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1 Introduction

The IPARS software is research software developed mainly for the purposes of examining
di�erent physical models and numerical algorithms for modeling multi-phase 
ows in
porous media. The IPARS framework supports three dimensional transient subsurface

ow of multiple phases containing multiple components. A fully implicit solution of the
coupled multicomponent nonlinear 
ow equations is used. Fully implicit time-stepping
schemes are the most robust but expensive in the subsurface 
ow simulation. They result
in nonlinear systems to be solved at each time step. The fully implicit solution algorithm
is based upon a two-level iterative solution of the coupled nonlinear partial di�erential
equations at each time step. The outer iteration is an inexact Newton method for the
nonlinear equations with an inner iterative solution method for the Newton method's
Jacobian. In the case of multi-phase 
ow, the Jacobian matrix is sparse, non-symmetric,
and ill conditioned. The linear system is solved by a preconditioned generalized minimum
residual (GMRES) iterative solution method.

The series of reports addresses computational considerations of both iterative meth-
ods applied to two di�erent models, the hydrology model and the black oil model [14],
[24]. In this report, we consider serial computations only. Parallelization techniques and
parallel performance will be presented in the second report. Iterative solution for the
alternative black-oil model as well as multiblock and multimodel iterative solution are
to be reported in the following issues of the series.

The contents of the report are based on a set of basic computational concepts of
the IPARS software. In Section 2 we consider the general model formulation and its
linearization. The implicit approximation of parabolic type model equations is equipped
with model constraints, in order to balance the number of unknowns and equations.
The model equations comprise accumulation, transport, and well terms. Each of the
terms is linearized via the respective Jacobian parts and the resulting linear system is
written in the form of increments. The sparse linear system is to be solved by an iterative
technique. Therefore, the issues of an adequate tolerance are to be examined. To this end,
we take advantage of the forcing term technique for the inexact Newton and investigate
its e�ect both on Newton method's convergence and the total arithmetical work. Since
the Newton method is quadratically convergent in a vicinity of the solution, it is very
important to choose an appropriate initial guess. We study two possibilities for the
initial guess, to take the solution from the previous time step, or to extrapolate linearly
the solution from the previous two time steps. In addition to initialization, we examine
a completion step of the inexact Newton method. With a relatively low computational
cost, we can improve the total mass conservation of the time stepping scheme. In Section
3, an iterative technique for the linear solver is considered. The basic linear solver within
IPARS is chosen to be the right preconditioned GMRES method. The GMRES method
is known to be the most robust method for solving non-symmetric systems, and it has
a modi�cation (
exible GMRES) capable to converge with a nonlinear preconditioner.
The essential drawback of the GMRES method is its memory requirements. However, it
is compensated readily by a good preconditioner resulting in a fast convergence as well as
the restart version of GMRES. In this section, we examine the di�erence of GMRES and
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exible GMRES methods with linear and nonlinear preconditioners applied to a Jacobian
system. In the next Sections, we study systematically the preconditioning within IPARS.
The preconditioning is two-stage. At the �rst stage the decoupling preconditioner is
introduced. It allows us to precondition the diagonal pressure block of the Jacobian
independently of the saturation blocks. Also, construction of a global preconditioner
implies certain coupling between saturations and pressure which is a complementary
issue to decoupling. At the second stage, the pressure block is preconditioned. Di�erent
techniques for decoupling and pressure block preconditioning are considered in Sections
4 and 5, respectively. In Section 6, we summarize our computational experiments.

2 General model formulation and its linearization

2.1 General model equations

In this Section, we follow the framework presented in [7]. A multi-phase 
ow model
consists of n+m equations associated to each grid block (grid cell). The �rst n equations
are those for conservation of n species Mi:

�tMi = Qi�t; i = 1; : : : ; n: (1)

Here, Qi represents inter-block 
ow and well terms:

Qi =
X
�

Ti�(p� � p)� qi; (2)

P
�

denotes the summation over all neighbor grid blocks �, p and p� stand for a grid block

and a neighbor block pressure, qi denotes the production rate of species i, and Ti� is a
transmissibility for 
ow of species i between a grid block and its neighbor �. Although
the capillary pressure and gravity terms are taken into account in IPARS, for the sake
of brevity we neglect them in the course of the presentation.

In the case of fully implicit schemes, both �tMi = Mk+1
i � Mk

i and Qi = Qk+1
i

are unknown. They are computed by the Newton method. Let M l+1
i , Ql+1

i be the new
iterates approximating Mk+1

i , Qk+1
i , respectively. Then equation (1) may be rewritten

as

M l+1
i �M l

i +M l
i �Mk

i �Ql
i�t = (Ql+1

i �Ql
i)�t: (3)

Since Mk+1
i �Mk

i = Qk+1
i �t, the residual of Newton iteration is

ri =M l
i �Mk

i �Ql
i�t;

and (3) may be written in the form of increments:

ÆMi + ri = ÆQi�t; i = 1; : : : ; n: (4)

Given a set of n species, there always exists a set of n+m variables fYjg, j = 1; : : : ; n+m,
such that each Mi is a unique function of fYjg. The �rst n variables from fYjg are called
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primary, and the remained variables are referred to as secondary. In order to close
the system (4), we need additional m constraint equations. They may express phase
equilibrium, saturation constraint, and other model constraints. A general form of the
additional equations is

ÆLi + ri = 0; i = n+ 1; : : : ; n+m: (5)

2.2 Newton linearization

Linearization of (4) yields linear equations

n+mX
j=1

gMij ÆYj + ri =

n+mX
j=1

gQijÆYj ; i = 1; : : : ; n; (6)

where gMij , g
Q
ij are the entries of the accumulation and transport-well Jacobian's terms.

Linearization of (5) results in

n+mX
j=1

gLijÆYj + ri = 0; i = n+ 1; : : : ; n+m: (7)

The system (6),(7) may be presented in an algebraic form�
B C
D E

��
ÆYI
ÆYII

�
=

�
ÆZI
ÆZII

�
: (8)

The dependence of the secondary variables is eliminated by the reduction to the Schur
complement counterpart of the system (8)

A := B � CE�1D;Z := ZI � CE�1ZII ; Y := ÆYI ;

AY = Z: (9)

The system (9) is obtained by the reduction of linearized equations to the primary
variables. These equations are the linearization of the residual formulation for the system
of conservation equations. Since Y stands for the vector of primary variables, (9) may
not be reduced to a smaller system. It is to be solved by an iterative technique. Although
(9) is a Schur complement reduction of the Jacobian system (8), for the sake of brevity
we shall refer to it as the Jacobian system.

2.3 Choice of an initial guess

In view of the quadratic convergence of the Newton method the choice of an initial guess
is important. Since IPARS is applied to evolution problems, it is natural to take the
initial guess to be equal the solution from previous time steps. Basically, there are two
popular choices: to take the solution from the last time step (constant extrapolation),
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or to take a linear combination of the solutions from the previous two time steps (linear
extrapolation). In the absence of abrupt changes in the well term (sinks and sources), the
latter choice is more preferable, though it may result in worse initial guess at the instants
of strong load variation (turn on/o� the wells). In Table 1 we present the L1-norm of the
initial residual for the Newton method at several time steps due to constant and linear
extrapolations. We have considered the ninth SPE comparison problem (15 � 24 � 25)
grid blocks, the �rst time step is chosen to be one day. The linear extrapolation provides

Time step time (days) Constant extr. Linear extr.

4 5.4 12254 3403
5 7.4 11864 5917
10 26 16001 4239

Table 1: Constant and linear extrapolation e�ects on the initial Newtonian residual.

much better initial guess even in the case of dynamic problem such as the ninth SPE
comparison problem.

2.4 Inexact Newton method

Since the system (9) is to be solved iteratively, the problem of an adequate tolerance
appears. The higher accuracy for the solution of (9) is, the faster Newton method con-
verges, and vice versa. The optimal balance between the linear and nonlinear iterations
is provided by the forcing term technique [10]. On each Newton step (k) the Jacobian
system is recommended to be solved so that

kAkY k � Zkk � �kkZkk;

�k = min
n
0:9999;max

n
~�k; (�

k�1)2
oo

; ~�k = jkZkk � kAk�1Y k�1 � Zk�1kj=kZk�1k:

In addition, the updated Newton iterate should be modi�ed using a line-search back-
tracking method:

Y k
I = Y k�1

I + �kY
k;

in order to provide the global convergence of the inexact Newton method. The scaling
factor �k is computed from a sequence of the nonlinear vector function evaluations. Since
such an evaluation is not implemented in IPARS, we take �k = 1 and suggest to oversolve
the Jacobian system in case of lack of the convergence: �k ! f � �k, 0 < f � 1. In Table
2 we present the number of linear and nonlinear iterations for performing the �rst time
step (1 day) in the hydrology model (20�40�40) and in the black oil model (20�40�40).
The physical properties of the media are similar. The Newton convergence tolerance is
10�4, f = 0:1. Since generation of the Jacobian takes less time compared to the linear
solver, the total number of GMRES iteration is a good measure for the computational
work. We �x the preconditioner to be the combinative one, with 6 LSOR iterations for
pressure equation (for details we refer to Sections 4,5). We see that the smallest number
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Hydrology Black oil

�k #Newton it. #GMRES it. #Newton it. #GMRES it.

10�4 3 49 5 81
10�3 3 35 5 56
10�2 4 30 6 43

Forcing 3 20 6 34

Table 2: Inexact Newton convergence and estimation of computational work.

of linear iterations is provided by the forcing term technique. The computational price
for that may be an increase of the Newton iterations and the complexity of the Jacobian
generation.

2.5 Completion of the Newton method

The Newtonian stopping criterion featured by IPARS requires computation of the new
residual which is accompanied by computation of the new Jacobian. It implies that the
next Newton iteration is virtually prepared. We suggest to replace the most expensive
operation of the Newton step, solving a linear system for the Newtonian correction, by
its low rank counterpart. It results in a low rank Newtonian correction to the previous
guess. The low rank correction may be de�ned so that certain integral characteristic
of the solution be improved. For instance, it may be the total mass correction yielding
better total mass balance, as it is implemented in IPARS.

Let the system (9) at the Newton step l is written as

AlÆY l = Z l; (10)

where ÆY l is the l-th correction to be added to Y l
I to obtain

Y l+1
I = Y l

I + ÆY l: (11)

Let Z l and Al be computed, and Z l be small enough to exit from the Newton loop. (Due
to (3),(4), Z l is the Newtonian residual, and its norm is used in the Newton stopping
criterion.) Instead of the full rank correction ÆY to Y l

I , we �nd a low rank correction
DY l to Y l

I so that X
�

(Al
iDY

l)� =
X
�

(Z l
i)�; i = 1; : : : ; n; (12)

where
P
�

denotes the summation over all grid blocks and Al
i is the row block of matrix

Al corresponding to i-th equation (1). In fact, Z l
i is the mass residual of the Y

l
I iterate.

The physical meaning of (12) is to �nd a correction DY l such that (10) is satis�ed for
the total masses. For the sake of consistency of (12), the rank of of the correction DY l
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has to be equal to the number of conservation equation, n. The simplest representation
of DY l is

DY l =
nX
i=1

yiEi

where entries of vector Ei are zeros except those units associated to the i-th primary
variable. In other words, on exit from the Newton loop, we perform an additional low
rank Newton step and correct each of the components of Y l evenly over the domain so
that the total mass residual for each species Mi becomes smaller. In Table 3 we present
the component balances (de�ned as one plus relative change of total mass of the species
with respect to initial values) for four time steps (initial time step is 1 day) in the black
oil model (20�40�40). The Newton convergence tolerance is 10�3, the linear iterations
stop when the initial residual is reduced by factor 102. The low rank correction produces
better mass balance. This allows us to relax the tolerance of the inexact Newton method.

Low rank Time Black oil
correction step oil water gas

No 1 0.9999995 0.9999992 0.9999983
No 2 0.9999993 0.9999959 0.9999970
No 3 0.9999994 0.9999943 0.9999967
No 4 0.9999994 0.9999940 0.9999980

Yes 1 0.9999995 0.9999992 0.9999983
Yes 2 0.9999997 0.9999959 0.9999986
Yes 3 1.0000000 0.9999964 0.9999995
Yes 4 1.0000000 0.9999972 1.0000010

Table 3: E�ect of the low rank correction onto the mass balances.

3 Preconditioned GMRES method

In general, the matrix A of the Jacobian system (9) is sparse, highly non-symmetric and
ill conditioned. The order of the matrix may range from hundreds to many millions. Such
a wide range implies usage of Krylov subspace iterative methods. The preconditioned
generalized minimum residual (GMRES) method [20, 13] is known to be the most robust
and eÆcient method for the general sparse matrices. Besides, its slight modi�cation, the

exible GMRES [21], is capable to converge fast with nonlinear preconditioners. It is very
important if the preconditioner comprises Krylov subspace iterations. The only essential
drawback of GMRES and FGMRES methods is that it is necessary to store all the Krylov
space in a computer memory. However, it may be cured by the restart versions of GMRES
and FGMRES. Moreover, in case of a good preconditioner the convergence of (F)GMRES
is so good, that there is no need in restarting. In order to compare GMRES(20) and
FGMRES(20) methods, we consider the total number of linear iterations for the �rst
time step (1 day) for two models: hydrology (20� 40� 40) and black oil (20� 40� 40).
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The structure of the media is similar, and the tolerance for the linear solver is chosen
to be 10�4 and for the nonlinear solver 10�3. We apply the Householder decoupling
combinative preconditioner (Section 4) with the algebraic multigrid preconditioner for
the pressure block (linear preconditioner) and the truncated Neumann series pressure
preconditioner with very rough1 approximate GMRES inversion of the Schur complement
(nonlinear preconditioner, Section 5). In Table 4 we show the number of iterations needed
to solve the linear problem. The number of iterations for the nonlinear preconditioner

Hydrology Black oil

Preconditioner #GMRES it. #FGMRES it. #GMRES it. #FGMRES it.

Linear 10 10 59 59
Nonlinear div. 24 123 89

Table 4: Linear and nonlinear preconditioning for GMRES and FGMRES methods.

is larger than that for the linear one, since the linear preconditioner is almost the best
(pressure block is preconditioned very well). The GMRES iterations may be sensitive
(up to divergence) to a nonlinearity of preconditioner. The FGMRES iterations remain
robust in all the cases.

4 Decoupling preconditioners

In the case of multi-phase 
ow, the system matrix is sparse, non-symmetric, ill condi-
tioned, and its blocks have di�erent nature. The sensible approach to the construction
of a preconditioner is to precondition di�erent blocks separately, taking the advantage
of their nature. Since the blocks are coupled through nontrivial o�-diagonal blocks, the
issues of decoupling the blocks are to be considered.

4.1 Properties of the Jacobian system

Properties of the Jacobian system depend on the nature of equations (1) and (5). Since
we do not specify particular characteristics of (1) and (5), we make assumptions on the
reduced Jacobian matrix A. An algebraic property has a relation with physics of equa-
tions. Therefore, we try to illustrate algebraic assumptions by physical considerations.

Primary variables

Although a wide set of primary variables is available [16], we restrict our attention to a
very particular set of primary variables.

Assumption 1. We assume that Y1 is the grid block pressure and fYjg, j = 2; : : : ; n+
m, are the grid block saturations (or concentrations).

We remark no special phase pressure has been chosen. However, the optimal choice
of the component turns out to be very important in computational practice.

1Relative tolerance is 0.6
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Local interaction

Additional constraint equations (7) used to close (6), may be chosen to possess local
properties. Thus, we may assume that the constraint equations (7) state relationships
between our variables in each grid block independently of other grid blocks. On the
other hand, the equations of conservation (1)-(2) contain three terms: accumulation
�tMi, transport

P
�

Ti�(p� � p), and well terms qi. By de�nition, the transport term

provides interaction between grid blocks through the pressure di�erences. Accumulation
term �tMi, responsible for a change in amount of a given species, is likely to have a
dominant local interaction within a grid block. The well term may yield an inter-block
coupling but be dominated mainly by the pressure variable.

Taking into account the above considerations we conclude that the interaction between
variables is chie
y local. In algebraic terms, it allows us to make

Assumption 2. Consider the block representation of matrix A associated with grid
cell blocks. The o�-diagonal block entries responsible for interaction between di�erent
variables, are small compared to the respective entries of the diagonal block.

Pressure \governs" saturations

According to Assumption 1, our formulation is presented in terms of pressure and sat-
urations. At least for the black oil isothermal models, the studies [2, 15, 5] show that:
the pressure equation is essentially parabolic or elliptic and the saturation equations
are hyperbolic or transport dominated parabolic. These features are expected to be
inherited by compositional models as well [27]. A well known consequence is that the
pressure equation must be treated implicitly and the saturation equations may be treated
explicitly (Impes models).

Applicability of the Impes models is a starting point of our considerations. We note
that implicit pressure and explicit saturation advancing in time approximates the original
parabolic equations. It implies that the solutions due to Impes and fully implicit time
stepping are close to each other. Therefore, the respective time step nonlinear operators
are close in a sense, and their linearizations (Jacobian) are expected to possess a similar
nature as well. Thus, given a meaningful guess to the pressure variable, an explicit
update of the saturations hopefully yields a meaningful guess to the saturation variables.
It means that an explicit saturation calculation based on physically reasonable pressure
computation, results in a meaningful approximation for the inversion of fully implicit
Jacobian.

Assumption 3. Consider a reduced system with the fully implicit Jacobian (9). Let
the matrix A and the vectors Y;Z be split into pressure and saturation blocks:

A =

�
Ap Aps

Asp As

�
; Y =

�
Yp
Ys

�
; Z =

�
Zp
Zs

�
;

and let a meaningful approximation ~Yp to Yp and an easy-to-invert approximation ~As to

As be known. Then
�
~Yp; ~A

�1
s (Zs �Asp

~Yp)
�T

is a meaningful approximation to (Yp; Ys)
T .
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The choice ~As = As implies solution of a saturation system. Lesser sti�ness of As

allows us to replace As by a simple approximation (ILU(0) or cell block Jacobi). As we
shall see, the latter choice results in moderate convergence dependence on the number
of grid blocks.

We note, however, that Assumption 3 is not applicable to the solution of (9) directly,
since a meaningful guess ~Yp is to be found. Computation of such a guess is the main
target of decoupling techniques.

4.2 Decoupling techniques

Basic framework

Our goal is an eÆcient iterative solution of system (9). To this end, we need a physi-
cally meaningful preconditioner for the system matrix. In this section, we address those
preconditioners which minimize the number of systems to be solved at each precondition
step, and do not require high accuracy for such systems. This reduces both computer
memory requirements and CPU time for solving a system with the preconditioner. In
fact, we shall focus on preconditioners based on the pressure equation solution and block
Gauss-Seidel update of saturation. Di�erent types of such an update as well as more
advanced preconditioners [11, 28], are considered in Section 4.4. Di�erent types of the
pressure equation preconditioner will be addressed in Section 5.

According to Assumption 3, we need a meaningful guess ~Yp to Yp. The pressure
equation reads as

ApYp +ApsYs = Zp:

Here the pressure variable is coupled to the saturation variables by matrix Aps. This
coupling is chie
y local (Assumption 2) which means that the entries of matrix Aps

not belonging to the diagonal cell blocks fAgii of A may be neglected. Therefore, any
transformation of system (9) which makes the diagonal cell blocks fApsgii of Aps to be
zero, essentially decouples pressure from saturation and allows us to �nd ~Yp. We consider
several such transformations. Hereinafter, we denote by fAgii the diagonal blocks of a
matrix A which is decomposed into grid cell blocks. Within these notations we consider
transformations of (9) such that fApsgii = 0.

Constrained pressure decoupling

The approach [11, 26] is based on inversion of local matrices fAgii. Let e1 = (1; 0; : : : ; 0)T 2
Rn, I be the identity matrix of order n, and

GW
ii = I + e1e

T
1

�
fApgiifAg

�1
ii � I

�
: (13)

It is easy to check that

GW
ii fAgii =

�
AW
p O

AW
sp AW

s

�
ii

(14)
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which implies decoupling pressure from saturations within the diagonal cell block fAgii.
Introducing the block diagonal matrix

GW = blockdiagfGW
ii g (15)

and multiplying (9) by GW , we obtain the transformed system

AW = GWA; AWY = GWZ:

Decomposition of AW into blocks corresponding to primary variables

AW =

�
AW
p AW

ps

AW
sp AW

s

�
;

(14)-(15), and Assumption 3 result in the CPR preconditioner

~AW =

�
AW
p O

AW
sp

~AW
s

�
(16)

to matrix AW . Here, ~AW
s denotes a preconditioner to AW

s (cell block Jacobi). In order
to solve a system ~AWx = r, one has to solve the pressure equation AW

p xp = rp, compute

the residual rs � AW
spxp and precondition the residual ( ~AW

s )�1(rs � AW
spxp). We note

that inverting ~AW
s requires either additional storage for keeping ( ~AW

s )�1 or to invert ~AW
s

whenever we solve a system with AW . In the latter case the inversion may be performed
cell-by-cell resulting in a sequence of inversions of order n� 1.

Householder re
ection decoupling

An alternative to CPR decoupling is the Householder re
ection [9]. Let GH
ii be a product

of n� 1 Householder matrices:

GH
ii = P1;ii � P2;ii : : : Pn�1;ii: (17)

Multiplication of a matrix by Pk;ii zero the k-th row of the upper triangular part of fAgii.
Hence,

GH
ii fAgii =

�
AH
p O

AH
sp AH

s

�
ii

(18)

where AH
s is lower triangular matrix. This implies not only decoupling pressure from

saturations, but a virtual factorization of the saturation block AH
s within a grid block.

Multiplication of (9) by the block diagonal matrix

GH = blockdiagfGH
ii g

result in the transformed system

AH = GHA; AHY = GHZ:
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Block representation of AH and its preconditioner ~AH related to primary variables are

AH =

�
AH
p AH

ps

AH
sp AH

s

�
; ~AH =

�
AH
p O

AH
sp

~AH
s

�
: (19)

Here ~AH
s denotes the cell block Jacobi approximation to AH

s . The solution procedure
for matrix ~AH is similar to that for the matrix ~AW . The �rst advantage is that neither
additional memory nor additional inversion is needed to evaluate ( ~AH

s )
�1, since it is lower

triangular. Another pro�t of Householder re
ections is that they preserve the L2 norm
of a vector. The property is important in the case of the inexact Newton method, when
the forcing term technique is used to relax the tolerance of the linear iterative solver.
The L2-norm conservation implies direct applicability of advanced modi�cations of the
Newton method.

Quasi-Impes decoupling

Quasi-Impes decoupling uses an Impes reduction approach to zero the block fApsgii. Let
Xi 2 R

n satisfy the system

fAgTiiXi = e1: (20)

Due to (20) multiplication of fAgii by X
T
i yields

XT
i

�
Ap Aps

Asp As

�
ii

=
�
AX
p O

	
ii
:

Therefore, if we de�ne the cell block diagonal matrix

GX = blockdiag

(
XT
i

Æ

In�1

)
;

Æ

In�1 :=
�
O In�1

�
2 R(n�1)�n

and multiply by it both sides of (9), we obtain the transformed system

AX = GXA; AXY = GXZ:

Block representations of AX and its preconditioner ~AX are similar to those of AW and
~AW :

AX =

�
AX
p AX

ps

AX
sp AX

s

�
; ~AX =

�
AX
p O

AX
sp

~AX
s

�
; (21)

where ~AX
s is the cell block Jacobi preconditioner to AX

s . The solution procedure for the
matrix ~AX is just the same as for ~AW . The only di�erence is that AX

sp = Asp, A
X
s = As,

that is, large part of system (9) remains unchanged.
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True Impes decoupling

The main idea of the above approaches is to extract the pressure equation which is not
coupled to saturations locally within grid cells. Then the construction of the precondi-
tioner for the modi�ed system matrix is performed in two steps: neglecting the remained
pressure-saturation ties in the pressure equation; replacing the saturation block by an
easy-to-invert approximation. All the approaches are similar in a sense that they con-
struct the slightly coupled pressure equation algebraically, basing on the system (9). An
alternative is to construct a decoupled pressure equation along with the generation of
matrix A. Such an equation may be obtained in the framework of the Impes approach [7].
We remind that if only accumulation term is linearized in (6), the reduction procedure
(6)-(9) yields a matrix denoted by AM . Let us �nd such a linear combination of rows
of the cell diagonal blocks fAMgii, that the pressure be decoupled within the cells. Let
vector XM

i 2 Rn satisfy the system

fAMgTiiX
M
i = e1: (22)

Analogously to the quasi-Impes decoupling, multiplication by (XM
i )T eliminates depen-

dency of pressure on saturations:

(XM
i )T

�
AM
p AM

ps

AM
sp AM

s

�
ii

=
�
AM
p O

	
ii
:

The modi�ed system is obtained by the multiplication of the system (9) by the cell block
diagonal matrix

GM = blockdiag

(
(XM

i )T
Æ

In�1

)
:

If we assume that the well terms are implicit in pressure only, the pressure equation of
the modi�ed system is the Impes pressure equation [7]. The modi�ed matrix and its
preconditioner are

AI =

�
AI
p AI

ps

AI
sp AI

s

�
; ~AI =

�
AI
p O

AI
sp

~AI
s

�
: (23)

The true Impes reduction is di�erent from the quasi-Impes one in the vectors XM
i and

Xi only. Vector X
M
i is de�ned on the basis of accumulation term, while Xi depends on

all three terms of the Jacobian. Therefore, the quasi-Impes decoupling is more eÆcient
from the algebraic point of view, though the true Impes decoupling is more physically
meaningful.

4.3 Numerical comparison for the decoupling techniques

The decoupling preconditioners have been tested for several matrix equations (9). The
comparative characteristic is the number of GMRES(20) iterations needed to reduce the
residual L2-norm by a factor of 103 (initial guess is supposed to be trivial). We consider
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the black oil model (water pressure as a primary variable). Case 1 is the �rst Newton
iteration of the �rst time step of the ninth SPE comparison problem (15 � 24 � 25 grid
blocks), with a one day time step. Case 2 is di�erent from Case 1 only in the time step
increased to 10 days. Case 3 is the same as Case 2 but for the second Newton iteration.
Cases 4, 5, 6 are similar to Cases 1, 2, 3 but correspond to a �ner mesh (30 � 48 � 50
grid blocks). Table 5 summarizes the performance of the preconditioners ~AW , ~AH , ~AX ,
~AI , with the cell block Jacobi approximations of saturation blocks AW

s , AH
s , A

X
s , A

I
s,

and almost exact solution of the pressure equation.

Case ~AW ~AH ~AX ~AI

1 4 4 4 5
2 4 4 4 5
3 5 5 5 27
4 7 7 7 12
5 7 7 7 12
6 14 14 15 > 100

Table 5: Performance of decoupling preconditioners.

We may conclude that the true Impes results in larger number of iterations compared
to other types of decoupling which perform similarly.

In the above experiments we used the cell block Jacobi preconditioner ~As in the block
Gauss-Seidel update of saturations. However, it is not clear how accurate should be the
saturation preconditioner ~As, or, in other words, what is the price for the replacement
of the saturation block As by a computationally cheap preconditioner. In Table 6 we
compare two block Gauss-Seidel preconditioners for the Householder decoupling (19) and
the above described data set. The �rst one takes the cell block Jacobi approximation
~AH
s for the saturation block AH

s , and the second, ~AH
exact, uses

~AH
s = AH

s .

Case ~AH ~AH
exact

1 4 4
2 4 4
3 5 5
4 7 6
5 7 6
6 14 14

Table 6: Exact saturation solve versus the block Jacobi approximation.

It is clear that the usage of cell block Jacobi approximation to the saturation block
almost does not a�ect the convergence rate. Hence, it is decoupling preconditioner that
makes the convergence sensitive to the mesh size.
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4.4 Combinative techniques

The assumption that pressure \governs" saturations but is not \governed" by saturations
may be too strong. The preconditioner providing a feedback for the pressure-saturation
interaction is likely to converge faster. An example of such a preconditioner is the
combinative two-stage preconditioner [11, 26, 4]. Consider, for example, a Jacobian
system transformed by the Householder re
ection decoupling (19). The action of the
two-stage combinative preconditioner Y = ( ~AH

2 )
�1Z is

1. Solve the pressure equation AH
p Yp = Zp

2. Compute the total residual�
Rp

Rs

�
=

�
Zp
Zs

�
�

�
AH
p

AH
sp

�
Yp

3. Precondition the total residual and update the pressure�
Yp
Ys

�
:= (ÂH)�1

�
Rp

Rs

�
+

�
Yp
O

�

Here, ÂH stands for a preconditioner to AH providing a pressure dependence of satura-
tions. The di�erence between the combinative ~AH

2 and block Gauss-Seidel preconditioner
~AH (19) is in computing and preconditioning the residual, as well as the presence of the
feedback update of the pressure. The algebraic form of the combinative preconditioner
is �

~AH
2

��1
=

�
(AH

p )
�1 0

0 0

�
+
�
ÂH
��1�

I �

�
AH
p

AH
sp

�
(AH

p )
�1

�
: (24)

Two important remarks are pertinent here. First, the block (AH
p )

�1 may be replaced
by any pressure preconditioner. Second, according to numerical evidence, the precon-
ditioner ÂH to the whole matrix may be chosen to be rather weak, since its goal is to
provide a pressure-saturation feedback. Possible candidates are ILU(1) [26], DILU [8],
or one LSOR iteration, or even a couple of Richardson iterations with a block Jacobi
preconditioner.

We compare the combinative preconditioner (24) with the block Gauss-Seidel pre-
conditioner (19). The preconditioner ~AH uses the cell block Jacobi approximation ~AH

s of
AH
s . The global preconditioner Â

H in the combinative method ~AH
2 is just two Richardson

iterations with matrix AH and the cell block Jacobi preconditioner and zero initial guess
( ~AH

2;R), or one LSOR iteration with blocks associated to vertical grid lines ( ~AH
2;L). We

note that in the case of the black oil (and compositional) model the cost of ÂH evaluation
approaches the cost of multiplication by the Jacobian matrix AH . Therefore, the cost of
one GMRES iteration with the combinative preconditioners ~AH

2;R,
~AH
2;L exceeds that for

~AH by an additional matrix-vector multiplication for AH . In the case of the hydrology
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model the relative weight of ÂH becomes larger in the overall cost of the combinative
preconditioner.

In our comparison, we consider four cases related to the hydrology (Cases 1,2) and
to the black oil (Cases 3,4) models. The physical properties of the reservoir are similar
in all the cases: vertical permeability has a 4-fold jump in a thin horizontal layer (Fig.1),
and in two opposite corners there are injection and production wells. The mesh in Cases
1 and 3 has 10�20�20 cells, while in Cases 2 and 4 the mesh has 20�40�40 cells. The
simulation is done for 18 days within 10 time steps. The relative tolerance for the Newton
iterations is 10�4 and for the linear solver 10�2. The pressure equation is solved by 6
LSOR iterations. In Table 7 we show the total number of linear iterations accumulated
in the whole simulation and the average number of GMRES(20) iterations per Newton
step, as well as CPU time of all linear solves measured on a PC-II(400 MH).
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Figure 1: Layered media.

As it stems from the data in Table 7, the combinative preconditioner results in a
faster convergence although one GMRES iteration is more costly then that for the block
Gauss-Seidel. The advantage of the combinative preconditioner becomes more evident for
large number of unknowns. The drawback of the considered two Richardson iterations is
that the iterative parameter is not known a priori. The value of the parameter a�ects the
convergence. The chosen value (1.0) accelerates the method considerably for the above
cases. But in other cases, the convergence may be even worse compared to the block
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Case #GMRES it. #GMRES per CPU time
Newton st.

~AH ~AH
2;R

~AH
2;L

~AH ~AH
2;R

~AH
2;L

~AH ~AH
2;R

~AH
2;L

Case 1 158 130 120 7.9 6.5 6 8.5 9.5 9.6
Case 2 361 257 241 17.2 11.7 10.5 177 166 168
Case 3 141 114 108 5.6 4.6 4.3 11.3 12.9 15.4
Case 4 653 363 345 15.5 9.5 8.6 431 355 397

Table 7: Block Gauss-Seidel and the combinative preconditioners. Pressure block is
preconditioned by LSOR(6).

Gauss-Seidel preconditioner. LSOR preconditioning is robust and may be considered to
be parameter independent. Our experience shows that the combinative technique is more
eÆcient than the block Gauss-Seidel method, if the pressure block is not preconditioned
very well. Table 8 illustrates this by the results of the same experiments with algebraic
multigrid preconditioner (coupled with one LSOR iteration) for the pressure block, which
is the best preconditioner at hand. Since many preconditioners to be examined are not

Case #GMRES it. #GMRES per CPU time
Newton st.

~AH ~AH
2;R

~AH
2;L

~AH ~AH
2;R

~AH
2;L

~AH ~AH
2;R

~AH
2;L

Case 1 58 49 52 2.9 2.5 2.6 4.8 5.6 6.2
Case 2 115 82 72 5.5 3.7 3.4 72 76 73
Case 3 147 112 108 5.9 4.5 4.3 11.5 13.5 16
Case 4 604 372 343 15.5 9.5 8.3 417 384 423

Table 8: Block Gauss-Seidel and the combinative preconditioners. Pressure block is
preconditioned by AMG coupled with LSOR(1).

as good as the latter one, we �x the combinative preconditioner as the basic one.

5 Pressure block preconditioners

The modi�ed pressure block �A � AW;H;X
p of the Jacobian matrix is sparse and highly

non-symmetric. Moreover, it is sti� due to its elliptic nature. In this Section, we con-
sider several preconditioners for the modi�ed pressure block which satisfy the following
requirements:

� they are implemented in IPARS,

� they are parallelizable,

� they have low arithmetical cost which is proportional to the order of the pressure
block.
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Before we proceed to description of preconditioners, we discuss the structure of the pres-
sure block. Since the underlying meshes in IPARS are 3D rectangular, a preconditioner
to the pressure block may be constructed for the �nite di�erence 7-point stencil. There-
fore, in case of necessity, one could consider the pressure block as a block matrix with
2D (5-point) areal stencil. Each diagonal block is a tridiagonal matrix associated to ties
within a vertical line. If we order the vertical grid lines in the red-black areal fashion,
we obtain the following block representation:

�A =

�
�Ar

�Arb
�Abr

�Ab

�
:

Here, �Ar, �Ab are the block diagonal matrices. Each block, being a tridiagonal matrix,
represents the interaction of a column of grid cells with itself (a one dimensional problem).
Therefore, evaluation of �A�1r , �A�1b is computationally cheap.

The majority of the preconditioners to be considered below have two modes: the basic
algorithm, and its improved version. By improvement we understand certain modi�cation
which reduces the number of iterations considerably though may increase the arithmetical
complexity of one iteration. According to this scheme we consider:

� block Gauss-Seidel method,

� truncated Neumann series method,

� separable preconditioning.

Besides, we consider modi�cations of algebraic multilevel methods which have less ex-
pensive iterations and initialization but may result in worse convergence. Hereinafter,
we shall use the Householder decoupling in order to obtain the modi�ed pressure block,
and the combinative method with one LSOR iteration for preconditioning the modi�ed
Jacobian.

In the comparative numerical experiments we shall consider four cases related to the
hydrology (Cases 1,2) and to the black oil (Cases 3,4) models, similarly to the cases from
Section 4.4. The physical properties of the reservoir are similar in all the cases: vertical
permeability has a 4-fold jump in a thin horizontal layer, and in two opposite corners
there are injection and production wells. The mesh in Cases 1 and 3 has 10�20�20 cells,
while in Cases 2 and 4 the mesh has 20�40�40 cells. The simulation is done for 18 days
within 10 time steps. The relative tolerance for the Newton iterations is 10�4 and for
the linear solver 10�2. In Tables 9, 10, 11, 12, 14 we present the total number of linear
iterations accumulated in the whole simulation and the average number of GMRES(20)
iterations per Newton step, as well as CPU time of all linear iterations measured on a
PC-II(400 MH).

5.1 Block Gauss-Seidel preconditioner and LSOR iterative acceleration

The block Gauss-Seidel preconditioner is a block lower triangular part of the pressure
block �A:

�AGS =

�
�Ar O
�Abr

�Ab

�
:
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The solve operation �A�1GS comprises evaluations of �A�1r , �A�1b and a vector multiplication
by �Abr. The iterative acceleration of the block Gauss-Seidel is the line SOR2 (Successive
Overrelaxation Method). It is devised by applying extrapolation to the block Gauss-
Seidel method. This extrapolation takes the form of a weighted average between the
previous iterate xk�1 and the computed block Gauss-Seidel iterate �xk:

xk = !�xk + (1� !)xk�1; k = 1; : : : ; LSOR:

The optimal value of ! is computed according to heuristic formulae. The resulting linear
operator �A�1LSOR is a better preconditioner to �A but more expensive than �AGS . The
larger number of LSOR iterations LSOR is, the better �ALSOR approximates �A. In Table
9 we show the performance data for �AGS and �ALSOR preconditioners. For the hydrology

Case #GMRES it. #GMRES per CPU time
Newton st.

�AGS
�ALSOR

�AGS
�ALSOR

�AGS
�ALSOR

Case 1 269 120 13.5 6 12.5 9.6
Case 2 963 241 40.1 10.5 419 168
Case 3 162 108 6.5 4.3 16.6 15.4
Case 4 471 345 12.7 8.6 414 397

Table 9: Block Gauss-Seidel and LSOR (LSOR = 6) inner iterations as preconditioners
for the pressure block.

model, the iterative acceleration yields the 2-fold speed-up, whereas in the case of the
black oil model the speed-up is not considerable.

5.2 Truncated Neumann series

The block factorization of matrix �A is�
�Ar

�Arb
�Abr

�Ab

�
=

�
�Ar O
�Abr

�AS
b

��
I �A�1r

�Arb

O I

�
;

where
�AS
b = �Ab � �Abr

�A�1r
�Arb:

Due to the red-black reordering, the evaluation of �A�1r , �A�1b may be performed eÆciently
and parallelized. However, the evaluation of ( �AS

b )
�1, the inverse Schur complement, may

not be implemented eÆciently since �AS
b is a dense matrix. A substitution for ( �AS

b )
�1

by a reasonable approximation yields a preconditioner to �A. The truncated Neumann
series, (1� x)�1 = 1 + x+ � � �+ xn, gives such an approximation. Keeping the �rst two
terms of a series, we obtain

( �AS
b )
�1 ' �A�1b (I + �Abr

�A�1r �Arb
�A�1b ) � ( �AN

b )
�1:

2Contribution of Philippe Quandalle (IFP, France).
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Thus, the truncated Neumann series preconditioner is

�ANS =

�
�Ar O
�Abr

�AN
b

��
�I �A�1r

�Arb

O I

�
:

The arithmetical work needed to evaluate �A�1NS equals two LSOR iterations approxi-
mately. Numerical tests show that the condition number of �A�1NS

�A depend on the min-
imal mesh step. To enhance the preconditioner, one could use better approximation
to the inverse of the Schur complement. We have found that further expansion of the
Neumann series is more expensive than inner iterative loop resulting in an operator

gAN
b � AS

b

0@I �Y
j

(I � �j( �A
N
b )

�1 �AS
b )

1A�1

:

Parameters �j are not �xed, they are computed by a Krylov subspace method so that
the relative accuracy of the iterative inversion be �xed (in our cases, the tolerance for the
residual reduction is chosen to be 0.6). The inner iterative process may be either GMRES
or BCGStab, or even CG method applied for symmetric modi�cations of AS

b . In Table
10 we compare the performance of �ANS preconditioner and its GMRES acceleration
�ANS;GMRES. We note, that since the latter preconditioner is nonlinear, the 
exible
GMRES method is used in the solution of system (9). For the hydrology model, the

Case #GMRES it. #GMRES per CPU time
Newton st.

�ANS
�ANS;GMRES

�ANS
�ANS;GMRES

�ANS
�ANS;GMRES

Case 1 228 103 11.4 5.1 13.8 11.4
Case 2 558 146 23.2 6.3 321 232
Case 3 144 134 5.5 5.1 17.7 17.6
Case 4 436 429 11.2 10.7 444 493

Table 10: Truncated Neumann series without and with GMRES acceleration as precon-
ditioners for the pressure block.

speed-up due to iterative acceleration may be essential, and the CPU time is comparable
with the block Gauss-Seidel/LSOR preconditioning. The advantage of the truncated
Neumann series method is that the number of inner iterations is chosen automatically,
basing on the convergence tolerance. In the case of black oil no speed-up is observed.

5.3 Separable preconditioner

The separable preconditioner is based upon an inversion of the following discrete operator

�ASp = A1 
M2 
M3 +M1 
A2 
M3 +M1 
M2 
A3:

Here, Ai stands for symmetric tridiagonal matrix and Mi stands for a diagonal matrix.
The method was proposed by Yu.Kuznetsov [12] and P.Vassilevski [25] about 15 years
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ago. Its numerical properties were reported in [1]. The method features insensitivity to
anisotropy of the grid, arbitrary dimensions of matrices Ai;Mi, and suboptimal arith-
metical complexity (O(N logN)) [12].

For IPARS implementation, we chose the parallel and single processor versions of
the separable preconditioner written by Tuomo Rossi and Jari Toivanen from Jyv�askyl�a
University, Finland. For details of the method implementation we refer to [17], [18],
[19],[23]. Within IPARS, matrices Mi were taken to be identities and matrices Ai were
chosen to be submatrices of the pressure block of the transport term of unmodi�ed
Jacobian A. The submatrices are associated with given \tracing grid lines" in direc-
tions x; y; z. Preconditioning a heterogeneous operator by the tensor product of \one
dimensional" matrices may result in loosing high frequencies, and hence we augment the
separable preconditioner by a LSOR(1) smoother:

�A�1Sp;2 =
�A�1Sp +

�A�1
LSOR(1)(I �

�A �A�1Sp ):

Implementation of such an enhanced preconditioner resembles the two-level method [29]
where �ASp plays the role of a coarse mesh solver. The di�erence is that �ASp is de�ned
on the whole grid space. The motivation for the two-stage preconditioner is very simple.
If we assume that heterogeneity of porous media a�ects mainly the high frequencies of
the discrete heterogeneous operator preconditioned by a discrete homogeneous operator,
then we may damp those frequencies by a cheap smoother (LSOR). Roughly speaking,
we may try to correct the homogeneous preconditioner for improperly preconditioned
high frequencies. The implementation steps of the two-stage separable preconditioner
y = �A�1Sp;2x are:

1. y = �A�1Spx,

2. r = ( �ALSOR(1))
�1(x� �Ay),

3. y := y + r.

In Table 11 we compare the performance of the two preconditioners in the case of ho-
mogeneous (layered) media. It is seen that evaluation of the two-stage preconditioner
is slightly more expensive but results in better convergence. The advantage of the two-
stage modi�cation will be seen in Subsection 5.5, where we consider media with variable
and heterogeneous permeability. For the hydrology model with mildly variable or ho-
mogeneous permeability, the two-stage separable preconditioner turns out to be very
competitive method. Another important observation is that the separable precondi-
tioner works very bad in case of the black oil model. We postpone the discussion of this
phenomenon to the end of the paper.

5.4 Algebraic multilevel preconditioners

We consider two versions of an algebraic multilevel method, the algebraic multigrid
(AMG) [22] and the multilevel incomplete LU (MLILU) method [3]. They are di�erent
in the Setup phase and grid transfer operators only. To de�ne any multigrid method,
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Case #GMRES it. #GMRES per CPU time
Newton st.

�ASp
�ASp;2

�ASp
�ASp;2

�ASp
�ASp;2

Case 1 79 76 3.9 3.8 6.5 7.1
Case 2 102 88 4.9 4.2 70 70
Case 3 260 232 9.3 8.6 32 30.6

Table 11: Separable preconditioner and two-stage separable preconditioner as precondi-
tioners for the pressure block.

several components are required. Using superscripts to indicate level number, where 1
denotes the �nest level so that A1 = �A and the �nest grid (set of degrees of freedom 
1)
coincides with that of �A (
), the components that AMG needs are as follows:

1. \Grids" 
M � � � � � 
2 � 
1.

2. Grid operators AM ; : : : ; A2; A1.

3. Grid transfer operators:
\Interpolation" Ikk+1; k = 1; 2; : : : ;M � 1,

\Restriction" Ik+1k ; k = 1; 2; : : : ;M � 1.

4. Relaxation scheme for each level.

The recursively de�ned (1; 1)V -cycle uses the above components as follows:
Algorithm: MV k(uk; fk):

If k =M , set uM = (AM )�1fM .
Otherwise:

Relax on Akuk = fk.
Perform coarse grid correction:

Set uk+1 = 0; fk+1 = Ik+1k (fk �Akuk).
\Solve" on level k + 1 with MV k+1(uk+1; fk+1).
Correct the solution by uk := uk + Ikk+1u

k+1.

Relax on Akuk = fk.
Operators on coarse grids are de�ned via Galerkin projection:

Ak+1 = Ik+1k AkIkk+1:

We note that in the case of the algebraic multigrid the interpolation Ikk+1 and restriction

Ik+1k operators are transposed, Ik+1k = (Ikk+1)
T . For the MLILU method, this is true

only for symmetric matrices.
The choice of components in the algebraic multilevel methods is done in a separate

preprocessing step:
Setup phase:

1. Set k = 1.
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2. Partition 
k into disjoint sets Ck and F k.

(a) Set 
k+1 = Ck.

(b) De�ne \interpolation" Ikk+1 and \restriction" Ik+1k .

3. Set Ak+1 = Ik+1k AkIkk+1:

4. If 
k+1 is small enough, set M = k + 1 and stop. Otherwise,
set k = k + 1 and go to step 2.

The goal of the setup phase is to choose the set Ck of coarse grid points, for each �ne
grid point i 2 F k � 
k n Ck, a small set Ck

i � Ck of interpolating points and for each
coarse grid point j 2 Ck � 
k+1 a small set F k

j � F k of restriction points. Interpolation
and restriction are then de�ned in terms of weights by:

(Ikk+1u
k+1)i =

8<: uk+1i if i 2 Ck;P
j2Ck

i

!iju
k+1
j if i 2 F k;

(Ik+1k uk)j = ukj +
X
i2F k

j

�!jiu
k
i :

We recall that in case of AMG �!ji = !ij.
Thus, the general structure of AMG and MLILU methods is the same. However, the

techniques for generation of the inter-grid transfer operators and separation into �ne and
coarse nodes are totally di�erent. First, it is important to note that AMG is applied to a
positive de�nite operator whereas MLILU is appropriate for a negative de�nite operator.
As a result, the de�nitions of sets of in
uencing points di�er:

Si =

�
j 6= i j � aij � �max

k 6=i
(�aik) (AMG)

�
;

Si =

�
j 6= i j aij � �max

k 6=i
(aik) (MLILU)

�
:

The use of these sets is important for the computation of the weights !ij, �!ji. The weight
evaluation is based on di�erent ideas for AMG and MLILU. The AMG algorithm is fo-
cused on errors e satisfying Ae � 0 [22]. The MLILU method is designed to approximate
the Schur complement K associated with a Gauss elimination, by a matrix �K so that a
�ltering condition is satis�ed (K �K)t = 0, for a given test vector t [3].

The other major di�erence stays in the separation step. The main tool of the sepa-
ration is an oriented adjacency matrix graph whose ties are described by the formula:

e
(0)
ij =

�
1; if j 2 Si;
0; otherwise.
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The coarse nodes are de�ned to be the nodes in
uencing the maximum number of �ne
nodes. By the in
uence of a node i we understand the summation of all the ties coming
from other nodes, i.e.

�i =
X

j2(Si)T

eji;

where STi = fk; i 2 Skg. In the MLILU method, the sets Ck and F k are constructed
to reduce a �ll-in. Namely, for each node i, the MLILU separation step looks forward
to �nd two weakly connected nodes (parent nodes) which provide a minimum �ll-in in
the next graph after elimination of the node i. Then, the ties for the parent nodes are
reinforced compared to other nodes linked to the node i:

e
(1)
ij =

(
e
(0)
ij ; if j is not a parent node,

�ij(�i; nbi); otherwise,

where �ij is the number of new edges in the next graph and nbi is the number of neighbors
of the node i. The ties are updated in MLILU whereas they stay the same in AMG.
In other words, the separation step for AMG exploits all the nodes from the in
uencing
sets while for MLILU selects just subsets of the in
uencing sets. After this step the
separation is as follows:

1. Set Ck = fg, F k = fg, Uk = 
k.

(a) Until Uk is empty select i with maximum �i.

i. If �i > 0 set Ck = Ck [ fig and Uk = Uk n fig

ii. For all nodes j depending on i, i.e., j 2 STi
If (AMG) select all j as �ne nodes F k = F k [ fjg
If (MLILU) select j as a �ne nodes only if two of his parent nodes are
coarse nodes or if it is linked to an unique coarse node
Update ties of the nodes k in
uencing all the new �ne nodes and the
coarse node regarding
if (AMG) initial sets STk in case of AMG

if (MLILU) updated sets STk corresponding to the new graph

iii. If �i = 0
If (AMG) always select this node as a coarse node, Ck = Ck [ fig
If (MLILU) impose weaker F node conditions and check if i could be a
�ne node otherwise select i as a coarse node

2. If (AMG) check all F nodes to ensure there is no connections between them or
dependency towards interpolating nodes
If (MLILU) improve interpolation and restriction by possible extensions of the sets
of parent nodes
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The last step of MLILU does not change the separation into subsets F k and Ck, it
modi�es slightly interpolation and restriction patterns in terms of F k

j , C
k
i . In contrast

to MLILU, the last step of AMG modi�es the separation essentially.
It is important to notice the di�erence in the node labeling for both methods. The

MLILU separation seems to be more advanced compared to the AMG counterpart, since
it provides better approximation for a lower complexity. The compensation for better
labeling is a higher initialization price (ten to forty MLILU V-cycles versus �ve to ten
AMG V-cycles). For other details we refer to [6] and [3], respectively.

In Table 12 we present the performance data of both preconditioners. The AMG
method is implemented using AMG1R5 code (K.Stuben et al.), and the MLILU method
is implemented by S.Lacroix. As it is seen from the table, the execution time is rather

Case #GMRES it. #GMRES per CPU time
Newton st.

�AAMG
�AMLILU

�AAMG
�AMLILU

�AAMG
�AMLILU

Case 1 50 49 2.5 2.4 11.3 15.8
Case 2 75 69 3.6 3.3 169 276
Case 3 103 102 4.1 4.1 23.4 31.1
Case 4 344 343 8.4 8.4 641 911

Table 12: Algebraic multigrid (AMG) and multilevel incomplete LU method as precon-
ditioners for the pressure block.

large although the convergence of GMRES is very fast. The detailed analysis shows that
the major part of time is spent to initialization of AMG and MLILU. The preconditioner
for the pressure block is to be reinitialized every Newton step. Due to the fast convergence
of the method, the initialization time is not compensated by the iteration time. In
order to balance initialization and iterative solution, we take advantage of the two-stage
method discussed above. We note that LSOR iteration is a very good smoother for
errors having dominant frequencies in the vertical direction. Therefore, we can replace
preconditioning the whole pressure block by preconditioning its Galerkin projection,
�Ac = ITx

�AIx, where Ix stands for an interpolation operator in the vertical direction.
We de�ne the interpolation operator as a block diagonal matrix where each block is
associated to a vertical grid line. In order to de�ne the matrix blocks, we group the
unknowns within a block by triples, except those associated to the top and the bottom
of the grid line: f1g; f2; 3; 4g; f5; 6; 7g; : : : ; fNxg. The block of Ix contains ones in each
column associated with each subset:

Ix =

0BBBBBBB@

1 0 0 : : :
0 1 0 : : :
0 1 0 : : :
0 1 0 : : :
0 0 1 : : :
...

...
...

. . .

1CCCCCCCA
:
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The restriction operator, ITx , is nothing else but the averaging operator. The 7-point
stencil of the Galerkin projection �Ac remains the same, an the order of matrix �Ac is
almost as much as 3 times smaller than that of matrix �A. If we denote the multilevel
preconditioner (AMG or MLILU) for �Ac by Bc, the two-stage preconditioners are:

�A�1AMG;2 = IxB
�1
c;AMGI

T
x + �A�1

LSOR(1)(I �
�AIxB

�1
c;AMGI

T
x );

�A�1MLILU;2 = IxB
�1
c;MLILUI

T
x + �A�1

LSOR(1)(I �
�AIxB

�1
c;MLILUI

T
x ):

It is pertinent to note here that the introduction of geometrical interpolation operator
may result in deterioration of the convergence, if the interpolation operator is not stable
in appropriate norm. It may happen in a case of severe heterogeneity of coeÆcients,
as we shall see later. In Table 12 we exhibit the performance data of both two-stage
preconditioners. In the case of layered media, the convergence remains the same while
the execution time drops considerably.

Case #GMRES it. #GMRES per CPU time
Newton st.

�AAMG;2
�AMLILU;2

�AAMG;2
�AMLILU;2

�AAMG;2
�AMLILU;2

Case 1 52 53 2.6 2.6 6.2 8.5
Case 2 72 75 3.4 3.6 73 117
Case 3 108 108 4.1 4.1 16.4 20.7
Case 4 343 345 8.4 8.4 422 489

Table 13: Two-stage algebraic multigrid (AMG) and multilevel incomplete LU methods
as preconditioners for the pressure block.

5.5 Heterogeneous permeability

We compare the performance of all the above speci�ed preconditioners for the hydrology
and black oil models in heterogeneous porous media with permeability variations of order
10 (moderate heterogeneity) and 1000 (severe heterogeneity) (Figs.2,3). We consider
two-well simulation of the 
ow during the �rst 18 days (10 time steps) on the mesh
(20� 40� 40), with di�erent structure of permeability. The comparative data are shown
in Tables 14, 15.

The results shown in the tables prove that the most robust to the degree of hetero-
geneity are the algebraic multilevel methods. The cost of evaluation and initialization of
the AMG preconditioner is surprisingly lower in the case of heterogeneous media. The
two-stage algebraic multilevel method is the fastest. Higher cost of initialization of the
MLILU method makes it less competitive than the algebraic multigrid. Separable pre-
conditioners, being very eÆcient for moderate heterogeneity in the hydrology models,
are not suitable to the cases of severe heterogeneity and the black oil model. Con-
ventional methods (block Gauss-Seidel, LSOR(6), truncated Neumann series) exhibit
approximately the same performance but di�erent convergence.
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Figure 2: Permeability �eld with moderate heterogeneity.

Method #GMRES it. #GMRES per CPU time
Newton st.

moderate severe moderate severe moderate severe

AGS=ALSOR(6) 541/211 946/290 27/10.5 39.4/12.1 236/145 407/198

ANS=ANS;GMRES 414/110 617/141 20.7/5.5 25.7/5.9 239/174 351/229
ASp=ASp;2 105/98 >1000 5.2/4.9 >100 71/76 >1000

AAMG=AAMG;2 72/73 58/179 3.6/3.6 2.8/7.4 78.2/59 98/126
AMLILU=AMLILU;2 73/76 71/170 3.6/3.8 3.1/7.4 234/94 333/184

Table 14: Performance of the pressure preconditioners for the hydrology model with
heterogeneous media.

6 Conclusions

We considered several issues related to the solution of the systems of nonlinear partial
di�erential equations. The systems appear in the fully implicit simulation of multi-phase

ow in porous media. Two models have been examined, the hydrology (oil and water),
and the black oil model (oil, water and gas). The comparison study has been done in
order to give certain recommendations to IPARS users. The recommendations are based
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Figure 3: Permeability �eld with severe heterogeneity.

Method #GMRES it. #GMRES per CPU time
Newton st.

moderate severe moderate severe moderate severe

AGS=ALSOR(6) 357/294 619/301 7.1/5.9 17.7/8.6 326/353 539/344

ANS=ANS;GMRES 342/340 512/443 6.7/6.5 14.6/12.6 366/393 515/545
AAMG=AAMG;2 304/292 251/261 6.3/5.8 7.2/7.5 416/347 379/301

AMLILU=AMLILU;2 300/277 261/263 5.9/5.8 7.2/7.5 863/404 728/394

Table 15: Performance of the pressure preconditioners for the black oil model with
heterogeneous media.

mainly on the following conclusions derived from the numerical experiments.

Models

The current black oil model (water pressure is chosen to be the primary variable) su�ers
by the lack of computational eÆciency. The main reason is that the pressure diagonal
block of the Jacobian is not sti� enough, and the \ellipticity is spread" over the system.
Indeed, we have seen that an improvement of the pressure preconditioner have not re-
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sulted in signi�cant reduction of GMRES iterations. On the other hand, the feedback
in pressure-saturation interaction accelerates the convergence. Moreover, the separable
preconditioner for the transport part of the Jacobian pressure block is a poor precon-
ditioner to the Jacobian pressure block, in contrast to the hydrology model. Since the
main source of \ellipticity" is in the transport part, we conclude that it is smeared out
the pressure diagonal block of the Jacobian.

The hydrology model does not have such bad properties. The alternative black oil
model with the oil pressure primary variable is expected to improve the performance of
linear solvers.

Nonlinear solver

Inexact Newton method is a�ected by the initial guess and the accuracy of the linear
solver. Linear extrapolation from the previous two time steps yields better initial guess
for the Newton method, compared to the constant extrapolation. The low rank correction
of the �nal Newton iterate improves the mass balance for the solution. The forcing term
technique combined with some oversolving is very convenient way to reduce the number
of GMRES iterations to be performed at each time step.

Linear solver

The preconditioned GMRES method is a robust algorithm for solving sparse linear sys-
tems appearing in the porous media 
ow simulations. In case of nonlinear precondition-
ing, the 
exible GMRES is the relevant substitution for the GMRES method. The set of
two-stage preconditioners has been examined. The goal of the �rst stage is to decouple
a pressure equation from saturation ones. This approach seems to be very promising
in compositional models. Four approaches to decoupling have been tested for the black
oil model. Three of them have exhibited the same convergence properties. Besides, the
combinative technique may accelerate the convergence and reduce the overall CPU time.
The goal of the second stage is to precondition the pressure equation. Five pairs of
pressure preconditioners have been considered. Each pair is based on a particular com-
putational technique and has two versions of a method, conventional and improved. The
improved counterpart reduces the number of GMRES iterations but increases the com-
putational cost of one iteration (with exception of algebraic multilevel methods). The
numerical experiments have been targeted to the trade o� between the conventional and
enhanced counterparts as well as to the comparison of computational methods. These
methods are: the block Gauss-Seidel method, the truncated Neumann series precondi-
tioner, the separable preconditioner, and the algebraic multilevel preconditioners. For
the hydrology model in almost homogeneous media the separable preconditioner is one
of the fastest methods. In heterogeneous media, the most robust is the algebraic multi-
grid method. The two stage preconditioner based on the algebraic multigrid is the most
eÆcient method. For the black oil model, almost all the methods (except the separable
preconditioner) are similar in the performance. The reasons were discussed above. The
two-stage algebraic multigrid remains one of the most eÆcient methods.
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