MIXED FINITE ELEMENT APPROXIMATION OF AN MHD
PROBLEM INVOLVING CONDUCTING AND INSULATING
REGIONS: THE 2D CASE

J.L. GUERMOND! AND P.D. MINEV?

ABSTRACT. We show that the Maxwell equations in the low frequency limit, in
a domain composed of insulating and conducting regions, has a saddle point
structure, where the electric field in the insulating region is the Lagrange
multiplier that enforces the curl-free constraint on the magnetic field. We
propose a mixed finite element technique for solving this problem, and we
show that, under mild regularity assumption on the data, Lagrange finite
elements can be used as an alternative to edge elements.

1. INTRODUCTION

The problem under consideration in the present paper stems from the so-called
Dynamo problem which has attracted the interest of astrophysicists for a long
time. Though we shall hereafter restrict ourselves to the electromagnetic part of
the problem, let us briefly restate the whole setting. In astrophysical situations
like stars or planets with a liquid core, a magnetic field is sustained by nonlinear
interactions with large-scale movements of a conducting fluid. The fluid may be
plasma in the stellar case, molten iron in the planetary case, or liquid gallium
or sodium in experimental setups that try to reproduce the dynamo effect. One
important aspect of the problem is that the magnetic field develops in a non-
homogeneous medium: there are conducting regions and insulation regions. The
insulating region may be vacuum, rock, solidified iron, air, etc. We refer to
Moffatt [Mof78] for a survey on the physical aspects of problem.

The equations that model the dynamo effect are the incompressible Navier-
Stokes equations and the Maxwell equations with the displacement-currents ne-
glected, the two set of equations being coupled via the Lorentz force and the
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Ohm’s law. Denoting by u, p, E, and H the velocity, pressure, electric and mag-
netic fields, and denoting by f and j given source terms, the sets of equations are
as follows:

du+(u-Viu—-nV2u+Vp=(VxH)x pH+f in Q.

(1.1) V-u=0 in Q,
u‘aQC =a
(0,(pH) = ~V xE in Q
VxH=0(E+ux (pH))+j in Q.
VxH=0 in €,
(1.2) \V-(E) =0 in O,
H x Il|I‘ =0
KE-II'rv = 0,

where ). denotes the domain occupied by the conducting fluid, 2, is the do-
main of the non-conducting medium, and Q = Q.(J, is the total domain, see
Figure 1. The subscripts ¢ and v stand for conductor and vacuum respectively.
The magnetic permeability g = p(x), the electric permittivity e = €(x), and
conductivity o = o(x) are supposed to be positive functions of x only.

The main difficulty with this form of the MHD equations comes from the pres-
ence of the non-conducting medium where ¢ is zero. In this region the magnetic
field H must be curl-free and the electric induction divergence-free. If it was not
for this condition (in other words, if Q = Q.), then the electric field could be
eliminated from the system of equations as done in most of the studies dealing
with the MHD equations and the resulting equations would be parabolic, thus
posing no particular difficulty to be approximated numerically (see e.g. [ALJ99],
[SSHO1], [Ger00]). Most of the existing numerical works dedicated to the dy-
namo either assume that the conducting region has perfectly conducting walls
(”ideal” boundary) or enforce on the interface ¥ an ad hoc boundary condition
on H so that the problem can be restricted to the conducting region only. Few
studies consider the MHD equations with "non-ideal” boundaries and most of
them are either restricted to steady situations (see, for example [MS99] and the
references therein), or consider simple geometries for the conducting region like
infinite cylinders or spheres so that the exterior problem can be solved analyti-
cally [DJ89, Léo94, Lé095]. In the stationary case with "non-ideal” boundary, the
magnetic field is usually eliminated by means of the Biot-Savart law as suggested
in [MS99].

In the present paper we restrict ourselves to the electromagnetic part of the
problem, namely (1.2), and we discuss the possibility of approximating the prob-
lem with neither the magnetic nor the electric field eliminated from the system.
Our goal is to show that (1.2) is a saddle point problem where the electric field
in the insulating region is the Lagrange multiplier for enforcing the magnetic
field to be curl-free. We propose a mixed finite element technique for solving
this problem in its saddle point form, and we show that, under mild regularity
assumption on the data, Lagrange finite elements can be used as an alternative
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to edge elements (sometimes also called Whithney or Nédélec finite elements, see
[Néd86], [Bos93]).

Actually there are two difficulties associated with the presence of insulating
regions: the first one, already mentioned above, is that it gives to the problem a
saddle point structure, the second one is that the electric induction, ¢E, must be
solenoidal in the non-conduction region. That is to say, the Lagrange multiplier,
E, is subject to the additional constraint V-(eE)|q, = 0. To avoid mixing at once
these two issues and to emphasize the saddle point character of the problem, we
restrict ourselves, in the present paper, to the 2D situation where the electric
field is perpendicular to the plane and can be considered to be a scalar. As a
result, the solenoidality constraint on ¢E is automatically satisfied. The second
issue, namely the treatment of the constraint V-(eE)|qp, = 0 in the full 3D setting
will be reported in a separate paper [GM02].

The paper is organized as follows. In the next section we discuss the saddle
point structure of the problem and its wellposedness. We introduce the basic
formulation and two stabilized formulations. In section 3, we discuss the finite
element discretization of the problem in its saddle point form. We review possible
choices of admissible elements, and we derive a priori error estimates. In section
4 we present some numerical results using P2 /IP; triangular elements.

2. THE SADDLE POINT STRUCTURE

2.1. Preliminaries. Let us define precisely the domain geometry. € is a Lips-
chitz, open, bounded, connected domain in R?. We assume that € is non-trivially
partitioned into two Lipschitz subdomains 2, and €2, so that

Q=0Q.UQ,, Q.NQ, = 0.
Consequently, we introduce
r.=00noQ., I'y,=00n0Q,, X=00Nn00, I'=00=T,UT..

In astrophysical applications we usually have T'. = ), but we shall not make this
hypothesis. Three possible partitioning of 2 are shown on figure 1.

Mr=r;

FIGURE 1. Three possible settings for the domain.

We denote by 1.2 () (resp. H' (Q2)) the space of vector valued functions whose
components are in L?(f2) (resp. in H'(2)). The norms of the Sobolev spaces
W™P(Q) and W™P(Q) are denoted by || - |lmp0 with no distinction between
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scalar and vector-valued functions. The norms of H*(2) and H*(Q2) are denoted
by || - |ls,o. For any given subdomain Q5 C €, we denote by (.,.)q, the L2-
scalar product on €2;. Throughout this paper we denote by ¢ a generic constant
that does not depend on the mesh size, h, but whose value may change at each
occurrence.

Since the Navier-Stokes equations (1.1) are well studied, we shall concentrate
in this paper on the Maxwell part of the problem, i.e. (1.2). Therefore, we
suppose that u is a known, smooth enough vector field. To emphasize the saddle
point structure of the problem without having to bother about the additional
constraint V- (eE)|n, = 0, we restrict ourselves to the 2D situation where the
electric field is a scalar. Therefore, we denote the electric field by £ and the
corresponding test functions by e. As a result, the constraints V-(eE)|p, = 0 and
E - n = 0 are automatically satisfied. Of course the condition V:(eE)|q, = 0 is
a very important element in the structure of the problem, and we show how it
can be taken into account within the framework developed herein in a separate
paper [GMO02]. The set of equations we study in the present paper is as follows

O(pH) = -V X E in Q

(2.1) VxH=0(E+ux (pH))+j5 in
' VxH =0 in Q,
Hxn=0 on T,

where we adopt the following conventions:

VxH = 81H2 - 82H1, VxE = (BQE, —81E), u X (/j,H) = u(ulHQ — ’U,2H1).

2.2. The basic formulation. To obtain a weak form of the system (2.1) we
multiply the first equation by test functions and we integrate over 2:

(uOH,b), + (VXE,b)y =0, Vb

where b are the test functions to be chosen later and (.,.)q denotes the L2-scalar
product on 2. Now we integrate by parts the second term in the equation, and
assuming that the test functions b satisfy the same essential boundary condition
as H, we obtain

(/"atHab)Q + (E7 VXb)Q =0, Vb

The second integral in this equation can be represented as a sum of the integrals
over (). and €2,. Then taking into account that in the conducting medium €2, we
have

E = ;(VxH—j) —ux (uH),
we obtain
(vOH,b), + (%VxH,be)QC
— (ux pH,Vxb)g + (E,Vxb)g = (34, Vxb), , Vb
Now, we enforce the constraint VxH = 0 in 2, as follows

(VxH,e)g, =0 Ve
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To formalize our problem, we introduce an appropriate functional setting as
follows:
X; ={b €L?(Q),Vxb e L?(Q),b x n = 0}
V={beX;,Vxb=0in Q,}
L={bel?(Q),Vxb=0inQ, b xn|p, =0}.
M = L*(Q,)
W(0,T;V) = {b(t) € L*(0,T; V), by(t) € L*(0,T; V')}

We introduce also the bilinear form a; € £(X; x X;;R), such that
a1(b,b’) = (1 Vxb, Vxb)g, — (u x b, Vxb')q,.

To ensure wellposedness, we make the following assumptions on the electric
conductivity and the magnetic permeability : o € L*®(Q.), p € L*(Q) and
1

infwegcé > = >0, infyequ > po > 0. Then the bilinear form a; satisfies a

Garding-like inequality.
Lemma 2.1. Under the assumptions above on o and u, there are v > 0 and
c>0 s.t.

VHeV,  a(HH)+9|H|iq > cH|k,.

Proof. Let us set c(u, ) = ||ullo,c0,0/l1/l0,00,0 and v = c(u, u)?09. Then for all
H € V we have the following:

a1(H,H) +1|H| o > IV xHI[E o, — c(u, 1) Hllo,0. IV xHllo,0. +~IHI[{ ¢

= oo

> S IVXH|G o, — 555 IV xHI[G o, + (v = c(u, 0)* ) [HIG o

200
> A (IVxHE g, + IV xHI g,) + clu,1)* 2 HI o
> min(ﬁ, c(u, u)2%Q)||H||%(1

O

With the definitions above in hand, our problem now takes the following weak
form: For j € L%(0,T; L%()) and Hy € L,

Find He W(0,7;X;) and E € D'(0,T; M) s.t.,Vb € Xy, Ve € M
(2.2) (nOH,b)o + a1 (H,b) + (E, VXb)Qv = (%j, be) in D'(0,T)
(VxH,e)q, = in L2(0,T).

Note that this formulation is remarkably similar to the weak formulation of
the Stokes equations. In fact, the electric field E comes into play into the non-
conducting medium only, and it appears to be the Lagrange multiplier for the
imposition of the linear constraint VxH = 0 in (2,,.

Qe

Theorem 2.1. Problem (2.2) is well-posed.

Proof. Let us consider the following problem
Find H € W(0,T; V) such that

(2.3) (u0H,b)g + a1(H,b) = (54, Vxb), , Vb€V, in D'(0,T)
H|;—o = Hy.
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Owing to the coercivity property stated in lemma 2.1, Lions’ theorem (see e.g.
[Bre91, p .218], [LM68, pp. 253-258]) ensures that problem (2.3) has a unique
solution H € W(0,7'; V) which satisfies the initial condition due to the fact that
W (0,T;V) c C°(0,T;L).

For E we consider the following problem

Find E € D'(0,T; M) such that Vb € X
(E,Vxb)a, = — (u0H,b),, — a1(H,b) + (4, Vxb),.

Let us introduce the linear form ¢ € X/ so that for all b in X; we have
<¢(H)7 b) == (,u‘atHa b)Q - a/l(Ha b) + (%ja VXb)Q .

It is clear that due to the definition of H, the restriction of ¢(H) to V is zero.
That is, ¢(H) is in the polar set of V, i.e. ¢(H) € V*. Let us define the linear
operator R: X; 3 b+ Vxb|g, € M. It is clear that V is the null space of R,
i.e. V.= N(R). As a result we have ¢(H) € V*+ = N(R)!, that is ¢(H) is in
R(RY), i.e. the closure of the range of the transpose of R. Owing to lemma 2.2
and Banach’s closed range theorem, we infer that there is some E in D'(0,T; M)
so that R'(E) = —¢(H), the equality holding in D'(0, 7). In other words, there
is E € D'(0,T; M) so that for all b in X1,

<¢(H)7b> = _<Rt(E)’b> = _(E’R(b))ﬂu = _(E’VXb)Qua in DI(OaT)'

This completes the proof. a
Lemma 2.2. The operator R: X1 > b+—— Vxb € M, is surjective.

Proof. Let e € M and consider the following boundary value problem

e in

i v :{ _ . v

(2.4) ¢ ety Jo, € 0 Qe
On¢p =10 on T,

This problem is wellposed in H*(Q)/R and |@]li,o < cllen]|rs. Then setting
b = V x ¢ we obtain Rb = e in (2, and

Ibllo,e < B0 < cllella
IV xbllo,e = [[V?¢lloe < 2llellm

Since also b X n|p = 0 then b € X; and ||bl|x, < V¢ + 1||e||as- This completes
the proof. m

Remark 2.1. Note that this lemma implies that the range of R and the range of
R? are closed. Note also that from this lemma we infer that there exists 8 > 0
such that

(2.5) sup (Vxb,e)

> Bllellsr,  VYee M
beX; ”bHXl
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Remark 2.2. When it comes to approximate the problem above, two strategies
are possible: one can approximate either the problem (2.2) or the problem (2.3).
The approaches based on edge finite elements consist in working with formulation
(2.3) where the field E is completely eliminated and the constraint VxH = 0 is
enforced in an essential way by seeking H in V. It is possible to build internal
approximations in 'V by using gradients of continuous Lagrange finite elements
with support in €, see e.g. Bossavit [Bos93]. Contrary to these techniques,
the originality of the approach herein consists of retaining the field £ in 2, as a
Lagrange multiplier for enforcing the curl-free constraint on H in 2, only weakly.
To the best of our knowledge, the literature does not discuss of numerical methods
based directly on formulation (2.2).

2.3. A partially stabilized formulation. As it will be clear in §3.1, when it
come to approximate (2.2) with Lagrange finite elements, the fact that a; satisfies
a Garding inequality only in V is not sufficient to prove reasonable a priori error
estimates. To enhance the stability of the formulation we introduce the following
new bilinear form

ais(b,b’) = (%be,be')Q — (u x (ub), Vxb')q,,
where we have defined & to be a smooth extension of o on the whole domain
Q so that for all z € Q, infycq, o(y) < &(x) < supyeq, o(y). It is clear that

a5 € L(X1 x X1;R), and by repeating the arguments in the proof of lemma 2.1,
we can prove

Lemma 2.3. Under the assumptions of lemma 2.1, and if ¢ satisfies the assump-
tion above, then there are v > 0 and ¢ > 0 s.t.

VHEX:,  a,(HH) +9|Hlq > oH|,.
Note that contrary to lemma 2.1, the coercivity now holds for all functions in
X;.
We now consider the following problem: For j € L?(0,T; L?(Q)) and Hy € L,
Find He W(0,7;X;) and E € D'(0,T; M) s.t.,Vb € Xy, Ve € M
(2.6) { (uOH,b)g + a1,(H,b) + (E,Vxb), = (£j,Vxb) in D'(0,7)
(VxH,e)q =0 in L*(0,T).
Theorem 2.2. Problem (2.6) is well-posed and the solutions to (2.2) and (2.6)
are identical.

Qe

Proof. Repeat the arguments of the proof of theorem 2.1. O

2.4. A fully stabilized formulation. As they stand now, neither formulation
(2.2) nor (2.6) permit to establish easily long-time exponential stability, since the
bilinear forms a; and a1 are not strongly coercive in X;. Furthermore, they yield
stability on the magnetic field H only in the X -norm. As a result, any reasonable
approximation scheme based on this formulation should yield convergence on
this quantity only in the Xi-norm. That is, we should not expect convergence
on H in H'(Q) from this formulation. For instance, no long-time stability on
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the divergence of uH is guaranteed a priori. We propose now an alternative
formulation that solves some of these problems if the magnetic permeability is
constant or a very smooth function.

Let us assume from now on that y is smooth. We assume also that the initial
data pHj is divergence-free, so that, owing to the equation 0;(pH) = —VXE, we
infer that V-(uH) = 0 for all times. As a result, we should expect some bound in
the H! (£2)-norm on H, at least locally, since we have an a priori bound on VxH
in Q. and we know that VxH =0in Q,, V-(uH) =0in Q,and Hxn=0on .

To formalize these ideas, we introduce the new space

X, = {b € 12(Q), V-(ub) € L2(Q), Vxb € L?(), b x n|r = 0}.

Using standard notations, when p is constant we have Xy = Hj(curl, ) N
H(div,$2). We introduce a new bilinear form as € L(Xs x Xy;R) such that
for all b, b’ in X5 we have

az(b,b') = (2V xb, Vxb')a + (535 V- (ub), V-(ub))a — (u x (ub), Vxb')q,.
We have the following coercivity property.
Lemma 2.4. Under the assumptions of lemma 2.1, there are « > 0 and v > 0

such that
Vb € Xy, az(b,b) +7|bl5q > alblk,-

Proof. Use the same arguments as those in lemma 2.1 0

Lemma 2.5. If ||uljo,00,0. is small enough, p is constant, and S is simply con-
nected, then ag is strongly coercive in Xa.

Proof. This result is a consequence of the inequality
Vb€ Xy, [[Vxblgq+IV-bl§a > c[bllk,-
See e.g. [GR86]. O

Remark 2.3. If, in addition to the hypotheses of lemma 2.5, T is piecewise smooth
with no reentrant corners, then the norm of X, is equivalent to that of H!(£2)
(see [GR86, p. 44]). In astrophysical problems, I' can easily be chosen to satisfy
this hypothesis.

Now we consider the following problem: For j € L2(0,T; L*(2)) and Hy € L,

Find H e W(0,7;X5) and E € D'(0,T; M) s.t.,Vb € X5, Ve € M
(2.7) { (u0H,b)q +as(H,b) 4+ (E,Vxb), = (14, Vxb) in D'(0,7T)

Qe
(VxH,e)q, =0 in L*(0,T).

Theorem 2.3. Under the hypotheses of lemma 2.4, problem (2.7) is wellposed
and its solution is also solution to problem (2.2).

Proof. (1) The wellposedness is a simple consequence of the coercivity property
stated in 2.4, Lions’ theorem, and the fact that the linear mapping X5 5 b —
V xb € M is surjective.

(2) Let us show that the couple (H, E) is solution to problem (2.2). Let 1o, be
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the characteristic function of €2.. In the sense of distributions, H and E satisfy
the following PDE’s

(WO +V x (3VxH) = pV (5 V- (uH)) - Vx (1o, u x pH)
+Vx(1g,E) =Vx(25)  inQ

VxH=0 inQ, 0
V-(uH)=0 onT

Hxn=0 onT’

\H:H() at t=0.

Taking the divergence of the first equation, setting ¢ = %&V-(MH), and using
the fact that V-Hy = 0, we obtain

p?50ip — V-(uVeg) =0 inQ
$=0 onT

Hence, ¢ is zero for all times, that is, V(uH) = 0. Owing to this property and the
fact that V xH is zero in €,, it is clear that H is solution to problem (2.2). O

Remark 2.4. We emphasize once more that, contrary to what is sometimes
claimed by some authors, the equation V-(uH) = 0 is not part of the original
system (2.1). In other words, the constraint V-(uH) = 0 needs not be enforced for
(2.1) to be wellposed. This equation is just an a posteriori consequence of (2.1).
Nevertheless, it is standard to incorporate this equation in stabilized formula-
tions to have an a priori control on the divergence of pH. For instance we refer
to [SSHF99] or [Ger00] where this type of stabilization is used in conjunction
with standard Lagrange finite elements to solve MHD problems in conducting
mediums with constant properties. Another possibility to enforce the additional
constraint weakly consists in introducing a dummy Lagrange multiplier (see e.g.

[DV9S]).

Remark 2.5. Of course, if y is discontinuous across 3, we only have H € Hj(curl, Q)
and pH € H(div, Q). Hence, one should not expect H to be in H' (Q) locally in

the neighborhood of ¥, for H - n must be discontinuous across 3. As a result,

formulation (2.7) is not suitable when using continuous Lagrange finite elements

if p is discontinuous.

3. FINITE ELEMENT DISCRETIZATION

In this section we consider finite element discretization of the three formula-
tions considered above. We shall denote by (73)p>0 @ family of regular meshes of
Q.

3.1. The basic formulation. We build first an approximate solution for prob-
lem (2.2). Let us introduce X;;, C X; and My, C M, two finite dimensional, finite
element spaces based on the mesh 7,. Denoting by 7, a suitable interpolation
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operator that maps X1 onto Xy, we build an approximate solution as follows.

Find H;, € CI(O,T; Xip) and B} € CO(O,T; My,) s.t.,Vby € Xyp, Ven, € My,
(udiHyp, bh)Q + a1(Hp, by) + (Ep, Vth)QU = (%j, Vth)Qc
(VXHhaeh)Qv =0,

H|i—o = Z,Hy

(3.1)

The convergence analysis for this type of problem is quite standard, we refer
to [BF91] or [GR86] for details. The critical step consists in building an adequate
interpolate of the continuous solution. Generally, this is done by looking for
I,H € Xy, and J,E € My, so that
(3.2)

ay (IhH, bh) + (JhE, Vth)Qv = &1(H, bh) + (E, Vth)Qu Vby, € X1p
{(VXIhHhaeh)Qv =0 Ve, € M.

with @1 (b, b’) = v(b,b")o.q + a1 (b, b’), where v is chosen sufficiently large for a;
to be coercive in V.
Let us set Vi = {by € Xyp, (Vxbp,ep)q, =0, Vep, € My}. Then, necessary
and sufficient conditions for problem (3.2) to be wellposed are as follows
a1 (bha b;;,)

(33) ElOéh > 0, Vbh € Vh, Sup —( o > aththl,
b, €V}, ||bh||X1

(beha eh)

(3.4) 3B, > 0, Ve, € My, sup L > ,Bh||eh||M.

breXin  |Iballx,

We shall see below that it is possible to define X;, and M}, so that (3.4) is
satisfied uniformly with respect to h. Now let us turn our attention to (3.3). If
for a moment we assume that u is zero, then a; is symmetric and positive. In
this case, (3.3) is equivalent to assuming coercivity for d;. Unfortunately, though
aj is coercive on V, it is generally not coercive on Vj unless V), C V. It is
at this very point that approaches based on standard Lagrange finite elements
differ from approaches based on edge finite elements. For Lagrange elements V},
is generally not a subset of V, whereas with edge elements it is possible to build
V3, so that V, C V.

The provisional conclusion at this point is that formulation (2.2) is a priori
not suitable for an approximation with Lagrange finite elements. However, it is
shown in § 4 that by using P, finite elements for X;; and P; finite elements for
M, the solution to (3.1) does converge. We observe h? rate on E in the L?-norm,
h3/2 rate on H in the L2-norm, and h'/2 rate in the H!-norm. Though, we have
not proved these results yet.

3.2. The partially stabilized formulation. We now turn our attention to the
partially stabilized formulation (2.6).

Let us introduce Xy, and M} two internal finite element approximations of
X1 and M based on the mesh 7. It is assumed hereafter that the following
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properties hold. There exist ¢ > 0 and k > 1 such that forall 0 <r <k
o inf (|lb—bylloq +hlb—Dallx,) < ch"[bllr41,0, Vb e H™H(Q) N Xo,
h 1h

0,0, < ch'|le|lrq,. Vee H (,)N M.

inf —
ehéth lle — ep

We assume also that there is § > 0, independent of h, so that

(3.5) Ve, € M),  sup (Vb en)a,

> Bllenllas-
bpeX1p ||bh||X1

We assume that there exists an interpolation operator Z; : Xo — Xop, so
that |Ho — Z,Hyllo,o < ch*T||Hy||+1,0. We build an approximate solution as
follows.

Find Hy, € C1(0,T;Xy;) and Ej, € C°(0,T; M},) s.t.,Vby, € Xy, Ve € My,
(pdiHp, by) g + a1,s(Hp, bp) + (Bx, Vxbp)a, = (14, Vxbp)q,
(VXHhaeh)Qv = 0,

Hpji—0 = ZnHy

(3.6)

Theorem 3.1. Under the hypotheses of lemma 2.3, if the solution to (2.2) is
such that H € C'([0, 00]; H¥1(Q)) and E € C°([0, cc]; H*(Q)), then the solution
to (3.6) is s.t. for allt >0

t 1/2
[H () — Hp(t)]o,0 + [%/0 IH - Hylk, + 1B - Enllgq,| < chfe(t,H, E).

Proof. The arguments are standard. O

Remark 3.1. Note that we cannot expect from (3.6) to obtain extra convergence
on Hj, in the 12 (Q)-norm through the Nitsche—Aubin trick, for the dual problem
associated with the bilinear form a;5 has no regularization property.

3.3. The fully stabilized formulation. We now turn our attention to the fully
stabilized formulation (2.7) and we adopt all the hypotheses that pertain to it.
Let us introduce Xy, and M}, two internal finite element approximations of
X9 and M based on the mesh T,. We assume that the following approximation
properties hold. There exist ¢ > 0 and k& > 1 such that forall 0 <r < k

inf (||b—bplloe +Alb —ballx,) < ch"H|bllrt1,0, Vb€ H'HQ) N Xy,
breXsp

inf |le—e
epE€Mp || h

0,0, < ch'|le|lrq,. Vee H (Q,) N M.

Furthermore, we assume that u is small enough for as to be strongly coercive
in X9 according to lemma 2.5. This hypothesis is not essential, but we use it for
it yields uniform boundedness in time. We assume also that the following inf-sup
condition holds: there is § > 0, independent of h, so that

(Vtha eh)

(3.7) Ve, € My,  sup L > Bllenllar

breXop ||bh||x2
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We denote by Zj, : Xo — Xy, an interpolation operator s.t. ||Ho — Z,Hyl|o,n0 <
ch* 1| Hy||x+1,0- We build an approximate solution to (2.7) as follows.

Find Hy, € C1(0,T;Xgy;,) and Ej, € C°(0,T; M},) s.t., Vb, € Xop, Vep € My,
(,udtHh, bh)Q + az(Hh, bh) + (Eh, Vth)Qv = (%j, Vth)QC
(VXHhaeh)Qv = 0,

Hp—o = ZnHy

Theorem 3.2. Under the hypotheses of lemma 2.5, if the solution to (2.2) is
such that H € C*([0, 00]; H¥1(Q)) and E € C°([0, oc]; H*(R2)), then the solution
to (3.8) satisfies the following error estimates

Vi >0, |H(t) — Hy(t)|o,0 < [[Ho — ZnHollo,0e ™" + cohfc(H, E),
t 1/2
[% [ BB 1B - Bl | < ant o+ B)er )

(3.8)

<

t

with ¢(H, E) = [[H||¢1(j0,00114+1(2)) + 1B lle1 ([0,00)5 % (02)) -
Proof. The arguments are standard. O

Contrary to formulation (3.6), extra convergence on Hj, in the L2 (Q)-norm
can be achieved if the domain is such that some regularization properties hold.
More precisely, setting az(b, @) = (b, ¢)o,0 + a2(b, @), let us assume that there
exists 0 < r < 1 such that for all ¢ in L2(Q), there are ¢ € H*"(Q) N X3 and
a € H™(2) N M satisfying

(H,) {&2(b, @) + (o, Vxb)a, = (1,b)oo Vb € Xy
" (Vx¢,e)q, =0 Vee M.

and ||@|l14r0 + lla/lra, < cl|¥]o0- Then, we have the following result.

Proposition 3.1. Under the above regularization hypothesis, (H,), and the hy-
potheses of theorem 3.2 we have

vt >0, |[[H(t) — Hy(t)]og < ch*"c(H, B).

Proof. Use the standard duality argument of Nitsche-Aubin to build suitable
interpolates of H and E. a

Remark 3.2. Note that the error estimates in theorem 3.2 hold for arbitrarily
large times. This property is a consequence of the strong coercivity of ag in Xo
(¢f. lemma 2.5). If a5 is only coercive according to lemma 2.4, then the estimates
in theorem 3.2 and proposition 3.1 still hold with constants that depend on ¢.

3.4. Fully discrete formulation. To obtain a fully discretized problem, we use
the second order backward difference. Then, for ¢ = 1 or 2, the fully discrete
system reads
(3HG ™ — 4H} + H ', SEoby)o + ai(H Y by) + (B LV x ba)g,
1
(3.9) = (Ci(t""), Vxbp)a, Vn>1
(VXHZH,eh)Qv =0 Vn>1
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assuming a suitable initialization for H% and using the implicit Euler scheme to
compute H}L

For a given time ¢ > 0, a Hilbert space G, and a sequence in G, a®,a',..., we
introduce the following discrete norms
At [t/At] 1/2
a =|— o™ |2 a||jo(qy = max ||la"
ol = (T 20 118) s el = s ol

where [t/At] denotes the integer part of ¢/At. In the case of the stabilized
formulation, it is an easy matter to derive the following result.

Proposition 3.2. If |H) —Hy|lo.o < ch**1, if the solution to (2.2) is sufficiently
smooth in time, and under the hypotheses of theorem 3.1 or 3.2, we have for all
t>0
IH, — Hl2(x,) + [|1E — Enllizary < (At + BF).
and under the hypotheses of proposition 3.1, we have
I Hp — Hl|oo (12 (2)) < (A8 + BFT).

3.5. Inf-sup stable Lagrange finite elements. We shall prove in this section
that (3.5) and (3.7) hold for some mixed Lagrange finite element.

3.5.1. The mini finite element. Let us consider first the so-called mini element
with P;-bubble/P; approximation for H and E. For simplicity, let us assume that
Q is a polygon and that 7 is composed of triangles. Furthermore, we assume
that the interface of 2, and €, i.e. 3, is covered exactly with edges of triangles
from the mesh. R R
Let K be the reference simplex and b be a bubble function on K ,i.e. a function
s.t.
be Hy(K), 0<b<1, B(C)=1,

where C is the barycenter of K. For gach K in Ty, we denote be Tk : K — K
the affine transformation that maps K into K. Then, we define P = (P (K) &
span(b))?, and we set

Xopn = {bj, € X2NC*(Qy), b o Tk € P,VK € T},

My ={e, € M N CO(QU), enoTkg € P,VK € 771,1,},

where 7}, ,, denotes the subset of the elements of 7}, covering €),.
The stability of this approximation is established in the following lemma.

Lemma 3.1. Under the above assumptions, there exists B > 0 such that

(V X bh, eh)Qv
sup ————

> ,3||6h||M, Veh € M,
br€EXsy ||bh||x2

Proof. (1) Let a(f)b be a continuous vector-valued function on 02, = X U T, that
is zero on I, piecewise P; on the trace of the mesh 7} on 0f),, and such that
J 50, a) -dl = 1 and its norm in H'/2(9Q,) is bounded uniformly with respect to
h. It is always possible to find such functions.
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(2) For an arbitrary function ey, in My, let us define ap(e,) = af) va ep. It is
clear that

/aQ ah(eh)-dlz/ﬂeh, and Jan(en)ll 2,00, < lafll/2,00, meas(2) /% |lenllo,0,

Owing to the lifting lemma 3.2, there is b(ep,) such that
Vxb(en) = en, blen)lon, =an(en), and |[blen)lra, < cllenllog,-
Since (2, is Lipschitz, we can extend b in H! (Q) (see e.g. [Ne¢67, p. 65-81]). Let

b be one of these extensions, and let C,(b) be the Clément interpolate of b such

that C,(b)|sn, = b|aa, (see [C1675]). This is possible, for the trace of b on 9L,
is exactly the trace of an element in Xy,. This interpolate is such that

ICh(B)[1,0 < cllbllne < dllenllo,q.-

(3) Now we choose the bubble function By, (b) so that

/ /ch )+ Bu(B)). TeT

and we set II,(b) = C4(b) + Bj,(b). From standard arguments, (sce e.g. [BF91,
GR86)), we infer

ITT(B) 11,0 < ellbllig < ¢llenllar
(4) From the definitions above, we deduce

0= / (b — II,(b)) - V x ey, since V X ey, is Py on each triangle
=/ eV x (b — I, (b)), since b = IT,(b) on T UT,,.
As a result

(Vxbnen)a, o (VxILy(b),en)a,  (Vxb,ep)a,

sup

breXy,  Ibnllxe T |IIL(B)|x, |ITT, (b)] x,
= el 5 ey
|11 (b) || x,
This completes the proof. O

Remark 3.3. Note that the key argument in the proof of lemma 3.1 is to build a
vector field b in H! (€,) so that its trace on X UT, is the trace of an element in
X, This guarantees that integration by parts in (V x (b — IT, (b)), en)q, can be
performed with no boundary integral left.

Lemma 3.2. Let O be a Lipschitz domain in R*. For all a € HY?(00) and
e € L*(0) such that [,e= [yna-dl, there is u € H' (O) so that Vxu = e and
ulpo = a.

Proof. Let us denote a* = (ag, —a1). From the theory of the divergence operator

we know that there is w € H! (O) so that V-w = e and w|sp = a*. Now, setting
u = (—we,w1), it is clear that u satisfies the required conditions. O
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3.5.2. The Py/P; element. We now turn our attention to the Py — P; element
which is known in the literature on the Stokes problem as the Taylor-Hood ele-
ment (see [BF91]).

In addition to the hypotheses already made on the mesh and the domain for the
mini element, we assume now that each triangle that has a nonempty intersection
with 0€, has at most one edge on 0f2,,.

We define the approximation spaces as follows:

{th = {bh € Xy ﬂCO(ﬁ), by o Tk € (]PQ)Q,VK € 771},
My, = {6h eEMnN Co(ﬁv), epoTkg € P1,VK € 772,1,}.

Lemma 3.3. Under the above assumptions, there exists > 0 such that

(V X bh, eh)Qv
sup ————

> Bllenllass Vep € Mp,.
by €Xop, thHXz

Proof. We adapt an idea developed in [Ver84] for proving the inf-sup condition
for the Taylor-Hood element. Let ep, be a nonzero element in M. Let b be as in
the proof of lemma 3.1 and Cp(b) be its Clément interpolate. We have

sup (Vxbp,en)a, > (chdyﬁeﬂnv > e (VxCh(b), ep)q,

vaeXsn  IIbrllx, ICh(b)[Ix, Ibll10

(VXb en)Q, ‘e (Vx(Cr(b) — b),en)a,
||b||1Q ||b||1Q

1/2
> c||eh||o,n—c'( 3 h%achﬁ,K) ,

KeTh,

By using lemma 3.4 below, we bound from below the negative term in the right
hand side as follows

Vxb Vxb
Sup ( h’eh)Qv Z Cl”GhHM _ CZ Sup ( h’eh)Qy
breXon DA%, breXan  I[Pallx,

We derive easily the inf-sup inequality with the constant ¢; /(1 + ¢2). O
Lemma 3.4. Under the hypotheses of lemma 3.3, there is ¢ > 0 so that

Vxb 1/2
(3.10) sup (Vxbw, en)o,0, 2 < Z hiclenl? K) :
b eXop ||bh,||X2 KETho

Proof. Let K be a triangle in 7. Let m be a node in the middle of an edge of K
and let us denote by a and b the two extremities of this edge. We set [ = ||b — al|
the length of the edge and 7 = (b — @)/l a unitary vector on the edge. Let 7*
be the vector such that 7 = (—75,71) where 71 and 7; are the two Cartesian
components of 7.

We introduce Xy, C X3 s.t.

Xonw = {bn € Xop,supp(bs) C Q,}.
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With all function ey, in M}, we associate a function v, € Xy 4, s.t. forall K € T,

vip(a) =0 if a is a vertex of K,
vi(m) = —127%0,e, if m is a node in the middle of an edge of K not on I',
vi(m) =0 if m is a node in the middle of an edge of K on T',,.

It is clear that vj, € X9, and

IvillLx < chklepli,x, VK € Thy
First, we remark that
V xb Vxb b X
sup ( hs €h) S, > sup ( ho €h)Qy _ sup (bp, Vxep)a,
breXy  |IPnllx, byeXon,  IPnllx, bpeXon,  IPallx,

(Vh, V x eh)QU
[vallx.
Second, by using the quadrature formula

wer [ plors = 2B T g,

where m spans the set of the three nodes on the edges of K, we infer

(Vh,vxeh)gv = Z /Vh-vxeh
K

KeTh,w
K
= 3 valm) - Vxep(m) 2
KeTh,y meK
meas(K)
= 3 Y PP > o 3T kel
KETy,, meK KEThu

Note that the last inequality holds only if each triangle has at most one edge on
0€),. The desired inequality follows easily. O

3.6. Lagrange FE vs. Edge elements. Though the goal of the present paper
is to show that it is indeed possible to solve the set of equations (2.1) by means
of standard continuous Lagrange finite elements, provided the problem is set in
an adequate weak form, the reader must bear in mind that there are limitations
to this approach.

First, it is not natural to enforce the continuity of H - n across the interface
3., for this quantity may be discontinuous if u is discontinuous; in this case, the
stabilized bilinear form as must not be used. Note, however, that no particular
assumption on the continuity of u is required for using bilinear form a1,.

Second, the most important limitation is that if either both y and ¥ are simul-
taneously not smooth or €2 is not convex, then it may happen that H has no more
regularity in space than that of X; or Xs. In this circumstance, it is possible
that the sequence (Hj)p~o does not converge to H. The reason for this is that if
simultaneously y is discontinuous and ¥ is not smooth or € is not convex, then
Xy NH! () is a closed subspace of Xo with a supplementary that is not zero (see
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Costabel [Cos91]). Under these conditions, Xo NH! () is not dense in Xo; that
is, there are elements in X9 that cannot be approximated by continuous Lagrange
finite element functions, these functions being in XoNH! (2). Note, however, that
in the astrophysical context, either p or ¥ is smooth and €2 can easily be chosen
to be convex, so that convergence is guaranteed even in the minimal regularity
situation. Of course, none of the limitations mentioned above apply if edge finite
element are used.

4. NUMERICAL RESULTS

In this section we report on numerical tests performed on Py/P; implemen-
tations of the three formulations described above using BDF2 as time stepping.

4.1. Convergence tests. We first test convergence in space using an analytic
solution to (2.1). We set  =]—2,+2[ and Q. = {(z,y) € R, /22 +y2 < 1}.
Taking 0 = 1 and p = 1, we choose

H = sin(t)(sin(z) exp(y), — cos(z) exp(y))
(4.1) {E = — cos(t) sin(z) eI))(py(y) o

with u = 0 and the source term

.| ocos(t)sin(z)exp(y) in Q.
77V 0 in Q,

We use P2 /P; finite elements to approximate H and E and BDF2 to march in
time. The time step is chosen sufficiently small so that the space error dominates
the time error for all the selected meshes. We make two series of convergence
tests: one using the bilinear form a;; the other using the stabilized bilinear form
ag.

The results are reported in figure 2. From left to right, the results shown in
the figure 2 have been obtained by using formulations (2.2), (2.6), and (2.7),
respectively. The errors are measured by evaluating the difference between the
approximate solution and the exact one and by using high order quadrature rules.
On the first two graphs we show the maximum in time of the error on E in the L?-
norm and that on H in the I2-norm and the X;-norm as functions of hA. On the
rightmost graph we show the H!-norm instead of the X;-norm; note that since
Q is convex, the norms of X, and H' (Q2) are equivalent; hence, it is legitimate to
use the H!'-norm to measure the error.

As expected the method using the non-stabilized bilinear form a; converges but
yields non-optimal convergence rates. For the error on E in L2-norm we observe
a O(h?) rate; for the error on H in L?-norm and in X;-norm we have O(h3/?)
and O(h'/?) rates respectively. The method using the partially stabilized bilinear
form a1, is optimal on E in the L?-norm and on H in the X -norm. As expected,
it is sub-optimal on H in the L?-norm (see remark 3.1). For the method using
the fully stabilized bilinear form a9, we observe that the convergence rates match
either the second order slope or the third order slope as expected from theorem
3.2 and proposition 3.1.
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FI1GURE 2. Convergence analysis. From left to right: bilinear form
a1; bilinear form a,; bilinear form as.

To have some insight on the long-time behavior of the errors, we show in figure
3 the time history of the error on E in L?-norm, the error on H in X;-norm or
H!-norm (depending on the bilinear form used), and that on V-H in L?-norm
for 0 < ¢t < 10. From left to right, the results shown in the figure 3 have been
obtained by using formulations (2.2), (2.6), and (2.7), respectively. It is clear that
when using a;, the X;-norm is not controlled. When using a5 the X;-norm of
H is controlled but its divergence is not controlled. As expected from the theory,
the bilinear form ay yields satisfactory long-time behavior on H in the H!'-norm.

107 1 17
w0 P R 1 0
100 o \‘f‘ i ] (‘ { 14 4 10y

\
— E:L2norm ~ — E:L2norm — E:L2norm

~~~~H: Hcurl norm ~~~~H:Hcurl norm “~~~"H:Hlnorm
Div(H) : L2 norm Div(H) : L2 norm Div(H) : L2 norm
10°% 10°% 10°%

0 1c 0 1C 0 1C

FIGURE 3. Time behavior of the error, 0 < ¢ < 10. From left to
right: bilinear form a1; bilinear form ai,; bilinear form as,.

4.2. A numerical illustration. To illustrate the method we show some calcu-
lations for more realistic problems. We consider a conducting cylinder of radius
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R =1 embedded in a non-conducting domain so that

Q =]-5R,+5R], Q. = {(z,y) € R?, /22 + 42 < R}.

The magnetic permeability and the electric conductivity are constant. At ¢ <0
the cylinder is at rest; at latter times it rotates with the velocity u = we, x r,
where r = (z,9,0) and e, = (0,0, 1). This problem has been studied thoroughly
in [Par66] and analytical solutions have been proposed.

Defining the magnetic Reynolds number R,, = puowR?, we show in figure 4
the streamlines of the magnetic field for R,, = 100 at times wt = 1,2,3,4,5,6.
The analytical solution is plotted on the left of the figure and the Py /P; solution
is plotted on the right. Note the reconnection of the streamlines. A thorough
qualitative analysis of this problem will be reported elsewhere [GLNO01].

FIGURE 4. Streamlines of the magnetic field, R,, = 100. Analyt-
ical solution from [Par66]

To finish this paper we show in figure 5 the steady state solutions for R,,, = 10,
20, 40, and 100. Note the skin effect: as the magnetic Reynolds number increases
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the magnetic field is expelled from the conductor, and a boundary layer appears
at the periphery of the cylinder. This effect is well captured by the numerical
simulation.

R = 40

FIGURE 5. Streamlines of the magnetic field at steady state. Note
the skin effect.
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