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Abstract

This paper is a continuation of Melenk et al., “Stability Analysis for Electromagnetic Waveg-
uides. Part 1: Acoustic and Homogeneous Electromagnetic Waveguides” (2023), extending the
stability result for homogeneous electromagnetic (EM) waveguides to the non-homogeneous case.
The analysis is done using perturbation techniques for self-adjoint operators eigenproblems. We
show that the non-homogeneous EM waveguide problem is well-posed with the stability constant
scaling linearly with waveguide length L. The results provide a basis for proving convergence of
a DPG discretization based on a full envelope ansatz, and the ultraweak variational formulation
for the resulting modified system of Maxwell equations.
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1 Introduction

This is the second part of our work devoted to the stability (and well-posedness) analysis of electro-
magnetic (EM) waveguides; see [5] for an introduction and the motivation for our work. In Part 1
of this work we considered the homogeneous waveguide only, and we showed that the operator cor-
responding to the first-order system of Maxwell equations is bounded below with a constant scaled
inversely with the length L of the waveguide (L is proportional to the number of wavelengths),

∥E∥2 + ∥H∥2 ≤ CL
(
∥∇× E − iωH∥2 + ∥∇×H + iωE∥2

)
,

where i =
√
−1, ω denotes the angular frequency of the light, and C is a positive constant. We use

the formalism of closed operators; the electric/magnetic field (E,H) pair comes from the domain of
the operator. A simple perturbation argument, given at the end of [5], shows that for a sufficiently
small perturbation1 of the dielectric constant (or relative permittivity) ϵ = 1 + δϵ, the operator
remains bounded below but the linear dependence of the stability constant upon L is lost. In fact,
the smallness of perturbation δϵ is expressed in terms of constant CL; hence, the larger the length
L, the smaller δϵ must be.

1We use a non-dimensional version of the equations.
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Step-index fibers. In this paper, we extend our stability result to non-homogeneous EM waveg-
uides. This case has importance in modeling a large number of EM waveguide applications, such as
optical amplifiers which are used to achieve high-power laser outputs very efficiently [6, 8]. A typical
optical fiber model is the double-clad step-index fiber—a cylindrical EM waveguide where the cross-
section (or transversal domain) consists of a silica-glass fiber core surrounded by a silica-glass inner
cladding and an outer polymer cladding (see Figure 1a). The material refractive index n is slightly
higher in the core than the inner cladding which enables propagation of core-guided transverse
modes. Consequently, the permittivity ϵ = ϵ(x, y, z), which depends on the material refractive index
n = n(x, y, z), is discontinuous at the core-cladding interface ∂Ωcore := {(x, y, z) : x2+y2 = r2core} of
a step-index fiber, as illustrated in Figure 1b. Analogously, the material contrast at the inner-outer
cladding interface ∂Ωclad := {(x, y, z) : x2 + y2 = r2clad} enables propagation of cladding-guided
modes by total internal reflection at the glass-polymer interface.

(a) (b)

Figure 1: (a) Schematic of a small section of a double-clad step-index fiber, taken from [1]; (b) Transversal profile of
the relative permittivity ϵ = ϵ(r) in a double-clad step-index fiber.

We note that it is a common assumption in engineering literature to consider ϵ differentiable.
Indeed, it is often the case that simplified models of EM waveguide applications (e.g., some beam
propagation models) entirely neglect the fact that ϵ is not differentiable. More recently, partly thanks
to the increased computing capabilities, it has become possible to numerically solve EM waveguide
models of realistic length based directly on the Maxwell equations [3, 2, 4] thereby avoiding such
simplifying assumptions. We emphasize that the analysis in this paper considers discontinuous
material parameters and is therefore directly applicable to step-index fibers.

Contributions. Extending the stability analysis to the non-homogeneous waveguide problem
turns out to be rather non-trivial. We begin by rewriting the Maxwell system in terms of four
unknowns: transversal – Et, Ht, and longitudinal – E3, H3 components of electric and magnetic
fields. Assuming the exponential ansatz eiβz in the (longitudinal) z-direction, we obtain a non-
standard eigenvalue problem for propagation constant β. Upon eliminating E3, H3, we obtain a more

2



standard system of second-order equations (in x, y) with a non-self-adjoint operator, even for the
homogeneous case. Only in the last step, after elimination of Ht (or Et), we obtain a more standard
E-eigenvalue problem for Et, and the corresponding H-eigenvalue problem for Ht. The operators
in the E- and H-eigenvalue problems, for the homogeneous case, turn out to be self-adjoint. This
leads to the determination of an orthonormal eigenbasis and corresponding spectral decomposition
which, upon the substitution into the original first-order system, decouples the original system into
systems of first-order ordinary differential equations (ODEs). A stability analysis for the ODEs and
the spectral decomposition argument led to the final result in [5].

In the non-homogeneous case, the operators in the E- and H-eigenvalue problems are not self-
adjoint but they represent perturbations of self-adjoint operators. This invites the application of
the classical2 perturbation analysis for self-adjoint operators [7] that we pursue in this paper. The
arguments are far from trivial, as we lose the convenient orthonormal basis argument and have to
resort to series of non-orthonormal (perturbed) eigenvectors. The decoupling argument then involves
adjoint operators which need to be analyzed as well. As always with the perturbation argument,
the obtained results are formal, we proceed under the assumption that the non-orthogonal series
converge as needed.

Outline. The structure of the paper is as follows. We begin in Section 2 with the derivation of
the various eigenvalue problems and relations between them. In Section 3, we develop the classical
perturbation argument to compute the perturbed E and H eigenvectors and their counterparts for
the adjoint problems. In Section 4, we arrive at our first main result; we reduce the problem to a
system of decoupled systems of small subsystems of two ODEs for the coefficients in the spectral
representations of Et and Ht. Upon further reduction to a single second-order ODE, we arrive at
essentially the same ODE problem as in the analysis of the homogeneous waveguide. This leads
to the final estimates of Et, Ht (and their curls) in terms of the right-hand side and to our final
result presented in Section 5. We finish with short conclusions in Section 6. Finally, Appendix A
provides additional algebraic results from the perturbation analysis. In the main body of the paper,
we proceed under the customary, simplifying assumption that all perturbed eigenvalues are distinct.
In Appendix A though, we provide additional details for the case of multiple eigenvalues as it is in
the case of the step-index fiber.

In the end, our main stability result is identical with the one for the homogeneous waveguide,
we show the scaling of the stability constant with length L. The (formal) perturbation analysis
necessitates the assumption of a small perturbation but only in the L∞-norm. Nowhere in our
analysis do we require the dielectric constant to be differentiable, a common assumption in the
engineering literature. The presented analysis thus applies to step-index fibers.

2Dating back to Lord Rayleigh.
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2 Eigensystems

We will be using the following 2D identities:

ez × (ez × Et) = −Et
ez × (∇× E3) = ∇E3 , ez ×∇E3 = −∇× E3

curl(ez × Et) = divEt , div(ez × Et) = − curlEt

(2.1)

where Et, E3 denote the transversal and longitudinal components of a 3D vector field E. The
original system of equations,

∇× E − iωH = f , ∇×H + iωϵE = g ,

translates into: 
∇× E3 + ez × ∂

∂zEt − iωHt = ft

curlEt − iωH3 = f3

∇×H3 + ez × ∂
∂zHt + iωϵEt = gt

curlHt + iωϵE3 = g3 .

(2.2)

Multiplying the first and third equations by iω ez×, we obtain:
∇iωE3 − ∂

∂z iωEt + ω2 ez ×Ht = iω ez × ft

curlEt − iωH3 = f3

∇iωH3 − ∂
∂z iωHt − ω2 ez × ϵEt = iω ez × gt

curlHt + iωϵE3 = g3 .

(2.3)

The eigensystem corresponding to the first-order system operator, and eiβz ansatz in z, looks as
follows: 

Et ∈ H0(curl, D), E3 ∈ H1
0 (D)

Ht ∈ H(curl, D), H3 ∈ H1(D)

iω∇E3 + ω2ez ×Ht = −ωβEt

curlEt − iωH3 = 0

iω∇H3 − ω2ez × ϵEt = −ωβHt

curlHt + iωϵE3 = 0 .

(2.4)

And the system corresponding to the adjoint is as follows:

Ft ∈ H(div, D), F3 ∈ H1(D)

Gt ∈ H0(div, D), G3 ∈ H1
0 (D)

∇× F3 + ω2ez × ϵGt = −ωβFt

iω(divFt − ϵG3) = 0

∇×G3 − ω2ez × Ft = −ωβGt

iω(divGt + F3) = 0 .

(2.5)
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Eliminating E3 and H3 from system (2.4), we obtain a simplified but second-order system for Et, Ht

only. 

Et ∈ H0(curl, D), curlEt ∈ H1(D)

Ht ∈ H(curl, D), 1
ϵ curlHt ∈ H1

0 (D)

−∇(1ϵ curlHt) + ω2ez ×Ht = −ωβEt

∇(curlEt)− ω2ez × ϵEt = −ωβHt .

(2.6)

Similarly, eliminating F3 and G3 from system (2.5), we obtain a simplified but second-order system
for Ft, Gt only. 

Ft ∈ H(div, D), 1
ϵ divFt ∈ H1

0 (D)

Gt ∈ H0(div, D), divGt ∈ H1(D)

−∇× divGt + ω2ez × ϵGt = −ωβFt

∇× (1ϵ divFt)− ω2ez × Ft = −ωβGt .

(2.7)

One can check that the operator in (2.7) corresponds to the adjoint of operator in (2.6). Notice how
the boundary conditions (BCs) on E3, G3 have been inherited by curlHt and divFt.

Reduction to single variable eigensystems. Assume β ̸= 0. Solving (2.6)2 for Ht,

Ht = − 1

ωβ
[∇ curlEt − ω2ez × ϵEt]

curlHt =
ω

β
curl(ez × ϵEt) =

ω

β
div ϵEt

(2.8)

and substituting it into (2.6)1, we obtain an eigenvalue problem for Et alone.{
Et ∈ H0(curl, D), curlEt ∈ H1(D), 1

ϵ div ϵEt ∈ H1
0 (D)

∇× curlEt − ω2ϵEt −∇(1ϵ div ϵEt) = −β2Et .
(2.9)

Similarly, Solving (2.6)1 for Et,

Et = − 1

ωβ
[−∇(

1

ϵ
curlHt) + ω2ez ×Ht]

curlEt = −ω
β
curl(ez ×Ht) = −ω

β
divHt

(2.10)

and substituting it into (2.6)2, we obtain an eigenvalue problem for Ht alone.{
Ht ∈ H(curl, D) ∩H0(div, D), 1

ϵ curlHt ∈ H1
0 (D), divHt ∈ H1(D)

ϵ∇× (1ϵ curlHt)− ω2ϵHt −∇(divHt) = −β2Ht .
(2.11)

Note that BC n × Et = 0 implies BC: n ·Ht = 0. We proceed in the same way with the adjoint.
Solving (2.7)2 for Gt,

Gt = − 1

ωβ
[∇× (

1

ϵ
divFt)− ω2ez × Ft]

divGt =
ω

β
div(ez × Ft) = −ω

β
curl ϵFt

(2.12)
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and substituting it into (2.7)1, we obtain an eigenvalue problem for Ft alone.{
Ft ∈ H0(curl, D) ∩H(div, D), 1

ϵ divFt ∈ H1
0 (D), curlFt ∈ H1(D)

∇× curlFt − ω2ϵFt − ϵ∇(1ϵ divFt) = −γ2Ft .
(2.13)

Note that BC: n ·Gt = 0 implies BC: n× Ft = 0. Similarly, Solving (2.7)1 for Ft,

Ft = − 1

ωβ
[−∇× divGt) + ω2ez × ϵGt]

divFt = −ω
β
div(ez × ϵGt) = −ω

β
curl ϵGt

(2.14)

and substituting it into (2.7)2, we obtain an eigenvalue problem for Gt alone.{
Gt ∈ H0(div, D), divGt ∈ H1(D), 1

ϵ curl ϵGt ∈ H1
0 (D)

∇× (1ϵ curl ϵGt)− ω2ϵGt −∇(divGt) = −γ2Gt .
(2.15)

Lemma 1

(a) Let ((Et, Ht),−ωβ) be an eigenpair for system (2.6). Then (Et,−β2) solves (2.9), and
(Ht,−β2) solves (2.11).

(b) Conversely, if (Et,−β2) is an eigenpair for (2.9), and we define Ht by:

Ht =
1

ω(±β)
(
−∇ curlEt + ω2ez × ϵEt

)
then (Et, Ht),−ω(±β)) is an eigenpair for system (2.6). Each eigenpair for (2.9) generates
two eigenpairs for (2.6).

(c) Similarly, if (Ht,−β2) is an eigenpair for (2.11), and we define Et by:

Et =
1

ω(±β)

(
∇(

1

ϵ
curlHt)− ω2ez ×Ht

)
then (Et, Ht),−ω(±β)) is an eigenpair for system (2.6). Each eigenpair for (2.11) generates
two eigenpairs for (2.6).

Proof: We have already proved (a). To prove (b), check that the formula for Ht and (2.9) imply
(just algebra) equation (2.6)1. Same procedure to prove (c).

In particular, Lemma 1 implies that eigenproblems (2.9) and (2.11) have the same eigenvalues
β2.

Lemma 2
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(a) Let ((Ft, Gt), ωγ) be an eigenpair for system (2.7). Then (Gt,−γ2) solves (2.15) and (Ft,−γ2)
solves (2.13).

(b) Conversely, if (Ft,−γ2) is an eigenpair for (2.13), and we define Gt by:

Gt =
1

ω(±γ)

(
−∇× (

1

ϵ
divFt) + ω2ez × Ft

)
then (Ft, Gt), ω(±γ)) is an eigenpair for system (2.7). Each eigenpair for (2.13) generates
two eigenpairs for (2.7).

(c) Similarly, if (Gt,−γ2) is an eigenpair for (2.15), and we define Ft by:

Ft =
1

ω(±γ)
(
∇× divGt − ω2ez × ϵGt

)
then (Ft, Gt), ω(±γ)) is an eigenpair for system (2.7). Each eigenpair for (2.15) generates
two eigenpairs for (2.7).

In particular, Lemma 2 implies that eigenproblems (2.13) and (2.15) have the same eigenvalues
γ2.

Lemma 3
(Et,−β2) is an eigenpair for problem (2.9) if an only if (ez × Et,−β2) is an eigenpair for (2.15).
Similarly, (Ht,−β2) is an eigenpair for problem (2.11) if and only if (ez × Ht,−β2) is an eigen-
pair for (2.13). In particular, this implies that all four individual eigenproblems share the same
eigenvalues.

Proof: Use identities (2.1).

3 A Perturbation Analysis

In this section, we will use the classical perturbation theory for self-adjoint operators to analyze
two eigenvalue problems:

• the electric eigenvalue problem (2.9):

∇× curlEt − ω2ϵEt −∇(
1

ϵ
div ϵEt) = −β2Et (E problem) (3.1)

• and the magnetic problem (2.11):

ϵ∇× (
1

ϵ
curlHt)− ω2ϵHt −∇(divHt) = −γ2Ht (H problem) . (3.2)
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We have already argued that the problems share the same eigenvalues. Problem (3.1) is a per-
turbation of a self-adjoint eigenvalue problem for the electric field representing the homogeneous
waveguide,

∇× curlE − ω2E −∇(divE)︸ ︷︷ ︸
=:AE

= −β2E (3.3)

where E = Et. We have learned in [5] that the problem admits two families of eigenvectors:

Ei = ∇× ψi β2i = ω2 − µi

Ej = ∇ϕj β2j = ω2 − λj
(3.4)

where (µi, ψi) and (λj , ϕj) are Neumann and Dirichlet eigenpairs for the Laplace operator. We will
consistently use indices i and j to denote the two families. Problem (3.2) is a perturbation of a
self-adjoint eigenvalue problem for the magnetic field representing the homogeneous waveguide,

∇× curlH − ω2H −∇(divH)︸ ︷︷ ︸
=:BE

= −γ2H (3.5)

where H = Ht = Gt. The problem admits two families of eigenvectors:

Hi = ∇ψi β2i = ω2 − µi

Hj = ∇× ϕj β2j = ω2 − λj
(3.6)

where (µi, ψi) and (λj , ϕj) denote again the Neumann and Dirichlet eigenpairs for the Laplace opera-
tor. We will consistently use indices i and j to denote the two families as well. The two unperturbed
problems look the same but they differ with the boundary conditions. The corresponding perturbed
eigenpairs are:

(−β2 − δβ2, E + δE), (−γ2 − δγ2, H + δH) .

3.1 Perturbation Analysis for the E Eigenvalue Problem

We will present now in detail the analysis for the first perturbed problem. Operator A is self-adjoint
in L2(D), so the eigenvalues are real and the eigenvectors form an L2-orthonormal basis. Consider
now a perturbation,

ϵ := 1 + δϵ, E := E + δE, β2 := β2 + δβ2 .

Plugging the perturbations into (3.1) and linearizing, we obtain the corresponding linearized prob-
lem:

A(δEt) + β2δEt = ω2δϵE −∇(δϵdivE) +∇div(δϵE) −δβ2E (δE problem) (3.7)

Consider now problem (3.3) and (3.7) for a specific eigenpair (−β2i , Ei). Representing the pertur-
bation in eigenbasis Ej , we have:

δEi =
∑
j

(δEi, Ej)Ej

A(δEi) =
∑
j

(δEi, Ej)(−β2j )Ej

(A(δEi), Ek) =
∑
j

(−β2j )(δEi, Ej) (Ej , Ek)︸ ︷︷ ︸
=δjk

= (−β2k)(δEi, Ek) .
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Taking the L2-product of (3.7) with Ek, we obtain:

(−β2k)(δEi, Ek) = −β2i (δEi, Ek)−δβ2i (Ei, Ek)︸ ︷︷ ︸
=δik

+ω2(δϵEi, Ek)−(∇(δϵdivEi), Ek)+(∇ div(δϵEi), Ek) ,

or,

(β2i − β2k)(δEi, Ek) + δβ2i δik = ω2(δϵEi, Ek)− (∇(δϵdivEi), Ek) + (∇div(δϵEi), Ek) . (3.8)

Assumption A: We assume now that the eigenvalues are distinct (simple). This is a custom-
ary assumption in the perturbation argument to simplify the presentation. The case of multiple
eigenvalues is more complicated and it is discussed in Appendix A.

Under the assumption of distinct (simple) eigenvalues, for k = i, we get a formula for perturba-
tion δβ2i ,

δβ2i = ω2(δϵEi, Ei) + (δϵdivEi, divEi)− (div(δϵEi),divEi) . (3.9)

For k ̸= i, formula (3.8) allows to compute perturbation δEi; the i-th component of δEi comes from
a normalization argument.

Assumption B: We assume:
(δEi, Ei) = 0 . (3.10)

The assumption implies that the perturbed eigenvector Ei + δEi is (approximately) of length one,
see the discussion in Section 4.

We have:

(β2i − β2k)(δEi, Ek) = ω2(δϵEi, Ek) + (δϵdivEi,divEk)− (div(δϵEi),divEk) .

Linearized mass matrices. We shall now compute linearized mass matrices for the E-eigenproblem,
and the two families of eigenvectors. Table 1 presents results for the (δEi, Ej) term.

Table 1: Mass term (δE,E) for different families of eigenvectors.

(δE,E) Ek = ∇× ψk El = ∇ϕl

δEi = δ(∇× ψi)
ω2(δϵEi, Ek)

µk − µi

(ω2 − λl)(δϵEi, El)

λl − µi

δEj = δ(∇ϕj)
ω2(δϵEj , Ek)

µk − λj

(ω2 − λl)(δϵEj , El) + λjλl(δϵϕj , ϕl)

λl − λj

We can now compute the linearized mass matrix:

(δEi, Ej) + (Ei, δEj) = (δEi, Ej) + (δEj , Ei) .
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The second term is obtained by swapping indices in Table 1, and changing the order of arguments
in the L2-inner products to account for conjugation. For instance, for the first term,

ω2(δϵEi, Ek)

µk − µi
→ ω2(δϵEk, Ei)

µi − µk
→ ω2(δϵEi, Ek)

µi − µk
.

Table 2 presents selected (those that we will need) elements of the linearized mass matrix.

Table 2: Linearized mass matrix (δEi, Ek) + (Ei, δEk) for different families of eigenvectors.

(δE,E) + (E, δE) δEk = δ(∇× ψk) δEl = δ(∇ϕl)

δEi = δ(∇× ψi) 0

δEj = δ(∇ϕj) −(δϵEj , El)

Curl-curl coupling. Let Ei + δEi be the perturbed eigenvectors for the electric eigenproblem.
We will now investigate the linearized curl-curl mass matrix:

(curl δEi, curlEj) + (curlEi, curl δEj) .

We have:

δEi =
∑
k

(δEi, Ek)Ek (summation over both curls and grads)

curl δEi =
∑
k

(δEi,∇× ψk)µkψk (summation over curls only.)

Hence,

(curl δEi, curlEj) =
(∑

k

(δEi,∇×ψk)µkψk, curlEj
)
=
∑
k

(δEi,∇×ψk)(µkψk, µjψj) = (δEi,∇×ψj)µj

is non-zero only if Ej is a curl, Ej = ∇× ψj .

Consequently, the linearized curl-curl mass matrix is equal to:

(δEi, Ej)µj + (Ei, δEj)µi = µj
ω2(δϵEi, Ej)

µj − µi
+ µi

ω2(δϵEi, Ej)

µi − µj
= ω2(δϵEi, Ej)

for Ei = ∇× ψi, Ej = ∇× ψj .

3.2 Perturbation Analysis for the H Eigenvalue Problem

The linearized problem is:

BδHt + γ2δHt = −δϵ∇× curlHt −∇× (δϵ curlHt) + ω2δϵHt − δγ2Ht
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where operator B is formally the same as operator A for the E problem (BCs are different). Per-
forming the same analysis as for the E problem, we get:

(γ2i − γ2k)(δHi, Hk)+ δγ2i δik = ω2(δϵHi, Hk)− (δϵ∇× curlHi, Hk)+ (∇× (δϵ curlHi), Hk) . (3.11)

Under Assumption A of distinct (simple) eigenvalues, for k = i, we get a formula for perturbation
δγ2i ,

δγ2i = ω2(δϵHi, Hi)− (δϵ∇× curlHi, Hi) + (∇× (δϵ curlHi), Hi) . (3.12)

For k ̸= i, formula (3.11) allows to compute perturbation δHi; the i-th component of δHi comes
from a normalization assumption.

Assumption C: We assume:
(δHi, Hi) = 0 . (3.13)

The assumption implies that the perturbed eigenvector Hi + δHi is (approximately) of length one,
see the discussion in Section 4.

After integrating the last term by parts, we obtain:

(γ2i − γ2k)(δHi, Hk) = ω2(δϵHi, Hk)− (δϵ∇× curlHi, Hk) + (δϵ curlHi, curlHk) .

Table 3 presents selected (those that we need) elements of the linearized mass matrix.

Table 3: Linearized mass matrix (δHi, Hk) + (Hi, δHk) for different families of eigenvectors.

(δH,H) + (H, δH) δHk = δ(∇ψk) δHl = δ(∇× ϕl)

δHi = δ(∇ψi) 0

δHj = δ(∇× ϕj) (δϵHj , Hl)

Finally, the curl-curl linearized mass matrix for the grad eigenvectors vanishes, and for the curl
eigenvectors looks as follows:(

curl(∇× ϕi) + curl δ(∇× ϕi), curl(∇× ϕj) + curl δ(∇× ϕj)
)

≈
(
curl(∇× ϕi), curl(∇× ϕj)

)
+
(
curl δ(∇× ϕi), curl(∇× ϕj)

)
+
(
curl(∇× ϕi), curl δ(∇× ϕj)

)
= λiλj(ϕi, ϕj) + ω2(δϵ∇× ϕi,∇× ϕj) + λiλj(δϵ ϕi, ϕj)

= λ
1
2
i λ

1
2
j

(
(1 + δϵ)λ

1
2
i ϕi, λ

1
2
j ϕj

)
+ ω2(δϵ∇ϕi,∇ϕj) .

11



4 Stability Analysis

We return to system (2.3). We test the first equation with Ft, and the third equation withGt, n·Gt =
0 on ∂D, to obtain:

−(iωE3,divFt) + ω2(ez ×Ht, Ft)− ∂
∂z iω(Et, Ft) = iω (ez × ft, Ft)

curlEt − iωH3 = f3

−(iωH3,divGt)− ω2(ez × ϵEt, Gt)− ∂
∂z iω(Ht, Gt) = iω (ez × gt, Gt)

curlHt + iωϵE3 = g3 .

Note that, when integrating by parts the first terms, we have used the fact that E3 = 0 and
n ·Gt = 0 on ∂D. Solving the second and fourth equations in (2.2) for E3 and H3,

E3 =
1

iωϵ
g3 −

1

iωϵ
curlHt , H3 = − 1

iω
f3 +

1

iω
curlEt ,

and substituting into the first and the third equations, we obtain a system of two variational
equations for Et, Ht :{

(1ϵ curlHt,divFt) + ω2(ez ×Ht, Ft)− ∂
∂z iω(Et, Ft) = iω (ez × ft, Ft) + (1ϵ g3,divFt)

−(curlEt, divGt)− ω2(ez × ϵEt, Gt)− ∂
∂z iω(Ht, Gt) = iω (ez × gt, Gt)− (f3, divGt) .

(4.1)

Variational eigenvalue problem:
Et ∈ H0(curl, D), Ht ∈ H(curl, D)

(1ϵ curlHt,divFt) + ω2(ez ×Ht, Ft) = −ωβ(Et, Ft)
−(curlEt, divGt)− ω2(ez × ϵEt, Gt) = −ωβ(Ht, Gt)

Ft ∈ H(div, D), Gt ∈ H0(div, D) ,

is equivalent to eigenproblem (2.6). Similarly, switching the role of (Et, Ht) and (Ft, Gt) above, we
obtain the adjoint variational eigenvalue problem equivalent to (2.7).

Consider now system (4.1). We expand the unknowns into series of the perturbed eigenvectors:

Et =
∑
i

αiEt1,i +
∑
j

τjEt2,j

Ht =
∑
i

δiHt1,i +
∑
j

ηjHt2,j

where αi, τj , δi, ηj are functions of z, and

Et1,i = ∇× ψi + δEt1,i Et2,j = ∇ϕj + δEt2,j

Ht1,i = ∇ψi + δHt1,i Ht2,j = ∇× ϕj + δHt2,j

are the two E and H families of (perturbed) eigenvectors. Let

Ft1,i = ∇× ψi + δFt1,i Ft2,j = ∇ϕj + δFt2,j

Gt1,i = ∇ψi + δGt1,i Gt2,j = ∇× ϕj + δGt2,j

be the corresponding families of perturbed adjoint eigenvectors.
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Scaling of the eigenvectors. The unperturbed E eigenvectors are scaled to provide an orthonor-
mal basis, i.e., ∥∇× ψi∥ = ∥∇ϕj∥ = 1. This implies that the unperturbed H eigenvectors are also
unit vectors as ∥∇ψi∥ = ∥∇× ψi∥, etc. The unperturbed F and G eigenvectors coincide with the
E and H eigenvectors. We learned in Section 3 that the perturbations δEt1,i are scaled by the con-
dition (δEt1,i,∇× ψi) = 0. This implies that the perturbed eigenvector is, up to the linearization,
a unit vector as well,

(∇× ψi + δEt1,i,∇× ψi + δEt1,i) ≈ (∇× ψi,∇× ψi) + (∇× ψi, δEt1,i) + (δEt1,i,∇× ψi) = 1 .

The same comment applies to all remaining perturbed eigenvectors. Note additionally that the
bi-orthogonality condition is also (approximately) satisfied,

(∇× ψi + δEt1,i,∇× ψi + δFt1,i) ≈ (∇× ψi,∇× ψi) + (∇× ψi, δFt1,i) + (δEt1,i,∇× ψi) = 1 .

Decoupling the equations. Let −β2 be an eigenvalue for eigenproblems (2.9) and (2.11) with
the corresponding eigenvectors Et, Ht scaled as discussed above. In order to invoke Lemma 1(b),
we have to replace Ht with cHt where constant c is computed by comparing eigenvector cHt with
Ht given by relation (2.8),

cHt =
1

ωβ
[−∇ curlEt + ω2ez × ϵEt] .

Pair (Et, cHt) constitutes then an eigenvector for system (2.6) corresponding to root β of β2 selected
in such a way that eiβz represents an outgoing wave.3 We proceed similarly with the adjoint
eigenvectors. Let −γ2 be an eigenvalue for problems (2.13) and (2.15) with the corresponding
eigenvectors Ft, Ht. After scaling the second component, pair (Ft, dGt) constitutes an eigenvector
for system (2.7) corresponding to a root γ of γ2. Constant d is obtained4 by comparing dGt with
Gt given by (2.12), comp. Lemma 2,

dGt =
1

ωβ
[−∇× (

1

ϵ
divFt) + ω2ez × Ft] .

Case: β2 ̸= γ2 and, therefore, β ̸= γ. Multiplying system (2.6) with pair (Ft, dGt), we obtain the
bi-orthogonality condition,

c(BHt, Ft) + d(CEt, Gt) = 0

where B and C denote the operators on the left-hand side of (2.6). But, testing with the adjoint
eigenpair (Ft,−dHt) (corresponding to eigenvalue −γ ̸= β, we obtain also

c(BHt, Ft)− d(CEt, Gt) = 0

Consequently, we have,
(BHt, Ft) = 0 and (CEt, Gt) = 0 .

3The choice depends upon the ansatz in time.
4We learn in Appendix A that d is real.
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Case: β2 = γ2 and β = γ. Multiplying system (2.6) with pair (Ft, Gt), we obtain:

c(BHt, Ft) + d(CEt, Gt) = −ωβ[1 + cd]

But, testing with the adjoint eigenpair (Ft,−dGt) (corresponding to eigenvalue −γ ̸= β), we obtain
also

c(BHt, Ft)− d(CEt, Gt) = 0

Consequently, we have,

θ := (BHt, Ft) = −ωβ
2c

[1 + cd] and ν := (CEt, Gt) = −ωβ
2d

[1 + cd] .

THEOREM 1
Testing in (4.1) with (Ft1,j , dGt1,j) and with (Ft2,j , dGt2,j), we obtain a decoupled system of ODEs
for the coefficients αj , δj: θ1δj − iωα′

j = r1(z) := (iω ez × ft, Ft1,j) + (
1

ϵ
g3,divFt1,j)

ν1αj − iωδ′j = r2(z) := (iω ez × gt, Gt1,j)− (f3, divGt1,j)
(4.2)

and τj , ηj:  θ2ηj − iωτ ′j = s1(z) := (iω ez × ft, Ft2,j) + (
1

ϵ
g3, divFt2,j)

ν2τj − iωη′j = s2(z) := (iω ez × gtGt2,j)− (f3, divGt2,j)
(4.3)

where θi, νi, i = 1, 2, are the values of coefficients θ, ν for the two families of eigenvectors.

We refer to Appendix A, for the computation of constants c, d, θ, ν using the perturbation anal-
ysis, and the final values of θ, ν listed in Table 4. The constants take different values for the two
families of E and F eigenvectors. For the homogeneous waveguide, the systems reduce to the ones
in [5].

REMARK 1 While we use the perturbation analysis to evaluate constants c, d, θ, ν, the decou-
pling result in Theorem 1 is general, and valid for arbitrary ϵ.

5 Estimation of Et,Ht, and curlEt, curlHt

Recall that iωH3 = curlEt − f3. An estimate for curlEt is thus equivalent to an estimate for H3.
Similarly, iωϵE3 = − curlHt − g3, an estimate for curlHt is equivalent to an estimate for E3.
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5.1 Estimation of Et and Ht with Their Spectral Components

If the L2 mass matrix corresponding to the perturbed eigenvectors represents a bounded operator in
L2, then we can bound the L2-norm of Et with the sum of its spectral components. More precisely,

∥Et∥2 ≤ 2

∥ ∞∑
i=1

αiEt1,i∥2 + ∥
∞∑
j=1

τjEt1,j∥2


= 2 lim
N→∞

( N∑
i=1

αiEt1,i,

N∑
k=1

αkEt1,k) + (

N∑
j=1

τjEt2,j ,

N∑
l=1

τlEt2,l)


= 2 lim

N→∞

 N∑
i,k=1

αiαk(Et1,i, Et1,k) +
N∑

j,l=1

τjτl(Et2,j , Et2,l)


≤ lim

N→∞
2C

 N∑
i=1

|αi|2 +
N∑
j=1

|τj |2


= 2C

 ∞∑
i=1

|αi|2 +
∞∑
j=1

|τj |2


where C is assumed to be independent ofN . Note that we do not need any information about the off-
diagonal terms (Et1,i, Et2,j). According to the results from the previous section C = 1+ ∥δϵ∥L∞(D).

Similarly,

∥Ht∥2 ≤ 2

∥ ∞∑
i=1

δiHt1,i∥2 + ∥
∞∑
j=1

ηjHt2,j∥2


≤ 2C

 ∞∑
i=1

|δi|2 +
∞∑
j=1

|ηj |2


where, by the results from Section 3.2, C = 1 + ∥δϵ∥L∞(D) as well.

After integrating in z, we get

∫ L

0
∥Et∥2 dz ≤ 2C

 ∞∑
i=1

∫ L

0
|αi|2 dz +

∞∑
j=1

∫ L

0
|τj |2 dz


∫ L

0
∥Ht∥2 dz ≤ 2C

 ∞∑
i=1

∫ L

0
|δi|2 dz +

∞∑
j=1

∫ L

0
|ηj |2 dz

 .
(5.1)
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5.2 Estimation of curlEt, curlHt with Spectral Components of Et,Ht

By the same token,

∥ curlEt∥2 ≤ 2

∥ ∞∑
i=1

αi curlEt1,i∥2 + ∥
∞∑
j=1

τj curlEt2,j∥2


= 2 lim
N→∞

( N∑
i=1

αi curlEt1,i,

N∑
k=1

αk curlEt1,k) + (

N∑
j=1

τj curlEt2,j ,

N∑
l=1

τl curlEt2,l)


= 2 lim

N→∞

 N∑
i,k=1

αiαk(curlEt1,i, curlEt1,k) +

N∑
j,l=1

τjτl(curlEt2,j , curlEt2,l)


≈ 2

∞∑
i=1

(µi + ω2∥δϵ∥L∞(D))|αi|2 .

Note that, like for the homogeneous case, the perturbed gradients do not contribute (the linearized
perturbed curl mass matrix is zero).

Similarly, using results from Section 3.2,

∥ curlHt∥2 ≤ 2

∥ ∞∑
i=1

αi curlHt1,i∥2 + ∥
∞∑
j=1

τj curlHt2,j∥2


≲ 2
∞∑
i=1

(λi∥ϵ∥L∞(D) + ω2∥δϵ∥L∞(D))|ηi|2 .

Note again that the perturbed gradients do not contribute.

5.3 Estimation of Spectral Components αi, δi

We focus now on the ODE boundary-value problem for coefficients α and δ,
α(0) = 0, δ(L) =

√
ν
θα(L)

θδ − iωα′ = r1

να− iωδ′ = r2

(5.2)

where θ = θ1 and ν = ν1 are the coefficient values for the first family of eigenvectors. Testing
the second equation with δα, δα(0) = 0, integrating the derivative term by parts, and utilizing the
impedance BC, we obtain:

iω(δ, δα′) = −ν(α, δα) + iωα(L)δα(L) + (r2, δα) .

Testing the first equation with δα′ and using the formula above, we obtain the ultimate variational
problem for coefficient α:

α(0) = 0

(α′, δα′) + κ2(α, δα) + κα(L)δα(L) = i
ω (r1, δα

′)− θ
ω2 (r2, δα)

∀ δα : δα(0) = 0

(5.3)
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where κ = i
√
θν
ω . For the homogeneous waveguide, κ = iβ and the equation coincides with that

derived in [5]. For the non-homogeneous waveguide,

κ = i
√
β2 + ω2(δϵ∇ψ,∇ψ) .

The perturbed κ is still of order β. As θ = θ1 = −ω2, the right-hand side reduces to:

i

ω
(r1, δα

′) + (r2, δα) . (5.4)

The following lemma was proved in [5].

Lemma 4
Let I = (0, L). Consider two problems: Find q1, q2 ∈ H1

(0(I) := {v ∈ H1(I) : v(0) = 0} such that:

(q′1, v
′) + λ2(q1, v) + λq1(L)v(L) = (f, v) v ∈ H1

(0(I)

(q′2, v
′) + λ2(q2, v) + λq2(L)v(L) = (f, v′) v ∈ H1

(0(I)

where f ∈ L2(I). Then, denoting ∥q∥21,β := ∥q′∥2 + β2∥q∥2, we have:

• Case (i): λ = iβ, β > 0. There exists a constant C > 0, depending only on a lower bound for
Lβ such that

∥q1∥21,β ≤ CL2∥f∥2

∥q2∥21,β ≤ CL2β2∥f∥2

• Case (ii): λ = β, β > 0. There exists a constant C > 0, depending only on a lower bound for
Lβ such that

∥q1∥21,β ≤ Cβ−2∥f∥2 ⇒ ∥q1∥2 ≤ Cβ−4∥f∥2

∥q2∥21,β ≤ C∥f∥2 ⇒ ∥q2∥2 ≤ Cβ−2∥f∥2 .

We will use Lemma 4 to estimate the L2-norms of coefficients αj , δj by the L2-norms of the right-
hand sides r1,j , r2,j and, in turn, the L2(0, L)-norms of r1,j , r2,j by the L2-norms of ft, f3, gt, g3.
While the stability of propagating modes (Case (i) in Lemma 4) implies the linear dependence
of stability constant upon L, the stability of evanescent modes (Case (ii) in Lemma 4) provides

the desired asymptotic scaling properties in terms of eigenvalues |βi| ≈ µ
1
2
i , λ

1
2
i . Note that, since

the number of propagating modes is finite, their stability does not affect the asymptotic scaling
properties with |βi|. We will skip the dependence of stability constants C upon L but keep track of

the dependence upon the eigenvalues |βi| ≈ µ
1
2
i , λ

1
2
i .

Estimation of αj. We will consider the four terms contributing to the right-hand side (5.4) and
estimate the corresponding solutions αj , one at the time. By linearity, this will imply the estimate
for the ultimate coefficients αj .
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Term 1: iω(ez × ft, Ft1,j) contributing to r1. Skipping factor iω, we have:

∑
j

∫ L

0
|αj |2 dz ≲

∑
j

∫ L

0
β−2
j |(ez × ft, Ft1,j + δFt1,j)|2 (Lemma (ii)2)

≲ 2
∑
j

∫ L

0
β−2
j [|(ez × ft, Ft1,j)|2 + |(ez × ft, δFt1,j)|2] (Young’s inequality)

≲ 2
∑
j

∫ L

0
|(ez × ft, Ft1,j)|2 (linearization, β−2

j ≲ 1)

≤ 2

∫ L

0
∥ez × ft∥2 dz

= 2

∫ L

0
∥ft∥2 dz .

REMARK 2 Note that the application of Young’s inequality and neglection of the second-order
terms reduces the estimation of coefficients αj to the case of the homogeneous waveguide. The
ODE systems (4.2) and (4.3) are identical with those for the homogeneous waveguide except for the
values of θi, νi which are different but of the same order as for the homogeneous system. Hence the
estimation of coefficients αi, δi, τj , ηj in the perturbed case is identical with the estimation for the
homogeneous waveguide. For the reader’s convenience, we estimate explicitly each term, repeating
arguments from [5].

Term 2: (1ϵ g3,divFt1,j) contributing to r1.

∑
j

∫ L

0
|αj |2 dz ≲

∑
j

∫ L

0
β−2
j |(1

ϵ
g3, div(Ft1,j + δFt1,j))|2 (Lemma (ii)2)

≤ 2
∑
j

∫ L

0
β−2
j [|(1

ϵ
g3, div(Ft1,j))|2 + |(1

ϵ
g3,div(δFt1,j))|2] (Young’s lemma)

≲ 2
∑
j

∫ L

0
|(1
ϵ
g3,div(Ft1,j))|2 (linearization, β−2

j ≲ 1)

≲ 0 (divFt1,j = 0)

Term 3: iω(ez×gt, Gt1,j) contributing to r2. We follow exactly the same reasoning as for Term
1. Note that Lemma (ii)1 gives us even a better factor β−4.
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Term 4: (f3, divGt1,j) contributing to r2.∑
j

∫ L

0
|αj |2 dz ≲

∑
j

∫ L

0
β−4
j |(f3,div(Gt1,j + δGt1,j))|2 (Lemma (ii)1)

≤ 2
∑
j

∫ L

0
β−4
j [|(f3,div(Gt1,j))|2 + |(f3, div(δGt1,j))|2] (Young’s lemma)

≲ 2
∑
j

∫ L

0
β−4
j |(f3,div(Gt1,j))|2 (linearization)

≲ 2
∑
j

∫ L

0
β−4
j µj |(f3, µ1/2j ψj)|2

≲ 2
∑
j

∫ L

0
β−2
j |(f3, µ1/2j ψj)|2 (β−2

j µj ≈ O(1))

≲ 2
∑
j

∫ L

0
|(f3, µ1/2j ψj)|2 (β−2

j ≲ 1)

≲ 2
∑
j

|(f3, µ1/2j ψj)|2 = 2∥f3∥2 .

Estimation of curlEt. In the estimation of curlEt, we need to estimate:

∑
i

∫ L

0
(µi + ∥δϵ∥L∞(D))︸ ︷︷ ︸

∼β2
i

|αi|2 dz .

We follow exactly the same strategy as above. In all cases, we can accommodate the extra µi ≈ β2i
factor.

Estimation of δj. The first equation of system (5.2) implies:

ω2∥δ∥L2(I) ≤ ω∥α′∥L2(I)) + ∥r1∥L2(I) .

Estimation of the derivatives
∑

i ∥α′
i∥2L2(I))∥ is done in exactly the same way as for αi’s, except that

Lemma (ii) delivers now less by a factor of β−2
j . However, we can spare it in all of the four discussed

cases. It remains to estimate r1. We proceed in the same way as before.

Term 1: (ez × ft, Ft1,j) contributing to r1. We have:

∑
j

∫ L

0
|(ez × ft, Ft1,j + δFt1,j)|2

≲ 2
∑
j

∫ L

0
[|(ez × ft, Ft1,j)|2 + |(ez × ft, δFt1,j)|2] (Young’s inequality)

≲ 2
∑
j

∫ L

0
|(ez × ft, Ft1,j)|2 (linearization)

≤ 2

∫ L

0
∥ez × ft∥2 dz = 2

∫ L

0
∥ft∥2 dz .
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Term 2: (1ϵ g3, divGt1,j) contributing to r1.

∑
j

∫ L

0
|(1
ϵ
g3, div(Ft1,j + δFt1,j))|2

≤ 2
∑
j

∫ L

0
[|(1
ϵ
g3,div(Ft1,j))|2 + |(1

ϵ
g3, div(δFt1,j))|2] (Young’s lemma)

≲ 2
∑
j

∫ L

0
|(1
ϵ
g3,div(Ft1,j))|2 (linearization)

≲ 0 (divFt1,j = 0)

5.4 Estimation of Spectral Components τi,ηi

We use exactly the same techniques to estimate the spectral components corresponding to the second
families of E and H eigenvectors. We will point out only to the differences between the two cases.
The ODE boundary-value problem for coefficients τ and η takes the same form as system (5.2),

β(0) = 0, η(L) =
√

θ2
θ1
β(L)

θη − iωβ′ = s1

νβ − iωη′ = s2

(5.5)

where
s1 = (iω ez × ft, Ft2,j) + (

1

ϵ
g3, divFt2,j)

s2 = (iω ez × gtGt2,j)− (f3, divGt2,j) .

The coefficients θ, ν are now different. By the results from Appendix A.1,

θ = θ2 = β2 + λ(δϵ λ
1
2ϕ, λ

1
2ϕ), ν = ν2 = ω2 + ω2(δϵ∇ϕ,∇ϕ) .

This gives for the homogeneous waveguide κ = iβ, and for the non-homogeneous case,

κ = i

√
(β2 + λ(δϵ λ

1
2ϕ, λ

1
2ϕ))(ω2 + ω2(δϵ∇ϕ,∇ϕ))

ω

which is still of order iβ.

The first essential difference is the scaling in the right-hand side of the second-order prob-
lem (5.3),

i

ω
(s1, δα

′)− θ

ω2
(s2, δα) =

i

ω
(s1, δα

′)− (β2 + λ(δϵ λ
1
2ϕ, λ

1
2ϕ))

ω2
(s2, δα) .

The coefficient in front of s1 is the same as before, but the coefficient θ in front of s2 is now of order
β2.
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Estimation of τj. We now discuss the four terms contributing to the right-hand side above.

Term 1: iω(ez×ft, Ft2,j) contributing to s1. The estimate is identical with that for αi. Skipping
constant terms, we have:∑

j

∫ L

0
|τj |2 dz ≲

∑
j

∫ L

0
β−2
j |(ez × ft, Ft2,j + δFt2,j)|2 (Lemma (ii)2)

≲ 2
∑
j

∫ L

0
β−2
j [|(ez × ft, Ft2,j)|2 + |(ez × ft, δFt2,j)|2] (Young’s inequality)

≲ 2
∑
j

∫ L

0
|(ez × ft, Ft2,j)|2 (linearization, β−2

j ≲ 1)

≤ 2

∫ L

0
∥ez × ft∥2 dz = 2

∫ L

0
∥ft∥2 dz .

Term 2: (1ϵ g3,divFt2,j) contributing to s1. The situation is now different as divFt2,j =

div gradϕj = −λjϕj .∑
j

∫ L

0
|τj |2 dz ≲

∑
j

∫ L

0
β−2
j |(1

ϵ
g3, div(Ft2,j + δFt2,j))|2 (Lemma (ii)2)

≤ 2
∑
j

∫ L

0
β−2
j [|(1

ϵ
g3, div(Ft2,j))|2 + |(1

ϵ
g3,div(δFt2,j))|2] (Young’s lemma)

≲ 2
∑
j

∫ L

0
β−2
j |(1

ϵ
g3,div(Ft2,j))|2 (linearization)

≲ 2
∑
j

∫ L

0
|(1
ϵ
g3, λ

1
2
j ϕj))|

2 (β−2
j λj ≲ 1)

≲ ∥1
ϵ
g3∥2 ≲ ∥g3∥2 .

Term 3: iω(ez×gt, Gt2,j) contributing to s2. We follow exactly the same reasoning as for Term
1. Lemma (ii)1 gives us a better factor β−4 but there is a factor of order β2 in front of s2.

Term 4: (f3, divGt2,j) contributing to s2. Compared with the estimate for αj , we lose again
factor β−2

j due to the term in front of s2.∑
j

∫ L

0
|τj |2 dz ≲

∑
j

∫ L

0
β−2
j |(f3, div(Gt2,j + δGt2,j))|2 (Lemma (ii)1)

≤ 2
∑
j

∫ L

0
β−2
j [|(f3,div(Gt2,j))|2 + |(f3,div(δGt2,j))|2] (Young’s lemma)

≲ 2
∑
j

∫ L

0
β−2
j |(f3,div(Gt2,j))|2 (linearization)

≲ 2
∑
j

∫ L

0
β−2
j λj |(f3, λ1/2j ϕj)|2 (divGt2,j = −λϕj)

≲ 2
∑
j

∫ L

0
|(f3, λ1/2j ϕj)|2 (β−2

j λj ≈ O(1))

= 2∥f3∥2 .
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Estimation of ηj. From the first equation in system (5.5), we get:

η =
1

θ
(iωβ′ + s1) ⇒ ∥η∥2L2(I) ≲

1

λ2
∥τ ′∥2L2(I) +

1

λ2
∥s1∥2L2(I)

as |s1| ≈ λ. In order to estimate curlHt, we need a more demanding estimate for∑
j

λj∥ηj∥2L2(I) ≲
∑
j

λ−1
j ∥τ ′j∥2L2(I) + λ−1

j ∥s1,j∥2L2(I) .

In the estimation of derivatives τ ′j , we lose a factor of β2j but we gain it back with the factor λ−1
j

above. We also need the additional factor when estimating the second term. The details are as
follows.

Term 1: (ez×ft, Ft2,j) contributing to s1. This terms in painless. We do not need the additional
factor λ−1

j ≈ β−2
j .

∑
j

∫ L

0
|(ez × ft, Ft2,j + δFt2,j)|2

≲ 2
∑
j

∫ L

0
[|(ez × ft, Ft2,j)|2 + |(ez × ft, δFt2,j)|2] (Young’s inequality)

≲ 2
∑
j

∫ L

0
|(ez × ft, Ft2,j)|2 (linearization)

≤ 2

∫ L

0
∥ez × ft∥2 dz = 2

∫ L

0
∥ft∥2 dz .

Term 2: (1ϵ g3, divGt2,j) contributing to s1. The presence of the additional factor is now
essential.∑

j

β−2
j

∫ L

0
|(1
ϵ
g3,div(Ft2,j + δFt2,j))|2

≤ 2
∑
j

∫ L

0
β−2
j [|(1

ϵ
g3, div(Ft2,j))|2 + |(1

ϵ
g3,div(δFt2,j))|2] (Young’s lemma)

≲ 2
∑
j

β−2
j

∫ L

0
|(1
ϵ
g3, div(Ft2,j))|2 (linearization)

≲ 2
∑
j

β−2
j λj

∫ L

0
|(1
ϵ
g3, λ

1
2
j ϕj))|

2 (divFt2,j = −λjϕj)

≲ 2
∑
j

∫ L

0
|(1
ϵ
g3, λ

1
2
j ϕj))|

2 (β−2
j λj ≲ 1)

≤ 2∥1
ϵ
g3∥2 ≲ ∥g3∥2 .

5.4.1 Final Result

We arrive at our final result.
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THEOREM 2
Assume that ϵ = 1 + δϵ where the perturbation δϵ is sufficiently5 small in L∞-norm, and that it
vanishes near the boundary6. There exists then a constant C > 0 such that

∥E∥2 + ∥H∥2 ≤ CL2
(
∥∇× E − iωH∥2 + ∥∇×H + iωϵE∥2

)
for all (E,H) from the domain of the operator.

Proof: We have proved the theorem under the simplifying assumption of distinct (simple)
eigenvalues β2i of the homogeneous waveguide problem, see Assumption A in Appendix A. Extending
the proof to the case of multiple eigenvalues requires techniques discussed in Appendix A.

6 Conclusions

We have extended the stability analysis for homogeneous electromagnetic waveguides from [5] to the
case of a non-homogeneous waveguide with a perturbed dielectric constant ϵ = 1+ δϵ. The analysis
was done using the classical (formal) perturbation theory for eigenproblems involving a self-adjoint
operator under the assumption of ‘smallness’ of perturbation δϵ but with no assumptions on its
derivatives. In particular, the results hold for discontinuous perturbations δϵ and are therefore
applicable to the case of step-index fibers.
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A Perturbation Analysis Continued

In this section we provide additional results obtained from the perturbation analysis. The results
below require the perturbation analysis for the adjoint F and G problems that follows the same
lines as for the E and H problems. We skip the details and present only the final results that were
used in Section 4.

A.1 Computation of Scaling Coefficients c, d, θ, ν

A.1.1 First Family of Eigenvectors

We first investigate perturbations of E,F eigenvectors ∇ × ψi and the corresponding H,G eigen-
vectors ∇ψi.

Perturbations of coefficients c, d. Let ∇× ψ + δE and ∇ψ + δH be the perturbed E and H
eigenvectors corresponding to a perturbed eigenvalue β + δβ. Here ψ is a Neumann eigenvector of
the Laplacian, −∆ψ = µψ, and β2 = ω2 − µ. The perturbed coefficient c + δc is defined by the
relation:

(c+ δc)(∇ψ + δH) =
β − δβ

ωβ2
[
−∇ curl(∇× ψ + δE) + ω2ez × (1 + δϵ)(∇× ψ + δE)

]
.

We first compute the value of c. Testing with ∇ψ, we get,

c =
1

ωβ
([−∇ (−∆ψ)︸ ︷︷ ︸

=µψ

+ω2(ez × (∇× ψ)︸ ︷︷ ︸
=∇ψ

],∇ψ) =
1

ωβ
[−µ+ ω2]︸ ︷︷ ︸

=β2

=
β

ω
.

Linearizing both sides, and testing with ∇ψ, we get,

δc (∇ψ,∇ψ)︸ ︷︷ ︸
=1

+c (δH,∇ψ)︸ ︷︷ ︸
=0

= − δβ
ωβ2 (−∇ curl∇× ψ + ω2∇ψ,∇ψ)︸ ︷︷ ︸

=β2

+ 1
ωβ (−∇ curl δE + ω2ez × δE,∇ψ)︸ ︷︷ ︸

=0

+ 1
ωβω

2 (δϵ ez × (∇× ψ),∇ψ)︸ ︷︷ ︸
=(δϵ∇ψ,∇ψ)

.

In the end,

δc = −δβ
ω

+
ω

β
(δϵ∇ψ,∇ψ) .

Similarly, perturbation δd is defined by the relation:

(d+ δd)(∇ψ + δG) ≈ β − δβ

ωβ2
[
−∇× ((1− δϵ) div(∇× ψ + δF )) + ω2(ez × (∇× ψ + δF ))

]
.

This yields:
d =

ω

β
and δd = −δβ ω

β2
.

24



Perturbations of coefficients entering the decoupled system of equations. We are now
ready to compute the perturbation of coefficient

θ = −ωβ
2c

[1 + cd] = −ωβ
2
[
1

c
+ d] = −ω2 .

We have:
δθ = −ω

2
[
1

c
+ d] δβ +

ωβ

2

1

c2
δc− ωβ

2
δd

= −ω
2

β
δβ +

ω3

2β
[−δβ

ω
+
ω

β
(δϵ∇ψ,∇ψ)] +

ω2

2β
δβ

= −ω
2

β
δβ +

ω4

2β2
(δϵ∇ψ,∇ψ) .

Finally, using formula (3.9) for δβ2 and utilizing δβ2 = 2β δβ, we obtain,

δθ = − ω4

2β2
(δϵ∇× ψ,∇× ψ) +

ω4

2β2
(δϵ∇ψ,∇ψ) = 0 .

We proceed with the coefficient

ν = −ωβ
2d

[1 + cd] = −ωβ
2
[
1

d
+ c] = −β2 .

We have:
δν = −ω

2
[
1

d
+ c] δβ +

ωβ

2

1

d2
δd− ωβ

2
δc

= −β δβ − β

2
δβ − ωβ

2
[−δβ

ω
+
ω

β
(δϵ∇ψ,∇ψ)]

= −β δβ − ω2

2
(δϵ∇ψ,∇ψ) .

Using again formula (3.9) for δβ2, we obtain,

δν = −ω
2

2
(δϵ∇× ψ,∇× ψ)− ω2

2
(δϵ∇ψ,∇ψ) = −ω2(δϵ∇ψ,∇ψ) .

A.1.2 Second Family of Eigenvectors

Next, we record the results for similar computations for perturbations of the second family of E,F
eigenvectors: ∇ϕj and the corresponding H,G eigenvectors ∇× ϕj .

c = −ω
β

d = −β
ω

θ = −ωβ
2c

[1 + cd] = β2

ν = −ωβ
2d

[1 + cd] = ω2 .

The perturbations are as follows:

δc =
ω

β2
δβ − ω

β
(δϵ∇ϕ,∇ϕ)

δd =
δβ

ω
− λ2

ωβ
(δϵ ϕ, ϕ)
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and,

δθ = β δβ +
β3

2ω
δc− ωβ

2
δd

= β δβ − β2

2
(δϵ∇× ϕ,∇× ϕ) +

λ2

2
(δϵ ϕ, ϕ)

= λ2(δϵ ϕ, ϕ)

δν =
ω2

β
δβ +

ω3

2β
δd− ωβ

2
δc

=
ω2

β
δβ − ω2λ2

2β2
(δϵ ϕ, ϕ) +

ω2

2
(δϵ∇ϕ,∇ϕ)

= ω2(δϵ∇ϕ,∇ϕ) .

The results for both families are summarised in Table 4.

Table 4: Coefficients δ and ν for the two familes of eigenvectors

First family Second family

θ + δθ −ω2 −β2 − ω2(δϵ∇ψ,∇ψ)

ν + δν β2 + λ2(δϵ ϕ, ϕ) ω2(1 + (δϵ∇ϕ,∇ϕ))

A.2 Are the Perturbed Eigenvalues β2 + δβ2 Real?

We recall the main results concerning the E eigenvalues for the homogeneous waveguide obtained
in [5].

Lemma 5
Let (λi, ϕi) and (µjψj) denote the Dirichlet and Neumann eigenpairs of the Laplacian in domain
D. The eigenvalues β2i are classified into the following three families.

(a) β2 = ω2 − µj with µj distinct from all λi. The corresponding eigenvectors are curls:

E = ∇× ψj ,

with multiplicity of β2 equal to the multiplicity of µj.

(a) β2 = ω2 − λi with λi distinct from all µj. The corresponding eigenvectors are gradients:

E = ∇ϕi ,

with multiplicity of β2 equal to the multiplicity of λi.
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(c) β2 = ω2 − µj = ω2 − λi for µj = λi. The corresponding eigenvectors are linear combinations
of curls and gradients:

E = a∇× ψj + b∇ϕi , a, b ∈ C ,

with multiplicity of β2 equal to the sum of multiplicities of µj and λi.

Analogous results hold for the H eigenproblem (2.11).

In Section 3, under the assumption of distinct (simple) eigenvalues, we derived the following
formula for the perturbation of E eigenvalues and eigenvectors:

(β2i − β2k)(δEi, Ek) + δβ2i δik = ω2(δϵEi, Ek)−
(
∇(δϵdivEi), Ek

)
+
(
∇ div(δϵEi), Ek

)
. (A.1)

For k = i, we obtain the formula for the perturbation δβ2i :

δβ2i = ω2(δϵEi, Ei)−
(
∇(δϵdivEi), Ei

)
+
(
∇div(δϵEi), Ei

)
. (A.2)

The case of multiple eigenvalues will be discussed momentarily. We investigate now whether the
perturbed eigenvalues remain real. The first term on the right-hand side of (A.2) is always real.
The second term is real as well as,

−
(
∇(δϵdivEi), Ei

)
=
(
δϵ divEi,divEi

)
.

Assumption D: Perturbation δϵ is zero near the boundary ∂D.

We use the assumption to rewrite the third term as:(
∇ div(δϵEi), Ei

)
= −

(
div(δϵEi),divEi

)
.

Consider now the three cases discussed in Lemma 5. In the first case, Ei = ∇ × ψi, the term is
zero. For the second case, Ei = ∇ϕi, the term is:

−
(
div(δϵEi),divEi

)
= −

(
div(δϵ∇ϕi),−λiϕi

)
= λi

(
div(δϵ∇ϕi), ϕi

)
= −λi(δϵ∇ϕi,∇ϕi)

which is real as well. This concludes the analysis for the case when Dirichlet and Neumann eigen-
values of the Laplace operator are distinct.

Multiple Eigenvalues

The third case is the most difficult to analyze as we are dealing with a multiple eigenvalue. The
standard perturbation theory does not cover the case. Formula (A.2) is invalid for the case of
a multiple eigenvalue because the right-hand side may depend upon the choice of an eigenvector
from the eigenspace. Additionally, formula (A.1) does not allow to compute components of δEi
corresponding to other eigenvectors from the same eigenspace. Instead, we have to restrict the
original perturbed operator to the eigenspace corresponding to the multiple eigenvalue, and consider
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the perturbed eigenvalue problem directly. Let us assume for simplicity that both λ = µ are simple
eigenvalues, i.e., we are dealing with a double eigenvalue β2 = ω2−λ = ω2−µ. Recall the linearized
operator:

AϵE := ∇× curlE − ω2ϵE −∇(1ϵ div(ϵE))

≈ ∇× curlE − ω2(1 + δϵ)E −∇((1− δϵ) div((1 + δϵ)E))

≈ ∇× curlE − ω2E −∇(divE)︸ ︷︷ ︸
=AE

+∇(δϵdivE)−∇(div(δϵ)E)− ω2δϵE︸ ︷︷ ︸
δAE

.

Let ψ, ϕ be Neumann and Dirichlet Laplace eigenvectors corresponding to a common eigenvalue
µ = λ, and let E1 = ∇ × ψ and E2 = ∇ϕ be the two eigenvectors spanning the two-dimensional
eigenspace corresponding to eigenvalue β2 = ω2 − λ of operator A. We have:

δAE1 = −∇
(
div(δϵE1)

)
− ω2δϵE1

δAE2 = (∇(δϵdiv∇ϕ)︸ ︷︷ ︸
=−λ∇(δϵϕ)

−
(
∇ div(δϵ∇ϕ)

)
− ω2δϵ∇ϕ .

The perturbed operator restricted to the eigenspace in terms of its spectral components looks as
follows.

(
(δAE1, E1) (δAE1, E2)

(δAE2, E1) (δAE2, E2)

)
=


−ω2 (δϵ∇× ψ,∇× ψ)︸ ︷︷ ︸

=:a

(λ− ω2) (δϵ∇× ψ,∇ϕ)︸ ︷︷ ︸
=:c

−ω2 (δϵ∇× ψ,∇ϕ)︸ ︷︷ ︸
=:c

(λ− ω2) (δϵ∇ϕ,∇ϕ)︸ ︷︷ ︸
=:b

−λ2 (δϵϕ, ϕ)︸ ︷︷ ︸
=:d


Let further simplify the matrix notation to(

A B
C D

)
.

The characteristic equation for perturbed eigenvalues δλ reads as follows.

(δβ2)2 − (δβ)(A+D) + (AD −BC) = 0

with the discriminant

∆ = (A+D)2 − 4(AD −BC) = (A−D)2 + 4BC .

This gives:
∆ = (−ω2a− (λ− ω2)b+ λ2d)2 − 4ω2(λ− ω2)c2

= (ω2a+ (λ− ω2)b− λ2d)2 − 4ω2(λ− ω2)c2 .

Can discriminant ∆ be negative ? It is certainly positive for λ ≤ ω2. In other words, the propagating
modes remain propagating or become purely evanescent. However, for λ > ω2, it is difficult to
exclude the possibility of the discriminant becoming negative7.

7Among other things, we tried to compute the derivative d∆/dλ at λ = ω2, but we could not show that it must
be positive.
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The analysis of multiple eigenvalues can now easily be extended to the case of multiple Neumann
and Dirichlet eigenvalues for the Laplace operator. For simplicity, let us consider only the case of
double eigenvalues, relevant for the cylindrical waveguide and the step-index fiber. Recall again the
formula for the perturbed operator,

(δAE,F ) = −(δϵdivE,divF ) +
(
div(δϵE), divF

)
− ω2(δϵE, F ) .

In the case of multiple Neumann eigenvalue µ, E1 = ∇× ψ1, E2 = ∇× ψ2, and we obtain

(
(δAE1, E1) (δAE1, E2)

(δAE2, E1) (δAE2, E2)

)
= −ω2


(δϵ∇× ψ1,∇× ψ1)︸ ︷︷ ︸

=:A

(δϵ∇× ψ1,∇× ψ2)︸ ︷︷ ︸
=:B

(δϵ∇× ψ2,∇× ψ1)︸ ︷︷ ︸
=:B

(δϵ∇× ψ2,∇× ψ2)︸ ︷︷ ︸
=:D


Upon inspection, we see that the discriminant of the characteristic equation, is always positive.

δ = (A+D)2 − 4(AD −B2) = (A−D)2 + 4B2 .

For the step-index fiber, B = 0, and A = D. The perturbed eigenvalue remains a double eigenvalue.

In the case of multiple Dirichlet eigenvalue λ, E1 = ∇ϕ1, E2 = ∇ϕ2, and we obtain

(δAEi, Ej) = (λ− ω2)(δϵ∇ϕi,∇ϕj)− λ2(δϵϕi, ϕj) i, j = 1, 2 .

For the step-index fiber, the off-diagonal terms are zero, and the diagonal terms are equal. The
perturbed eigenvalue remains double. One can show in a similar way that, in the general case,
perturbed eigenvalues δβ2 remain real.

Lemma 6
Assume that the perturbation δϵ vanishes near the boundary ∂D. In the first two cases discussed in
Lemma 5 and in the third case for λ ≤ ω2, the perturbed eigenvalues β2i + δβ2i are always real. In
the third case, for λ > ω2, they may be complex.
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