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Plan of this Report

This report is divided into two major parts. In PART I, brief
summaries of the principal research results are given together with
lists of published papers, reports, dissertations, theses, and oral
presentations that resulted from the work. Also, the personnel who
worked on the project are listed. 1In PART II, summary accounts of
three selected technical areas are given and suggestions for fruit-
ful areas of future work are listed. Many results uncovered during
the course of the project are not dealt with in PART II; rather,
three subjects representative of what are felt to be of principal
importance in the overall work are discussed. Further details of
the technical results can be found in the papers and reports listed

in PART I.
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PART I

SUMMARY OF RESEARCH RESULTS
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1. INTRODUCTION

This document represents the concluding report of research results ob-
tained on the project, Computational Methods in Nonlinear Mechanics, during
the period June 1, 1980 to September 30, 1982, The project was supported
by the Air Force Office of Scientific Research under Ccntract F~49620-C-0083
and was monitored by Dr. Anthony Amos of AFOSR.

All objectives originally listed in the Statement of Work of the pro-
posal for this work have been accomplished. Indeed, A number of research
results which are regarded as very important in the study of the nonlinear
mechanical behavior of complex structures by finite element methods have
been established. These have represented advances in specific areas of
numerical analysis, computational algorithms, computer codes for nonlinear
structural problems, modelling and characterization of various nonlinear
effects, and resolving theoretical questions connected with nonlinear
theories of structural behavior. More details on these results are given
later.

During the two year contract period, the research effort led to the
publication of 33 journal articles and scientific papers, 11 technical
reports, 5 Ph.D. dissertations, 2 M,S. theses, and 50 oral presentations
at conferences, seminars, and invited lecture series, The principal
investigator of the project was Professor J. Tinsley Oden and the co-
principal investigator was Professor E. B. Becker, both of the University
of Texas at Austin. Lists of other personnel who worked on the project

during the contract period are given in Chapter 3,
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2. PRINCIPAL ADVANCES

Significant research results in a number of distinct areas were ob-
tained during the course of this project. However, it is felt that espe-
cially penetrating and important results in several specific areas were
obtained. In the following, we list what are considered some of the prin-

cipal contributions made in this research project.

1. Finite Element Methods for Contact Problems in Elastostatics

A large volume of work was done on the problem of contact between deformable
elastic bodies. In this general area, a variety of results were obtained
on the description of the physical phenomena, development of mathematical
models using the theory of variational inequalities, the study of existence,
uniqueness, and regularity of solutions of the variational inequalities,
development of corresponding approximation theories, the development of
numerical stability criteria, error estimates, convergence criteria, de-
velopment of families of completely new algorithms for solving resulting
systems of linear and nonlinear inequalities, development of programming
strategies and finite element codes for the analysis of such problems, and
the actual analysis of numerous example problems drawn from elasticity,
plasticity, and elastoplasticity in which contact conditions are encountered.
Included in this large collection of results are several completely new
variational principles for contact problems in elasticity, new finite
element methods which employ such devices as interior and exterior penalty
methods, reduced integration, mixed finite element formulations, and techniques

drawn from linear and nonlinear programming.

The theoretical results were not limited to simple unilateral contact.

Indeed, new results were obtained for problems of elastic stability and



buckling of thin elastic plates and shells supported by unilateral constraints %

H

and studies were made of a complex family of bifurcation problems characterized%

by nonlinear variational inequalities. %
Many of the results obtained in this general area are summarized in a ‘

forthcoming treatise entitled, '"Contact Problems in Elasticity," by the prin-

cipal investigator and Professor N. Kikuchi, who worked on the project

periodically during the contract period. This volume is to be published by

SIAM Publications (Society of Industrial and Applied Mathematics, Philadel-

phia, PA) and should appear in early 1983. It is believed that there has

never before been a more detailed and thorough analysis of this difficult

class of nonlinear problems in structural and solid mechanics. A brief

sunmary of some of these results is given in chapter 4 of this report.

2. Reduced Integration-Penalty Finite Element Method for

Constrained Problems in Elasticity and Fluid Flow

Some numerical instabilities encountered early in the project led
the investigators into the study of a collection of difficult numerical
and theoretical issues connected with the convergence and numerical sta-
bility of a variety of popular finite element methods frequently used to
study nonlinear problems in solid and fluid mechanics. This particular
thrust of the research, which was never anticipated in the original research
plan, proved to be one of the most fruitful and important areas on investi-
gation of the entire project.

Particular attention was focused on the idea of using exterior penalty
methods and selective reduced integraiton to handle constrained problems in
in§0mpressible elasticity, incompressible elastoplasticity, contact problems

in elastostatics, and constraints in plate and shell theories. These methods




have been in wide use on an international scale in 1976, It was discovered

in the present project, however, that many of the more popular methods in

use can be dramatically unstable when the finite element mesh is refined and,
in fact, lead to divergent approximations of stresses and pressures. These
results, it is felt, had a significant impact on this subject as a whole and
has changed the thinking on the use of penalty methods throughout this country
and abroad. It was discovered that a key condition for the numerical stability
of such methods rests in the so-called discrete LBB condiditon (Ladyszhkenskaya,
Babuska, Brezzi) which involves a stability parameter, o which governs

the stability and convergence characteristics of most of these methods, As
noted earlier, it was discovered that many of the more popular finite element
methods now in use do not satisfy this condition, and, therefore, can be
unstable, The question then arose as to whether or not elements exist which
are stable, numerically robust, and which converge at optimal rates of
convergence. In the latter phases of the research effort, several such
optimal, stable, and convergent methods in this general family have been

\ discovered. These have been completely analyzed from a mathematical point

of view and also by numerical expe;iments. A summary of some of these results
is given in Chapter 6 of this report,

3. Contact Problems with Friction

Several classes of contact problems with friction have been analyzed
during the course of the project. Numerical schemes and algorithms have
been developed for certain special cases, together with proofs of conver-
gence and error estimates. In particular, special problems in whiéh the
normal contact pressure is prescribed on surfaces on which frictional forces

can be developed have been analyzed in some detail and several papers have



been written on this subject. It was concluded during the last year of

the project, however, that many of the principal physical and numerical
difficulties encountered in this class of problems arose from the inadequacy
of the description of friction. Consequently, a completely new line of
research was undertaken to study new models of friction. This is summarized
briefly in the paragraphs which follow.

4, Non-Classical Friction Laws

During the last four to six months of the project, considerable at-
tention has been given to the study of modelling of static friction be-
tween metallic bodies using friction laws which deviate markedly from the
classical pointwise law proposed by Coulomb 200 years ago. In particular,
on the basis of micro-mechanical mechanisms, some new friction laws have
been proposed which feature 1) a nonlocal description of the contact stress
in the criteria for sliding and 2) a nonlinear friction law in which the
elastic and elastic-plastic response of metallic junctions on the contact
surface are taken into account. This has led to some new variational prin-
ciples for contact problems with friction. At this writing, the full impli-
cation of these new theories has not yet been understood, but it is clear
that they are sufficiently general to lead to a much better modelling of
friction effects in solid and structural components. A summary of some of

these ideas is given in chapter 5 of this report.
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5. Large Deformation Plasticity and Metal Forming

Considerable effort was spent on the development of finite element
simulators of large deformations of elastic-plastic materials. A computer
program was developed for the study of large deformation plasticity prob-
lems and metal forming which is applicable to a broad class of problems in
plane stress, plane strain, and axisymmetric deformation of bodies of revo-
lution. Some impressive numerical results have been obtained from this
code, which apparently surpass all existing commerical codes in terms of
accuracy, efficiency, and overall applicability. Nevertheless, the con-
vergence and numerical stability characteristics of these methods are still
not well understood, and it is clear from some of the computed results that
the choice of an appropriate friction law on contact surfaces has a signif-
icant impact on computed distributions of residual stresses.

6. Other Areas

Significant research results in a number of other areas were produced
during the contract period. These have been discussed in greatdetail in
some of the interim reports submitted to AFOSR over the past 24 months,
and therefore are not discussed in detail here. However, some results in
this general area are of sufficient importance that they deserve mention.

We first note that new and useful results were obtained on the behavior of
finite-element methods for singular problems in structural mechanics, par-
ticularly for problems with stress singularities. These mathematical results
represent the most general that have yet been obtained in this area
and provide concrete estimates for singular problems. The results focus on
the behavior of finite element models which employ various singular elements,

a subject not discussed in any mathematical literature to date. It was shown



been written on this subject. It was concluded during the last year of
the project, however, that many of the principal physical and numerical
difficulties encountered in this class of problems arose from the inadequac
of the description of friction. Consequently, a completely new line of
research was undertaken to study new models of friction. This is summarizc
briefly in the paragraphs which follow.

4, Non-Classical Friction Laws

During the last four to six months of the project, considgrable at-
tention has been given to the study of modelling of static friction be-
tween metallic bodies using friction laws which deviate markedly from the
classical pointwise law proposed by Coulomb 200 years ago. In particular,
on the basis of micro-mechanical mechanisms, some new friction laws have
been proposed which feature 1) a nonlocal description of the contact stress
in the criteria for sliding and 2) a nonlinear friction law in which the
elastic and elastic-plastic response of metallic junctions on the contact
surface are taken into account. This has led to some new variational prin-
ciples for contact problems with friction. At this writing, the full impli
cation of these new theories has not yet been understood, but it is clear
that they are sufficiently general to lead to a much better modelling of
friction effects in solid and structural components. A summary of some of

these ideas is given in chapter 5 of this report.
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We also note that new results on viscous incompressible flow problems
were also pruduced. These results were primarily the outcome of studies on
reducéd integration penalty metﬁods, and on the numerical stability of
various finite element techniques which were developed to study problems

in finite elasticity, plasticity, and contact problems in elastostatics.
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3. SUMMARY OF PUBLISHED RESULTS AND PROJECT PERSONNEL
In this chapter we summarize the publications and oral presentations
of results obtatined during the contract period.

3.1 Journal Articles and Scientific Papers

1. Oden, J.T. and Kikuchi, N., "Theory of Variational Inequalities
with Applications to Problems of Flow Through Porous Media," International
Journal of Engineering Science, Vol. 18, No. 10, pp. 1173-1284, 1980.

2. Oden, J.T. and LeTallec, P.., '"On the Existence of Hydrostatic Pressure
in Regular Finite Deformations of Incompressible Hyperelastic Solids,"
Nonlinear Partial Differential Equations in Engineering and Applied Science,
Marcel Dekker, Inc., pp. 1-8. 1980,

3. Oden, J.T. and Bernadou, M., 'Theoreme d'Existence pour une Classe
de Problemes Nonlineaires de Coques Peu Profondes,' Compte-Rendus-Academy of
Science, Paris, (Analyse Numerique), pp. 1025-1028, 1980,

4., oOden, J.T., "Penalty-Finite Element Approximations of Unilateral
Problems in Elasticity," Approximation Theory, Edited by W. Chenny, Academic
Press New York, pp. 693-697, 1980,

5. Oden, J.T. and Kikuchi, N., "Use of Variational Methods for the
Analysis of Contact Problems in Solid Mechanics,' Variational Methods in the
Mechanics of Solids, Pergamon Press Ltd., Oxford, pp. 259-264, 1980.

6. Oden, J.T., Ohtake, K., and Kikuchi, N., "Analysis of Certain Uni-
lateral Problems in Von Karman Plate Theory by a Penalty Method Part 1. A
Varitional Principle with Penalty," Computer Methods in Applied Mechanics in
Engineering, Vol. 24, pp. 187-213, 1980.

7. oden, J.T., Ohtake, K., and Kikuchi, N., "Analysis of Certain Uni-
lateral Problems in Von Karman Plate Theory by a Penalty Method Part 2.
Approximation and Numerical Analysis," Computer Methods in Applied Mechanics
and Engineering, Vol. 24, pp. 317-337, 1980.

8. oOden, J.T. and LeTallec, P., "Existence and Characterization of
Hydrostatic Pressure in Finite Deformations of Incompressible Elastic Bodies,'
Journal of Elasticity, Vol., 11, MNo. 4, pp. 341-357, 1981.

‘9. oOden, J.T. and Bernadou, M., "An Existence Theorem for a Class of
Nonlinear Shallow Shell Problems,'" Journal de Mathematiques Pures et Appl-
iquees, Vol. 60, No. 3, pp. 285-308, 1981.

10. Oden, J.T. and Kubrusly, R., "Nonlinear Eigenvalue Problems Chara-
cterized by Variational Inequalities with Applications to the Postbuckling
Analysis of Unilaterally Supported Plates," Journal of Nonlinear Analysis,
Vol. 5, No. 12, pp. 1265-1284, 1981.
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11. Oden, J.T. and Campos, L., "Some New Results on Finite Element
Methods for Contact Problems with Friction,'" New Concepts in Finite Element
Methods, ed. by M. Spilker, T.J.R. Hughes, and D. Gartling, A.S.M.E. Mono-
graph, New York, pp. 1-12, 1981.

12. Oden, J.T. and Carey, G.F., "Variational Inequalities in Finite
Element Analysis" New Concepts in Finite Element Methods, ed. by M. Spilker,
T.J.R. Hughes, and D. Gartling, A.S.M.E. Monograph, New York, pp. 133-145,
1981.

13. Oden, J.T., "Exterior Penalty Methods for Contact Problems in
Elasticity: Nonlinear Finite Element Analysis in Structural Mechanics,"
Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, pp. 655-665,
1981.

14. oOden, J.T. and Demkowicz, L., "On Some Existence and Unigueness
Results on Contact Problems with Nonlocal Friction," Journal of Nonlinear
Analysis, 1982 (to appear)

15. oden, J.T., Campos, L., and Kikuchl, N., "A Numerical Analysis of
a Class of Contact Problems with Friction in Elastostatics," Computer Methods
in Applied Mechanics and Engineering, 1982 (to appear)

16. Oden, J.T., "Analysis of a Class of Contact Problems with Friction
by Finite Element Methods," The Mathematics of Finite Elements 'with Appli-
cations, ed. by J.R. Whiteman, Academic Press LTD., London, 1982 (to appear)

17. Oden, J.T. and Kim, S.J., "Interior Penalty Methods for Finite
Element Approximation of the Signorini Problem in Elastostatics,' Computers
and Mathematics with Applications, Vol. 8, No.l, pp. 35-56, 1982.

18. oOden, J.T., Song,Y.J., and Kikuchi, N., "Penalty-Finite Element
Methods for the Analysis of Stokesian Flows,'" Computer Methods in Applied
Mechanics and Engineering, 1982, (to appear).

19. Oden, J.T. and Kikuchi, N., "Finite Element Methods for Constrained
Problems in Elasticity," International Journal for Numerical Methods in

Engineering, Vol. 18, pp. 701-725, 1982.

20. Oden, J.T., "Analysis of Galerkin Approximations of a Class of
Pseudomonotone Diffusion Problems," SIAM Journal of Mathematical Analysis,
Vol. 12, No. 6, pp. 917-930, 1982,

21. Oden, J.T. and Pires, E., "Numerical Analysis of Certain Contact
Problems in Elasticity with Non-Classical Friction Laws,'" Computers and

Structures, 1982, (to appear)

22. Oden, J.T. and Whiteman, J.R., "Analysis of Some Finite Element
Methods for a Class of Problems in Elasto-Plasticity," International
Journal of Engineering Science, Vol. 20, 1982.

23, Oden, J.T., "Penalty Methods for Constrained Problems in Nonlinear



L2

Elasticity," IUTAM Symposium on Finite Elasticity, Martinum-Nijhoff Pub.,
The Hague, pp. 281-300, 1982,

24, Oden, J.T., "RIP Methods for Stokesian Flows," Finite Elements in
Fluids, Vol. 1V, ed. R.H. Gallagher, 0.C. Zienkiewicz, N. Norrie, John Wiley
& Sons, LTD., London, (to appear)

25. Oden, J.T., "Finite Element Methods for Constrained Problems in
Elasticity and Fluid Mechanics,'" Proceedings of Symposium on Finite Element
Methods, Hefei, China, 1981, Science Press, (to appear)

26. Oden, J.T., "Mixed Finite Element Approximations via Interior
and Exterior Penalties for Contact Problems in Elasticity," Hybrid and Mixed
Finite Element Methods, ed. by S. Atluri, John Wiley & Sons Ltd., London,
(to appear)

27. Oden, J.T. and Pires, E.B., "Algorithms and Numerical Results for
Finite Element Approximations of Contact Problems with Non-Classical Friction
Laws," Computers and Structures, (to appear)

28. Oden, J.T. and Jacquotte, 0., "Stable Second-Order Accurate Finite
Element Scheme for the Analysis of Two-Dimensional Incompressible Viscous
Flows," International Conference on Finite Element Methods in Flulds, Tokyo,

Japan, (to appear)

29, Oden, J.T. and Pires, E., "On the Analysis of a Class of Contact
Problems with Non-local Friction,' Proceedings of SECTAM XI, (to appear)

30. Oden, J.T. and Pires, E., "On the Signorini Problem with Non-
local Friction," Sixtieth Anniversary Volume in Honor of 0.C., Zienkiewicz,
John Wiley and Sons, Ltd., London, (to appear)

31. Oden, J.T. and Pires, E., ""Nonlocal and Nonlinear Friciton Laws
and Variational Principles for Contact Problems in Elasticity," Journal of
Applied Mechanics, (to appear)

32, Oden, J.T. and Pires, E., "Error Estimated for the Approximations
of a Class of Variational Inequalities Arising in Unilateral Problems with
Friction," International Journal of Numerical Functional Analysis and Op-

tinization, (to appear)

33. oOden, J.T. and Campos, L., "Nonquasi-Convex Problems in Nonlinear
Elastostatics,”" (to appear).

3.2 Research Reports

1. oOden, J.T. and Bernadou, M., "An Existence Theorem for a Class of
Nonlinear Shallow Shell Problems,' TICOM Report 80-4, Austin, 1980,

2, Oden, J.T. and Bernadou, M., '""An Existence Theorem for a Class of
Nonlinear Shallow Shell Problems,' INRIA Report No. 17, Le Chesnay, France,

1980.
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3. Oden, J.T., Kikuchi, N., and Song, Y.J., "RIP Methods for Problems
in Elasticity," TICOM Report 80-7, Austin, 1980,

4. oOden, J.T., Kikuchi, N,, and Song, Y.J., "Reduced Integration and
Exterior Penalty Methods for Finite Element Approximations of Contact Problems
in Incompressible Elasticity,”" TICOM Report 80-2, Austin, 1980,

5. Oden, J.T., "RIP Methods for Stokesian Flows," TICOM Report 80-11,
Austin, 1980.

6. Oden, J.T. and Kikuchi, N., "Finite Element Methods for Constrained
Problems in Elasticity," TICOM Report 81-10, Austin, 1981,

7. Oden, J.T., Kikuchi, N., and Song, Y.J., "Penalty-Finite Element
Methods for the Analysis of Stokesian Flows," TICOM Report 81-11, Austin, 1981.

8. Oden, J.T. and Pires, E., "Contact Problems in Elastostatics with
Non-local Friction Laws,'" TICOM Report 81-12, Austin, 1981,

9. Oden, J,T. and Demkowicz, L., "On Some Existence and Uniqueness
Results in Contact Problems with Nonlocal Friction,'" TICOM Report 81-13,
Austin, 1981.

10, oden, J.T. and Pires, E.B.,, "Nonlocal and Nonlinear Friction Laws
and Variational Principles for Contact Problems in Elasticity,'" TICOM Report
82-3, Austin, 1982,

11. oden, J.T. and Campos, L.T., "Nonquasi-Convex Problems in Nonlinear
Elastostatics," TICOM Report 82-4, Austin, 1982.

3.3 Theses and Dissertations

The following Ph.D. dissertations and Masters of Science these were

completed during the project.

1. Campos, Luis, "A Numerical Analysis of a Class of Contact Problems
with Friction in Elastostatics," M.S. Thesis, The University of Texas at
Austin, January 1981.

2. Kim, S. J., "Interior Penalty Approach to Contact Problems,"

M.S, Thesis, The University of Texas at Austin, January 198l.

3. Song, Y. J., "Reduced Integration and Exterior Penalty Methods
for Finite Element Approximations of Contact Problems in Incompressible
Linear Elasticity," Ph.D. dissertation, The University of Texas at Austin,
August 1980. o

4. Aly, A., " A Finite Element Analysis for Problems of Large Strain
and Large Displacement," Ph.D. dissertation, The University of Texas at
Austin, May 1981,
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5. Kubrusly, R. S., "Variational Methods for Nonlinear Eigenvalue
Problems in the Post-Buckling Analysis of Unilaterally Constrained Elastic
Structures,' Ph.D. dissertation, The Unviersity of Texas at Austin, August 198]

6. O'Leary, J. T., "An Error Analysis for Singular Finite Elements,"
Ph.D. dissertation, The University of Texas at Austin, August 1981.

3.4 Oral Presentations

Over 50 oral presentations were given by members of the research
team during the contract period on research results. A partial list of
these is given as follows:

1. Oden, J.T.,"Penalty Methods and Selective Reduced Integration for
Stokesian Flows," Third International Conference on Finite Elements in Flow
Problems, Banff Centre, Banff, Alberta, Canada, June 10-13, 1980,

2, Oden, J.T., "Penalty Methods and Reduced Integration in Elasti-
city Problems," Symposium on Finite Element Methods for Nonlinear and Singu-
lar Problems, University of Durham, Durham, England, June 26-July 6, 1980.

3. Oden, J.T., "Analysis of Incompressible Elastic Bodies by Exten-
sive Penalty Methods," U.S./Europe Workshop on Nonlinear Finite Element
Analysis in Structural Mechanics, Ruhr University, Bochum, West Germany,
July 28-30, 1980.

4. Oden, J.T., "Penalty Methods for Constrained Problems in Non-
linear Elasticity,'" TUTAM Symposium on Finite Elasticity, LeHigh University,
Bethlehem, PA, August 11-15, 1980.

5. Kikuchi, N., "Penalty Finite Element Approximations of a Class of
Contact Problems in Linear Elasticity,'" Presentation made to Exxon Products
Research Laboratories, Houston, Texas, August 14, 1980,

6. Oden, J.T., "Penalty Methods for Stokesian Flows," Engineering
Mechanics Seminar, The University of Texas at Austin, September 23 and 25,

1980.

7. Oden, J.T., "Constrained Problems in Nonlinear Elasticity," Annual
meeting of the Society of Engineering Science, Atlanta, Georgia, December, 1980.

8. oOden, J.T., “"Contact Problems with Friction in Elastostatics,"
Annual meeting of the Society of Engineering Science, Atlanta, Georgia,
December, 1980.

9. Oden, J.T., "Finite Element Methods for Contact Problems with
Friction," Department of Mathematics, University of Maryland, February 25, 1981.

10. oden, J.T., "Penalty Methods for Stokesian Flows," Mathematics
Seminar, University of Texas at Austin, March 23, 198l.
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11. Oden, J.T., "Mixed Finite El:ment Approximations via Exterior
and Interior Penalty Formulations of Contact Problems in Elasticity,' Sym-
posium on Hybrid and Mixed Finite Element Methods, Georgia Institute of
Technology, Atlanta, Georgia, April 10, 1981.

12. Oden, J.T., "Finite Element Methods for Contact Problems with Frictior
MAFELAP '81, Fourth Conference on the Mathematics of Finite Elements with
Applications, Brunel University, Uxbridge, England, April, 1981,

, 13, oOden, J.T., "Non-Local Friction Laws in Elastostatics,' Department
of Civil Engineering, The University of Swansea, Wales, United Kingdom, April
1981.

14, Oden, J.T., "An Introduction to the Exterior Penalty Methods and
Reduced Integration and Their Application to Constrained Problems in Elas-
3 ticity and Fluid Mechanics," Mathematics Seminar, Brunel University, Uxbridge,
{ England, May 13, 1981.

15. Oden, J.T., "Penalty-Finite Element Methods for Constrained Problems
in Elasticity,'" Invitational Symposium on Finite Element Methods, Polytechnical
University, Hefei, People's Republic of China, May 19-23, 1981.

16. Oden, J.T., "Some New Results on Finite Element Methods for Contact
Problems with Friction,'" Symposium on New Concepts in Finite Element Methods,
Joint ASME/ASCE Mechanics Conference, The University of Colorado, Boulder,
June 23, 1981.

17. Oden, J.T., "Variational Inequalities in Finite Element Analysis,"
Symposium on New Concepts in Finite Element Methods, Joint ASME/ASCE Mechanics
Conference, The University of Colorado, Boulder, June 23, 1981.

% 18. oOden, J.T., '"Numerical Analysis of a Class of Contact Problems with
Friction in Elastostatics,' FENOMECH 1981, Stuttgart, West Germany, August
3 26-28, 1981,

19. oOden, J.T., "Nonconyex Problems and Phase Transition in Nonlinear
Materials," SECTAM, Huntsville, Alabama, April, 1982.

20. Oden, J.T., “"Mathematical Theory of Plasticity," EM/TICOM Seminar,
The. University of Texas at Austin, April 1982,

21. Oden, J.T., "A Stable Second-Order Accurate Finite Element Scheme
for the Analysis of Two-Dimensional Incompressible Viscous Flows," 4th
International Symposium of Finite Element Methods in Flow Problems, Tokyo,
Japan, July 27, 1982,

30,

i1.
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PROJECT PERSONNEL

The following individuals worked on the project during the contract
period:
1) Principal Research Staff:

Dr. J. Tinsley Oden, Principal Investigator

Dr. E. B. Becker, Co-Principal Inviestigator

Dr. N. Kikuéhi, Senior Research Associate

Dr. L. Demkowicz, Senior Research Associate

2) Senior Research Assistants:

J. O'Leary L. Campos
Y.J. Song E. Pires
$.J. Kim R. Kubrusly

Messrs. T. Pan, Jerry Fine, R. Chambers and P. Halamek dévoted a very
small percentage of their time to certain phases of the project.
3) Project Secretary:
The project secretary has been Mrs. Ruth Dye during the past year.
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4. THEORY AND APPROXIMATION OF

CONTACT PROBLEMS IN ELASTOSTATICS

1. Introduction

Perhaps the most primitive and intrinsic feature of the mechanics of solids
is the contact of one body with another. Contact, in fact, is precisely the
physical event through which loads are delivered to a structure and by which a
structure transmits forces to its supports. Nevertheless, this fundamentally
important aspect of structural behavior has, until recently, rarely been taken
into account in practical structural analysis and cesign. The underlying
difficulty is that contact problems in solid mechanics are inherently nonlinear:
the area of contact is not known prior to the application of loads and complex
physical phenomena are experienced on the contact surfaces which often require
special mechanical and mathematical considerations.

In recent years, however, significant advances have been made in the study
of certain restricted classes of contact problems by finite element methods.
These classes of problems 1include those adequately modelled by the so-called
Signorini problem in elastostatics: the behavior of a linearly elastic body 1in
unilateral contact with a rigid frictionless foundation. This particular class
of problems can be studied within the framework of the theory of variational
inequalities and; consequently, a great deal can be established on the
qualitative behavior of the solutions and their finite element approximations.
In fact, there are few nonlinear problems in structural mechanics for which a

more complete mathematical basis exists.




The present chapter is devoted to a general exposition on finite element
methods for contact problems in elastostatics that can be characterized by
variational inequalities. In keeping with the general objectives of this
project, this class of problems 1s chosen for consideration because of its
practical importance, the richness of the mathematical foundations on which it
is based, the level of results one can establish on the behavior
(e.g. convergence and numerical stability) of corresponding finite element
" approximations, and because this class of numerical problems provides the
opportunity to examine many new algorithms for treating systems of 1linear and
nonlinear inequalities which are drawn from linear and nonlinear programming
theory and optimization.

The account of the subject which follows deals primarily with finite
element approximations of the Signorini problem for linearly elastic bodies
including, for the sake of completeness, formulations in which friction is taken
into account. A lengthy treatise on this and related subjects has been recently
completed by Kikuchi and Oden [1983], and this work can be consulted for a
complete list of references on the subject and for more details. Following this
introductory section, the system of differential equations and boundary
conditions for Signorini’s problem with friction is derived. In Section 4.3,
several variational formulations of contact problems are derived, all of which
feature variational 1inequalities given 1in terms of an unknown equilibrium
displacement field. Existence, uniqueness, and approximation results for the
case in which tangential contact pressures are prescribed is taken up in Section
4.4. These problems include as a special case the classical Signorini problem
with no friction. Section 4.5 1is devoted to contact problems in which the
normal contact pressure is prescribed. These classes of problems are shown to

be of fundamental importance in the analysis of problems with non-local friction



20

in Chapter 5. The results of several numerical experiments are also discussed in

Sections 4.4 and 4.5; concluding comments are collected in a final section.

2. Signorini's Problem with Friction

Consider a deformable body supported unilaterally by a rigid body as shown
in Figure 4.1., and suppose that the contact surface of the two bodies 1is
unknown a priori. The problem of finding the deformation and contact force for
equilibrium configurations of the body under certain boundary and loading

conditions 1is called Signorini’s problem. We note that 1n most works 1n

theoretical mechanics Signorini‘s problem is discussed in regard to the special
case in which no friction exists on the contact surface. We first formulate

Signorini’s problem with friction for the case of small deformations in which

the displacement field is small enough so that higher order terms of the
displacement gradient can be neglected 1in the equilibrium and
strain-displacement equations. The stress tensor g = Uij.j:.:i.@ij* is then the
Cauchy stress tensor and no distinction between particles or points 1is necessary
in defining its domain.

4,2.1. Equilibrium Equations

Let u = uyi, be the displacement field that provides equilibrium of the
deformable body under given loading and boundary conditions, and let
€ = eijii ® ij denote the strain tensor for small deformation defined, for an

arbitrary displacement v, by

*The summation convention is applied throughout this chapter, unless

specifically noted otherwise.




Figure 4.1. Geometry of an elastic body near a rigid foundation.
Cij(X) = (vi,j + vj,i)/z (4.2.1)

where Vi,§ denotes the partial derivative of v; in the J coordinate; 1i.e.,

Vi, ° 6v1/6xj. Suppose that the stress-strain relatiom
?
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95 = B jkefra (4.2.2)

is given, wherein the elasticities Eijkl of the material satisfy the conditions

Eigka = Breij = Ejikg _ (4.2.3)
MaxQ |Eijkl(§)| <M for all i,j,k, and 2. (4.2.5)
X

Here Q is an open-bounded domain in R3 representing the interior of the
deformable body.
The condition Eijkl = Eklij guarantees the existence of the strain energy

function EO such that

Gij = anlaEij’ (4.206)

1
Eo = .i Eijklekkeij' (4-2-7) [

Condition (4.2.4) 1is sufficient to imply strict convexity off the strain
energy function EO, and guarantees the coercivity of the total potential energy
of the body, as shown later. Condition (4.2.5) merely establishes boundedness
of the elasticities Eijkl; these material parameters may be discontinuous in the

domain Q.




If o(u) denotes the stress field at the equilibrium configuration given by

the displacement u, the principles of balance of linear momentum and moment of

linear momentum imply the equilibrium equations and symmetry of stress tensor:

2
0“u
o — = oWyy,y = £y \
ot
>  inQ (4.2.8)
Gij = Gji )

Here p 1is the density of the body, f = f;i; is the applied body force per unit

volume.

4,2.2. Boundary Conditions

Let the boundary I' of the deformable body be divided into three disjoint
parts TIpy, Ty, and Tg for each index 1 < i < 3., The i component of the
displacement is prescribed on the boundary FDi’ and the i component of the
traction is given on TIpy;. The part I'c is identified with the actual contact
surface and must be large enough to include the true contact surface that, at
this point, is unknown. For simplicity, we assume that there are no other
forces except those due to contact on PC.

If t = tyiy denotes the applied traction, the two standard boundary

conditions on rDi and l"F1 are

L\i = Gi on I"Di
, 1 <1< 3, (4.2.9)

U(\i)ijnj = ti on FFi
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where n = ngyi; 1s the unit vector outward normal to the boundary T.

Suppose that the boundary FC 1s separated into two parts, Fé and F2, as
shown 1in Figure 4.1, On Pé, the body Q is in contact only with the rigid
foundation, whereas the interaction of two opposite surfaces must be considered
on P2. Furthermore, let a crack-like slit exist inside the domain Q, and let
its surface be represented by Pg. Let us construct a coordinate system 8.,
1 <a <3, on each part of the boundary related to contact, such that two
opposite surfaces can be distinguished from each other. Examples of such
coordinate systems are given in Figure 4.1. Let u, be the a component of the

a

displacement u in the Ga coordinate system, 1i.e., 1t u, =uei. Then the

kinematical contact conditions due to contact are given by

kygug = 8 < 0 on If (4.2.10)

kéﬁué + kgﬁug - gy €0 onIQ and 2 (4.2.11)
where kaB’ kip, 1 <1< 2, and 8q depend on ea, 1 < a < 3, and the superscripts
1 and 2 on kaB and ug indicate the two opposite surfaces on which these
quantities are defined. The functiomns kaﬁ and g, must be obtained from the
geometry of the body and the rigid foundation.

For example, let us consider the part Pé, and obtain the corresponding

expressions for kaﬁ and g,. To do this, suppose that the surfaces of the body

and the rigid foundation are given by

83 = ¢(6,,8,), 63 = 4(8;,8,), (4.2.12)

respectively. Since the body caunot penetrate the rigid surface,




i

w =
here u=ud.

Linearization of the function ¢ in u; and u, yields

8y +ug > 4(0,,05) + 9,0(8,07)(ujl) + uyiy)

where ¥, = 116/691 + 1,0/36,. Dividing by Y1l + |za¢|2 and noting that

- 1 op 3¢
N=Ni = ( 1) + -2 1, - 1,) (4.2.14)
ST R T

is the unit vector inward to the rigid surface 05 = ¢(61,92), we have the

linearized contact condition

Nﬁuﬁ -g <0, (4.2.15)
where
g=—2 ¥ - - o (4.2.16)
Y1+ 19,41
Thus, if
kep = SqpNg» 8] = 8> 82 =83 = (4.2.17)

in the general form (4.2.10), the condition (4.2.10) represents the linearized

contact condition (4.2.15) on Fé. Since N is the same as the unit outward

normal to the surface Fé of the deformable body on the contact surface after the
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deformation, condition (4.2.15) means that the normal component of the
displacement to the contact surface must not be larger than the projection of

the distance of two surfaces in the normal direction, as shown 1in Figure 4.2.

Q(g, 8, 1e;))

Figure 4.2. Contact surface geometry.




That 1is, the deformation of the point P is always on or above the tangent plane
A at the point Q of the rigid surface 64 = ¢(61,93 .

In almost all literature on contact problems dealing with theoretical
aspects of these problems the linearized form (4.2.15) of (4.2.13) is not used.

The condition more commonly applied is

ngug -g <0, (4.2.18)

where n = nﬁiﬁ is the unit vector outward normal to the boundary Fé, and é is
the projection of (¢ - ¢) in the n3-direction; é = (¢ - ¢)n3. The linearized
condition (4.2.18) is represented by the plane B in Figure 4.2. In this case,
the deformation of the point P is always on or above the plane B. Of course,
since we are dealing with infinitesimal deformations, the contact surface must
be very close to the foundation, and the differences between n and N are,
accordingly, small. We shall apply (4.2.15) in this chapter.

Following a similar approach, a linearized contact condition on Fg and F%
can be obtained. let the particles, the position vectors of which at the
initial stage are g% = eéga and 92 = Ogia where 9% = ¢(6%,9%) and 8§ = ¢(6{,9%)

be in contact after deformation. That is, let

1 1 _ a2 2 =
8y + ug = 8y +u a=1,2 (4.2.19)

where ul = “éia and 32 = ui}a are the displacement vectors of the particles
identified by ol and 02. Here, the two opposite surfaces are assumed to be

represented by the equations
63 = ¢(91,92) and 93 = ¢(91,62) (4.2.20)

for a proper coordinate system (61,82,63).



The "no penetration" condition is then given by

o] +ul > e§ + u} (4.2.21)

Using (4.2.19) we now express the condition (4.2.21) in terms of gl. Neglecting

higher order terms, we have

¢(61,03) + ui(ef,0},0¢8},00)) > wo},0)

+.2% col,ely( ul(o},6),08),00)) - u3(el,0),0c8),00)) )

+ 2% (ol ed)( ul(ef.0d,000},00)) - u}(e},0,08},00)) )

u3(e},03,0¢0},8D). (4.2.22)
For simplicity, we shall express (4.2.22) as

Applying the relation (4.2.14) of the unit vector inward normal to the surface

85 = $(8,,8,), we can represent (4.2.22) as

NB(ué - u%) - g, <0, (4.2.23)

where




8) = (& - 9Ny . (4.2.24)
Thus, if

1 2 _
le = - kla = NB’ 81 =g
(4.2.25)

k! = k2
af af = 6aﬁ for a =2,3, gy =83 = +=,

then the linearized condition (4.2.23) 1s given by the generalized form
(4.2.11).

As far as the linearized forms are concerned, the contact conditions
(4.2.15) and (4.2.23) have a similar form. More precisely, if we replace the
displacement u in (4.2.15) by the relative displacement ER = El - 22’ the
condition (4.2.15) can represent (4.2.23) for the boundaries Fg and Pg.
Therefore, for the mathematical development of contact problems, we need only

consider the conditions on boundary Pé. We thus describe the general kinematic

contact condition as

kaﬁuﬁ -84 <0 on Tes (4.2.26)

or more precisely

Nﬁuﬁ - g < 0 on Pco (402.27)

These represent only kinematical requirements. In addition, the stresses must

satisfy
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ta

gy -y € 0 1f there is contact

(4.2.28)

ay = 0 if there is no contact

vhere g = (°ijnj)1i is the traction on the boundary 'ce Combining (4.2.27) and

(4.2.28) ylelds

uy -8 <0, gy<o, UN(uN -g) =0, (4.2.29)

where uy = Nﬁuﬂ = ueN.
If the contact surface is well lubricated, friction might be neglected. 1In

this case, on the boundary Tes the additional boundary condition,

ET = g - ON?! = 0 (1‘02030)

must be applied, where g is again the traction, However, 1in many cases in
practice, friction has an important role to stress analysis. Here we shall
simply assume that Coulomb’s friction law holds pointwise on the contact
surface. More general friction laws have been considered recently by Duvaut
[1981), and Oden and Pires [1981] and we explore one such class of friction
problems in the next chapter. The tangential velocity is assumed to be governed

by the following form of Coulomb’s law:

lapl < = noy, then Up = 0

(4.2.31)

topl = = poy, then for some X > 0, uqp = - ng




These conditions hold on the surface in which oy < 0. Here é = bg/ac is the
velocity and uq 1s its tangential component defined by
up = 4 - upl, oy = utN
4,2.3, Boundary-Value Problems
In summary, we have the following initial-boundary value problem
y A
pu - div g(g) =f in Q
olu) =t on Tp
u=4y on Tp
l? (4.2.32)
lorl < - HONs then Up = 0 >on FC
/
with the initial conditions
u =y and u =vg at t = 0, (4.2.33)
for the Signorini problem. Here g = °ij£iC)1j’ and div is the divergence

operator.
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1f the motion is slow, then the acceleration is small and the process of
the deformation of the body represented by (4.2.32) and (4.2.33) can be
approximated by the following incremental form using an artificial monotonically
increasing time parameter t. let gt be the deformation at time t, and let Au be
a small 1increment of u produced during the time interval At, i.e.,

Au =

gt+At - gt. Suppose that

- div g(u®) = £ in Q@ A
o(ut) =ttt on Tp & (4.2.34)
y® = 3" on Ty,
/

where ft, Et, and gt are the values of f, t, and § at time t, respectively.

Introcucing similar quantities Af, At, and Ag to Au, we arrive at the boundary
value problem

N

- div g(Ag) = Af in Q

g(Au) = At on Tp

Au = A§ on FD

-~

5(C4.2.35)
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? on FC

ldor + Spl = - p(Aoy + Gy), then X > 0 s.t.

Aup = - Magy + 97), 3

during the time interval [t,t+At]. Here

Ag = g - u§, AcN

oN(Bw), Ty = oy(uh)

(4.2.36)

hop = op(8u), 3y = op(u®),
and i need not be same as A in (4.2.32).

We refer to problem (4.2.32), (4.2.33) as the dynamical form of Signorini’s
problem with Coulomb friction. The system (4.2.35), thus, defines an
incremental form of this problem valid for slow deformation or quasi-

static conditions.

3. Variational Formulations of Signorini's Problem

As shown in the previous section, Signorini’s problem with friction for
problems in elastostatics assumes the form of the boundary value problem
(4.2.35). We shall consider a variational formulation of the problem that
includes the case (4.2.35) as a special case, and shall develop a mathematical

theory of such problems subject to a few additional hypotheses.
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4,3.1, Abstract Signorini‘s Problem with Friction

Let us consider the boundary value problem of finding a displacement field

u such that

i
i
e

=3
e

- div g(u)

o(u)

]
ire
(=}
=]
-1
o

0(4.3.1)
uy - g < o, oy + EN < 0, (UN + EN)(uN -g)=0
lop + g < - ploy + Gy), then up = 0
IET + §TI = - u(GN + aN), then A > 0, S.to, BT = - )\(g"r + ET)
J

for given functions f, t,

tel

s Oy» Op, and g.
Multiplying the first member of (4.3.1) by an arbitrary smooth test

function v such that v = 0 on I'p, and integrating by parts, we have
IQ O(E)ijvi’jdx - IPU(B)ijnjVids = IQ fividx.

Using the relations

-~

a=agl; =al, (ap =a;i;jeiy)
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asb = aydby + apcby, ay =a-N, ap =a - ay, etc.

for the unit vector N, and applying the boundary conditions (4.3.1)2, and

(10.3.1)3, we obtain

IQ O(E)ijvi’jdx = IQ fividx + IFF tivids

+ IFC (O(E)NVN + Q(E)T'XT)ds’ ¥ vs.t.v=20o0n PD, (4.3.2)

where vy = YeN = Vi, Vg = Vilytlg ¥p = ¥ - vp, o(wy = g(w-N, and so on,

Let w be an arbitrary function that satisfies

w=1u on T, wy -8 €0 on T (4.3.3)
It is noted that (4.3.1)4—(4.3.1)6 are equivalent to the two inequalities
- EN(WN - UN) > - EN(WN - ‘-‘N)’

and

o(u)pe (up = up) > ploCu)y + 3y) (1wl - tugl) - g (wp - up)

Thus, (4.3.2) can be written as

Jq 0wy j(wy 4 —uy g)dx+ Irc {- u(o(wy + Fy)(1wgl - 1ugi)}ds



- IFC Bi(w1 - uy)ds,
for every w satisfying (4.3.3), where the traction vector T 1is

g = Oy¥ + Gp on Tc.

Let us introduce the following standard notation:

B(u,v) = [g o(u)y &44(v)dx

jlusv) = fpc {- plou)y + ay)}ivelds,
Then the problem (4.3.1) yields a variational form

Bu,w-u) + j(u;w) - j(u;u) > £(w-u),

JO

defined by

(4.3.4)

(4.3.5)

for every w satisfying (4.3.3), (since the stress tensor ¢ is symmetric).

Using (4.2.3) and (4.2.5), we have

B(u,v) = fo Ejjeql,a1, 9%

< Mngﬂlﬂ!al

where

(4.3.6)
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v, = (IQ (vi,jvi,j + vivi)dx} / . (4.3.7)

If the given data f, t, and o are smooth enough, i.e., if

£y €L2R), ¢y € LTy, Gy € LATY), Gy € LTy, (4.3.8)
then

f(v) < (ugno + "E“O,PF + “§”0,PC)“!“1’ (4.3.9)
where

172
1fig = {fp £,£,dx}
(4.3.10)

1/2
1tho,rp = tpg titgds) T,

and nBHO Te is defined similarly to (4.3.10)2. Thus the bilinear form B(u,v)

=0, bt 34
represents the virtual work of the elastic body, and the linear funectional f(!)
of the work done by the virtual displacement v. Both are well-defined on the

Sobolev space EI(Q):

BHQ) = {y = vyty & vy €L2(R), vy 5 €12@), 1< 1,5 <3}, (4.3.11)

where Vi3 is the generalized derivative of Vi However, the term j(g;g) is not
well-defined, since the normal stress G(E)N cannot be defined for a function
u € EI(Q). The contact stress, as it enters the present formulations, cannot be
defined in the appropriate space because we cannot infer sufficient smothness of

the displacement u., Thus, in this sense, the variational formulation (4.3.5) of




34

the Signorini problem with friction may not be meaningful in the sense of this

variational principle.

For a particular case that the friction coefficient p 1is sufficiently
small, there are several approaches one can use to show the existence of
solutions to the variational formulation (4.3.5) within the context of the
Sobolev space ﬂl(Q). Details of such treatments can be found in e.g., Necas,
Haslinger, and Tuisuk [1980), Duvaut [1981], Oden and Demkowicz [1981], Oden and
Pires [1981]), and others. In the present study, we shall not discuss these
mathematical technicalities, rather, we shall address the problem of obtaining a
solution of (4.3.5) using finite element methods. To do this the following two
particlar cases of (4.3.5) will be studied in detail.

4.3.2. Special Case I: Prescribed Tangential Stress

Suppose that the tangential stress op is known. That is, the tangential

stress

4.3.12
op =ty on TIg ( )

is prescribed, and the Coulomb friction law is abandoned on the contact surface

Pee Then the variational formulation (4.3.5) reduces to

B(u,w-u) > f,(u-u), (4.3.13)
for every w satisfying (4.3.3), where

£1(0) = £(0) + fp_ Eyrypds. (4.3.14)

if



2
trg € L(Te), 1 €1 <3, (4.3.15)
the linear form fl is bounded in gl(Q), i.e.,
fl(!) < (uguo + HE“O,PF + HQEO’PC + 'ET'O,FC)'.‘!HI‘ (4.3.16)

In this case, there are no ambiguous terms such as j(g;!) in (4.3.5) 1in the
variational formulation (4.3.13).

4,3.3. Special Case 1I: Prescribed Normal Stress

Suppose that the normal stress oy is known at this time. That is, the

normal stress

oy = ty € LA(T() (4.3.17)

is prescribed, and only the Coulomb law of friction has to be considered on the
contact surface T, while the unilateral contact condition (4.3.1), 1is

abandoned. Then the variational formulation (4.3.5) becomes

B(u,w-u) + J(w) - j(u) > £5(w-u), (4.3.18)

for every w such that

wi = 0 on I‘Di, 1 <1¢ 3, (4.3-19)

where

j(!) = II‘C {- N(tN + an)}l‘i'rlds’ (4.3.20)
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and
£,(v) = £(v) + IFC tyvpds. (4.3.21)

Since both aN and ty are in LZ(PC), the convex functional j is bounded in EI(Q),

and is continuous. Indeed,

13Cy) = 31 < Il‘c 1= p(ty + IV = lwpl)ds
< H=p(ty + gyl Ivp = wall
N N’%0,rc"IT T Erl0,rg

Thus, the variational formulztion (4.3.18) is well-defined in the Sobolev space

EI(Q), since f2 is clearly lirear and continuous,

A solution u to the general problem (4.3.5) might be obtained by the

iteration process

(1) Solve the Special Case I by assuming the tangential A
stress Op. As a result, the normal stress ON is
computed.
(ii) Using the computed normal stress oys solve the Special
? (4.3.23)
(4.3.18) Case II. 2s a result the tangential stress
op is computed.
(ii1) Check the convergence of the solution. If convergence
is not attained, repeat (i) and (11i). Py

We know of no convergence proofs for this iteration process, although the




process has proved to converge to reasonable approximate solutions to many

problems.

4, Special Case I: Prescribed Tangential Stress

As mentioned earlier, we shall solve the Signorini problem (4.3.5) with
friction by using the iteration process (4.3.23) that is the sequential
approximation of the problem (4.3.5) by the two special cases (4.3.13) and
(4.3.18). In this section, the first case (4.3.13), which corresponds to
situations in which the tangential stress oy (possibly due to friction) is known

as a function of EZ(FC)’ i.e.,

or =ty tp € LATE), (4.4.1)

]

where EZ(PC) {E = tﬁiﬁ : t:ﬁ € LZ(PC)}. As shown in (4.3.13), a variational

formulation to this special case 1s governed by

u € K : B(u,w-u) > £(w-u), ¥ wE€K, (4.4.2)
where

K={veEV: vy -8 €0, a.e. on PC], (4.4.3)

ve{y€nl(e) : v, =i, ae.onlp, 1<1c< 3}, (4.4.4)

and EI(Q) is the Sobolev space defined by (4.3.11). Since the bilinear form
B(e,*) and the linear form f(+) are well-defined on 51(9), we can define the

variational formulation (4.3.13) by using the Sobolev space .EI(Q) as (4.4.2).



42

The subset K of EI(Q) is the so-called admissible set of all possible functions
satisfying the given boundary condition on FDi and the kinematic contact
condition on Tg, and producing finite energy. The set V consists of all
functions that satisfy only the boundary condition on PDi'

4,4.1. Existence of a Unique Solution

Because of the assumption on the elasticity constant (4.2.4), Korn’'s

irequality yields the property

B(v,v) > mivi?, v €V (4.4.5)

where m is a constant independent of v V. Details of Korn’s inequality can be
founé¢ in e.g., Hlavacek and Necas [1970). We also recall that (see (4.3.6) and

£.3.16))

B(v,w) € Mivijwl,, v, w € H'(Q) (4.4.6)

1£,(v)1 < 1f0q0ve,, v € B, (4.6.7)

" -

These properties are sufficlent to guarantee the existence of a unique solution

u < K to the problem (4.4.2) since the set K is closed and convex in HI(Q) under

the assumption of the Lipschitz domain Q.

Theorem 4.1. Let the domain Q is Lipschitzian, and let (4.2.3)~(4.2.5)

hold. Suppose that (4.4.1) holds. Then there exists a unique solution u € K to

the variational inequality (4.4.2):




u €K Blu,ww) > f(u-n), v EK

Proof. See e.g. Lions and Stampacchia [1967]. 0

4,4.2, Penalty Resolution of the Contact Condition

In the formulation of (4.4.2), there is an inequality constraint vw-8¢0
a.e. on Iy, that leads to the 1inequality form (4.4.2) of the variational
formulation. We shall resolve the condition vy -~ 8 ¢ 0 by using exterior
penalty methods. Introducing penalty parameter € > 0 such that € + 0, the

variational inequality (4.4.2) is approximated by

=3
m
<

: B(u.,v) +% (Blugy)svy) = £1(¥), ¥ € Vg, (4.4.8)

where

v -, ¢+(§) = sup{¢(x),0}, a.e. on g, (4.4.9)

B(¢)
(¢,*) is the inner product of L2(FC) such that

(9,6 = [ 04T, 0,4 € L2(rg) (4.4.10)

and Vg is a subspace of EI(Q) defined by

Vo={v €HYQ) : vy =0 onrpy, 1<1ic3} (4.4.11)

We expect that u_ converges to u as € + 0.

E



The physical 1idea behind the penalty approximation (4.4.8) is that the
rigid support can be approximated by the Winkler foundation consisting of
continuously distributed springs.

Theorem 4.2. Under the same conditions of Theorem 4.1, the sequence u. of

the solutions to (4.4.8) converges to the solution of the variational inequality
(4.4.2), as € + 0,

Proof. We first note monotonicity of the operator B. Indeed,

(Ba) - B(b), a-b) = (B(a) - B(b), (a-g) - (b-g))
= Ip, 1@-8)" - (>-2)"H(a-g) - (b-g))ds

> fp, (@) - (-g)"H(a-p)" - (v-g)Tds,

{.e.,
(Ba) - B®), a-b) > 1(a-p)* - w-)*1f 1 > 0 (4.4.12)

+ -

for every a, b¢g LZ(PC). Here 1t has been applied that ¢ =¢ = ¢,

$~ = sup{-¢,0}, ¢t~ = 0, and ¢+¢- > 0, for every ¢, ¢ € R.
Since ﬁ(wN) = 0 for any w € K, (4.4.8) implies

B(ugrungg) *+ 2 (Blugy) wyugy) = £1(umu)

and




(BCwy) = BCug ) wy-uep) = £,(w-u, ). (4.4.13)

I"ilt—-

B(ug,w-u.) -

Applying the monotonicity of the operator B yields
Blye,u-w) > fy(u-uc),  w€ K

Applying (4.4.5)-(4.4.7), we have

2 *
mﬂge[ll < Hﬂgeﬂlﬂgﬂl + [lfllll(l]gl]l + !}_JEBI)
Using Young’s inequality

ob < 802 + w2, 6> 0, (4.4.14)

it can be concluded that

*
[IEE_IIl < C(m,M,Hflﬂl,ﬂyﬂl) { 4=,

In other words, the sequence {Ee} of the solutions of (4.4.8) 1is uniformly
bounded in gl(Q) in €. Thus, sequential compactness of the Sobolev space BI(Q)
implies the existence of at least one subsequence of {Ee}’ still denoted by
{u.}, that converges weakly to a limit, say u € gl(Q).

Now we recall that convexity and G;teaux differentiability of the
functional v + B(v,v) in ﬂl(Q) yields weak 1lower semicontinuity of the

functional., Thus, to such a weak weak convergent subsequence {ue}, we have

B(y,¥-u) > lim sup B(uc,u-ye) > f£)(u-w),



i.e.,

B(u,w-u) > £,(w-u), W € K. (4.4.15)

On the other hand, relation (4.4.12) and equation (4.4.13) imply

“("eN"g)+"3,FC < e{B(u.,w) - f(u-u.)}. (4.4.16)

for any w € K. Continuity of the norm and uniform boundedness of fu thy yield

u(uN—g)+ﬂ0’rC = O, ic&c, UN - g < 0 a.e, on PCO

Since ug V and since V is closed in EI(Q), the limit u of {35} belongs to K.
Thus, the limit of a subsequence {Be} is a solution of (4.4.2).

Because of the uniqueness of the solution to (4.4.2), every convergent
sequence must have a common limit. Therefore the sequence {Ee} itself as well
as convergent subsequences has to converge to the solution u € K of (4.4.2). O

Let the approximation of the contact pressure (normal stress) o.Nn be

defined by
1 2
OeN = - < B(“eN) in L (PC). (4.4.17)
It can be shown that (4.4.17) is equivalent to the variational inequality form
Oy € Mg (Tt = oy €0y + U,y - 8) 20, Ty € Mg, (4.4.18)

where




Mg = {TN € LZ(FC) : 1y € 0a.e. on PC}. (4.4.19)

To show (4.4.18), it suffices to note that for x,y, and f € R, the solution

X € R to the problem
X €0 : (ex+ £f)(y -x) > 0, y<o0
i =L gt
s given by x =< £,
Thus the exterior penalty formulation (4.4.8) of the variational inequality

(4.4.2) is equivalent to the following perturbed Lagrangian multiplier

formulation:

(Be’oeN) € v x M0 :
B(ug,v) = (ogqvy) = £1(V), v €V (4.4.20)

Since there are no guarantees that contact pressures belong to LZ(PC), the
convergence argument of (4.4.20) in EI(Q) x LZ(PC) does not have any sense here.
Indeed if a flat rigid punch is indented into an elastic foundation, the contact
pressure oy is generally not in LZ(PC). Thus, we need to consider convergence
of (Ee’oeN) in larger spaces.

If the fractional Sobolev space ES(P), 0<SsS <1, 1s defined by the

subspace of EZ(P) equipped with the norm
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drdr } (4.4.21)

i¢lg r = {"Qﬂg,r +fp Ip

where QC RV is Lipschizian, the extension of a function v E Hl(Q) to the boundaq
172
belongs to H (T') by the trace theorem, see Necas (1967, Chapter 2}. suppose

that the surface of the rigid foundation is polygonal. That is, assume that

172
NEH Oy, >0 (4.4.22)

for a small positive number 6. Then the normal displacement vN of v € EI(Q) is

in the space |

172
Q=1""8ry, &> o. (4.6.23)

let Q° be the topological dual of Q, and let [+,*] be the duality pairing on

Q" x Q. The partial ordering in Q° is defined by

T €Q, v <O0if and only if < € Mg sete 1, > 1 in Q (4.4.24)
Then the convex subset
M= {T E Q' HEE 0} (404025)

is closed in Q’. Note that since Q is densely imbedded in LZ(FC), the duality

pairing [¢,] has the property that

0,01 = (%,0) = [ v¢ds, <€ L2(rg), ¢ € Q.




thus the LZ(FC)-inner produce (+,*) in (4.4.20) can be replaced by [+, ] as long

as g € Q.

Theorem 4.3. In addition to the conditions in Theorem 4.1, suppose that

(4.4.22) holds. Then the sequence {(ge,aeN)} €V x My of the solutions to

(4.4.20) converges to the solution (g,oN) € V x M of the problen

B(u,v) = [ogvy] = £)(v), Vv E Yy

(4.4.26)

[TN"ON,UN_g]>0’ TNEM

as € + 0.
Proof. It suffices to show that noeN“Q' is uniformly bounded in Q’ and in

172
e. To do this, we note that since the trace map y : EI(Q) + H (') is linear

172
continuous and surjective, and since the map ¢ + ¢y = ¢*N from H (Te) into
172_
H 6(I‘c) is linear continuous and surjective, it can be found an element

172_
v € Vo for every ¢ €H 6(I‘C) such that

vy =¢ and vl < Cﬂ¢lq, (4.4.27)

for some constant C > 0 independent of the choice ¢.

Then

[C’EN;Q’] [UEN’VNI
ﬂoeullqr =  sup < Csuyp ——

¢ € Q i0lq Yo

where !Q is the set of v satisfying (4.4.27). Applying (4.4.20)1, we have
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< C{Miu_0, + 1f 1%}
'OENBQ’ { Ye'1 1717
Since the uniform boundedness of lu 8y is obtained similarly to Theorem 4.2, the
uniform boundedness of noanQ. is assured. E]

4.,4.,3, Finite Element Approximations

There are at least three kinds of finite element formulations of the
variational problem (4.4.2). If aproximation is performed through the
variational inequality (4.4.2) itself, a finite element formulation of the
so-called displacement type can be obtained. This method, however, does not
involve the contact pressure oy and requires an auxiliary scheme to compute 1t
with sufficient accuracy. A second approach is to obtain a mixed finite element
approximation through the formulation (4.4.26) using the Lagrangian multiplier
method. In this case, the contact pressure oN itself becomes an additional
unknown to be calculated along with the nodal displacements. Naturally,
information on the deformation and the contact pressure can be easily obtained
by this method. This approach, of course, involves the approximation of two
independent fields, (E and cN) and may be computationally inefficient. A third
approach is to use penalty methods to handle the contact constraint, Then again
only one unknown field appears in the variational problem; the penalized
displacement field Uce An approximate contact pressure oy can be obtained later
using (4.4.17) after solving the displacement. Thus, in this case, the contact

pressure is computed by a simple post-processing procedure. 1In the present

study, the penalty method will be applied to solve the problem (4.4.2).




The following finite element analysis will be performed for the case that
the domain Q@ is a bounded polygon in RZ. That is, all deformations of the three
dimensional body are projected in the plane, and the domain Q can be covered by
finite elements that have straight edges. FExtension to threec-dimensional and
curved finite elements is straightforward, although technically very complex.

Let the domain Q be covered by E-finite elements, i.e.,
E _
o=\ e
e=]

As usual, we suppose that each element Qe contains Ne nodal points on which

N
shape functions {¢f}i§1 are assigned so that

Ne

$ilxg) =855 I ef®) =1 x€Q,
i=1

N
where {§j jgl is the set of nodal points in Q,. The functions u_ and v in

(4.4.8) are approximated by piecewise polynomials 52 and zh defined by

U}E\i'Qe = Ugiq’g()ﬁ), V?lge = V‘:(]lhe((?é) (4-4.28)

in each element Q,, respectively. Here “21'9 means the restriction of the 1
e

component of 22 into the subdomain Q. Approximation (4.4.28) leads to the

following finite element approximation of V and Vg
!h = {!h : !h a V?ii’ v? € cO(Q), v?|ge = v}¢ﬁ(§),
vE = Gi(x) on Tpy, 1 <4< 2}, (4.4.29)

and !B is a subspace of gh containin functions such that G?(Ek) = 0.



de

It is worthwhile to note that the term S(uﬁN) may not be a plecewise

polynomial even though 32 is, because of the special operation ¢ + ¢+. Then the

penalty term cannot be integrated as the other terms when the stiffness matrix

and the generalized load vector are computed.

To resolve this difficulty, let us introduce a quadrature rule to evaluate

the penalty term (recall Chapter 3 of Volume II):

A
(8, vR) = 1 (Bl vh)

EI
1(ulpvll) = 21 I, (BCul V) > (4.4.30)

e=

G

T (BGIOVE) = I wiBgp vty

J=1

/

Here {wJ} and {EJ} are the sets of weight and integration points, G the number
of integration points, and E’ is the number of finite element edges covering the

contact boundary [e.

The penalty formulation (4.4.8) is thus approximated by the following

reduced-integration penalty finite element method:

ol € " ¢ Bl + 2 H(pGfvR) = £M,

vt e VB (4.4.31)

-~ ~

Because of the term B(uEN), problem (4.4.31) 1s nonlinear, and the
stiffness matrix due to the penalty term is not readily computed. The actual

computation depends upon the method we use to deal with the nonlinear term.




To illustrate one alternative, suppose that iuz is the approximation of the

i step, and let

X fdy - e 1f Thfi-g >0
ByCtupy) = (4.4.32)
0 if i_lu};N - g < 0.

wherein 1 is not summed. Then the nonlinear equation (4.4.31) can be solved by
the successive iteration scheme

1
g €90 s Ctal™ w2 (B CRugvy) = £, M E ) (4a3d)

for i=1,2,3,..., and the initial assumption 22. Since (4.4.33) is linear for
each i, the stiffness matrix and load vector can be obtained by standard finite
element procedures for linear problems discussed in great detail in Vols. I and

I11. Indeed, for each finite element Ry, we have

N
B'Qe(Bh’Xh) = viK{q 354
I|Qe(3t(“§)vg) = V%(tNEajgug = tgﬁa) r (4.4.34)
flg (xM = vty

/

where

Kigig = erEiij¢§,k¢§,xd9’



o4

e e e

G
‘Ngaja = ng wj(N1¢§Nj¢§)(§J)

and

G
“8fq = L wieN e (x)).
J=1

Here TG = T r]aoe, FEy = PFifq M., 1 <1i<2, and the "weights" {wﬁ} are
defined by

wy if (t-luEN -g)(xy) >0
wJ = (404036)

0 if (t_lu}alN - g)(§J) < 0.
The terms thajB and tgfa will be evaluated only on PS. Using the above
nc:ation the variational form (4.4.33) yields the system of linear equations for

ez:h iteration step t=1,2,..., such that

I o~ m

E
1 1

e=]

The assembly and solution of these linear equations is now done following any of
the standard procedures described in Vol. III.

Since the coercivity of the bilinear form B(+,¢) and continuity of B(e,e)
and the linear form f(+) are independent of the choice of the penalty parameter
€ > 0 and the step i of the iteration (4.4.33), arguments similar to those 1in

Theorem 4.2 yield the following result.

i
it

I




Theorem 4.4. Under the same conditions in Theorem 4.1., 1if the weights
{wj} of the quadrature rule (4.4.30) are all positive, then the secquence {192}
of the solutions to (4.4.33) converges to the solution 52 of (4.4.31) as 1 + +
@, In addition, the sequence {32} of limits obtained for each &€ > 0 converges

as € tends to zero to the solution Eh € Eh of the variational {nequality

o€ K c B, yPu™) oo e, e kP (4.4.38)
where
K= {vhe vl (R - g)xp) <0 onrg). (4.4.39)
0
It is noted that the iteration process finding 52 for each € > 0

converges rather quickly for example problems solved later, although the results
in Theorem 4.4 imply only the convergence of the sequence {iug} as 1 » =,

4.4.4 Convergence of the Penalty/Finite Element Method

We shall define an approdmation of the contact pressure OEN as in (4.4.17):

h . h _ 1 h

Oy € Qp and Oy (xp) e B (ugy) &),

J=1,...,c,onl‘g,e=1,2,...,E', (4.4.40)
where

()'={rh Th|e=TM 1 <e<E} (4.4.41)

h : FC B> = — " — P

and {MB} is the set of shape functions associated to the integration points of
the quadrature rule. Each function Th in Qﬁ might not be continuous along the
boundary FC. Continuity of Th depends upon the choice of the quadrature rule.

Applying (4.4.40) to the equation (4.4.31) yields



h h h h,
(EE’ GEN) € Y x M:

h hy _ - -h h h he h
Bluy VD) - Tloy vy - £ (V) , Vv =V (4.4.42)

~ ~

I(('rh h h

hz_h
N oeN) (e:oE

h \
N + ueN - g)/z. 0, ¥ ™ M,
h | '
where M 1is a subset of Qh defined by
Mh={The Qt'x : Th (XJ)EO' liJiGonr‘g ; lie<E'}. (4.4.43)
h h

h h
Lemma 4.1 Let (E’ oN) Yx M and (Ee' ceN) € Y x M

be the solution of (4.4.26) and (4.4.42), respectively. Let EI be the

quadrature error of the numerical integration introduced in (4.4.30):

E; (f,g) = (f,g) - I(fg) (4.4.44)

for properly defined functions f and g so that the quadrature rule

(4.4.30) makes sense. Then for every v € kP and T; € M

3(3—52,3-32)5_3(5-32,u—vh)+[oN,Vh~u

N N]

h h h
+ loy - Ty» Yy uEN] + [ty - oy uy - gl

- E; ('r: (“:N - g)) + I ((T: - 'r:N) Th> €, (4.4.45)




under the assumption that the "gap'" function g is well defined so that the

quadrature rule I is also meaningful for g.

Proof from (4.4.26) and (4.4.42), we have

The last two terms become
h h h, h h
logs vy = Uen! - I("en("n B “su))

_ ho_ h h h
= logvy = uyl + log - 1y, vy —ugd + [, vy - el

. h h h h h h
—ITy» Yy T gl -1 (TeN(vN - g)) + I (oeN(ueN - g))

h h h h
_f_[GN,vN-uN]+[GN—TN,uN-ueN]-i-['tN-oN,uN-g]
h b /h o, h h o ho_ )
_EI(T,ueN-g)-I.\TN(ueu—g)> +I(0€N(ueN g)

h h h
"<‘[UN’ VN - uN] + [oN = TN’ uN -uEN] + [TN - ON’ uN - g]

h h h h h +
- E; (t,, ueN—g) +I((o€N-rN) (ueN—g) )



Then the estimate (4.4.45) follows from
h h h + h h h
I ((aEN - TN) (uEN - 8) ) =1 ((0€N TN) ( eceN)>

< -1 ((02 - rg) 1; )e . 0

It is noted that the estimate (4.4.45) is obtained within the

restricted sets Kh and Mh. The first four terms of the right hand side

of (4.4.45) are related to the interpolation error of function by finite
element methods, the fifth term comes from the integration error for
the penalty term, and the last one is from the method of penalty. It

is expected that if € - 0, the last term goes to zero. We shall study

this more precisely.

Toward this end, let us introduce an approximation Ah of the

normal trace operator v + v on Hl(Q):
~ n -~

rs Ay M1 = (r;‘ A, (gh)) =1 (" v (46.4.46)

for every vhe Vh.

Lemma 4.2 Let (u, Un) 6 V x M and (52, O}E:N) € yh X Mh be the solutions

of (4.4.26) and (4.4.42) respectively. Suppose that there exist a positive

number ay independent of T: and an element gh 6 Vh such that
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hy _ _h h h
Ay =g e vl < gl r. (4.4.47)

-

h h ™. .
for a given T, GE M :Rg (Ah), where Rg (Ah) is the range of the operator

Ah. Then, for every T: ! Mh,

h h2) h h
(e - 90 ) Tl - oWl - oyl g p re

h h h h _h h
#lIy - ogllo, r Iy - ol g, (v " - ohp) | (4.4.48)

Proof. From (4.4.26) and (4.4.42),
h  h, hN_ _/ h, h h h)
I (kTN - OEN)VN . =1 \(GN - UEN)VN)-+ I (kTN - oN)vN

h h h h
+ [GN, vN] - I(-rN VN) + I(ON vN)

[Oys vgl + I ((TE - o) vg.)

h h h h h
B(u - ug, v) = (g vyl + 1 (1 v

h _h n h h h
Bly - ug, v) + [Ty = Oy vyl = By (Tg vy)

Applying (4.4.47) and taking absolute value yield the result. D
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Let us now apply the interpolation results of conforming finite

element approximations on the restricted sets Kh and Mh following Falk

[1974].
\
* there is a yh €. 5h such that
h u
v - vll o2 c wiflv Il
for every v éb E(’\\HS(Q), r <s, and s > 2, where
f (4.4.49;
B, = Min {k +1 -1, s -z},
and k is the order of the complete piecewise polynomials
contained in finite element approximations of v, )
P
* there is a Ts Z Mh such that \
h "
Il 7y - 7yl < Ch Tl
2 e L
for every Ty M{OH (FC), p<gq, and q > 5 + 6, ? (4.4.50)
§ > 0, where
K, = Min {t + l -p, q- p}
2 2
and t is the order of complete picewise polynomials contained
finite element approximations of Ty. )

We shall suppose that the parameters r and p in (4.4.49) and (4.4.50),
respectively, can be negative numbers (see Babuska and Aziz [1972, p.95])

and that Mh need not be conforming.



Theorem 4.5. Suppose that the quadrature rule 1 satisfies for some

= 6, and parameters Xl and Az, the in-

positive constants C_, i = 3, ooy
1

equalities

2
h h (2 h _h h b
vy ) 2 Cyll vy ”0,I‘C » Wy vy < Gl yll 0,7, Il vyl 0,7,

and

A
1
[

h h h h
IEI('EN’ VN) l _< Csh TN “ q’FC n vN” S_l/z,[‘C '

A
h h 2 h h
e, apl <ol wll g p Mo o, r o
h AS h
e, (o o1 < n gl g r Welleaya,r,

where q and s are the parameters in (4.4.49) and (4.4.50).

Then under the regularity assumption

- -1/2
gegs @, s >2, Oy ¢ u® 3’2(1*(:), and g € 8° / (T

(4.4.51)

(4.4.52)

(4.4.53)



the following error estimates are obtained:

e - el <0 ol eyl yagp el gy, 3 2 ermy 4 e
? c

? (4.4.5

h — H h
oy = Shyllo,r <oyl ayap) G4+ Ny =l e ,

where
Uy = min {k, s-1, (k + s-1)/2, t, (t + s)/2, 11/2, A3/2}
(4.4.55)
u, = min {t +1/2, s-3/2, XZ} .

Proof. Applying (4.4.51) and (4.4.52) into (4.4.48) yilelds
ol = il o, < 0y = el e+ -l o,

* G hA2|| ol Wr
Applying the interpolation theorem (4.4.50), we have

h min {t + 1/2,q,).} h
v~ Cenllo,r_ cc(flu-ullyfo, +n D227 | gl " r,c) (4.4.56)




63

On the other hand, from the estimate (4.4.45), we obtain
h, 2 h h h
SR e R 4 P RN RESE

h h
+lloy - ol | ug = u .l +
NN (ﬁl/z(rc>) N e 1/2,T,

h 1,4_h h
ow= il arag ) Mo = e, = IR ol
\ C c

A3 b
+ C7h " TNII q’FC” g" S—l/Z,FC

h

h h
+ ¢, ell Ty - ogyll O,I‘C”TN” 0,7,

Substitution of (4.4.56) and applying Young's inequality imply

2 hp 2 h
o -3 < ofiu = v 20+ oyl p I oy - <R

q [
(wcry)

hy 2 h
*lloy - 7 + Jluy - el oy - =l
lloy - Tyl 6{1/2(%)), s-1/2,T 11 %8 = (us‘l’z(r))'
c

1, _h h A3 h
+ csh |yl q,rc” venll s-1/2,r, * " Il oyl q,rC“ 8 ”5-1/2,1,
Cc



2{Min t + 1l/w, g,\,}
2 24 hy? 2 2 > B2 h 2
+ C8 (C/ah) “ TN“ O’FC + Cg € h | " q’FC

hy 2
Nglg,r

putting q = s - 3/2, we arrive at the bound

h .
” ‘_{ - E “ 1 A C(” ';1'” S’” GN” 5_3/2’1"(:’ “ g “ s - 1/2’PC) hmln {(,S—]}

+ hmin {%+s—1,25-é}/2 + hmin {},s-%} + hmin {E+s,23-£}/2

\
+h +h > 4+ (e/on) + en™in {“’1/2’5‘3/2' 2}

i.e.,
, h 3
vl = C(”E s> 1oy ”s-3/2,fc > [lell 5-1/2,1‘(:)(h
Yy
+ a/o.h + €h ) ,
where
By = min {},s—l, (k+s-1)/2, t, (t+s)/2, AIIZ, 13/%}
and
My, = min {t+l/2, s=-3/2, )‘2} .




Vo

Now an estimate for the approximate contact pressure is derived

immediately from (4.4.56):

h h h h
lloy - 0y “o,rc oy - 7y ”0.1‘c Ity = oy llo,T_

< T (o lasgo,p ) +lle = 0 /e ) - O

It is clear from these results that three kinds of estimates of the
error introduced by the numerical integration I are needed as well as an
estimate of the parameter @ of (4.4.47) for each given choice of integra-
tion rule and finite elements basis. We shall discuss these in the

subsequent subsections.

4-Node Isoparametric Element and Trapezoid Rule

One of the simplest finite elements to the contact problem is the 4-node
isoparametric quadrilateral element. This element yields piecewise linear
approximation of the displacement on the boundary. Moreover, the edges
are just straight lines. For the integration rule "I" , let us apply

the trapezoid formula on each boundary element that correpsonds to an edge

of 4-node element. The "normal" component v: of gh on the boundary
element is constructed by taking the same interpolation to vh by using

the value vh * N at each nodal points on the boundary. That is, v: is

a piecewise linear polynominal on FC which is the same degree as v .

On the other hand, the trapezoid rule on each boundary element yields the



h .
same approximation of the contact pressure T of the "normal" displacement

vh . That is, both functions vh and T: are lincar polynomials on ecach

N N

boundary element Fe .

Lemma 4.3. For the functions v: and T: defined in above, we have

2
h h 2
(v )2 IIvh g,
C
> {4.4.57)
h _h h h
1y vp) < 9yl r IR llg,r )
E'
h 2 h 2
Proof. Noting that ||v, || = Z v I
Proot xlo,r, & Malor, ’

r, = BQJ\FC , we shall derive the inequalities of (4.4.57) on each

beundary element Fe . Since vh and Th

N N are linear polynomials on Fe ,

we can express these as

vh a + bs and h ¢ + ds , (4.4.58)

1)
-\
[}

where s is the local coordinate along the boundary element, and {a,b,c,d}

is the set of numbers defined by the values of vg and T; at nodes and

the length of the element Te . Then we have

|
1]

2
h(a2 + abh + 2 hz)

h 2 h 2
”vN|lO,F —'/, (a + bs)"ds 3
¢ 7o

e

bb
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1/2
h

2
h h h h h
I(TNVN): I(ty ) I(vy ) <3 ”TNHO’PC llvy ||O’I,C .

We now show error of the quadrature rule I for the choice of the 4-node

element and the trapezoid rule to the penalty tern.

Lemma 4.4. For the functions T: , v: , and ?: , we have the follow-

ing estimates:

|E; (T; , v:)|

| A

2 .h h
Clh ”TN ”1/2’1"(: ”VN ”3/2’1‘0

h h .h
|EI(TN, TN)' 2 G ”TNHI/Z,I‘C ™N “1/2,1‘C (4.4.59)
h 2 h
IEI(TN ’ g)l < Ggh” iy ”1/2,rc llell 3/2,T,

are positive constant independent of the mesh size h.

where C CZ’ and C

v 3

Proof. Noting that‘tg and v: are piecewise linear on the boundary

element,

e (ol <3 13 (YR w1 2 U lgreg s

h 2 h h
I!(VN)'lll/z’pc < clh IITNI|1/2,PCHVN|'3/2,FC .



Similarly,
h ,h }: 1/ N/ NY. 3, % 2. N N
(et < Ly Y ()R] < 602 ) Iy,p 1,7
c

Applying the inverse inequality

h -1/2 y h
(R Hl,r‘c < Ch IITNIII/Q’FC ; (4.4.60)

we obtain
h .h h h
L TN,fN)l < Cohlly Il1/2,1‘c ll%y ”1/2,1'c

The last inequality in (4.4.59) is obtained by the following triangular

inequality

h h  h h h
[EL(Ty ,g)l < IEI(TN - )l + IEI(TN , g-g)l

by using the piecewise linear interpolation of g. The first part in the

right hand side is estimated by

i h h ~ .2 1.h h
| N I IR TP LTV (4.4.61)

‘ similarly to the first inequality of (4.4.59). The second part is estimated

by using the result of interpolation:

h h h h
IEI TN > 88 )I i C“TN ”llz’PC ”g-g “(Hllz(rc))'




~ 2, h
< c.h” 1ol lle]l
=3 N 1/2,rc 3/2.1‘C . (4.4.62)

Thus combining (4.4.61) and (4.4.62) yields the inequality that we need. D

The last preliminary to the application of the general result (4.4, 54)
to specific the error estimates for the penalty finite element approximation
is to find the stability constant o of the approximate contact pressure

stated by (4.4.47),

Lemma 4.5. For the choice of 4-node isoparametric elements and the

h1/2 and th\/h for a given rh such that

trapizoid rule, we have o = o N

h h h h
AL = s o vl < ity ||0,FC (4.4.63)
. h
where o is a positive constant independent of mesh size and Ty

Proof. For the case T; = 0, the inequality (4.4.63) is obvious for the
choice v = 0. Thus we need to consider the case T: $0, i.e., T
where ker(cN) is the kernel of the normal trace operator such that
o =V - N on the boundary for a function v € E(Q). Applying the Banach

inverse theorem to the continuous linear operator Oy» We may condlude that

there exists a positive constant C>0 such that

h
”!lll <c “vN||1/2,Fc (4.4.64)

h . ker(o,,),
NE N

oY



for v; ¢ ker(ox)r]vh » where C is independent of h.

Now, taking the special case that v: = Tg at each integration point,
we have
9 1/2 2 1/2
h h) h h
I(TNVN = I(‘rN ) I(vN ) .

Applying the results in Lemma 4.3 implies

h h h h
> L
I(TNVN>— ey llo,r vy llo,r
C c
The following inverse inequality holds under the assumptions of the

1z

n h
ch™"” lvy ”]_/z’pc.f. oy llo,p_ (4.4.65)

Thus, we have

h h 1/2 ;_h
I(%NVN)‘i cht/ [y |l

g I
O,PC N 1/2,1"C .
Finally, applying (4.4.64) yields
h h 1/2 h h
(g > et/ o o, 1™y -
The inequalities in (4.4.63) now follow from this result. 0

Using the all results in Lemma 4.3, 4.4, and 4.5 and Theorem 4.5, we
can obtain an error estimate for the penalty/finite element approximation

(4.4.31) for 4-node quadrilateral isoparametric elements and the trapezoid rule.
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Theorem 4.6. Let the hypotheses of Lemmas 4.4-4.5 and Theorem 4.5 hold
and suppose that the solution (u,oN) to the original problem is smooth enough

so that

wer’ (@ and o ent’i(r) (4.4.66)

/

Then, for gEH3 2(I“C) we have

h -
lu-u'll, <c h1+h1/26+h1/2£)

1
’ 4.4.67)

€
”ON— ON“ 0.1 % Cz(hl/2 + h_le+e) )
>°C

vhere C1 and C2 are positive constants independent of h. [J

4,4.5 Numerical Examples. The results of numerical experiments on two

example problems are given to demonstrate the performance of the penalty/
finite element approximation (4.4.31). The first example is a classical
Hertzian contact problem in which two identical circular cylinders are pushed
into each other by applied line forces P on the exterior surfaces, Symmetry
of this problem yields a Signorini-type problem since the deformation is the
same as that of a circular cylinder at rest on frictionless flat rigid sur-
face and is subjected to the force P applied on the top. If the circular
cylinder is long enough, the problem can be considered as a plane strain
problem on a circular domain.

As a further simplification, we shall solve the problem only on the

quadrant applying a uniformly distributed force instead of the "point" force
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P on the top. Forty-four elements are used for the discretization of the
quadrant of the cross section of the cylinder as shown in Fig. 4.3. As an
example, let the radius R = 8 cm, Young's modulus 200 kg/cmz, Poisson's

ratio v = 0.3, and the applied force P = 156 kg on the top. The iteration
scheme (4.4.37) converges at the 3rd iteration within 10_4 tolerance. The com-
puted deformed configuration is shown in Fig. 4.4, and the process of conver-
gence of the iterative method (4.4.37) is described in Fig. 4.5 using the con-
tact pressure pz obtained by (4.4.40).

The second example is a rigid punch problem in which a rigid circular
cylinder is indented into an elastic foundation, as shown in Fig. 4.6. The
size of the punch is R = 8 cm, Young's modulus E = 1000 kg/cmz, Poisson's
ratio v = 0.3, and the depth of indentation is 0.6 cm. The width of the
elastic foundation is 8 cm, and its height is 4 cm. We again assume plane

strain. For this problem the relative errors of the total strain energy

defined by
E = 1 uh uh - l a uh uh
€ 2 ~E ’ ~E 2 ~€ ’ "g
E = 1 h -1 a uh uh
h-22(Y% Y% )" 2%\l 22

A" indicates fixed values. For Ee, we take h =0.8 cm

-4

are computed, where

and € = 10—4, and for Eh we take € = 10  and h = 0.8cm. Figures 4.7 and 4.8

contain the computed result values of Ee and Eh. Since the error estimates

2
(4.4.67) indicate EE = 0(g) and Eh = 0(h“), we have a slight gap in numerical

and theoretical results.
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Figure 4.3 Physical Model for Example 1



Figure 4.4 Deformed Configuration
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Figure 4.6 Indentation Problem for Example 2
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4.5. Special Case II. Prescribed Normal Stress. As shown in the

previous section, wunilateral contact problems can be solved by the
penalty method if the tangential stress along the candidate contact
surface Fc 1is known, In this section, we shall study the reverse
situation: we shall assume that the normal stress o, and, therefore,
the actual contact surface I'c are known a priori.
Let
o, =t €LYrp) (4.5.1)
NN c '

be given on the contact boundary Fc « Then, as shown in Section 4.3,

a variational formulation of the corresponding equilibrium problem

assumes the form

ugVv: a(u,!—g) + j(v) - j(g) > EZ(X-E)' V'X € v (4.5.2)

where

and the space V 1is defined 1in (4.4.4). Because of the assumption
(4.5.1), the functional j(+) 1is well defined. The fact that j(<) is
continunus on gl(ﬁ) follows from (4.3.22). The functional j(-) 1is

also convex. To see this, we need only recall that the RNM-euclidean

norm is convex,

1(1-8)vy + Bwpl < (1-8) |yl + Blwpl . (4.5.4)



Thus, a direct application of well-known results from BREZIS

[1968) on variational inequalities leads immediately to the following

existence and uniqueness theorem.
Theorem 4.7. Let the domain 2 be Lipschitzian, and let (4.3.8),

(4.4.5), (4.4.6), and (4.5.1) hold. Then there exists a unique solution
u € V to the variational inequality (4.5.2).

4.5.1 Regularization of the Functional j(-) The particular class of

problems characterized by (4.5.2) may seem to be of limited practical
interest since it depicts a rather rare situation in which 'normal
stresses are prescribed on a surface with unknown frictional stresses.
However, we shall now describe a regularization of this problem which,
interestingly enough, can depict in a much more realistic way certain
features on friction mechanisms observed in experiments with metals.

We begin by observing that the functional j(e) in (4.5.3) is not
Giteaux differentiable at the origin. This is not surprising because
the Euclidean norm |[*]| 1in RY is not differentiable at the origin,
nor is the function x + |x] 1in ml . However, the source of the
non-differentiability of j(+) 1is the fact that this particular model
of friction depicts the separation of the sliding and full adhesion
portions of the contact surface as a point or line. Physical
experiments on friction on metallic surfaces show that no such line of
separation of sliding and full adhesion exists; rather, there is a
boundary-layer between regions of full "stick" and "slip." This, in
turn, suggests that an approximation of j(¢) differentiable at the
origin can be designed which leads to a representation of such a
boundary layer but which, at the same time, can be made arbitrarily

close to the functional j(*) in some sense.



Toward the construction of such an approximation, we first
consider smooth approximations of the function x + |x] . As examples,

consider the functions, ‘

1
(x - 5 (1 if x >¢
d¢
q)el(x) =< 2—1€-x2 ; -ﬁ(x) =é %x if Ix] < ¢ (4.5.5)
1
\~x + 3¢ k—l if x € -¢
((%)e if x>0
2 e, Ixl e+l 9%
¢‘e(x) =m(T) ;d—x(x) = ﬁ (4.5.6)
k-('s_")E if x < 0

and
¢3(x) = Z.(x tan—ll(' - _E_ zn (x2+ez))' _d.je(x)- E tan—l(i). (l' 5 7)
€ - € 2 ' dx T € T

It is easily verified that all of these approximations converge to the
absolute value function as € + 0 .. The most popular approximation is
the first one which exhibits a plecewise linear first derivative.

However, the other two approximations have nonlinear first derivatives.



It is also worth mentioning at this point that an analogy of the
friction problem to the perfect plasticity can be realized by examining
at the graph of the first derivatives of ¢é , ¢§ , and ¢g . The
first resembles the stress-strain curve of an elastic-perfectly plastic
material whereas the second resembles that of a material with strain

hardening.

Another approximation which is reminiscent of plasticity is the

function
(x + gxz - %(s + eez) if x > ¢
$.(x) =< L2 if Ix| <€ ¢ (4.5.8)
€ 2¢
€2 1 22y if x < -€
\~x+2\x 2(e+se)
with
(1 + €x if x > €
d¢e 1
( =¢ = if x| < € (4.5.9)
dx x) < ex |
-1+ €£x if x < - ,

\

Here € and €& are two positive parameters such that ¢€(x) + |x| as € +

0 and &€ =+ 0. In this case, we have a sort of strain hardening

effect after the slipping (i.e., yielding).



To introduce similar approximations for the functional j(+) in
friction problems, we first introduce a regularization of the function
¢(3(_) = |x|, where |x]| is the Euclidean norm for R" : x| = /5-:\: .

-~

Then 1its approximation ¢E similar to (4.5.8) and (4.5.9) and is

given by
(|)_<_| +-§-§-§ - -;-(e + eez) if |x] > €
$e(x) =< (4:5.10)
1
—_— XeX if |x| < e,
2e ~ ~
\
where
(—x + £x) if Ix1> €
= X)e X
( TR =
%5 (4.5.11)
—a?(zs)'}_’ "'<
K _l.x-z if x| €€ .
- b

Let us now make an estimate of the difference of ¢, and ¢ .

Note that

83
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54 1
|.24~(0§ - E(s + CEZ)I if ".Sl >€

[0.(x) - ¢(x)| =

1
| 5o%0% = 1% if Ix| < ¢
(L2
E(ﬁlasl + €) if 1x| >e
<<
1
€ if x| < ¢
2 =
\
< l(élxlz + €)
2"~ (4.5.12)
i.e,
1 2
19e(x) = ¢(x)1 < S(Ix1” € + ¢€). (46.5.13)
Thus, as the parameters € and € tend to zero, the
approximation ¢ of the nondifferentiable function ¢(x) =
Ix] converges to ¢ at a rate O(e + €). The differentiable function
¢ 1s called a regularization of the nondifferentiable function ¢ .
As shown above, there are infinitely many choices of such

regularizations.
particular choice
of regularization

KIKUCHI [1982].

However, for definiteness, we shall consider only the
(4.5.10) in the following discussions. Other choices

and their quality in computation are studied in e.g.,
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We now return to the work done j(-+) by the friction force and
its regularization. In view of (4.5.13), we take as a regularization

of this functional,

jglv) = frc (-uty) ¢e(vp)ds (4.5.14)
We easily verify that with this approximation

. . 1, -
lJe(!) - J(!)l < Eﬂ—utNﬂo,rC(lgﬂg’4’rce + (mes Pc)c), (4.5.15)

where mes ¢ 1is the measure of the boundary I'c » and n-no,&’rc is

the norm of LA(FC) defined by
9 1/4
ﬂ!ﬂo’l"rc = frc(!'!) dS . (4.5.16)

Note that we have used here the facts that vy € Lé(PC) for

v; € Bl(@) 1f @ is Lipschitzian for 1<i<n, and that

"'!’!T'!T*‘ﬁ%‘

Theorem 4.8. Let Q@ be Lipschitzian and let Eﬁ € LZ(PC).
Suppose that the conditions (4.3.8), (4.4.5), (4.4.6), and (4.5.1) hold.

Then there is a unique solution u. to the regularized problem

586 V:oaug, v) +<Dj(uy), v = £5(v) , Vv €V  (4.5.17)

for a given pair (e,8), where Vg, is the space defined in (4.4.11),

and



3¢c
aEsT

Djgue), ¥> = Jp (-uEydy—~Auer) + vpds . (4.5.18)

Furthermore, the sequence of the solutions {uc} to the regularized
problem (4.5.17) converges to the solution u of the friction problen
(4.5.2) as € and € tend to zero. Indeed, there exists a positive

constant C , independent of € and €, such that

lug = ul) < C(ve + VE),’ (4.5.19)

0

Before proving the above assertion, let us note that the

regularized problem (4.5.17) is equivalent to the problem

ue € ¥ alug, ¥ - ue) * 5w - delug) > £(v-ue),

Vv €V, (4.5.20)

since  j.(+) 1is a convex continuous and differentiable functional on

V.

Proof of Theorem 4.8. Because of the equivalence of (4.5.17) to

(4.5.20) the existence of a unique solution ue follows from reasoning
similar to that used to derive (4.5.2). Thus, it suffices to merely
verify the inequality (4.5.19).

Applying (4.5.2) and (4.5.20), we have

a(u-yc, u-ug) < J(u) = 3(u) - 3 (u) + ju)

Cl-ut 2 2
< C"'“‘N"O,Pc (("BHO,A,PC + "Be"0,4,rc)e + (mes Tp)e)



Because of (4.4.5), the solution HECHO,Q,FC is uniformly bounded in &
and €. We can thus conclude that (4.5.19) holds for sufficiently small
¢ and € .0

Let us now investigate in more detail the physical meaning of the

regularization method. Toward this end, the variational form (4.5.17)

1s considered. If the generalized Green theorem introduced by Aubin (1979

, Chapter 13] is applied, and if the normal and tangent stresses GeN
and d.r resulting from the displacement field u_. are well-defined

in, e.g., LZ(PC), then we have the following characterization of the

solution u. of (4.5.17):

€

'] .
s (054(8e)) = £ in @, (4.5.21)

in the sense of distributions,

ge =tonTp, o,y=ty+t oyonTe, (4.5.22)
and
. 9%¢
Oop = Wty " (ugp) on T (4.5.23)

Here o4 = oij(ge)nj » Ogn = 9 * N, and goqp = g = O pN.
Consider the equilibrium of the tangential stress on the contact

surface I'c. If the relation (4.5.11) is introduced into (4.5.23), we

have the friction stresses
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TN ~eT + 8u_m) if | > €
NV Yer u
luerl eT
Ger = (4.5.24)
T 1
\HEN T YeT 1f Jueql < €

on the surface PC .

It is clear that the inequality

-ney(l + €lugrl) 1if lu gl e

[ger! <

holds. This means that if € + 0, the friction stress never exceeds
the value _”EN which indicates the Coulomb 1law of friction.

Furthermore, (4.5.24) yields

YeT = € "ENQQT for luepl <€ .

Thus, by passing to the limit € + 0, the stick portion of the contact
surface is identified with the set S, = {x €T : Ju.qp(x)] < €},

A simple spring model of this particular friction mechanism 1is
depicted in Fig. 4.9. Note that the initial tangential stiffness at
the contact surface is l/e¢ and that some tangential displacement & {is
reached before the spring of stiffness € , representing a hardening

effect, is activated.
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Figure 4.9 Model of friction mechanism



4.5.2 Finite Element Approximations. We  shall now examine

approximations of the regularized problem (4.5.17) by finite element
methods. Applying the notations and conventions of the previous
section (recall (4.4.28) - (4.4.37)), the regularized form (4.5.17) is

approximated by

up €00 s atad, v+ 103D v = £GP,

Vv evh, (4.5.25)

where the term I(Dje(52)°!%) is the quadrature rule for the friction
term <ng(22)s zh> similar to the penalty term in (4.4.31). It is
clear that the finite element equation resulting from (4.5.25) 1is
nonlinear because of the gradient Dje(gg) . Thus, to solve (4.5.25)
we must generally resort to some successive iterative scheme. Because
of the nature of the nonlinearity in Dje(gg), it is natural to

consider a sequence of linearized problems which employ the recurrence

formula,
i-1gh, -
- ~E i"
- uty(etady + e el > e
1™ "gerl
pil (tul) = (4.5.26)
U i-1 h
LuEy = YerT 1 17wl <e

Then the solution 22 in (4.5.25) is achieved as the limit of the

sequence (132} such that

PAYS



i h .
92 € v 3(132, !h) + I(D_‘]é(igg)°!¥)

= £,(vM), Vyh € v, (4.5.27)

for 1 =1,2,...,m, which evolves from a proper initial guess °32.

The convergence of the iterative scheme (4.5.27) is more delicate
than the case for the penalty formulation (4.4.33) since the term
"ENi-lEET lli_lgng destroys the monotonicity of the form (4.5.27),
unless the parameter € is sufficiently large. Since jg 1is convex,
the operator constructed by the quasilinear form a(+,e) + <Djc("),*> is
strongly monotone on V x Vg. Thus, it is possible to establish the
existence of a convergent subsequence. However, this does not imply
that the form a(-,) + <Djé(-),-> is monotone. This possibly lead to a
sort of oscillation about the solution as 1 + =, Such oscillations
might be reduced or eliminated by taking a larger value of e(or
£) that results 1in the reduction of the effect of the term

uini-lgngli-lgng during the iteration process.

4,5.3 Convergence of the Finite Element Method. Suppose that the unique

solution 92 of (4.5.25) is obtained by the iterative scheme (4.5.27).
It is, however, noted that while the existence of a unique solution to
(4.5.25) is guaranteed, it might not be realized by this iterative
scheme (4.5.27). We shall verify the convergence of the regularization

finite element approximation by taking the following steps: an estimate

of ﬂug-gh

el is first obtained, where 92 is the solution of the

problem

ah € 4" a(al,u™ + D3 (A, ¥ = £,0M,



vvh €yh | (4.5.28)

-~ -~

Because of the application of the numerical integration to evaluate the

quantity

(a8
DI, = Sy by —= - R s,

aQET

the quadrature error must be considered at first. Then applying the
result in Theorem 4.8 yields the estimate ngE-BhHI in terms of €

and € , where gh is the solution of the problem

W € VP aGl, v + 5™ - 3t > (P,

Vb € yh . (4.5.29)

The final step 1is the estimate of ﬂgh—gﬂl of the solution u of
(4.5.2).
To accomplish the first step, let us note that the form (4.5.25)

is equivalent to

h
ol € ¥h:aull,v™) + TCueygs (v - Tlutye  (up))

> £,(yN-ul), WP Eyh (4.5.30)

Similarly, (4.5.28) is equivalent to

ol € vP ¢ acal,v™ + 5 (M1 @M > £y (y"-eD)

vyl € R, (4.5.31)

9¢



Lemma 4.6. Suppose that the quadrature rule I satisfies the

condition

hoh 2(s-1) ,¢h h
1E;(£"gM) | < cgh2(571) uf 152372168 s-1/2,4,1, (4.5.32)

for plecewise polynomials contained in the trace of the functions in
yh on the boundary T. Then there 1Is a positive constant C

independent of the mesh size h and the parameters € and € such

that

vul-aPe, < (1+e) cnglog, 1alu,nuEgn _g,5)nS"! (4.5.33)

for s> 1.

Proof. From (4.5.30) and (4.5.31), we have

a(ul-gf, wl-a0) < IE;GiTtyec(ufy) |

+HE(uyoe @I 1

Without 1loss of the rate in the estimate, we can assume that uty is
also a piecewise polynomial (see the procedure to (4.4.62)). Applying
the assumption (4.5.32), it follows from (4.4.5) that

h_.h “
0 2 h,2
m Ee'}_lelll < CﬂutNus_3/2(1+€ﬂg€us_l/2’4’rc

Enuhn2 2(s-1)
+ Eluelo 1/2,4,r 0 y
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Thus (4.5.33) follows. O

The second estimate,

16P-uPe, < c(ve + /) (4.5.34)

follows easily from the same arguments used in the proof of Theorem
4.8'

Lemma 4.7. Suppose that the interpolation estimate (4.4.49) holds

for the function on © and on T . Suppose that

u €83, wip € BTVA(re), apw) € 1Y 2(rp),

and uEy € u5°Y/2(ry). (4.5.35)

Then for the solutions gh of (4.5.29) and u of (4.5.2 ), we have

the estimate

1aP-ut) < c(rui) w7t (4.5.36)

where C 1is a constant independent of the mesh size.

Proof. Using (4.5.2 ) and (4.5.29) we obtain the estimate

a(u-u",u-u") < alu-u"u-y™) +alu,y-u™)

+ 3(0=3WM - £,(v-u®) + a(u,vP-u)

+3GM-i) - £,  Pev, vev.

Taking v = uP yields



h

a(u-u",u-uM < au-uh,u-yM) + aly,v-u)

+ 30 -3Cu)=£,(v"-u).

The characterization of the solution u of (4.5.2) after applying the

generalized Green theorem leaddto the inequality

h h

a(y=y"u-u") < alu-uPu-y™ + Sp op(e) (vh-up)ds

+ pruEN(Iglfl = lugpl)ds

Under the assumption (4.5.35), we have

miu-u"1f < Mig-ghny au-yP
+ fagn(u)l Tun—vii
or(Wis-3/2,r; MT7VT -s43/2,1

- _.h
T ohutylsoaya,r. 18T os43/2, 1

Here we have used the fact that |!¥|-|BT| < |X¥—ET|' Applying the

interpolation estimates (4.4.49), we obtain

miu-u?1? < QMiu-uPi RS hiun g

- 2(s-1)
+(ap(Wlg_3/9,r, + WWENI-3/2,r)Ch Dulg-1/2,10

The estimate (4.5.35) 1is then obtained by using Young’s inequality. O
Combining the above results we arrive at the estimate of the
approximation of the regularization finite element method (4.5.25)

Theorem 4.9. Under the assumptions (4.4.5), (4.4.6), (4.4.49),

(4.5.32), and (4.5.35), we have



1ului, < C(/E + /€ + b hnur (4.5.37)

where C 1is a proper positive constant independent of h, €, an e. D
If the four node quadrilateral element with the trapezoid rule for
the quadrature "I" is applied, an analysis similar to that leading to

Lemma 4.4 shows that the estimate (4.5.32) reduces to
=1, h 2 2, =1
E < Ch
1By Cutylugr! ™) | WENY1 /2, roralpn23/2,4,T, (4.5.38)

where uE§ is the interpolation of the "EN on I'n. Thus, 1if s=2, the

error estimate becomes

tul—ul, < C(/E + V& + h)iul,. (4.5.39)

4.5.4 Numerical Examples. We shall describe three example problems for

friction contact problems. The first 1is a footing problem in
foundation engineering depicted in Figure 4.10.

Suppose that the foundation is composed of an isotropic elastic
material with Young’s modulus E=SxIOSgK/m2 and Poisson’s ratio 0.3
for the shaded area, the remaining portion begin a second elastic
material which has a Young’s modulu of E=2x106gK/m2 and Poisson’s
ratio of 0.3 for the other part. The size of the foundation is 8m x
16m, and the friction coefficient u between the footing and the

foundation is assumed to be u=0.3.

A finite element model is obtained by 64 four - node elements as
shown in Figure 4.10 for the case in which the footing 1s pushed
and rotated so that the bottom line of the footing lies along the

plane y = -0.1 + 0.001(x - 6). That is, the left edge of the footing

20
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Z

6

Figure 4.10 Footing Problem on a Non-homogeneous Elastic

Foundation with Friction



is indented 10 cm into the foundation, and the tangent is 0.001. For
the choice of € = 10-4/5 and €=0, we can obtain the result shown 1in
Fig. 4.11 in which three nodal points from the right edge of the
footing are sliding. Because of the singularities on both edges, the
contact pressure 1is very high on those points. It is noted that no
oscillatory tangential stress along the bottom of the footing is
observed because of the relatively course finite element mesh used.

The second example 1is a Hertzian problem with friction. A
circular rigid cylinder is idented into the deformable body whose
Young’s modulus E is 1000 gK/cm2 and Poisson’s ratio v 1is 0.3. Under
the assumption of plane strain, the problem is solved by 36 four-node
elements with the depth of indentation d=0.4 cm. The radius of the
cylinder is taken to be R=4 cm, and the size of the deformable body is
8 cm x 4 ¢cm. Using the symmetry of the problem, only half portion of
the body is analyzed. Computed results for the case p=0.3, €=2.6 x
10_6, and £€=0, are shown in Fig. 4.12. The deformed configuration is
also given in Figure 4.12. Two nodes under the circular rigid punch are
sliding, and the computed contact pressure and the friction stress are
plotted in Figure 4.13.

The last example is an axisymmetric problem for an annular punch.
The computed results are compared with the analytical solution of
Shibuya, Koizumi, and Nakahara [1930] for the case of full adhesion. The
deformed configuration and the contact stresses are shown in Fig. 4.14
and 4.15, for the case that E=1000 g Kg/cmz, v=0.3, and u=0.3. The
size of the domain =2 cm x 1l cm by applying the axisymmetry. The

domain is discretized by 200 four-node elements. We here need not to

44
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use the non-zero regularity parameter € . If e=10-5/E is taken, the

iterative scheme is stable, and converges monotonically.

4,6, CONCLUDING REMARKS

Starting from the contact conditions for both large and small deformations,
the mathematical description (4.2.32) of the friction contact problem is derived
using the Coulomb friction law. Under the assumptions of small deformation and
quasi-static motion, the set of dynamical equations (4.2.32) is reduced to the
incremental form (4.2.35) in the pseudo-time t and its increment At. The
variational statement corresponding to the incremental form (4.2.35) is derived
by using a quasi-variational inequality (4.3.5), the existence of solution of
which is proved only for the case of small friction coefficient p.

In order to obtain an 1iterative scheme to solve the quasi-variational
inequality that represents the incremental form of friction contact problems,
two special cases are studied in detail. The first case is the one with the
prescribed tangential stress that is possibly caused by friction. Nonlinearity
then arises from the unilateral coantact in the normal direction, and is resolved
by applying the exterior penalty method (4.4.8). Conditions for the convergence
of (4.4.8) as the penalty parameter € tends to zero to the corresponding
Lagrangé multiplier formulation (4.4.26) are given in Theorem 4.3. The finite
element approximation of the exterior penalty formulation is obtained using
four-node quadrilateral isoparametric elements, and its convergence analysis in
Theorem 4.5 is established for both parameters h and e, where h is the
representative mesh size of the finite element model.

The second special case corresponds to problems with prescribed normal
stresses on the known contact surface. 1In this case, if the normal stress is
smooth enough, the variational formulation is given by a variational inequality
of the first kind as in (4.5.2). Because of the non-differentiability of the

functional j, that represents the work done by friction forces, a regularization
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existence of a unique solution to the regularized problem (4.5.20) is shown, and
the convergeﬁce of the regularization is proved in Theorem 8. It is noted that
the convergence of the tangential stress Ser has not been analyzed in this
study. The regularized problem (4.5.20) is approximated by four-node elements.
Convergence of the finite element approximation (4.5.30) 1is established in
Theorem 4.9, under the assumption that the iteraciQe scheme (4.5.27) gives a

convergent result,
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5. NON-CLASSICAL FRICTION LAWS

The use of the classical Coulomb law of friction in the formulation of
contact problems in elasticity leads to both physical and mathematical
difficulties; the former arising from the fact that this law provides a poor
model of frictional stresses at points on metallic'surfaces in contact and
latter due to the fact that the existence of solutions of the governing
equations can be proved only for very special situations. In the present
article, non-classical friction laws are proposed in an attempt to overcome
both of these difficulties. We consider a class of contact problems in-
volving the equilibrium of linearly elastic bodies in contact on surfaces
on which nonlocal and nonlinear friction laws are assumed to hold. The
physics of friction between metallic bodies in contact is discussed and
arguments in support of the theory are presented. Variational principles
for boundary value problems in elasticity in which such nonlinear nonlocal
laws hold are then developed. A brief discussion of the questions of
existence and uniqueness of solutions to the nonlocal and nonlinear problems
is given.

5.1 Introduction

In 1781, the French engineer C. A. Coulomb published his ''Théorie
des Machines Simples" in which he presented his celebrated law of frictiom.
This work earned him a double prize from the French Royal Academy
of Sciences in 1785, The classical Coulomb law of static dry friction,
of course, asserts that refative sfiding between two bodies in contact
along plane surfaces will occur when the net shear force parallel to
the plane neaches a critical value proportional to the net nonmal force
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pressing the two bodies together. The constant of proportionalily 4is
called the coefficient of friction.

It can be argued that as a basis for contact problems in the theory
of elasticity, Coulomb's law is not acceptable from either a physical
or a mathematical point of view. From the purely physical side, it has
been recognized for many years that Coulomb's law is capable of describ-
ing only friction effects between effectively rigid bodies and gross
sliding of one body relative to another. 1Indeed, it is clear that Coulomb
himself never inteded that his law be applied pointwise in boundary-
value problems in elasticity; the foundarions of continuum mechanics,
particularly the concept of stress and the equations of linear elasto-
statics, were only fully developed many decades after Coulomb proposed
his law, and the first successful formulation of a contact problem in
elasticity came over a full century after Coulomb's work. From the
mathematical point of view, it is known (see DUVAUT [1980] and also
DUVAUT and LIONS [1976])) that if Coulomb's law is applied pointwise in
contact problems involving linearly elastic bodies, then the contact
stress On developed normal to the contact surface is ill-defined.
Except for some very special cases (e.g., NEE;S, JARUéEK and HASLINGER
[1980]) the fundamental question of existence of solutions of the friction
problem is open (for other related open questions, see DUVAUT and
LIONS [1976]),

There are several aspects of actual friction phenomena between
metallic bodies that suggest alternative friction laws which represent

a marked departure from the classical formulations. First, we mention
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the obvious nonlocal character of the mechanism by which normal stresses
are distributed on machined contact surfaces. These stresses are trans-
mitted over junctions formed by deformed asperities and are not concen-
trated at isolated points on the contact surface. Second, we note that
upon the application of loads, experiments show that there always exists
a small tangential displacement of points on the contact surfaces due

to the elastic and elasto-plastic deformation of these junctions;
"sliding" occurs when these junctions are actually fractured. Since
these junctions can be recovered upon a quasi-static reversal of loads,
the actual "adhesion-sliding" friction mechanism is highly nonlinear

and depends upon the elasto-plastic properties of the metal oxide and
contaminant film on the contact surfaces.

Independent of the nonlinear character of local friction phenomena,
there are also mathematical reasons to expect that a nonlocal friction
law might lead to a more tractable theory. Recently, DUVAUT [1980] pub-
lished a brief note in which he observed that the source of difficulties
in establishing an existence theory for Signorini's problem with Coulomb
friction was the lack of smoothness of the normal contact pressure a, -
Therefore, by considering, instead, a proper mollification of the normal
stresses on the contact boundary he was able to state that the principal
obstacles in the way of deriving an existence and uniqueness theory for
contact problems with friction could be overcome. One interpretation of
such a smoothing of the contact pressure is as result of nonlocal effects
arising from micromechanical phenomena taking place on the contact regions.

In the present study, we propose ncnlinear, nonlocal friction laws

for contact problems involving linearly elastic bodies and we present
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variational principles for contact problems in elastostatics in which

these laws hold. Roughly speaking, a nonlocal friction law proposes

that {mpending motion at a point of contact between two deformable bodies

will occun when the shearn strness at that point neaches a value phopor-

tional to a welghted measune of the nounal strhesses in a neighborhood

of the point. The character of the effective local neighborhood and

the manner in which neighborhood stresses contribute to the sliding con-

dition depends upon features of the microstructure of the materials involved.
While such nonlocal laws do lead to a mathematically tractable

theory, they still do not capture the effects of the tangential elastic-

plastic deformations of the contact junctions mentioned earliezr. To

accomodate such effects, we present a further amendment which provides

for small but nonzero elastic tangential displacements at the contact

surface for tangential stresses below a certain critical level. For

shear stresses at or near this critical level, substantially larger

motions can occur which effectively represent large tangential motions

such as sliding. This critical value may be proportional to a weighted

measure of the normal stresses in a neighborhood of the point on the

contact surface,

An interesting feature of our results is that these non-conventional
friction laws are given in terms of three positive material parameters:
V, p, and €. The parameter v is the coefficient of friction, although
its actual interpretation is somewhat more complex than that of classical
mechanics. The parameter p quantifies the nonlocal character of the
response ~ for p = 0 a fully local law is obtained. Finally, € is a

measure of the tangential stiffness of the elastic-plastic junctions on



the contact surface; the case g = 0 corresponds to a fully rigid response
full adhesion or full sliding of contact surfaces. Thus, by allowing p
and € to approach zero, we can recover the classical, local, pointwise
formulation of contact problems in elastistatics based on Coulomb's law,
Following this introduction, we give a brief account of the physics
of friction as well as a justification of specific friction models.
Several variational principles for boundary value problems in elasticity
in which nonlocal and nonlinear laws are assumed to hold are derived in
Section 3. The results of some theoretical studies of these principles

are surmarized in Section 4. OQur results include conditions sufficient

Lo guarantee the existence and uniqueness of solutions to the variational
problems as well as results which establish the asymptotic behavior of

solutions as parameters p and € tend to zero.
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5.2 A Basis for Nonlocal and Nonlincar Frictiop. Laws.

5.2.1 Micromechanics of Friction. Friction phenomena have been the subject

of considerable experimental and theoretical research over the last 30
years and its study is a popular and important aspect of modern mmechanical
engincering design. A standard reference is the monumental two-volume
treatise by BOWDEN and TABOR [1950 and 1964); more concise accounts can

be found in standard texts on the subject (e.g. RABINOWICZ [1965]).

To understand friction, one must first appreciate the role of the
microstructure of the materials involved. Consider an experiment in which
two metallic bodies are placed in contact along two apparently machined
flat surfaces. At microscopic levels, specifically at magnifications of

1000x to 5000x, machined metal surfaces are seen to be not smooth homo-

geneous planes, but rough contours with numerous irregularities which are
large compared with molecular dimensions. We refer to these deviations
from the plane as aspernities.

When we press together two surfaces, actual contact initially occurs
only at the peaks or summits of the asperities. Large areas of the sur-
faces are separated by a distance which is large compared with the range
of molecular action, so that these gaps in the surfaces are completely
separated and have no interaction with one another. The load is, there-
fore, initially supported at the tips of the asperities; the area of
contact is extremely small, and the pressure at the points of contact,
even for lightiy loaded surfaces, is high. Plastic deformation of the
tip of the asperities occurs at small loads while the bulk of the under-

lying metal deforms elastically. As the normal load is further increased,
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the asperitices deform and fracture with the result that the local load
is distributed over an arca surrounding each deformed asperity. At this
stage, ecach asperity has been flattened and the local contact forces

are distributed over a necighborhood of the asperity. The neaf arca of
confact A (as opposed to the apparent area) is therefore the sum of
the areas of all the surface irregularities which are touching and which
support the load.

It is often assumed that the local plastic yield pressure 'po is
nearly constant and is comparable to the indentation hardness of the
metal. Under these circumstances, the real area of contact for any one
asperity bearing a load N, 1is A, = Ni/po; for the assembly of the

i i

asperities, the real contact area is

Nl NZ N
Ar =A, +A + ... = ;— + — ... =-;— (5.2.1)
0 0]

where K 1is the total normal force pressing the surfaces together.
The real area of contact is, thus, proportional to the load and indepen-
dent of the size of the surfaces. Over these regions where‘intimate
contact occurs, strong adhesion and welding of the metal surfaces takes
place and the specimens become, in effect, a continuous solid. We refer
to these regions as junctions.

Under most working conditions, metal surfaces are covered b& a
thin film of oxide, water vapor and other absorbed impurities., The shear

strength of these junctions can be strongly dependent upon the shear

strength of these surface films. In particular, it is the shear strength
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of this layer of oxide and impurities that detcrmines the coefficicnt of

friction and not, in general, the shear strength of the parent metals.
The application of a tangential force T creates a tendency for

the two bodies to slide relative to each other. The contact pressure

must then decrcase (since it was near or cqual the plastic yield stress).

Some microscopic motion will occur (junction growth) cven when T s

small., If T 1is steadily increased, a value of sufficient magnitude to

fracture the contaminant films is eventually reached and gross sliding occurs.

It is customary to set the ratio of the magnitude of T at which sliding-
occurs to the net normal force N equal to the coefficient of friction

v . If s 1is the average shear strength of the interface, it follows

tkat approximately

T = Ars (5.2.2)

i.e., T 1is independent of the apparent area of contact (since Ar is).

Then, substituting for Ar » we obtain

T==-N or v=-=- (5:2.3)

i.e., T 1is directly proportional to the load (or VvV is independent of

the load).

As an idealization of the contact surfaces, one may assume that the
asperities are superposed upon the surface of spherical protuberances with
a larger radius of curvature. It is then possible to consider that

although each individual asperity at the interface will deform plastically,



the deformation of cach spherical protubcerance will be elastic. This
idealization has two purposes: (first, the arca of recal contact still
remains approximately proportional to the load, although the overall
deformation is elastic (sce ARCHARD [1957]); sccond, it allows us to
treat each region of contact as being roughly circular (see microphoto-
graphs in BOWDEN and TABOR [1964, p. 71]) and to regard the contact pres-
sure as being essentially symmetric, attaining its maximum magnitude at
the center of the circle of contact, in a manner consistent with the
well known analysis of MINDLIN [1949].

We emphasize that the junctions through which loads are trans-
mitted from one body to another are not rigid; indeed, they rre com-

posed of a deformable composite of metal, metal oxide, and surface

contaminant that, for our purposes, can be assumed to be elasto-plastic
or nonlinearly elastic. Several researchers have actually measured the

tangential micro-displacements that occur, in friction experiments on !

metals, prior to gross sliding of the surfaces, and we mention as examples
the works of JOHNSON [1955], BOWDEN and TABOR [1964) and RABINOWICZ [1965].
Figure 1 reproduces a typical results of static displacement tests of
JOHNSON [1955] which involved the contact of hard steel balls with the

flat end of a hard steel roller. Mirco-displacements are produced by an
applied shear force varying progressively from zero to the value necessary

to produce slip.

5.2.2 A Nonlocal Friction Law. In order to develop a basis for a nonlocal

friction law we consider here the two simple physical models shown in

Figs. 2 and 3. Fig. 2, a thin weightless strip A of length 2%
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Figure 5.2. a) A thin strip A pressed on an elastic block B ,
b) shear stress distribution (symbolic) assuming a pointwise

Coulomb law of friction




Figure 5.3. a) A thin strip A pressed onto an elastic block B with



is pressed against a fixed clastic block B by a concentrated normal
force N applied at its midpoint P ; then a force T 1is applied to
the strip and is increased slowly in magnitude until motion (sliding)
of the strip relative to the block occurs. For this idealized situation,
designed to enphasize the local character of the classical Coulomb law
of [riction, we are interested in calculating the distribution of fric-
tional (shear) stresses between the strip and the block assuming that
Coulomb's law holds and that the coefficient of friction v 1is given.
We consider the origin of a coordinate axis x along the length of
the strip to coincide with the midpoint P of the strip. Then, the
only point on the contact surfaces between bodies A and B at which
a resistive force can be developed is at an isolated point beneath P,
Thus, impending sliding is reached when the resisting shear OT is

formally given by

UT(x) = UNG6(x) ; -2 <x< & | (5:2.4)

where § is the Dirac delta corresponding to the point source at the

origin. Of course, is merely the symbolic representation of the
distribution
Lop, 6> = W 8,6 = wip(0) (5:2.5)

for all test functions ¢ in the class D(~%,2) of infinitely differen-=
tiable functicns with support in the interval (-£,2),where <E’;> denotes

duality pairing on distributions and test functions (i.e., the action of




a distribution q on a test function ¢ is denoted q(¢) = <:h,Q:> ).

Alternatively, 6 can be interpreted as the limit of a §-sequence,

{w )
p

in D(- .
a<p * Yo in D(-2,2):

2

$(0) = 8(¢) = ;ig I @y ¢ dx for all ¢ in D(-2,8) (5.2.6)
-2

Then we have, instead of (5.2.5)

o> =V lig <¥ mp»¢:> for all ¢ in D(-£,2) (5.2.7)
o}

e sce that the classical pointwise version of Coulomb's law must be
interpreted in the sense of distributions for this situation. As a

typical §-sequence, we mention:

e explp’/(x* - o9, |x| < p
wp(x) = (5.2.8)

0 s Ixl >0

A more realistic model of friction from the physical point of view
is obtained if we take into account the microscopic aspects of the
physics of friction described earlier. Specifically, the contact sur-
face of body B will present asperities deviating from a smooth plane.
As the normal force N is gradually applied, these asperities are grad-
vally deformed and broken down until equilibrium of normal forces is
reached. The normal force reaching body B through the strip A must
then be distributed over the contact area of the deformed asperity as

indicated in Fig. 3. We shall now assume that the asperity's finite



transmission areca is accounted for by using the &-scquence {w )} of

o}
5.2.8 keeping p = Por Po being the radius of the contact area of the
deformed asperity. Since N = N(x) is now a function, we have, instead

of (5:2:7),

OT(x) = UN(y)*mpo(x -y (5:2.9)

where * denotes the convolution of the two functions. Thus, we have
arrived at a friction law in which impending motion occurs at a point x
on the contact surface when the shear stress at that point reaches a
value proportional to the weighed average of the normal stress in a
neighborhood of the point. If w is used to characterize this weight-
fo

ing function, then the neighborhood is a circular disc of radius o
centered at‘ x , the maximum weight is given to the stress intensity at
the center of the disc (the contact area of the deformed asperity) and
exponentially decreasing weights are assigned to stress intensities as
one moves from the center of the neighborhood outward to the periphery
of the disc,

We can now generalize these results to the three-dimensional case:
let u,, denote the relative tangential component of displacement of a

"'T

point x = (xl,xz,xB) on the contact surface between two deformable

bodies and let an(u) and 0,(u) denote the normal and tangential

stresses on the contact surface corresponding to the displacement field

u . Then




IET(B)I < vspo(on(g)) implies up =0

|9T(l~,)| = vsp (on(u)) implics that there exists (5.2.10

0 b
>0 = -
A > 0 such that ug lgT
where S is an operator mollifying the normal stress distribution; e.g.
0
Sp (On(u))(x) = J w (]x - yl)(-o (u(y)))dy (5.2.11)
0o " Po = * no-E

PC

where X and y are points on the contact surface FC.
e mention that nonlocal theories for other classes of problems in
solid and fluid mechanics have been put forth by ERINGEN and EDELEN [1972];

a detailed account of this work can be found in ERINGEN [1976].

5.2.3 Model of Nonlinear Friction. Both Coulomb's law and the nonlocal law

given in 5.2.10 depict perfect rigid-adhesion-sliding conditions on the
contact surface: they assert that there is absolutely no motion of points
of one body relative to those of another if the tangential stress on the
contact surface remains below some critical value T ; but when this limit
is reached, unbounded motions can occur, the ensuing tangential displace-
ment being directed opposite to the tangential stress vector., It was
pointed out in the Introduction and in Section5.2 that in physical experi-
ments on contact, tangential displacements are produced by any nonzero tan-
gential force developed on the contact surface since elastic-plastic defor-
mations of the junctions will always accompany the application of tangential
forces (recall Fig. 1).

To model this phenomenon, we shall consider a family of nonlinear

friction laws of the form



gT(E) = =T ¢C(IETI)

T (5.2.12)
~T

Py Y Y

e tiees

wvhere the function ¢€(~) satisfies the following conditions:

i) ¢c is a coatinuous, monotone, real-valued function of )

the non-negative real numbers r , depending on a para-

meter € > 0, such that

0<¢ (<1, r>0 > (5.2.13)

]

ii) 1lim ¢e(r) 1 for allr >0

e+ 0

1i1) rlimm ¢ (r)

l for all € >0 )

In 5.2.12, T 1is a non-negative function of the displacement vector u
representing the critical value that the tangential stress cannot exceed,
ie., T = vlon(g)[ for the local case and T = vSp(On(E)) for the non-
local case. It will also be of interest, as it will be secen

later, to consider the case in which T is a given (known) function of

the position vector x , thus no longer dependent upon the displacement u.

As specific examples, we select for ¢€ the following two functions: {

(1 if fug| > € ;

A o (vl = - (5.2.14)
lugl/e 1£ lu] < e

u I

B) ¢.(luz]) = tanh J_~€LL (5.2.15)

It is readily seen that both of these functions satisfy 5.2.13. The first

exanple represents an 'elastic-perfectly plastic' type response in which

slipping can occur only after a tangential displacement ISTI > e . On




the other hand, the sccond example describes a situation in which the cri-
tical stress is approximated asymptotically as IETI + © ., Both curves
are depicted in Fig. 4. We notice that these are not the only possible
choices and that several others can also be considered (e.g. arctan, etc.).
Also, we obscrve that the slope of ¢ at the origin, i.e., the derivative
of ¢£ at zero displacement equals 1/€. Thus € provides a weasure of
the rigidity or stiffness of the elastic-plastic or nonlinear eclastic junc-
tions.

Finally, we wish to comment on the combination of a nonlocal law with
a nonlinear law. A nonlocal-nonlinear law of friction will be of the

form(5.2.12)with T replaced by vSp (On(u)), i.e.,

u
0, (w) = =S (0, () ¢, (lu.]) Tg_:.T (5.2.16)

where S is of the form given in (5.2.11). If we allow p + 0 maintaining

€ > 0 fixed we obtain a local nonlinear law, i.e.,

u
o = v lo @ o (D) 7oy (5.2.17)

~

On the other hand, if we allow € + O for a given positive p we recover
the perfect rigid-adhesion-sliding nonlocal law given in (5.2.10). Finally
if both € + 0 and p + 0 the static Coulomb's law (local) for unilateral

contact in the contact surface FC is obtained:

lop)] < v Jo )] implies u, =0

~

(5.2.18)
|0T(u)| =V ldn(u)l implies the existence of A > 0

such that up = —lgT
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Figure 5.4. Graphs of functions (2.14) and (2.15)




5.3 Variational Principles for Nonlocal Nonlinecar Friction

5.3.1 Signorini Problems with Nonlocal Nonlinear Friction. We consider

here the Signorini problem of contact of a lincarly elastic body with a
rigid foundation on which nonlocal nonlinear friction laws hold.

We begin our analysis by considering a linearly elastic body the
particles of which occupy a smooth bounded domain Q in IJ‘, N = 2,3,
with open interior £ . The boundary [T of the body is assumed to con-
sist of three disjoint parts, FD’ PF and FC , where PD and FF are
the portions of the boundary on which the displacements and forces (trac-
tions) are prescribed respectively and FC is the candidate contact area;
i.e. FC is a portion of the boundary which contains the material surface
which comes in unilateral contact with a rigid fourdation F upon'the ap-
plication of loads (see Fig. 5). The external forces on the body consist
of a prescribed body force field of intensity § per unit volume and of

surface tractions of intensity t per unit surface area.

We shall assume that FD is perfectly fixed, so that

u = 9 on FD

u being the displacement field. On FF we will have

oij(E)ni e tj

vhere Oij(u) is the stress produced by u and n, are the components
of the unit outward normal n to TI. Here and throughout our presenta-
tion Cartesian index notation and the summation convention are employed.

Since the body is assumed to be linearly elastic, Hooke's law holds so that



Figure 5.5. An elastic body in contact with a rigid rough
foundation



(g)=r~:

[o]
13 1jk2 Yk, 2

where Eijkﬂ are the usual elastic constants of the material, uk,l =

3uk/3x2 and

E.. = E = =
Fiske T Fjine T Bupgy T Bijax

1<1,j,k,2 <N

Of course, particles within Q are assumed to be in static equili-

brium so that

oij(g),j + fi =0 in Q

The unilateral motion of particles of the body on the material sur-
face Fc is constrained by the presence of a rigid €‘oundation which is
a given distance s from the body prior to the application of loads. Ma-
thematically, this constraint is represented by the requirement that the

normal displacement of boundary points cannot exceed s :

u-n<s on Fc (5.3.1)

If u * n = s then contact is established, while u-+n<s indicates the
existence of a gap between the support and the body. Thus 5,3.1 repre-
sents a non-penetration condition. If contact is not made (i.e., if

u * n < s) then the normal contact pressure On(u) = 0 , where

0 (W) = Eioro Ve g ™ My



Alternatively, if u * n = s at a point on FC » then ©_ must be non-
- - n

positive:

u-+*n=3s iImplies Un(u) <0

P Lt

Thus, the unilateral contact conditions on the contact surface FC are:

N e e

u-°n-s<0, on(u) <0

on I’

il
o

Gy = n-9)

Condition Un(g) O n - s) =0 signifies that the pressure can only be
non-zero when there is contact.

There remains the characterization of friction on the contact surface
I'.. 1In agreement with the nonlinear and nonleccal friction laws described

C

in the previous Section, we will have

Lo
Lot}
c
=}
A

s, 0o,(u) =20

Ifu*n=s, on PC (5.3.2)
T ' oT
QT(J) = -vsp(oﬁ(g)) @e(lgT[) TE;T

where S is of tha form5.3.11 and ¢_ is a nonlinear function of the
o

type in5.2.13 or5.2.14. It is important to note that always
IgT(g) | < vSp(On (u))

since ¢e(,ETI)-S 1 for every € > 0 and any ET(§) » ¥ in FC . By
computing the inner product of both sides of the second equation (5,3,2)

with u, , we can write, equivalently,




0,(w) + up +vs (0, () ¢ (lug]) fu | =0
Summarizing, the Signorini problem with nonlocal-nonlinear friction
consists of sceking a displacement field u , which satisfies the following

systen of equations and inequalities:

1) Equilibrium equations

(Eijkl uk,R)’j + fi =0 in Q (5.3.3)

2) Boundary conditions

a) Prescribed displacements

uy = 0 on FD (5.3.4)

b) Prescribed traction

Eijki uk,2 nj = ti on FF (5.3.5)

c) Unilateral constraint

u+*n<s, cn(u)f_o,

Oh(u)(u *n-s8)=0 on T (5.3.6)

d) Friction condition
~T

g (2) = -\)Sp(On(g)) (be(]g,rl) TQ on l"c (5.3.7)

where

5 (0, () () = j w (lx - y]) (-0, (u(y)))ds
r
C

and wp and ¢€ are given, respectively, by 5.2.8 and 5.2.14

or 5.2.15.



5.3.2 Variational Principles for Nonlocal Nonlinear Friction. Relationship

with the Classical Problems. We ncw introduce variational principles for

the nonlocal-nonlinear Signorini problem and c¢stablish the relationship be-

t=cen the variatonal and the classical foriulations.

Using the notation introduced previously, we define

VvV =

j. (u,v)

p,e ~"~

space of admissible displacements. A displacement vector v

~

will belong to V if and only if

1) v = 9 on FD

2) v produces finite (normalized) strain energy in the sense

that the norm

1/2

”t'”v = {IQ Vi Vi dx} (5.3.8)

1,3

is finite, where dx = dxldxz...de .

subset of V consisting of all admissible displacements v in
V for which v * n < s at all points on the contact surface FC.
virtual work produced by the action of stresses Oij(u) on strains

caused by the displacement v

JQ Eiike %, V1,5 &

]

virtual work done by the frictional forces on the displacement V

[r vS, (0, () VeClvgdas

C
Here ds 1s an element of surface area on PC and
r3 3 : 2 . - ¥
Y, is the primitive of ¢€ : ¢E = we . For example,

R g




lvpl - /2t [vo| > ¢
v (v ) = , (5.3.9)
lvp|/2¢ if Jvo| <€

when ¢C(IXT|) is given by (5.2.14) or

vl
b (lve) = € tn cosh - (5.3.10)

vhen ¢e(|le) is given by (5.2.15).

virtual work done by the external forces on the displacement v

-

f(v)

u

J f « vdx + J t * v ds
Q" - FF - =

With the above definitions and notations now established, we consider

the following variational boundary-value problem:

Find an admissible displacement vector u “n the set K

-~

such that

a(y,v-u) + jp 6(3,2) - jp e(g,g)_z £(v-u) (5.3.11)

for all admissible. displacements v in K.
Inequality 5.3.11 is a statement of the principle of virtual work
for an elastic body restrained by frictional forces of the type in 5.3.2
Note that this characterizes equilbrium configurations by an inequality rather

than an equality because of the presence of the unilateral contact constraint

u°*n<s on FC . We also notice that the actual contact surface de-
pends upon the solution u and is, therefore, not known in advance.

Our first major result i1s stated in the following proposition, the

proof of which is given in the Appendix:



Proposition 3.1: Let u be a sufficiently smocth solution of the

Signorini problem with nonlocal nonlinear friction 5.3.3 - 5.3.7. Then
u {s also a solution of the variational inequality 5.3.11, Conversely,

1f u is a solution of 3:3.11, then u also satisfies the system 5.3.3 -

- -~

5.3.7 if these relations are interpreted in a weak or distributional sense.O

5.3.3 Other Related Friction Problems. Several friction problems can be

obtained as special cases of the nonlocal nonlinear problem discussed in
the previous Sections by allowing p * 0 or € - 0 or both p,e + 0 or by
restricting the dependence of the friction functional to its second vari-
able. Results similar to those established in Proposition 3.1 can also be

stated. Morecover, if OSp(On(u)) is prescribed on T and, hence, is in-

C ?
dependent of the displacement u , the static friction problem thus ob-
tained becomes equivalent to a constrained minimization problem involving

a functional representing the associated potential energy. Thus, we have

the following cases:

Case T (p = 0). The friction law, which is now of a local type, is

given by 5.2.17. Thus the system5.3.3 - 5.3.6 together with condition
5.2.17 will produce a Signorini problem with local-nonlinear friction
which can be shown to be equivalent to the variational principle 5.3.11

with the functional j E(°,~) replaced by

P,

jelu,v) = Jr vlon(g)l we(Ing)ds
c

PR




~

Case 11 (e = 0). For this case, the friction law is given by 5.2.10

If we add this condition to the system 5.3.3 - 5.3.6 we will obtain a
Signorini problem with nonlocal friction which may be scen to be cquiva-
lent to the variational inequality 5.3.11 if we replace Jp,e(.") in 5.3.11
by the functional

jp(g,z) = jr vSp(On(E)) Ingds
C

The proof of this equivalence differs in some aspects from the one given
in the Appendix; it can be found in the unpublished report by ODEN and

PIRES [1981].

Case III (p = € = 0). When both p = 0 and € = 0O, the corresponding

friction law is given by the conditions 5.2.18, The system 5.3.3 -~ 5,3.6
and 5.2.18 will then correspond to the Signorini problem with Coulomb
friction. DUVAUT and LIONS [1976] derived a variatonal principle charac-
terizing this problem which is given by 5.3.11 if we replace the func-

tional jp e(°,°) by the functional
?

5,¥) = Ir v lo ] v las
c

Finally we mention as a last special case, an auxiliary problem
that proves to be useful in the next Section when we establish the con-
ditions for the existence of solutions to the nonlocal-nonlinear friction
problem. This auxiliary problem involves a friction law for which the
critical or limiting value of the tangential stress is prescribed rather
than being determined by the equilibrium displacement field u . We will

then have in the nonlinear case (g€ > 0) , a law of friction of types,2,12



this friction law assumes the form:

|9T(3)| < T 1mplies Uy, = 0

|UT(E)| = T implies the existence of A > 0 on rc (5.3.12)

h that = -
suc a ur AET

Thus, depending on € being strictly positive or zero, we have

Case IV (7 fixed, € > 0). The corresponding Signorini problem now

consistsof5.3.3 - 5.3.6 together with the friction condition 5.2.12 (T

given on FC). The equivalent variational formulation of this problem is :

Find a displacement field u in K such that
a(E’Y"S) + jo (2) - jO (E)_i f(Z"E) (5.3.13)
€ €
for all v in K
where
JOe = Jr T ¥ (v Dds (5.3.14)

c

Also, it is not difficult to show that in this case(5.3.13) is equivalent

to the constrained minimization problem of finding u in K such that
< (5.3.15)
L <1,
for all v in K , where the energy functiocnal I€(°) is defined by

() =7a(v,y) - (@) + 1 @) (5.3.16)




Case V (1 fixed, € = 0). The law of friction is now of the form (5.3.12)

which, when added to the system5.3.3 -5.3.6 , gives the corresponding
Signorini problem. We emphasize here that condition 5.3.12 represents
a law of friction different from Coulomb's law. It is easy to establish
the equivalence between 5.3.3 - 5,3.6 together withs 3 12 and 5.3.13 if
we replace in 5 3,13 jo (*) by the functional

£

ANC) =j Tlv.]ds (5.3.17)

Te

The cnergy functional for this case is defined by

in K (5.3.18)

<

) = 7 aly,y) - £() + 5,0

Then problem with jo (*) replaced by jo(') is equivalent to the prob-
€
lem of seeking minimizers of the functional in 5.3,18 which satisfies the

unilateral constraints.

Remark 3.1: It is interesting to note that when € = 0 the functional

jo(-) defined in 5.3,16 is non-differentiable while the nonlinear func-
tional j0 (*) given by 5,3,14 is differentiable on all of V . Its
€

derivative Djo (+) at the point u , in the direction v 1is given by
€

Djy (w)+ v = - T ¢ Cluz]D " Tagl ds -3.19)
€

C ~



It is then possible to show that the variational inequality 5.3,13 1is cqui-

valent to the variational incquality

a(u,v-u) + Djy (u) * (v-u) > f{v-u) , for all v in K (5.3.20)
€

The differentiability of the functional j0 (+) has important implications
vhen we wish to consider finite element appfoximations of the friction
problems discussed so far. 1In fact, the direct approximation of the varia-
tional problem considered in Case V (£ = 0) by finite elements through the
minimization of the functional defined in 5.3.18 leads to a discrete sys-
tem for which the most popular methods for solving nonlinear variational

inequalities do not apply, owing to the non-differentiability of jo(') .0

5.3.4 Estimate of the Difference Between the Solutions of the Friction

Problems with € > 0 (Nonlinear) and € = 0. We wish to record here an

estimate of the difference between the solutions of problem 5.3.11 and of
the problem considered in Case IL (€ = 0) of the previous Section, as a
function of € . The first result is concerned with the approximation of

the functional jp(-,-) by the functional jp E(.’.)°
]

Proposition 3.2: For a given element u in K for which on(u)
is well defined there exists a constant c¢ > 0 independent of € , such

that

i, ) - 3, <ce (5.3.21)

for all v in K . Thus, jp e approximates jp arbitrarily
~ ?

closely as € » 0 .0

P as




This result constitutes the basis for the proof of the following

estimate:

Proposition 3.3: Let ue denote a solution of 5.3.11 for fixed

€ >0 and let u be a solution of the corresponding variational in-
equality obtained by setting € = 0 in5.3.11. Then, for a sufficicatly

small coefficient of friction v, there exists a constant k > 0, in-

dependent of €, such that
llu, - ul] <k /& (5.3.22)

where ”'II is the norm given in 5.3.8.0

Results similar to0 5.3.21 and 5.3.22 can be casily derived for the

cases p=0 and T fixed (given) on Fc .

5.4 Existence and Uniqueness of Solutions to the

Nonlocal Nonlinear Friction Problem

We shall now establish conditions sufficient to guarantee the exis-
tence of solutions to the nonlocal nonlinear problem 5.3.11 as well as ad-
ditional requirements which provide for uniqueness of solutions,

We begin by considering an important preliminary result concerning the
auxiliary problem 5.3.13 introduced in the previous Section,

Proposition 4.1: Given T > 0 on Pc » T smooth enough,

(1) there exists a unique solution u to 5.3.13;
(i1) the correspondence that gives for each T the corresponding
solution u of 5.3.13 defines a continuous, nonlinear map B, B(T) = u ;

(iii) the normal contact stress produced by the displacement u ,



on(g) = Eijkl uk,g ninj is well defined, and is continuous as a function

of u .0

We next state our sccond major result which concerns the existence of

solutions to the nonlocal nonlinear frictfon problen:

Proposition 4.2: For the smoothing operator Sp defined in 5.2.11

which transforms the normal contact stresses S, into regularized ones,
there exists at least one solution u in K of the nonlocal nonlincar
friction problem 5.3.11 for each choice of smooth enough data f and t .0
One nethod of proof of this proposition was suggested by DUVAUT [1980].
A complete proof for the nonlocal friction problem (€ = 0) is given in
ODEN and PIRES [1981]. Only the general structure of the proof is of in-
terest here since it suggests a means for actually calculating solutions
of the Signorini problem. The key steps in the proof are outlined as
follows:\.
1. Pick an arbitrary smooth enough T > 0 on Fc .
2. By Proposition 4.1, for each such T , there exists a unique
solution to
sy + [ 7 gD - vgluges

C (5.4.1)
> f(v-u)

for every v in K.
3. Let u = B(T) , where B is defined in Proposition 4.1.

4. Compute 0o (u) .

S. Calculate vSp(on(B(T))) and check if it is equal to Tt . If so,

we can write




alu,y-u) + Ir VSp(o ) (b llvp) -y (Ju Ddds > £(v-u)

c
for every v in K . If not, we go back to step 2 and replace
in 5.4.1 T by the new value vSp(On(B(T))). An iterative
scheme is therefore obtained by repeating in this way, steps 2

through 5.

6. Obviously, step 5 describes a fixed point problem for the operator

T = vSp o on oB

We must therefore show that there exists at least one element
T* such that T(T1*) = t* . Then u* = B(7*) will be a solution

of the contact problem with nonlocal nonlinear friction.

For small Vv , the composition T defined above, becomes a contrac-

tion and the fixed point is unique. Hence, we can state the uniqueness

result:

Proposition 4.3: If the coefficient of friction is sufficiently

small, the nonlocal nonlinear friction problem 5.3.11 possesses a unique

solution. O

Future Work. Numerical solutions of the nonlocal-nonlinear friction

problems considered in this paper are currently under investigation.
These include studies of behavior of the solution for various values
of the major parameters; the coefficient of friction V, the nonlocal

contact parameter p, and the tangential stiffness of the junctions € .

This work is to be the subject of a forthcoming paper.
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APPENDIX

PROOF OF PROPOSITION 1

Let u be a sufficiently smooth solution of the Signorini problem

-~

with nonlocal nonlinear friction (3.3) - (3.7) . Then, the following

inequality holds for every admissible displacement v :

-~

Ip(w) + (Vo —u) + vsDccn(g))(wE(IgT]) - ‘pe(IBTI) >0on T, (A.1)

|
|
|
!
!
1

In fact, since the function wE(-) is convex and differentiable,

villunD = Cop = up) < (v = v CQusD

or
bellugD o1 * Qop - up) < ¥elvgD - welugh

Hence, since u is such that (3.7) holds,

]

u
Op(w)  (yp - ug) = -8, (0, (W) b Clup D ﬁ ©lyp - up)

2 =10 (v l) = v (ur D]
or
op(@) * Cop = up) + ¥y D - e Cug D 270

€ 5’ (@ N kh,

Since we assume u to be sufficiently regular (e.g.

e

N
2 w2 @)Y =
HZ(Q) X HZ(Q)X... tz(Q) with the set K. For the definition of the space

HZ(Q) see ADAMS, R. A., Sobolev Spaces, Academic Press, New York, 1975.

]

() N K = intersection of the Sobolev space BZ(Q)




the following Green's formula holds for every Vv in K :
y V= =lo -
a(u,v-u) I ij(g)(v 1, "1,j)dx
= J ij(g) vy - u,)dx
+ -
L‘oij (E)nj (v:l ui)ds
But oij(\:)’ -fi in Q@ by (3.3) and
o - = -
J[‘ j(u)n (v ui)ds j]‘ ti(vi ui)ds +
F
+JF 15 (E)n (v - ui)is
C
for any v in K since u =10 on FD by (3.4) and oij(g)nj =t, on
PF by (3.5). Therefore
a(g,z-g) - f(Y_E) = Ir Uij(u)n (v - ui)ds
C
= J fopw) + (vp = up) + G Wy, - v))lds
r
C
Here v =vy-°n and similarly for u . Hence for every v in K
al,y-w) + | S p(O, ) W (v 1) = ¥ (Ju D)ds - £(y-u) =
c
A
T p [0 () * (vp = up) + VS (0 ()W (v, ] -
C

-

Ve llup D) +0, @ vy

un)]dB



But

C!n(g)(vn - un) On(g)[v’rl -5 - (un-S)]

On(g) (vn - s)

>0

by (3.6) and the definition of the set K . Hence applying inequality

(A.1) we finally obtain

a(u,v-u) + Jp,c(g,g) - Jp,e(g,g) 2 flv-u)

for every v in K, i.e., variational inequality (3.11) and the first
part of the proposition is proved.

Convgrsely, let u in K be a solution of the variational inequality
(3.11). Followingthe proof given by ODEN and PIRES [1981, p. 20-22] for
the case € = 0 and omitting algebraic manipulations, we are led to con-

ditions (3.3) - (3.6) if we interpret them in the sense of distributions.

Then, variational inequality (3.11) will be reduced to

Jrcl°n<e> tlyp - up) F VS @Gy D -

-v_Clu 13ds > 0

for every v in K . If we let Ve to be of the form

Vp = Up + 0w - ug)

where 8 belongs to the open interval (0,1) and Vo is the tangential

component on FC of an arbitrary displacement w in K , we obtain

P o

PP PRI

PR




JI‘ [60,.(u) « (w, - g.r) + \Jsp(Un(g))(we(lgT + O(E’I-ET) |

C
9. (Jug[)1ds > 0

Dividing through by 6, taking the limit as 0 + 0 and noticing that we

is differentiable gives

u
L, o, (a) « Cop = up) + V5,0 () & (Ju,]) |£T| © ey -updlds 20

c T
for every w in K . Finally taking first Vo = U and then W = 2uT
produces

o+ up + V8500, () 8cllupD lugl = 0 on T

which we have seen in Section 3.1 to be equivalent to the law of friction

3.7).0



6. SUMMARY OF STABILITY RESULTS FOR REDUCED-INTEGRATION-

PENALTY METHODS

A discussion of the accuracy and numerical stability of several
reduced-integration-penalty methods for the analysis of Stokesian

flow in two dimensions is presented. A summary of results on analytical

e D SO

studies of the LBB condition is recorded. Recommendations on which
elements provide good accuracy and stability for use in computational

fluid dynamics are given.

S TR

6.1 Introduction

In this communication, some of the numerical and theoretical
results we have obtained over the last several years on reduced-
integration-penalty (RIP) methods shall be summarized. Complete proofs

and more detailed discussions can be found in references ODEN et al [1980,

1981, 1982].

The basic problem to be considered here is Stokes' problem for
steady confined flow of a viscous incompressible fluid, which can be

characterized by the following variational boundary-value problem:

Find a velocity field u & V and a hydrostatic pressure

field p ¢ Q such that

1

a(u,v) - (p,div g) £(v)

> (6.1.1)

(q,div u) 0

for all admissible velocities v in V and all admis-

sible pressures q in Q




Here,

V = space of admissible velocities

_ _ 1
= {.Y = (Vl’v2) | vié HO(Q) , § a regular open bounded domain in IRZ}

a(g,y) = the virtual work, a continuous bilinear form on V
=\JJQ grad u : grad v dx
ZZ aui 3vi
=V JQ . Bx. dx; dx = dxldx2 ,
=1 1
Vv being the viscosity (v > 0)
(p,q) = JQ paqdx = LZ(Q)-inner product

Q = space of hydrostatic pressures = LZ(Q)

= gpace of Lagrange multipliers corresponding with the constraint
"div u=0 in Q"

f(v) = virtual work of body forces f = ('fl’fz)

= ] f *vdx , v an arbitrary "virtual" velocity in V .

We endow V with the energy norm,

2 zz: Bvi Bvi
R I

i,451 3

and Q with the usual Lz-—norm,



divu=20

In fact, many ideas of convex optimization surface when we consider the
fact that problem (4) is equivalent to the problem of minimizing the

functional

I:VR ;I =3 aly,y) - £

on the linear subspace

0 (in Q)}

K={vinV ]| div v

One can relax such constraints by appending to J a convex, differentiable
penalty term P(v) = (25)—1(div v, div v) so as to produce the penalized

functional, for € > 0, given by

1 2
I VR ;I (V) = I(v) + §E||div gll0 (6.1.5)

Minimizers u. of J8 are characterized by,

u. €V : a(ue,v) + e—l(div Ues div v) = £(v)

for all v in V (6.1.6)

It is informative to note that an alternative way at arriving at

the same formulation (6.1.6) is to use the so-called perturbad Lagrangian
method. The Lagrangian associated with J and the incompressibility

constraint is



L:VxQ~=> TR ; L(f,q) = J(E) - (q, div v)

The perturbed Lagrangian is defined by
£
L.(v,q) = L(v,q) - 3 (q,9)

and its saddle points (uE,pE) are characterized by the system

a(ug,v) - (pe’ div v) f(v) for all v in V

-

(6.1.7)

(E:pE + div ue,q) =0 for all q in Q

Then one immediately has

p. = —E_ldiv u in Q (6.1.8)

£ ~E

and, hence, the first member of (6.1.7) reduces to

a(u_,v) + e'l(div u_, div v) = f(v) for all v in V

which is precisely (6.1.6). Hence (6.1.7) and (6.1.6) are equivalent
formations, but (6.1.8) provides a method for also calculating approxi-
mations of the hydrostatic pressure from the penalty approximation of

the velocity field.

6.2 Full-Integration Penalty Methods

To construct a finite element approximation of problem (1) [or,
equivalently, of (4)], we proceed in the usual fashion by replacing €

by a mesh Qh consisting of a collection of E finite elements.




Continuous piecewise polynomial approximations of the velocities over

Qh are denoted MR If Q is polygonal, we can usually construct Qh
so that the approximate velocities Yh be in a finite-dimensional subspace
Vh of the space of admissible velocities V . We generally denote by h
the mesh parameter

h= max h_ ; h = dia(R)
1<e<E € € €

where ﬁe is a finite element in Q and by regular refinements of the

h ?
mesh we generate a family {Vh}h>0 of subspaces, the union of which is
everywhere dense in V .

. , . h '

It is, of course, also possible to introduce a space Q (T-Q of
approximate hydrostatic pressures 9 defined over the mesh Qh , these
being piecewise polynomials not necessarily continuous across interelement
boundaries. But the spaces Qh are not generally explicit in a penalty
approximation of (6.1.1). We shall show below that, in fact, these spaces

are always inherently defined by the manner in which one approximates

the penalty functional.

The first method that one uses to approximate (6.1.1) is as follows:

14 h L N
For given € > 0 , find uy €_V such that
€ -1 € .
= 6.2.1
a(gh,xh) + g (div Uy div Yh) f(zh) > ( )
for all v in h
~h v y

Most engineers seem to think method (6.2.1) "will not work" and that



€
it leads to a "locked solution" (uh +0 as € + 0) , but this is not

the case. The problem is that if the terms in (6.2.1) are integrated cxactly,

then the stability of the method is conditional, depending on the re-
lationship between € and &h . For instance, Falk [1975] and Falk and
King [1975]) have considered finite element approximations of the type

(5.2.1) with a penalty paramzter of the form

e = ygh°
where Yo and O are positive constants, with o to be choser so that
an optimal rate of convergen:= is obtained. It is interesting to note
that no such © exists and that post processing using an extrapolation
technique is needed to achieve the optimal rate. However, without
extrapolation, the best choize of ¢ for their method is ¢ = %(s—l) ,
where s = min(R,k) and the >ody force data f is in (Hg_z(ﬂ))2 s
B>2, and k 1is the degrese of the complete polynomial approximation
of the velocities. The point is that these methods can converge, but

only if € 1is taken as a special function of h and even then at a

suboptimal rate.

The problem with method (6.2.1) is that, from a practical point of view,
it is not satisfactory because, for a reasonably fine mesh, € must be
taken so large to produce a non-degenerate solution that the incompress-
ibility constraint is not adequately satisfied. The mesh sizes needed
to make this method attractive are so small that the computational effort

needed to extract a solution is prohibitive.




6.3 Reduced Integration

To overcome the difficulties mentioned above, it has become common
practice to use a numerical quadrature scheme for evaluating the penalty
integral [ div ue div v dx which is of lower order than that

Q - ~

required to integrate this term exactly. Let

E _
I(fg) = I I (fg)  (fg € C°()
e=1
(6.3.1)
1 (fg) = S we £(E%) g(€%)
e BT 0 T3 B

denote a numerical quadrature rule for integrating the product of-
piecewise continuous functions fg over the mesh, where w? > 0 are
the quadrature weights for element e and E; are the quadrature
points in element e . Suppose that a number E of such points must

be used to integrate the functions div u _  div Y (uh,vh € Vh)

exactly and that G < G . Then a reduced-integration-penalty ap-

proximation of problem (6.1.1) consists of solving, instead of (6.2.1),

the following discrete problem:

For € >0, find u; in Vh such that
a(u;,vh) + e_lI(div u; div Yh) = £{v.) (6.3.2)

for all vh in Vh

Corresponding to each choice of Vh and I(*) there is uniquely



defined by (6.3.2) a finite-dimensional space Qh-' Q of hydrostatic

T

in Qh defined by

pressures q, . The unique element Py
I((E:pE + div ue)q ) =0 for all in Q (6.3.3) }
h ~h’%h Ih h o f
or, equivalently,
€,.e -1 €,-e %
ph(gj) = - “div Bh(§j> (6.3.4)

is the corresponding approximation of the pressure p . 1In fact, (6.3.2)

and (6.3.3) correspond to (6.1.7) with (°,") replaced by I('). For instance, |,
if Vh consists of piecewise polynocmials on rectangular elements and i
I(*) 1is 2 x 2 Gaussian quadrature, Qh then is spanned by piecewise
bilinear functions, discontinuous across interelement boundaries, with 2
nodes at' the four Gaussian quadrature points. If TI(*) 1is one point

. . h | . R
integration, Q is then spanned by piecewise constraints, etc.

The key issue is whether or not solutions of (6.3.2) exist and, if so,

how they behave as h tends to zero. Let Divh and Vh be discrete !

divergence and gradient operators defined by

. h h h'! h'
D1vh V> Q Vh : Q0 2>V
(6.3.5)
%
> = = [V
<q  Divy vp> = I(qy div v) = -[Vyvy 5 qp ]
]
for all MY in Vh and qy in Qh . Then, in view of the results listed '
in Section 1, a unique solution to (6.3.2), (6.3.3) exists whenever (6.1.2)

h

holds for all in V (which is always true if (6.1.2) holds and

“v'Vn




h
and V'C V) and if, in analogy with (6.1.3), the following discrete

Babuska~Brezzi condition holds:

There exists a constant Bh > 0 such that for |
all hydrostatic pressures 9y in Qh ,
> (6.3.6)
|I¢q, div v, )|
h ~h
B lap g per v < sup ™
ML J
Here
ker V. = {q, in Qh | 1(q. civ v,) = 0
h h h ~h
(6.3.7)

for all vh in Vh}

Error estimates can be obtained in certain casec. Suppose that,

as €+ 0, (6.3.2) and (6.3.3) lead to the mixed finite element problem

a(gh,yh) - I(phdiv yh) = f(v )

(6.3.8)
I(qhdiv Bh) =0
for arbitrary Y and 9y, - Let EI denote a generic integration
error defined by
EI = EI(phdiv vh) = (ph, div gh) - I(phdlv yh) (6.3.9)

Setting v - v, 1in (6.1.1) and substracting (6.3.7) gives



a(u - u, v)-(p-p, divy) -E =0 (6.3.10)

Using (6.1.1) and (6.3.10), we have

ally - u, llg < ate - g v - u)
saly -y, w -y fal -, v o)
sHllu-w gl -v lly + - pdivey, - w) +E;
o 2 H2 2
<ol - ully + 35 ey - w iy
#llo - v Mglllu = w lly +lle - v 113 + B
Thus,
o - Iy 2 el anf (flu- v lly + llp - e I} + B (6.3.11)
v, in v

But |

”P - ph “Qi il?f 1 {”P - qh ”0 +”ph = qh ”Q}
Q, in Q
(6.3.12)

< inf e - thIQ +le,

- q |l

[ m——




“P - q ’I < == su
h h"Q/ker V. — B P
b7 B Tl
M
<p -yl
lE. (p,,div v )
+ 3= sup I b ~h (6.3.13)
h b v, |l
v ML

etc. Again we note that the convergence and stability of the method
are strongly tied to the constant Bh , the characterization of
h

ker Vh » and the interpolation properties of Qh and V.,

6.4 Summary of Some Stability Results

A mathematical analysis of the discrete Babuska-Brezzi condition
(6.3.6) has been made by Oden and Kikuchi [1982], Oden, Kikuchi and

Song [1981] and Oden, Jacquotte [1982] for several finite elements for a model

two-dimensional Stokes' problem on a uniform mesh. We shall summarize

these results here which pertain to the behavior of the "LBB-constant"

Bh and the stability of the pressure calculations. We use the

notations
Pk = gpace of complete piecewise polynomials of degree k
over an element
Qk = space of tensor products of complete polynomials of

degree k



I8 = the eight-node isoparametric element

Results are summarized in Table 1. In this table, figures 1, 2,
and 7 '"lock" at small values of the penalty parameter € . This means
that for a given mesh size h , € cannot be taken arbitrarily small,
as noted earlier. Of course, for an acceptable € for reasonable
mesh sizes, € is so large that the constraint of incompressibility
is not adequately satisfied. Hence these elements should generally be
avoided. Elements 2, 4, 5, 8, 11, and 14 are unstable since Bh = 0(h) .
Remarkably, these instabilities frequently are not observed on uniform
meshes when the solution is very smooth. Mild irregularities in the
solution or small perturbations in the mesh may, however, produce violent
oscillations in computed pressures the magnitudes of which increase
without bound as h tends to zero. In many cases, however, these
oscillations disappear upon "filtering" the pressure solutions (i.e.
upon averaging the pressures over one or more elements). In the case of
elerents 2 and 14 it has been proved mathematically (by N. Kikuchi and
the author) that certain filtering schemes will produce a stable and
convergent method. However, it is not known if filtering can be used
to stabilize and salvage the remaining unstable elements.

Elements 6 and 10 lead to stable and convergent schemes and are
quite robust in the sense that they are insensitive to singularities in
the solution. However, they are not too accurate and converge at a

suboptimal rate.

Elements 5 and 9 are calculated using the perturbed Lagrangian

ETE =

[ P S P VU S




ideas discussed in Section 1: a piecewise linear approximation of the
regularized pressure Pe is computed over each element. Then (6.1.7)

leads to a discrete system for each element of the form

T
EEE P Pe = f +0

(6.4.1)
€Mp + Bu = 0

~

where K is the element stiffness matrix, B the non-rectangular
constraint matrix, f the load vector, o the "connecting" vector

(which sums to zero upon connecting elements together to form the mesh),

and M is the Gram matrix corresponding to the linear shape functions

for Pe - Thus,

P, = - M Blu (6.4.2)

i.e., the fact that pi is discontinuous across interelement boundaries
makes it possible to eliminate the pressure at the element level by
(6.4.2). Then th penalty approximation over an elenent is characterized
by

k+e Tt BMB =f+o (6.4.3)

Thus, no reduced integration rule is actually used in constructing

elements 5 and 9.

Element 9 is clearly the superior of any listed: it is unconditionally
stable, it provides both velocity and pressure approximations which

converge at the optimal rate, and
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ker Vh = ker V

Element 13 is somewhat of a novelty. While element 5 yields
unstable pressure approximations, ODEN and JACQUOTTE [4]} have shown
that a composite of three QZIPI elements (no. 9) and one IB/Pl
element (no. 5) is stable.

The behavior of elements 11 and 12, marked with an asterik, is

only conjectured here and has not been rigorously proven.
Extensions of these results to three-dimensional elements are

straightforward.
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7. SUGGESTED AREAS FOR FUTURE RESFARCH

During the course of this project, two areas have emerged as representing
important research subjects needing significant amount of additional study.
These are: 1) the study of nonlinear and non-classical friction laws in
contact phenomena in solids and structures and 2) a continued study of models
and numerical techniques for the analysis of finite elastoplastic deformations
of the type characteristic of metal forming processes.

The idea that new descriptions of friction are necessary to adequately
describe the phenomena of contact, impact, and wear of deformable bodies
will have a significant impact on broad areas of applied mechanics in engin-
eering. It will mean that a variety of new models and results will need to
be developed to adequately describe such phenomena as load reversal on contact
surfaces, heat generation, abrasion and wear, impact, dynamical friction ef-
fects, even fracture initiation and growth. The multitude of this phenomena
in which very crude friction models have been used in the past, must ulti-
mately be re-examined in some detail., This will represent a research effort
of very large proportion, but should ultimately have a significant pay-off
in terms of the liability of mathematical models and numerical techniques for
simulating the nonlinear behavior of complex structures.

The reliability of most of the numerical simulators of metal forming
processes is very much in doubt. Recent results seem to indicate that most
of the popular methods may be marginally stable and produce stress approxi-
mations which are very sensitive to perturbations in the mesh material pro-
perties. However, 1f true, this would be a very undesirable situation, since
these factors play a fundamental role in the prediction of residual stresses
in machine parts and structures. Therefore, a careful mathematical and nu-

merical study of mathematical models and numerical methods for handling these
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