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Abstract

The report provides a short documentation for the second edition of the Geometrical Mod-
eling Package (GMP) originally presented in [1]. The GMP can be used for modeling two-
dimensional manifolds, both in ��� (for Finite Element (FE) computations), and in ��� (for
Boundary Element (BE) computations), and three-dimensional manifolds in ���. Both explicit
and implicit parameterizations are used.

The new edition has been implemented in FORTRAN90 with the following changes made,
compared with [1]:

� A new data structure, based on user defined objects and supported by FORTRAN90, has
been developed. With descriptive names allowed in FORTRAN90 and naturally defined
geometrical objects, the logic of the code is easier to follow.

� The code supports the concatenation of two separate, geometrically compatible, objects.
This helps dealing with more complicated manifolds which can be separated into disjoint
pieces (sub-manifolds), with each piece modeled separately. In practice, GMP input files
for non-trivial objects are prepared by writing small auxiliary programs. It is easier to
write such programs for smaller, isolated sub-manifolds.

� Inconsistencies, related to the orientation of surfaces, and orientation of faces for prisms
and hexahedrons, have been corrected.

� Transfinite interpolation prism and hexahedron have been added.
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Figure 1: Reference triangle, rectangle,prism and hexahedron

1 Introduction

1.1 Motivation

The success of Finite Element (FE) or Boundary Element (BE) simulations depends much on a
precise representation of the geometry of involved objects. The geometry issue becomes especially
sensitive for adaptive methods where we strive for high accuracy of simulations, which may be
completely offset by errors resulting from a poor geometry representation.

The original version of the Geometrical Modeling Package(GMP) was motivated by research
on ��-adaptive discretizations. It has provided a foundation for a multi-block �� mesh generator
that has been used in many projects. The small size of the package allows for maintaining a
continuous interface with the adaptive codes to update the geometry information during mesh
refinements.

The original version of GMP was written in Fortran 77, and it has shared all shortcomings of
the language: names could not exceed a few characters and, therefore, were not communicative;
the data structure had to be expressed in terms of multiple arrays; no dynamic allocation of memory
was possible.

The new version of the package is based on a completely rewritten Fortran 90-like data struc-
ture. Additionally, a new important feature has been added to the code - the possibility of con-
catenating two geometrical objects into one. This feature comes handy when we need to work on
complicated geometries that can be broken into disjoint objects which can first be studied individ-
ually.
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Figure 2: Newton-Raphson iterations

1.2 Main assumptions and parameterizations

Geometrical objects are classified into the following entities: Points, Curves, Triangles, Rectan-
gles, Prisms, Hexahedrons. All entities are prescribed in a global Cartesian system of physical
coordinates ��, � � �,� � �,� , with � = 2 for two dimensional problems, and � = 3 for three
dimension problems.

Each of the entities has a corresponding catalog of objects. For example, the simplest entity, the
points, contain not only the usual geometrical points uniquely defined by their physical coordinates,
but also the implicit points defined by three intersecting surfaces.

Mathematically, each of the geometrical objects is identified with its corresponding parameter-
ization. More specifically, e.g., a curve is a transformation �� from ��� �� into ��� i.e.,

�� � ��� ��� ��� � � �� �

We define the remaining entities in the same manner. The reference objects are shown in Figure 1.
If two or more mappings are used to parameterize a specific geometric object, we shall treat them
as describing separate objects.

Conceptually, the parameterizations are classified into two classes: explicit parameterizations
, and implicit parameterizations. In the first case, a mapping is defined explicitly by a specific
formula. The simplest examples include objects which are characterized uniquely by entities of
lower dimension, and a specific interpolation rule, e.g., a segment of straight line is defined by its
endpoints, a plane triangle is defined by its edges. In the second case the mappings are defined
implicitly by specifying systems of nonlinear equations to be solved for coordinates �� 	� 
�

The structure of our code is open. New definitions can be easily added to the catalogs to
enhance the existing capabilities of the code.
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Figure 3: Compatibility of parameterizations for a triangle

1.3 Newton-Raphson technique

For implicit parameterizations, in order to assess the value of the mapping for some specific choice
of reference coordinates, a nonlinear system of algebraic equations has to be solved using typically
a few Newton-Raphson iterations [3].

Let � � �� � �� be a nonlinear �� function illustrated in Fig. 1.2. In the classical Newton
method, we iterate towards root � � 
, starting with an initial approximation ��, and approximat-
ing function ���	 in a neighborhood of �� with its tangent line at ��,

���	 � ����	 
 � ����	��� ��	� (1.1)

The root of the linear approximation ����	 
 � ����	��� ��	 � �� � � �� �
�����
� �����

provides the
next iterate toward finding a root of ���	, provided � ����	 �� �.

The Newton-Raphson method is a generalization of the Newton method to a system of algebraic
equations represented by a vector-valued function � � ��� � ��� . In order to find a solution to the
system ���	 � �, given a starting approximation ��, we compute again the linear approximation
as

���	 � ����	 
 � ����	��� ��	� (1.2)

where � ����	 is the � � � Jacobian matrix of first order derivatives �� ����	��� � ���
���

���	 The
next approximation �� is obtained from

�� � �� � �� ����	�
������	 (1.3)

provided � ����	 is not singular.
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Figure 4: Compatibility of parameterizations for a hexahedron

2 Compatibility of parameterizations

One matter must be very strongly emphasized –the compatibility of parameterizations. We begin
with a discussion of a typical example - a triangle shown in Fig. 3. Assume that the reference
triangle is mapped onto the physical triangle using a map �� � ���� ��	 �� �� ���� ��	.

Each of the physical triangle edges, a curve, comes with its own global orientation (illustrated
with the arrow). On the other side, the natural parameterizations � � ����	 for the reference
triangle edges �, �

�� � �

�� � �

�
�� � �� �

�� � �

�
�� � �
�� � �� �

(2.4)

induce local orientations for the edges. Consider edge � of the triangle coinciding in the physi-
cal space with a curve �, and let ����	 denote the parameterization for the curve provided by GMP.
We request that

�� �����
�		 � ����	 (2.5)

where �� �

�
� if local and global parameterizations are compatible
�� � otherwise

A similar condition is enforced for rectangles.

The situation is more complicated for hexahedrons and prisms. We shall discuss the hexahe-
dron case shown in Fig. 4 first. The local orientation of a face can be illustrated with a local face
system of coordinates.
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Figure 5: Local face orientations in reference hexahedron
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Figure 7: Local face orientations in reference prism

Fig 5 shows the local orientations for each of six faces of the reference hexahedron, corre-
sponding to the lexicographic coordinates,

bottom � �� � ��� �� � ��� �� � �
top � �� � ��� �� � ��� �� � �
front � �� � ��� �� � �� �� � ��
right � �� � �� �� � ��� �� � ��
rear � �� � ��� �� � �� �� � ��
left � �� � �� �� � ��� �� � ��

(2.6)

There are now eight possible transformations that relate local and global reference coordinates for
of a face 1. There are depicted in Fig. 6.

Let �	 be now the parameterization for one of the hexahedron faces � . We request that

�
�������			 � �	��	 (2.7)

where ���	 reflects the orientation of the face, and corresponds to one of the eight cases depicted
above, ����	 is the local coordinates of the face, and �
��	 is the parameterization of the hexahe-
dron.

We enforce the same rule for the prisms. The local parameterization for the five faces of the
reference prism are as follows:

1In FE computations we talk about the orientation of the face.
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Figure 8: Transformations between local and global coordinates for a triangular face

bottom � �� � ��� �� � ��� �� � �
top � �� � ��� �� � ��� �� � �
front � �� � �� ��� �� � ��� �� � ��
right � �� � �� �� � �� ��� �� � ��
left � �� � ��� �� � �� �� � ��

(2.8)

They are depicted in Fig. 7, and the transformations reflecting different triangle face orientations
are shown in Fig. 8.

3 Data structure

We define seven different geometrical objects listed in Table 1. Each of the definitions includes a
complete connectivity information, independent of a particular Type of the entity, and two dynam-
ically allocated arrays (pointers) for storing a number of integer and real attributives of the object.
The geometrical objects are placed then in separate seven global arrays with the same name 2.

Additionally, a number of global parameters is introduced:

2We add ’s’ to the names, e.g., SURFACES for storing surface objects
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Entity Character Integer Integer Pointer Real Pointer

Surface Type Idata Rdata
Point Type NrCurv CurvNo , Idata Rdata
Curve Type EndPoNo(2) , NrFig FigNo , Idata Rdata
Triangle Type EndgeNo(3) , BlockNo(2) Idata
Rectangle Type EdgeNo(4) ,BlockNo(2) Idata
Prism Type FigNo(5) Idata
Hexahedron Type FigNo(6) Idata

Table 1: The data in module for different entities

NDIM - dimension of the problem
= 2 for plane problems
= 3 for space problems

MANDIM - dimension of the manifold (2 or 3)
NRPOINT - number of points
NRCURVE - number of curves
NRTRIAN - number of triangles
NRRECTA - number of rectangles
NRPRISM - number of prisms
NRHEXAS - number of hexahedrons
NRSURFS - number of surfaces

4 Catalog of Geometrical Entities

We review definitions of different geometrical entities supported in the code.

4.1 Catalog of surfaces

The catalog of surfaces is summarized in Table 2. Each surface is oriented with the unit vector of
the gradient of the surface equation.

� Plane normal to a given vector and passing through a point (Type =’VecPt’)

Equation:

��� ��	

 �	 � 	�	�
 �
 � 
�	� � � (4.9)
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Description of surfaces Type Rdata/Description

Plane normal to a Rdata(1:3)
given vector and ’VecPt’ the point coordinates
passing through Rdata(4:6)

a point the vector components
Rdata(1:3)

the 1st point coordinates
Plane passing ’ThrPt’ Rdata(4:6)

through three points the 2nd point coordinates
Rdata(7:9)

the 3st point coordinate
Rdata(1:3)

Sphere ’Sphere’ the center coordinates
Rdata(4)

radius of the sphere
Rdata(1:3)

center point coordinates for the base of the cylinder
Infinite cylinder ’Cylinder’ Rdata(4:6)

vector parallel to the cylinder axis
Rdata(7)

radius of the cylinder

Table 2: Data for different types of surfaces

��� 	�� 
� - coordinates of the point

� �� � - components of the normal vector

Unit vector � � ���� ��� ��	 of �
� �� �	 specifies the orientation.

� Plane passing through three points (Type = ’ThrPt’)

Equation:

��� ��	
� 
 �	 � 	�	
� 
 �
 � 
�	
� � � (4.10)

where,

� � ��� � ��	� ��� � ��	 (4.11)

with

��� 	�� 
� - coordinates of the first point ��

��� 	�� 
� - coordinates of the first point ��

��� 	�� 
� - coordinates of the first point ��.
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Orientation is specified by unit vector of vector �, i.e., the order in which the three points
�������� are listed, implies the orientation of the plane.

� Sphere (Type = ’Sphere’)

Equation:

��� ��	
� 
 �	 � 	�	

� 
 �
 � 
�	
� � �� � � (4.12)

��� 	�� 
� - coordinate of the center of the sphere
� - radius of the sphere

The external unit vector � � ��
�
� �
�
� 

�
	 defines the orientation of the sphere.

� Infinite cylinder (Type = ’Cylinder’)

Equation:

��� 
 	�� � �� � � (4.13)

where,

�� � ���� ��	 (4.14)

with

� - a transformation matrix whose third column coincides with the
unit vector of vector ����� ��� ��	 explained below, and the first two are
vectors orthogonal to � and orthogonal to each other

��� 	�� 
� - coordinates of a point on the cylinder axis
��� ��� �� - a vector parallel to the axis of the cylinder
� - radius of the cylinder

The unit vector of gradient of Equation (4.1.5) wrt ��� 	� 
	 defines the orientation of the
cylinder.

4.2 Catalog of points

The points supported by the package are listed in Table 3. All points share the same connectivity
information.
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Description Type Attribute

Regular point ’Regular’ NrCurv, CurvNo(1:Nrcurv), Rdata(3)
Implicit point ’Implicit’ NrCurv, CurvNo(1:Nrcurv), Rdata(3), Idata(3)

Table 3: Data for different types of points

NrCurv - number of curves that meet at the point
CurvNo(1:Nrcurv) - curves’ numbers for curves that meet at the point

� Regular point (Type = ’Regular’)

Rdata(3) - coordinates of the point

� Implicit point (Type = ’Implicit’)

Rdata(3) - coordinates of a starting point for New-Raphson iterations
Idata(3) - the intersecting surfaces’ numbers

4.3 Catalog of curves

The curves supported by the package are listed in Table 4. All curves share the same connectivity
information:

EdgePoNo(2) - the endpoints number, listed in order consistent
with the curve orientations

NrFig - number of rectangles and triangles adjacent to the curve
FigNo(1:NrFig) - a list of all the nicknames of the rectangles and triangles

that are adjacent to the curve.

Nicknames for triangles are defined as :

���
������������ � �� 
 � (4.15)

Nicknames for rectangle are defined as :

����
������������ � �� 
 � (4.16)

Additionally, the nicknames are premultiplied with �� sign factor indicating whether the local
orientation of the corresponding edge of the figure is consistent with the global orientation of the
curve.
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Description of curves Type Attribute

Segment of straight line ’Seglin’ EdgePoNo(2), NrFig, FigNo(1:NrFig)
Quarter of a circle ’QuaCir’ EdgePoNo(2), NrFig,

FigNo(1:NrFig), Rdata(NDIM)
Segment of a circle ’SegCir’ EdgePoNo(2), NrFig,

FigNo(1:NrFig), Rdata(NDIM)
Implicit curve ’ImpCur’ EdgePoNo(2), NrFig, FigNo(1:NrFig),

Rdata(NDIM), Idata(4)

Table 4: Data for different types of curves

� Segment of straight line (Type =’Seglin’ )

� Quarter of a circle (Type = ’QuaCir’)

Rdata((NDIM) - coordinates of the circle center

� Segment of a circle (Type = ’SegCir’)

Rdata((NDIM) - coordinates of the circle center

� Implicit curve (Type = ’ImpCir’)

Rdata((NDIM) - coordinates of a starting point for Newton-Raphson
iterations

Idata(4) - intersecting surfaces’ numbers

Parameterization:

What we know is the starting point, and the four intersecting surfaces that constitute the curve
as shown in Fig.9. Denoting the surface equations by ����� 	� 
	 � �, with � � �� � � � � � we
solve the following system of nonlinear equations,

����� 	� 
	 � �

����� 	� 
	 � � (4.17)

��� �	����� 	� 
	 
 ������ 	� 
	 � �
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Figure 9: Implicit curve( Four Surfaces define the curve)

The physical coordinates can be now expressed as mapping ���	� 	��	� 
��	 with � 	 ��� ��.
By differentiating the equation above wrt reference coordinate �, we obtain,
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� � (4.18)
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� �

Once the coordinates �� 	� 
 are determined, the linear system above is solved for the deriva-
tives ��

��
� ��
��
� �

��

.

4.4 Catalog of triangles

The triangles supported by the package are listed in Table 5. All triangles share the same connec-
tivity information:

EdgeNo(3) - curves’ numbers that constitute edges of the triangle with �� sign
factor indicating whether the global orientation of the curve is
consistent with the local orientation for the corresponding

triangle edge.
BlockNo(2) - nicknames for the prisms adjacent to the triangle.
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Figure 10: Parameterization of a spherical triangle

The nicknames are defined as,

������������� � �� 
 ������� (4.19)

where ������� � �� �� � � � � indicates the global orientation of the triangle as seen from the adjacent
prism.

Description of triangles Type Attributes

Plane triangle ’PlaneTri’ EdgeNo(3), BlockNo(2)
Spherical triangle ’SpherTri’ EdgeNo(3), BlockNo(2)
Quarter of a circular ’QtCirTri’ EdgeNo(3), BlockNo(2)
Part of Sperical triangle ’PaSphTri’ EdgeNo(3), BlockNo(2)
Implicit triangle ’ImpliTri’ EdgeNo(3), BlockNo(2), Idata(4)
Implicit Spherical ’ImSphTri’ EdgeNo(3), BlockNo(2)

Table 5: Data for different types of triangles

� Plane triangle (Type = ’PlaneTri’)

Note that all edges of the triangle must be segments of straight line.

� Spherical triangle (Type =’SpherTri’)

Note that all edges of the triangle must be quarters of circles.

Parameterization:

Given an octant of a sphere, shown in Fig. 10 , we construct the corresponding parameter-
ization, mapping the reference triangle onto the octant, by introducing auxiliary spherical
coordinates ��  and considering the composition of two singular mappings:
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– inverse map to the map, describing Cartesian product ��� �
�
	 � ���

�
� �	 in ���  	 plane

onto the reference triangle,

�� �
�

!
��

�

!
 


�

�
	

�� � �
�

!
� 
 �	�

�

!
 


�

�
	 (4.20)

– the usual spherical coordinates parameterizations,

��� � � 
�� 
�� �

��� � � 
�� ��� � (4.21)

��� � � ��� 

It can be checked that the resulting composition is � � with bounded derivatives. By com-
bining the map with a rigid rotation, we can parameterize an arbitrary octant of a sphere.

� Circular triangle (Type = ’QtCirTri’)

Note that two edges of the triangle must be straight line segments, and the remaining edge
must be a quarter of a circle.

Parameterization:

Given a quadrant of a circle shown in Fig. 11, we construct the corresponding parameter-
ization, mapping the reference triangle onto the circular triangle, by introducing auxiliary
coordinates �� � and considering the composition of two singular mappings:
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Figure 12: Parameterization for a part of a spherical triangle

– inverse map to the transformation mapping Cartesian product ��� �
�
	 � ��� ��	 in ��� �	

plane onto the reference triangle,

�� �
�

�

��

!

�� �
�

�
���

��

!
	 (4.22)

– the usual polar coordinates parameterization,

��� � � 
�� �

��� � � ��� � (4.23)

��� � �

By combining the inverse of the first map with the second map, and then adding a rigid
rotation in ���, we can parameterize an arbitrary quadrant of a circular disc, located in ���.

� Part of a spherical triangle (Type =’PaSphTri’)

Parameterization:

In the same way as with the octant of a sphere, see Fig. 12, we construct the corresponding
parameterization, mapping the reference triangle onto the spherical triangle, by introduc-
ing auxiliary spherical coordinates ���  	 and considering the composition of two singular
mappings:

– inverse map to the transformation mapping Cartesian product ��� �
�
	� �"� �

�
	 in ���  	
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plane onto the reference triangle,

� �
�� �

�
�

�� 
 ��

 � �" �
!

�
� ��� 
 ��	 


!

�
(4.24)

– the usual spherical coordinates parameterization,

��� � � 
�� 
�� �

��� � � 
�� ��� � (4.25)

��� � � ��� 

� Implicit triangle (Type =’ImpliTri’)

Parameterization:

The triangle is defined by four surfaces, surface ����� 	� 
	, the triangle is located on, and
three surfaces ����� 	� 
	 � �� � � �� � � � � �, defining the edges of the triangle, see Fig. 13.
We solve the following nonlinear system of equations,

����� 	� 
	 � �

��� ���		����� 	� 
	 
 ���	����� 	� 
	 � � (4.26)

������ ����� 
 ��		����� 	� 
	 
 ����� 
 ��	����� 	� 
	� 


������ ����� 
 ��		����� 	� 
	 
 ����� 
 ��	����� 	� 
	� � �

where

� ����� 	� 
	 is the equation of the degenerated sphere with center at the first vertex of the
triangle,

����� 	� 
	 � ��� ��	
� 
 �	 � 	�	

� 
 �
 � 
�	
� (4.27)
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with ��� 	�� 
� being the coordinates of the first vertex.
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 �
�

� ���	� ����	� ����	 are stretching functions determined by requesting the compatibility of
the triangle parameterization with the existing, specified parameterizations of its edges:

��� ���		����
�
���		 
 ���	����

�
���		 � �

��� �����		����
�
����		 
 �����	����

�
����		 � � (4.28)

��� �����		�����
����		 
 �����	����

�
����		 � �

where ������	��
�
���	��

�
����	 denote the parameterizations of the edges.

From the equation above, we get the physical coordinates in terms of reference triangle co-
ordinates ��� ��� �� and the parameterization map is defined now as
����� ��	� 	���� ��	� 
���� ��	. As in the case of the implicit curve definition, the two systems
of equations are differentiated with respect to the reference coordinates, to yield a corre-
sponding linear system of equations for derivatives of �� 	� 
 with respect to ��� ��.

� Implicit spherical triangle by area coordinates (Type = ’ImSphTri’)

Parameterization:

The area coordinates for a point �� on the octant of a sphere are defined as #� �
��

�
where $�

are the areas of the curvilinear triangles determined by geodesics passing through �� , and P
is the total area of the triangle (Fig. 14),

$ � $� 
 $� 
 $� �
!��

�
(4.29)
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With � and % being the usual spherical coordinates, the formulas for $� and $� read as
follows,

�
 ��
����
��� �

����  
 
��� � 
���  
�

��
����
���� ���&�

����  
 
��� � 
���  
� ��� 
 ��	

�
�

(4.30)

�
 ��
����

��� ��� �

����  
 
��� � 
���  
�

��
����
���&�

����  
 
��� � 
���  
� ��

�
�

By relating the area coordinates to the reference coordinates in the usual way,

#� � �� �� � ��� #� � ��� #� � ��

the system of equations is solved for � and %, which in turn determines coordinates � �

�� � �

�� �� � and,upon adding a possible translation and rotation, the physical coordinates �� 	� 
.
As usual, by differentiating the equations, one obtains the corresponding system of equations
for derivatives of �� 	� 
 with respect to the reference coordinates.

4.5 Catalog of rectangles

The rectangles supported by the package are listed in Table 6. All rectangles share the same
connectivity information:

EdgeNo(4) - curves’ numbers that constitute edges of the rectangle with �� sign
factor indicating whether the global orientation of the curve is
consistent with the local orientation of the corresponding edge of
the rectangle.

BlockNo(2) - nicknames for the prisms and hexas that are adjacent to the rectangle.

Recall the definition of the nickname for a prism(hexahedron),

�����������
����
��	������ � �� 
 ������� (4.31)

where ������� � �� �� � � � � indicates the global orientation of the triangle as seen from the adjacent
prism (hexahedra).
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Description of rectangles Type Attributes

Bilinear quadrilateral ’BilQua’ EdgeNo(4), BlockNo(2)
Transfinite interpolation rectangle ’TraQua’ EdgeNo(4), BlockNo(2)
Cylindrical rectangle ’CylRec’ EdgeNo(4), BlockNo(2)
Implicit rectangle ’ImpRec’ EdgeNo(4), BlockNo(2), Idata(5)

Table 6: The data in different types of rectangles
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’

1

2ξ
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x

x

x

Figure 15: Parameterization of a cylindrical rectangle

� Bilinear quadrilateral (Type = ’BilQua’)

Note that all edges of the quadrilateral must be segments of straight line.

� Transfinite interpolation with linear blending functions

quadrilateral (Type=’TraQua’)

Formulas for the curves constituting edges of the quadrilateral are extended to the whole
reference rectangle using the classical transfinite interpolation and linear
blending functions [5] [6].

� Cylindrical rectangle (Type = ’CylRec’)

Note that two opposite edges of the quadrilateral must be segments of a straight line and the
remaining two edges must be quarters of circles.

Parameterization:

The usual, cylindrical coordinates parameterization, see Fig. 15
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Figure 16: Implicit rectangle

��� � � 
���
!

�
��	

��� � � ����
!

�
��	 (4.32)

��� � '��

is superimposed with a rigid body motion.

� Implicit rectangle (Type = ’ImpRec’) The rectangle lies on a given surface with its four
edges cut off by four additional surfaces, see Fig. 16. Parameterization:

Denoting the surface equations by ����	 � �� � � �� � � � � �, we introduce the following
nonlinear equations:

����	 � �

��� ��	��� �����		����	 
 �����	����	

����� �����		����	 
 �����	����	 � � (4.33)

��� ��	��� �����		����	 
 �����	����	


����� �����		����	 
 �����	����	 � �

where ����	� � � �� � � � � � are the stretching functions determined by requesting the compati-
bility of the rectangle parameterization with the existing, specified parameterizations for its
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Figure 17: Reference prism

edges:

��� �����		����
�
����		 
 �����	����

�
�	 � �

��� �����		����
�
����		 
 �����	����

�
�	 � �

��� �����		����
�
����		 
 �����	����

�
�	 � � (4.34)

��� �����		����
�
����		 
 �����	����

�
�	 � �

with ������	��
�
����	��

�
����	��

�
����	 being the parameterizations of the edges.

From the equation above, we can get the physical coordinates in terms of parameterization.
The parameterization map is ����� ��	. Derivatives ���

���
are determined the same way as for

implicit curve and implicit triangle.

4.6 Catalog of Prisms

All prisms supported by the package, see Fig. 17, share the same connectivity information:

Type - Type of the prism
FigNo(1:5) - Nicknames of figures that constitute faces of the prism,
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the nickname of a figure is defined as,

�������� ������ � �� 
 ������� (4.35)

where ������� � �� �� � � � �����	 indicates the global orientation of the figure as seen from the
adjacent prism.

� Transfinite interpolation prism with linear blending functions

The parametrization of the prism is obtained by adding its vertex, edge and surface contri-
butions. We introduce the following notation,

����� ��� ��	 �
	�
�

�� � 


�
�

��� � 

��
�

��� � (4.36)

where

– �� denote the global physical coordinates of vertex �.

Vertex �� Edge �� Surface ��

Number Number Number

��� ��� �� � ������ ��� ��� ����� �� � ����� � ��� ��� �� ��
��� ����� ��� ��� ������� ��� ��� ��
��� ����� ��� ��� ����� �� � ����� � ��� ��� ����� �� � ���

��� �� � �� � ����� ��� ����� �� � ����� ��� ����
��� ���� ��� ������ ��� ����� �� � ���

��� ���� ��� ����� �� � �����
��� �� �� � ��
�	� ��
�
� ��

Table 7: The Prism blending functions for vertex, edges and surfaces

–  � is the corresponding vertex bilinear blending function. It can be expressed as  � �

#�%�, where

� #� is the affine coordinate for the vertex with respect to the bottom or top triangle.

� %� is the 1D shape function of ��.

The vertex blending functions are listed in Table 7.

– ��� is the edge modified bubble function. For the three vertical edges, i.e., edges 7,8,9,

��� � �����	 (4.37)
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for the edges on the bottom and top faces, i.e., edges 1,2,3,4,5,6,

��� �
�����	

����� ��	
(4.38)

where

� �� is the local parameter for the edge, see the 3 vertical edges, i.e., edges 7,8,9,

�� � �� (4.39)

For the edges on the bottom and top surfaces, i.e., edges 1,2,3,4,5,6,

�� �
#��� � #� 
 �

�
(4.40)

where #��� and #� are the affine coordinates for the two end points of the edge.
The nine edge parameterizations are listed in Table 8

Edge �� Surface ��
Number Number

��� ������
� ��� ���� ���

��� �������
� ��� ���� ���

��� ��������
� ��� ���� ���

��� ������
� ��� ��������� � ���

��� �������
� ��� ��� ��� ���

��� ��������
�

��� ��
�	� ��
�
� ��

Table 8: The parameterization for edges and surfaces

� �� is the edge bubble function,

�����	 � ������	� ������ ��	� ����� (4.41)

where


 ������	 is the GMP curve parameterization adjusted for orientation.


 ��� ���� are the coordinates of the two end points of the edge.

–  � is the corresponding edge blending function. For the three vertical edges, i.e., edges
7,8,9,

 � � #� (4.42)
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where #� is the affine coordinate for one of the end points of the edge. For the edges on
the bottom and top faces, i.e., edges 1,2,3,4,5,6,

 � � #�#���%� (4.43)

where

� #� and #��� are the affine coordinates for the two end points of the edge.

� %� is the 1D shape function in terms of ��.

The nine edge blending functions are listed in Table 7.

– ��� is the surface modified bubble function. For the top and bottom surface, i.e., surfaces
1, 2,

��� � �����	 (4.44)

for the three vertical faces, i.e., faces 3, 4, 5,

��� �
�����	

������ ���	
(4.45)

where

� �� is the local parameter for the face, �� � ����� ���	. The five faces parameteriza-
tions are listed in Table 8.

� �� is the surface bubble function,

�����	 � ������	�
��

���

��� �� �

��
���

���
 �� (4.46)

where � � � for a triangle, � � � for a rectangle.


 ������	 is the surface parametrization for the face, provided by GMP, and ad-
justed for orientation.


 ��� are the physical coordinates of the face vertices.


  �� are the corresponding vertex blending function, restricted to the face.


 �� are the bubble functions for each of the four edges on the face.


  � is the corresponding edge blending function, restricted to the face.

–  � is the corresponding face blending function. For the top and bottom face, i.e., faces
1, 2,

 � � %� (4.47)
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Figure 18: Reference hexahedron

where %� is 1D shape function in terms of ��. for the three side vertical faces, i.e., faces
3, 4, 5,

 � � #�#��� (4.48)

where #� and #��� are the two affine coordinates for the end points of top or bottom
surface edge.

The five blending functions for the surfaces are listed in Table 7

Formula (4.6.28) implies the corresponding formula for the derivatives.

4.7 Catalog of hexahedrons

All hexahedrons supported by the package, see Fig. 18, share the same connectivity information:

Type - Type of the Hexahedron.
FigNo(1:6) - Nicknames of the figures that constitute faces of the Hexahedron.

The nicknames for the adjacent figures are defined as,

�������� ������ � �� 
 ������� (4.49)
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where ������� � �� �� � � � � indicates the global orientation of the figure as seen from the adjacent
hexahedron.

� Transfinite interpolation hexahedron with linear blending functions

The parametrization for the hexahedron is obtained by adding its vertex, edge and faces
contributions. We introduce the following notation,

����� ��� ��	 �
��
�

�� � 

���
�

�� � 

	�
�

�� �� (4.50)

– �� denote the global physical coordinates of the vertex (.

–  � is the corresponding vertex blending function. It can be expressed as

 � � %�%�%� (4.51)

where %�� %� and %� are the 1D shape linear functions of ��� �� or ��.

The eight vertex trilinear blending functions are listed in Table 9.

Vertex �� Edge �� Surface ��
Number Number Number

��� ��� ������ ����� � ��� ��� ��� ����� � ��� ��� �� ��
��� ����� ������ ��� ��� ����� ��� ��� ��
��� ������� ��� ��� ����� ��� ��� �� ��
��� ��� �������� ��� ��� ��� ����� � ��� ��� ��
��� ��� ����� � ����� ��� ��� ����� (5) ��
��� ����� ����� ��� ���� ��� �� ��
��� ������ ��� ����
�	� ��� ������� �	� ��� �����

�
� ��� ����� � ���

���� ����� ���

���� ����
���� ��� �����

Table 9: The hexahedron blending functions for vertex, edges and surfaces

– �� is the edge bubble function. It can be expressed as:

�����	 � ������	�
��

���

��� �� (4.52)

where
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� �� is the local parameter for the edge, see Table 10.

� ������	 is the GMP parametrization for the edge, adjusted for orientation,

� ��� are the physical coordinates of the edge end points, � � �� � listed in order
corresponding to the edge local parametrization,

�  �� are the corresponding vertex blending functions, restricted to the edge.

–  � is the corresponding edge bilinear blending function, see Table 9.

Edge �� Surface ��
Number Number

��� �� ��� ���� ���

��� �� ��� ���� ���

��� �� ��� ���� ���

��� �� ��� ���� ���

��� �� ��� ���� ���

��� �� ��� ���� ���

��� ��
�	� ��
�
� ��
���� ��
���� ��
���� ��

Table 10: The parameterization of the edges and surfaces

– �� is the face bubble function. It can be expressed as:

�����	 � ������	�
��

���

��� �� �

��
���

���
 �� (4.53)

where

� �� is the local parametrization for the face, �� � ����� ���	, see Table 10,

� ������	 is the GMP parameterization for the face, adjusted for orientation.

� ��� are the physical coordinates of the face vertices.

�  �� are the corresponding vertex blending functions, restricted to the face.

� ���
are the bubble functions for the four edges of the face,

�  �� are the corresponding edge blending functions, restricted to the face.

–  � is the corresponding face linear blending function, see Table 9.
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Last, we should adjust edge and face parameterizations for orientation. In the construction of the
transfinite interpolations defined in this section, we refer to parameterizations of edges and faces in
terms of local coordinates. The GMP parameterizations for edges and faces are provided in terms
of global coordinates, and adujsting for the orientation of edges and faces involves transforming
local edge and face coordinates into the global ones.

5 Concatenation

Now, we discuss how to concatenate two different geometrical objects; see Fig. 20 for the example
of concatenation of two bricks.

When concatenating two different geometrical objects, we make the following assumptions:

1. The two objects to be concatenated have been described by two separate input files, input1
and input2.

2. Besides the input files for the two objects, an extra input file interface is provided, which
lists all the geometrical entities, i.e., surfaces, points, curves, triangles and rectangles, from
objects1 that lie on the interface.

3. The two objects are described in the same system of physical coordinates
��� � � �� � � � � � .

4. All entities on the interface that belong to both objects must have the same types and orien-
tations.

We describe now the concatenation algorithm.

5.1 Constructing the connectivities for the interface

Step1: We begin by inputing the geometrical data stored in files input1 and input2 and storing
them in two different data structure moduli GMP1.f and GMP2.f. This is done in routines
input geometry1.f and input geometry2.f which are exact copies of routine input geometry.f
except for the different data structure moduli.

Step2: We loop through all geometrical entities corresponding to the interface and referred to in
terms of object1 data structure, and perform a global search through entities of object2 to
identity the corresponding entity numbers in object2. This is done in routine input inter.f.
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Figure 19: Concatenation of two bricks
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Upon its execution, for each interface entity, we know the corresponding numbers in both
data structures.

For example, from input file interface, see Fig. 19, we know that the 1st point on interface
is the 3rd point in object1. The point’s type is regular and it coordinates are (1, 1, 0). By
looping through all the points of object2, we can locate the point with the same type and the
same coordinates, i.e., the 4th point in object2. Then we store the connectivity data for point
1 on the interface as INTPOINTS(1,1) = 3 and INPOINTS(2,1) = 4.

5.2 Changing the data structure for object2

Step3: Knowing all the connectivities for the interface, we can modify now the geometrical data
structure in object2. This is done in routine changeoj2.f which loops through all the geomet-
rical entities in object2 and changes their numbers according to the connectivity information.
If an entity from object2 lies on the interface, we change its number to the corresponding
number of matching entity in object1, otherwise we assign it a new number equal to the
current total number of the entities plus one.

For example, see Fig. 19. we know the 4th point in object2 is on interface, and we change
the number from 4 = INTPOINTS(2,1) to 3 = INTPOINTS(1,1). We also know the 6th point
in object2 is not on interface. This point is the 5th point in object2 that is not on interface,
and there are totally 8 points in object1. Therefore, the point number is changed from 3 to
11, i.e., 8 + 3 = 11.

Along with the change of numbering, we change all the connectivity information in object2.

For example, the curves’ numbers that meet at the point 11 in object2 are
POINTS1(11)%CurvNo(1:3) � ��� �� ��	. In order to concatenate, we change the point’s
connectivity to POINTS1(11)%CurvNo(1:3) � ���� ��� �	, see Fig. 19.

Step4: We list the entities on the interface only once and update their connectivity information.
For example, number of curves meeting at the point 7 on their interface is changed form 3 to
4, and the curve’s numbers change from
POINTS1(7)%CurvNo(1:3) = (6,7,11) to POINTS1(7)%CurvNo(1:4) = (6,7,11,18), see Fig.
19.

5.3 Concatenating the objects

Step5: Now, after we have modified the data structure of object2 , we concatenate the two objects
by looping through all the entities in the two objects separately, outputing the concatenated
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data to file input3. This is done in routine joint.f.

Step6: We read in the geometrical data from file input3 and store them into a single module
GMP.f. This is done in routine input geometrical.f. As a result, we get the concatenated
object shown in Fig. 19.

6 Examples

We present now a few typical examples corresponding to various research projects at TICAM.

6.1 Example1. Implicit Rectangle

Figure 20 shows an implicit rectangle made up of 5 surfaces. The input files is as following:

INPUT DATA REMARK
3 2 dimension of the problem and manifold
5 number of surfaces
Cylinder type of the surface 1
0.0 0.0 0.0 coordinates of the base
0.0 1.0 0.0 coordinate of the parallel vector
8 radius

VecPt type of surface 2
0.0 0.0 0.0 coordinate of the point crossed by plane
0.0 0.0 -1.0 coordinate of the normal vector

VecPt type of surface 3
0.0 0.0 0.0 coordinate of the point crossed by plane
0.0 1.0 0.0 coordinate of the normal vector

Cylinder type of surface 4
0.0 0.0 0.0 coordinates of the base
0.0 0.0 1.0 coordinate of the parallel vector
4 radius

VecPt type of surface 5
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Figure 20: Implicit Rectangle
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0.0 -2.0 0.0 coordinate of the point crossed by plane
0.0 1.0 0.0 coordinate of the normal vector

4 number of points

Implicit type of point 1
2 number of curves
4 1 curves’ number
1 2 5 surfaces’ number
8.0 -2.0 0.0 coordinate of the point

Implicit type of point 2
2 number of curves
1 2 curves’ number
1 2 3 surfaces’ number
8.0 0.0 0.0 coordinate of the point

Implicit type of point 3
2 number of curves
2 3 curves’ number
1 3 4 surfaces’ number
8.0 0.0 6.92 coordinate of the point

Implicit type of point 4
2 number of curves
3 4 curves’ number
1 4 5 surfaces’ number
3.464 -2.0 7.746 coordinate of the point

4 number of curves

ImpCir type curve 1
1 2 endpoints numbers
1 number of figure
12 figure’s number
1 2 5 3 surfaces’ number
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ImpCir type of curve 2
2 3 endpoints numbers
1 number of figure
12 figure’s number
1 3 2 4 surfaces’ number

ImpCir type of curve 3
3 4 endpoints numbers
1 number of figure
12 figure’s number
1 4 3 5 surfaces’ number

ImpCir type of curve 4
4 1 endpoints numbers
1 number of figure
12 figure’s number
1 5 4 2 surfaces’ number

0 number of triangles

1 number of rectangles

ImpRec type of rectangle 1
1 2 3 4 sides’ numbers
1 2 3 4 5 surfaces’ numbers

6.2 Example2. Fichera’s corner

6.3 Eample3. Mock0 model with a tower

36



�x��

�z�

Figure 21: Fichera’s corner
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Figure 22: Mock0 model with a tower
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Figure 23: Dipole antenna

6.4 Example4. A dipole antenna enclosed in a truncating sphere

6.5 Example5. Cylindrical shell with spherical incaps

7 Conclusions

The purpose of this work is to review and update the technology of the Geometrical Modeling
Package. In this work, we have added a number of important features to the GMP. Firstly, we have
completely rewritten the code, introducing a Fortran 90-like data structure, so that the logic of the
code is easier to follow. Secondly, we have added an option for the concatenation of two separate
geometrically compatible objects. This helps us to deal with more complicated manifolds. Last
but not least, we have corrected the inconsistencies in the original GMP related to the orientation
of faces, and have added the transfinite parameterizations for prisms and hexahedrons.

The source code, along with input files for the presented examples can be download from
http://www.ticam.utexas.edu/ cynthia/paper/project.html

The new GMP will replace soon the original package in our 2D and 3D hp codes [2] [4]
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Figure 24: Cylindrical shell with spherical incaps
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