖H1

0 (D), j ≥ 1

and then

‖uF ‖H1
0 (D) ≤

CD‖f‖L2(D)

amin

1
1− q

<∞

for q ≡ |t−t0||Γ1|CD‖b1‖L∞(D)

2amin
< 1. Thus for any t0 ∈ (−1, 1) and |t − t0| < rt0 ≡ 2amin

|Γ1|CD‖b1‖L∞(D)
,

the function uF can be represented as a power series in t − t0. At the same time, we have the
equality uF (t) = Ψ(t) for t ∈ (−1, 1) since both functions solve the linear elliptic equation

−∇ · (a(y(t), x) ∇u(y(t), x)) = f(x), ∀x ∈ D,
u(y(t), x) = 0 ∀x ∈ ∂D,

which has a unique solution. Then uF is the analytic continuation of Ψ and the proof is complete.

Remark 6.1. Consider the natural extension of the variable t to the complex η. Observe that Ψ(η)
from Lemma 6.1 solves

−∇ · (a(y(η), x) ∇Ψ(η, x)) = f(x), ∀x ∈ D,
Ψ(η, x) = 0 ∀x ∈ ∂D.

(6.6)

Following [27], we use the Legendre polynomials to prove approximation estimates for the p×
h−version of the SGFEM. Since the Legendre polynomials,

pn(t) ≡
1

2nn!
dn

dtn
((t2 − 1)n), n = 0, 1, . . .
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are orthogonal with respect to the L2(−1, 1) inner product we have the error representation

(6.7) (E1)2(y2, . . . , yN ) =
|Γ1|
2

+∞∑
n=p1+1

2
2n+ 1

‖dn‖2H1
0 (D)

with the corresponding Fourier coefficients

dn ≡
2n+ 1

2

∫ 1

−1

Ψ(t)pn(t)dt ∈ H1
0 (D).

Therefore, to obtain an estimate for E1 we shall study the convergence of the tail series in (6.7).

Notation 6.1. Consider the natural extension of the variable t to the complex η and introduce the
real function, ã : C → R,

ã(η) ≡min
x∈D

Re {a(y1(η), y2, . . . , yN , x)}

= min
x∈D

a(Re {y1(η)} , y2, . . . , yN , x)

= min
x∈D

[a(0, y2, . . . , yN , x) + Re {y1(η)} b1(x)] ,

with Re{c} being the real part of c ∈ C. Whenever ã(η) 6= 0 the continuated function Ψ, the
solution of (6.6), satisfies the bound

(6.8)
‖Ψ(η)‖H1

0 (D) = ‖u(y1(η), y2, . . . , yN , ·)‖H1
0 (D)

≤ CD
‖f(y1(η), y2, . . . , yN , ·)‖L2(D)

ã(η)

with CD being the Poincaré constant for the domain D. Beside this, define

ã1(y2, . . . , yN ) ≡min
x∈D

a(0, y2, . . . , yN , x)

= min
x∈D

[
E[a](x) +

N∑
i=2

bi(x)yi

]
≥ amin, ∀(y2, . . . , yN ) ∈

∏
2≤j≤N

Γj

and observe that

(6.9) ã(η) ≥ ã1 − |y1(η)| ‖b1‖L∞(D).

We are now ready to estimate the Fourier coefficients in (6.7).

Lemma 6.2. Let τ ∈ (0, 1). Then there exists positive constants C > 0 and θf (ŷ1, τ) > 0 such
that

‖dn‖H1
0 (D) ≤

CD θf (2n+ 1)
τ ã12n

∫ 1

−1

(
1− t2

t+ 1 + C(1− τ)

)n
dt

Proof. Consider

dn =
2n+ 1

2

∫ 1

−1

Ψ(t)pn(t)dt =
(2n+ 1)(−1)n

n! 2n+1

∫ 1

−1

dn

dtn
Ψ(t)(1− t2)ndt.

Use the analytic continuation of the real function Ψ to the complex domain as in Lemma 6.1. The
application of Cauchy’s formula gives

dn

dtn
Ψ(t) =

n!(−1)n

2πi

∫
γt

Ψ(η)
(η − t)n+1

dη,

21



where γt is a positively oriented closed circumference with center at the real point t ∈ (−1, 1),
radius R(t), and such that all singularities from Ψ are exterior to γt. Denote the complex closed
ball B(t, R(t)) = {z ∈ C : |z − t| ≤ R(t)}. Estimate (6.8) implies

(6.10)

‖ d
n

dtn
Ψ(t)‖H1

0 (D) ≤
CD n!

2π

∫
γt

‖f(y1(η), ŷ1, ·)‖L2(D)

ã(η)|η − t|n+1
|dη|

≤ CD n!
2π

(
sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D)

)∫
γt

|dη|
ã(η)|η − t|n+1

≤ CD n!
(R(t))n

(
sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D)

)
sup
η∈γt

1
ã(η)

.

Let
θf ≡ sup

t∈[−1,1]

sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D)

then estimate (6.10) implies

(6.11) ‖dn‖H1
0 (D) ≤

(2n+ 1)CDθf
2n+1

∫ 1

−1

(
1

infη∈γt
ã(η)

)(
1− t2

R(t)

)n
dt.

Now choose R(t) to control the above integral as follows. Let τ ∈ (0, 1) and consider the interval
I = {y ∈ R : |y| ≤ (1 − τ) ν

‖b1‖L∞(D)
}. By construction, we have the strict inclusion Γ1 ⊂ I with

dist(Γ1, I) >
(1−τ)ν̃
C1

> 0.
Then, the corresponding preimages satisfy the inclusion (y1)−1(Γ1) = [−1, 1] ⊂ (y1)−1(I) and

(y1)−1(I) = (−1− δ1, 1 + δ2) with δ1, δ2 > 0. Choose the radius

(6.12) R(t) ≡ min{t+ 1 + δ1,−t+ 1 + δ2} > 0

which implies, by virtue of (6.9),

(6.13) inf
η∈γt

ã(η) ≥ τ ã1.

Let

(6.14) δ(τ, y2, . . . , yN ) ≡ min{δ1, δ2} ≥
(1− τ)ν̃
C1

2
ymin − ymax

and observe that (6.11-6.14) imply

‖dn‖H1
0 (D) ≤

(2n+ 1)CDθf
τ ã12n

∫ 1

−1

(
1− t2

t+ 1 + δ

)n
dt

which is what we wanted to prove.

Now we use a result from [27], namely that we have
Lemma 6.3 (Integral estimate). Let ξ < −1 and define

r ≡ 1

|ξ|+
√
ξ2 − 1

, 0 < r < 1.

Then there holds

(−1)n
∫ 1

−1

(
t2 − 1
t+ ξ

)n
dt = (2r)n2n+1 n!

(2n+ 1)!!
Φn,0(r2)

where Φn,0(r2) is the Gauss hypergeometric function. Moreover, we have

Φn,0(r2) =
√

1− r2 +O
(

1
n1/3

)
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uniformly with respect to 0 < r < 1.
Lemma 6.4. Let τ ∈ (0, 1). Under Assumption 6.1 there exist positive constants C, θf > 0 such
that

‖dn‖H1
0 (D) ≤

2CDθf
τ ã1

√
πn

2
(
√

1− r2 +O
(

1
n1/3

)
) rn

with

r ≡ 1

|ξ|+
√
ξ2 − 1

, 0 < r < 1

and ξ < −1− C(1− τ) < −1.

Proof. The result follows from the last two lemmata and the asymptotic equivalence

(2n)!!
(2n− 1)!!

∼
√
πn

2
, n→∞.

Finally, we can state the estimate for the size of the series in (6.7).
Lemma 6.5. Let τ ∈ (0, 1). Under assumption 6.1 there exist positive constants C, θf > 0 such
that

(E1)(y2, . . . , yN ) ≤
CDθf

√
|Γ1|

τ ã1
(
√

1− r2 +O
(

1
(p1)1/3

)
)
√
π

rp1+1

√
1− r2

Proof. Use Lemma 6.4 to estimate the tail of the series

(E1)2(y2, . . . , yN ) =
|Γ1|
2

+∞∑
n=p1+1

2
2n+ 1

‖dn‖2H1
0 (D).

The main result of this section, namely the exponential convergence with respect to the multi-
index p as in [27], follows from the above lemmata, i.e.
Theorem 6.2. Let τ ∈ (0, 1) and u be the solution of (2.11), u ∈ L2(Γ)⊗H1

0 (D), which is analytic
with respect to y, onto the subspace Zp ⊗H1

0 (D). Then there exist positive constants, 0 < C,Cf ,
such that

(6.15)

Ep ≡ min
v∈Zp⊗H1

0 (D)
‖u− v‖L2(Γ)⊗H1

0 (D)

≤ CDCf
τ

√
π

√√√√ N∑
i=1

|Γi|
∫

Γ̂i

((
1 +

1√
1− r2i

O
(

1
(pi)1/3

))
rpi+1
i

ãi

)2

dŷi

with

ri(ŷi) ≡
1

|ξi|+
√
ξ2i − 1

, 0 < ri < 1, i = 1, . . . , N

and ξi(ŷi) < −1− C(1− τ) < −1.
Similarly as the k×h−version, cf. (5.10), the p-version has a superconvergence result for the

approximation of expected value of the solution.
Theorem 6.3 (Superconvergence of the p-version with piecewise linear FEM in space.). There
holds

‖E[u− uph]‖L2(D) ≤ C

(
h2 +

1
τ

N∑
i=1

(‖ri‖L∞(Γ̂i)
)2pi+2

)
with 0 < ri(ŷi) < 1 as in Theorem 6.2 and C > 0 is independent from u, h, pi and ri.
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The proof of the previous Theorem uses Theorem 6.2 and and is completely similar to the proof
of Theorem 5.2.

7. Double orthogonal polynomials

Here we explain the use of double orthogonal polynomials to compute efficiently the solution of
the k×h−version and the p×h−version studied in Sections 5 and 6 respectively. The idea is to use
a special basis to decouple the system in the y-direction, yielding just a number of undecoupled
systems, each one with the size and structure of one Monte Carlo realization of (4.1).

Without any loss of generality we focus on the p-version, i.e. find uph ∈ Zp ⊗Xd
h such that

(7.1)
∫

Γ

ρ(y)
∫
D

a(y, x)∇uph(y, x) · ∇v(y, x)dxdy =
∫

Γ

ρ(y)
∫
D

f(y, x)v(y, x)dxdy ∀v ∈ Zp ⊗Xd
h.

Let {ψj(y)} be a basis of the subspace Zp ⊂ L2(Γ) and {ϕi(x)} be a basis of the subspace
Xd
h ⊂ H1

0 (D). Write the approximate solution as

(7.2) uph(y, x) =
∑
j,i

uijψj(y)ϕi(x)

and use test functions v(y, x) = ψk(y)ϕ`(x) to find the coefficients uij . Then (7.1) gives∑
j,i

(∫
Γ

ρ(y)ψk(y)ψj(y)
∫
D

a(y, x)∇ϕi(x) · ∇ϕ`(x)dxdy
)
uij =

∫
Γ

ρ(y)ψk(y)
∫
D

f(y, x)ϕ`(x)dxdy,∀k, `

which can be rewritten as
∑
j,i

(∫
Γ
ρ(y)ψk(y)ψj(y)Ki,`(y)dy

)
uij =

∫
Γ
ρ(y)ψk(y)f`(y)dy ∀k, ` with

Ki,`(y) ≡
∫
D
a(y, x)∇ϕi(x)·∇ϕ`(x)dx and f`(y) ≡

∫
D
f(y, x)ϕ`(x)dx. Now, if we have that the dif-

fusion coefficient, a, is a truncated Karhunen-Loève expansion, a(y, x) = E[a](x) +
∑N
n=1 bn(x)yn,

and by the independence of the Y components its joint probability density decouples into the
product ρ(y) = ΠN

m=1ρm(ym) then we have a corresponding “Karhunen-Loève ” like expression for
the stiffness matrix

Ki,`(y) ≡
∫
D

(E[a](x) +
N∑
n=1

bn(x)yn)∇ϕi(x) · ∇ϕ`(x)dx = K0
i,` +

N∑
n=1

ynK
n
i,`

with deterministic coefficients

K0
i,` ≡

∫
D

E[a](x)∇ϕi(x) · ∇ϕ`(x)dx

and

Kn
i,` ≡

∫
D

bn(x)∇ϕi(x) · ∇ϕ`(x)dx.

By the same token we have,∫
Γ

ρ(y)ψk(y)ψj(y)Ki,`(y)dy =K0
i,`

∫
Γ

ρ(y)ψk(y)ψj(y)dy

+
N∑
n=1

Kn
i,`

∫
Γ

ynρ(y)ψk(y)ψj(y)dy.

Since ψk ∈ Zp, with multiindex p = (p1, . . . , pN ), it is enough to take it as the product

ψk(y) =
N∏
r=1

ψkr(yr)
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where ψkr : Γr → R is a basis function of the subspace

Zpr = span[1, y, . . . , ypr ] = span[ψhr : h = 1, . . . , pr + 1].

Keeping this choice of ψk in mind,∫
Γ

ρ(y)ψk(y)ψj(y)Ki,`(y)dy =K0
i,`

∫
Γ

N∏
m=1

ρm(ym)ψkm(ym)ψjm(ym)dy

+
N∑
n=1

Kn
i,`

∫
Γ

yn

N∏
m=1

ρm(ym)ψkm(ym)ψjm(ym)dy

Now, for every set Γn, n = 1, . . . , N choose the polynomials, ψj(y) =
∏N
n=1 ψjn(yn), to be biorthog-

onal, i.e. for n = 1, . . . , N they must satisfy

(7.3)

∫
Γn

ρn(z)ψkn(z)ψjn(z)dz = δkj∫
Γn

zρn(z)ψkn(z)ψjn(z)dz = cknδkj .

To find the polynomials ψ we have to solve N eigenproblems, each of them with size (1+ pn). The
computational work required by these eigenproblems is negligible with respect to the one required
to solve for uij , cf. [26], section 8.7.2. The orthogonality properties (7.3) for ψ imply the decoupling∫

Γ

ρψkψjdy =δkj ,
∫

Γ

ynρψkψjdy =cknδkj . By means of this decoupling we now conclude that

∑
j,i

(∫
Γ

ρ(y)ψk(y)ψj(y)Ki,`(y)dy
)

=K0
i,`

∫
Γ

ρ(y)ψk(y)ψj(y)dy

+
N∑
n=1

Kn
i,`

∫
Γ

ynρ(y)ψk(y)ψj(y)dy

=

(
K0
i,` +

N∑
n=1

ckn Kn
i,`

)
δkj .

The structure of the linear system that determines uij now becomes block diagonal, which each
block being coercive and with the sparsity structure identical to one deterministic FEM stiffness
matrix, i.e.

(
K0 +

∑N
n=1 c1n K

n
)

0 . . . 0

0
(
K0 +

∑N
n=1 c2n K

n
)

. . . 0
...

. . .
...

0 . . . 0
(
K0 +

∑N
n=1 cNn K

n
)


The conclusion is that the work to find the coefficients uij in (7.2) is the same as the one needed
to compute

∏N
i=1(1 + pi) Monte Carlo realizations of uh defined in (4.1). Beside this, observe that

as a consequence of the uniform coercivity assumption, each of the diagonal blocks in the system
above is symmetric and strictly positive definite.
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8. Asymptotical efficiency comparisons

In this section we compare the asymptotical numerical complexity for the Monte Carlo Galerkin
finite element method, cf. Section 4, with the Stochastic Galerkin finite element method introduced
in Sections 5 and 6. The quantity of interest, i.e. the goal of the computation, is the expected
value of the solution, E[u], and its approximation is studied in both L2(D) and H1

0 (D) sense. The
Monte Carlo Galerkin finite element method controls the computational error in probability sense,
yielding a computational work that grows only like a polynomial with respect to the number of
random variables decribing the problem. On the other hand, the Stochastic Galerkin finite element
method yields deterministic bounds for the error. Thanks to the analytic dependence of E[u] with
respect to the random variables Yi, cf. Section 6, the p-version of the Stochastic Galerkin finite
element method has a computational complexity that can compete with the Monte Carlo approach.
A posteriori error analysis and adaptivity issues will not be treated here but will be the subject
of forthcoming papers. In all the cases, the spatial discretization is done by piecewise linear finite
elements on globally quasiuniform meshes. For the k×h−SGFEM the Γ partitions are also assumed
to be globally quasiuniform. Beside this, the diffusion function a is assumed to be a truncated
Karhunen-Loève expansion.

8.1. MCGFEM versus k×h−SGFEM. Here we consider the computational work to achieve a
given accuracy bounded by a positive constant TOL, for both the MCGFEM and the k×h−SGFEM
methods. This optimal computational work indicates under which circumstances one method may
be best suited. When using the MCGFEM method to approximate the solution of (1.1) in energy
norm the error becomes, applying Proposition 4.2 together with (4.5) that given a confidence level,
0 < c0 < 1, there exists a constant C > 0 depending only on c0 such that

(8.1) P

‖E[u]− 1
M

M∑
j=1

uh(·;ωj)‖H1
0 (D) ≤ C(h+

1√
M

)

 ≥ c0

Then, in the sense of (8.1) we write EMCGF EM = O(h) + O(1/
√
M). The corresponding com-

putational work for the MCGFEM method is WorkMCGF EM = O((1/hd)r + 1/hd)M, where the
parameter 1 ≤ r ≤ 3 relates to the computational effort devoted to solve one linear system with
with n unknowns, O(nr). From now on we continue the discussion with the optimal r = 1 that
can be achieved by means of the Multigrid method, cf. [12, 13, 29]. Thus, choosing h and M to
minimize the computational work for a given desired level of accuracy TOL > 0 yields the optimal
work

(8.2) Work∗MCGF EM = O
(
TOL−(2+d)

)
.

On the other hand, if we apply a k×h−SGFEM with piecewise polynomials of order q in the
y−direction the computational error in H1

0 (D) norm is, cf. Corollary 5.1,

ESGF EM = O(h) +NO(kq+1)

and the corresponding computational work for the k×h−version is

WorkSGF EM = O
(
h−d(1 + q)N k−N

)
.

Here N is the number of terms in the truncated Karhunen-Loève expansion of the coefficients a
and f and k is the discretization parameter in the y direction. Similarly as before, we can compute
the optimal work for the k×h−SGFEM method, yielding

Work∗SGF EM = O((1 + q)N
(

TOL
N

)− N
q+1

TOL−d).
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Therefore, a k×h−version SGFEM is likely to be preferred whenever TOL is sufficiently small
and N/2 < 1 + q, i.e. if the number of terms in the Karhunen-Loève expansion of a is large
then the degree of approximation in the y direction, q, has to become correspondingly large. We
summarize the comparison results in Table 1, where we also include corresponding results from
the p×h−version, to be derived in Subsection 8.2.

MCGFEM k×h−version SGFEM p×h−version SGFEM

Work M/hd (1+q)N

hdkN

(1+p)N

hd

H1
0 (D) Error h+ 1√

M
h+ kq+1 h+ r(p+1)

H1
0 (D) Work∗ TOL−(2+d) TOL−

N
q+1 TOL−d (logr(TOL))NTOL−d

Table 1. Approximation of the function E[u] inH1
0 (D). Asymptotical numerical

complexity for the MCGFEM and SGFEM methods.

Similarly, if we are interested in controlling the difference ‖E[u] − E[uh]‖L2(D) the application of
(4.2) and Properties 4.1 and 4.2 for the MCGFEM method and Theorem 5.2 on the superconver-
gence of the k×h−SGFEM method imply the results shown in Table 2. In this case k×h−SGFEM
is likely to be preferred whenever N/4 < (q + 1) and TOL is sufficiently small. In addition, the

MCGFEM k×h−version SGFEM p×h−version SGFEM

Work M/hd (1+q)N

hdkN

(1+p)N

hd

L2(D) Error h2 + 1√
M

h2 + k2(q+1) h2 + r2(p+1)

L2(D) Work∗ TOL−(2+d/2) (TOL)−
N

2(q+1) TOL−d/2 (logr(TOL))NTOL−d/2

Table 2. Approximation of the function E[u] in L2(D). Asymptotical numerical
complexity for the MCGFEM and SGFEM methods.

comparison tells us that to be able to be competitive with the Monte Carlo method when the
number of relevant terms in the Karhunen-Loève expansion is not so small, an optimal method
should have a high order of approximation and should avoid as much as possible the coupling be-
tween the different components of the numerical solution to preserve computational efficiency. The
approach proposed by Ghanem and Spanos [25] based on orthogonal polynomials has, whenever
the approximate diffusion satisfies (1.2), a high order of approximation but introduces coupling
between the different components of the numerical solution. The uncoupling can be achieved for
linear equations using double orthogonal polynomials, see the description in Section 7. With this
motivation, Section 6 studies the convergence of the p×h−SGFEM.

8.2. MCGFEM versus p×h−SGFEM. Here we consider the computational work to achieve a
given accuracy, for both the p×h− version of SGFEM defined in (6.1) and the MCGFEM method
for the approximation of E[u] defined in Section 4, i.e. we are interested in controlling the difference
‖E[u] − E[uph]‖L2(D) or ‖E[u] − 1

M

∑M
j=1 uh(·;ωj)‖L2(D), respectively. This computational work

indicates under which circumstances one method may be better suited than the other. Besides
this, let us assume that we use in our computations a piecewise linear FEM space in D. When
using the MCGFEM method to approximate the expected value of the solution of (1.1), we have
the optimal work required to achieve a given desired level of accuracy TOL > 0, cf. (8.2),

Work∗MCGF EM = O(1/TOL2+d/2).
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On the other hand, if we apply a p×h−version of the SGFEM, with pi = p, i = 1, . . . , N , the
computational error is, cf. Theorem 6.3,

ESGF EM = O(h2) +O(r2(p+1)), 0 < r < 1,

and the corresponding computational work is, cf. Section 7,

WorkSGF EM = O

(
(1 + p)N

hd

)
.

Recall that N is the number of terms in the truncated Karhunen-Loève expansion of the coefficients
a and f and k is the discretization parameter in the y direction. As before, we can compute the
optimal work for the SGFEM method, yielding

Work∗SGF EM ≤ O
(
(logr(TOL))NTOL−d/2

)
and the asymptotical comparison

lim
TOL→0

Work∗SGF EM

Work∗MCGF EM

= lim
TOL→0

(logr(TOL))NTOL2 = 0.

Therefore, for sufficiently strict accuracy requirements, i.e. sufficiently small TOL, in the com-
putation of E[u], SGFEM requires less computational effort than MCGFEM. The work of Bahvalov
and its subsequent extensions, cf. [9, 28, 55, 41], generalizes the standard Monte Carlo method,
taking advantage of the available integrand’s smoothness and yielding a faster order of conver-
gence. The optimal work of such a method is for our case, i.e. the approximation of E[u] in L2(D),
O(C(N)TOL−

1
1/2+q/N TOL−d/2), where it is assumed that the integrand u has bounded derivatives

up to order q with respect to y and the integral is done in the N -dimensional unit cube.
The result on the computational work of the p×h−version of the SGFEM presented in this work

is then related to the case q = ∞, since u is analytic with respect to y. This analyticity allows the
exponential convergence with respect to p, cf. Theorem 6.3.

Notice that we only discussed the optimal asymptotical computational work required by both
methods, but in practice the constants involved in the asymptotic approximations makes these
comparisons just indicative, and not conclusive. In addition, we have only studied the case where
the integrals

∫
Γi
ρiy

kdy can be computed exactly for k = 0, 1, . . ., and not considered the more
general case where quadrature rules are needed to approximate such integrals.
Remark 8.1 (Use of higher order FEM approximations onD). Based on Remark 5.1 and following
the approach from Sections 8.1 and 8.2 we can discuss the possible use of higher order FEM
approximations on D. This use seems a priori always useful for the p×h−version of the SGFEM
while for the k×h−version higher order FEM on D are attractive provided d >> N/(q+1). On the
other hand a MCGFEM piecewise linear approximation on D with error TOL requires the same
work as the optimal higher order method with error slightly larger than TOL1+d/4. See [53], p.
1884, for a similar discussion on the weak approximation of ordinary SDEs.
Remark 8.2 (Combination of MCGFEM with SGFEM). It is possible to combine in a natural
way the Monte Carlo method with an SGFEM version, partitioning Γ in order to take advantage
of their different convergence rates. Split the domain Γ into Γ = ΓMC ∪ ΓG, ΓMC ∩ ΓG = φ and
approximate

(8.3) E[u(Y, ·)] =E[u(Y, ·)|Y ∈ ΓMC ]P (Y ∈ ΓMC) + E[u(Y, ·)|Y ∈ ΓG]P (Y ∈ ΓG).

using SGFEM in ΓG and MCGFEM in ΓMC .
Remark 8.3 (Successive approximation method). The work [5] proposes a successive approxima-
tion for the solution of (1.1). As any Neumman expansion with K terms, whenever it converges
it has an error of the form ErrorBC ≤ C(h+ ξK+1

ξ−1 ) for some 0 < ξ < 1. The computational work
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to achieve this error is WorkBC ≤ C NK+1

(N−1)hd . Then, a comparison between this method and the

MCGFEM yields that if ξ < 1/
√
N then the method from [5] is likely to be preferred. On the other

hand, for sufficiently small tolerances the p×h−version of the SGFEM is more efficient than the
successive approximation.
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