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Abstract. This work formulates a new approach to reduced modeling of parameterized, time-
dependent partial differential equations (PDEs). The method employs Operator Inference, a scientific
machine learning framework combining data-driven learning and physics-based modeling. The para-
metric structure of the governing equations is embedded directly into the reduced-order model, and
parameterized reduced-order operators are learned via a data-driven linear regression problem. The
result is a reduced-order model that can be solved rapidly to map parameter values to approximate
PDE solutions. Such parameterized reduced-order models may be used as physics-based surrogates
for uncertainty quantification and inverse problems that require many forward solves of parametric
PDEs. Numerical issues such as well-posedness and the need for appropriate regularization in the
learning problem are considered, and an algorithm for hyperparameter selection is presented. The
method is illustrated for a parametric heat equation and demonstrated for the FitzHugh-Nagumo
neuron model.
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1. Introduction. Model reduction seeks to alleviate the computational burden
of large-scale numerical simulations of dynamical systems by constructing reduced-
order models (ROMs) that accurately capture the system dynamics, but which are
much less expensive to solve than the high-fidelity models inherent in applications.
The challenge is to generate ROMs from limited training data that respond well to
changes in the scenario parameters that define the governing dynamics [9]. Such
parametric ROMs are critical for enabling outer-loop applications such as design, in-
verse problems, optimization, and uncertainty quantification. Furthermore, as high-
fidelity simulations become increasingly sophisticated and simulation data becomes
more available, there is a growing need for non-intrusive model reduction methods,
which aim to learn ROMs primarily from simulation data and/or outputs, as op-
posed to making a direct reduction of the underlying high-fidelity code that produced
them [17]. Non-intrusive approaches combine data-driven learning with physics-based
modeling in a way that enables both flexibility and robustness. This paper presents
a framework for learning parametric ROMs in a non-intrusive fashion.

Adapting non-intrusive model reduction strategies to the parametric setting is
an active area of research. One major model reduction strategy, Dynamic mode de-
composition (DMD) [14, 40], learns a low-dimensional linear mapping based on state
space data, approximating the eigenstates of the infinite-dimensional Koopman oper-
ator. The work in [43] targets parametric problems by incorporating DMD with an
active subspace strategy to reduce the dimensionality of the parameter space. Meth-
ods based on the Loewner framework [2, 3], another common non-intrusive approach
to model reduction, build a ROM based on input-output measurements and transfer
functions. Loewner methods have been generalized to parameterized linear systems
by introducing additional degrees of freedom in the construction of the reduced-order
transfer function to account for parametric dependencies [21]. Recent work in [11]
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blends ideas from classical model reduction with deep learning to construct a mapping
from parametric inputs to state outputs. Deep learning approaches to model reduc-
tion aim to benefit from the flexibility of representing the state on a low-dimensional
but nonlinear manifold [26].

Equation discovery methods, in which the governing equations of a dynamical
system are learned from data, share some characteristics with non-intrusive model
reduction methods. One class of equation discovery approaches uses sparse regression
to identify the underlying PDEs from a set of data [39] or the key terms in a dy-
namical system within a library of potential nonlinear terms [13, 36, 38]. In a similar
vein, the work in [4, 27] combines machine learning techniques with manifold learning
algorithms to learn a macroscopic model for long-wavelength behavior correspond-
ing to fine-scale measurement data. Each of these methods relies on an appropriate
candidate library for the terms of the unknown equations, selecting the best combi-
nation based on high-dimensional data. In contrast, model reduction approaches seek
a low-dimensional representation of a system, hence the learning is typically done in
a reduced space.

Operator Inference (OpInf), introduced in [34], is a non-intrusive framework
for model reduction of systems with polynomial nonlinearities. As with other non-
intrusive approaches, the method does not require intrusive access to source code,
instead inferring the ROM solely from initial conditions, simulation snapshots, and
corresponding inputs. Known governing equations motivate the form of the ROM,
and the operators defining the ROM are chosen by minimizing a data-driven residual
in a reduced state space. The associated learning problem is linear, dense, relatively
small, and has a closed-form solution.

Since its introduction, the OpInf framework has been expanded in several ways:
transforming variables (lifting) to induce the requisite polynomial structure [35, 42];
approximating nonpolynomial nonlinearities via the discrete empirical interpolation
method (DEIM) [8]; regularizing the learning problem to enable performance on large-
scale systems [22, 29]; re-projecting trajectories to exactly recover intrusive ROMs
[33]; and accounting for algebraic equations arising from lifting transformations [24],
to name a few. In these OpInf-based methods, parametric dependencies are addressed
by learning separate ROMs for individual parameter samples, then interpolating either
their reduced operators [33, 34] or their outputs [24]. In this paper, we show that
the parametric structure of the governing equations of interest can be built directly
into the OpInf regression problem, circumventing the need for interpolation, if the
parametric dependencies have an affine form. Our contribution enables ROMs for
affine parametric systems with multiple parameters since interpolation in more than
one or two parameter dimensions quickly becomes challenging. Affine parametric
problems have been studied frequently in the context of reduced basis methods [20,
37, 48, 49], in which the preservation of the affine parametric structure by projection
plays a key role [9]. The parametric structure preservation was also exploited in a
recent OpInf work applied to the shallow water equations in non-traditional form [50].
The approach presented here includes the following key contributions: 1) formulating a
general framework for parametric OpInf in a time-continuous setting, 2) implementing
a robust regularization strategy in the learning problem, and 3) establishing a priori
conditions for determining the well-posedness of the inference procedure.

The remainder of the paper is organized as follows. Section 2 establishes the
general methodology; Section 3 extends the framework to systems of PDEs; Section 4
details the computational aspects of solving the parametric OpInf problem; Section 5
presents two numerical examples; and Section 6 concludes the paper.
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2. Non-intrusive Parametric Model Reduction. In subsection 2.1, we show
how the form of an appropriate ROM can be determined directly from the form of
certain PDEs; subsection 2.2 presents the OpInf approach for learning such ROMs
from data and system structure. We also introduce a heat equation example for which
numerical results are reported in subsection 5.1.

2.1. Projection-based Reduced-order Models of Parametric PDEs. We
target systems governed by parametric PDEs that are polynomial in state, which
includes linear PDEs as well as a large class of nonlinear PDEs. Let Ω ⊂ Rdx be an
open, bounded set with Lipschitz continuous boundary ∂Ω = Γ∪(∂Ω\Γ) and outward-
pointing normal η ∈ Rdx . For the time domain [t0, tf ] ⊂ R and the parameter domain
P ⊂ Rdµ , we consider the initial/boundary-value problem

∂u

∂t
= F(u;µ), x ∈ Ω, t ∈ (t0, tf ], µ ∈ P,(2.1a)

u(x, t0;µ) = u0(x;µ), x ∈ Ω, µ ∈ P,(2.1b)

u(x, t;µ) = 0, x ∈ Γ, t ∈ [t0, tf ], µ ∈ P,(2.1c)

η · ∇xu(x, t;µ) = 0, x ∈ ∂Ω \ Γ, t ∈ [t0, tf ], µ ∈ P,(2.1d)

where the unknown state variable u(·, t;µ) is contained in a separable Hilbert space
V of real-valued functions satisfying the boundary conditions (2.1c)–(2.1d) with dual
space V∗, and F : V × P → V∗ is a spatial differential operator that depends on the
free parameter µ ∈ P. We assume (2.1a)–(2.1d) has a unique solution u in at least
the weak sense, meaning〈

v,
∂u

∂t

〉
= 〈v,F(u;µ)〉 for all v ∈ V, t ∈ [t0, tf ], µ ∈ P,(2.2)

where 〈·, ·〉 is the duality pairing of V with V∗.
We consider the setting in which F has a polynomial structure with respect to the

state u and its spatial derivatives. Many PDEs enjoy this structure or can be written
in this form through a change of variables [35]. For brevity we consider a quadratic
form, but higher-order (e.g., cubic) terms may also be included, as we will see later
in Example 3.1. Specifically, suppose

F(u;µ) = C(µ) +A(u;µ) +H(u, u;µ),(2.3a)

where C : P → V∗, and where A : V ×P → V∗ and H : V × V ×P → V∗ are linear in
each of their state arguments. Furthermore, assume that the operators C, A, and H
exhibit the following affine decompositions with respect to the parameter µ:

C(µ) =

qc∑
p=1

θ(p)
c (µ)C(p), A(u;µ) =

qA∑
p=1

θ
(p)
A (µ)A(p)(u),

H(u, v;µ) =

qH∑
p=1

θ
(p)
H (µ)H(p)(u, v),

(2.3b)

where C(p) ∈ V∗, A(p) : V → V∗, H(p) : V × V → V∗, and the scalar-valued functions

θ
(p)
c , θ

(p)
A , θ

(p)
H : P → R are such that the sets {θ(p)

c }qcp=1, {θ(p)
A }

qA
p=1, and {θ(p)

H }
qH
p=1 are

each linearly independent. Note that the operators C(p), A(p),and H(p) are indepen-
dent of the parameter µ. The affine structure either occurs naturally in the PDE or
can be created via approximation with the empirical interpolation method [7].
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A projection-based ROM of (2.1a)–(2.1d) with F as in (2.3a)–(2.3b) retains the
affine-parametric polynomial structure of the system [9, 19]. Let {vj}∞j=1 ⊂ V be an
orthonormal set such that the solution u may be expressed with the expansion

u(x, t;µ) =

∞∑
j=1

ûj(t;µ)vj(x).(2.4)

Since 〈vi, vj〉 = δij , the coefficients satisfy ûj(t;µ) = 〈vj , u(·, t;µ)〉. A reduced model
with r ∈ N degrees of freedom consists of time evolution equations for the coefficients
û1(t;µ), . . . , ûr(t;µ); the approximate ROM solution ŭ of (2.1a)–(2.1d) is then given
by the sum (2.4), truncated to r terms:

ŭ(x, t;µ) =

r∑
j=1

ûj(t;µ)vj(x).(2.5)

Note that ŭ is confined to the finite-dimensional subspace span({v1, . . . , vr}) ⊂ V. By
substituting ŭ for u in (2.2) with test function v = vi, and using the form of F from
(2.3a)–(2.3b), we obtain

dûi
dt

=

qc∑
p=1

θ(p)
c (µ)

〈
vi, C(p)(µ)

〉
+

qA∑
p=1

θ
(p)
A (µ)

r∑
j=1

〈
vi,A(p) (vj ;µ)

〉
ûj

+

qH∑
p=1

θ
(p)
H (µ)

r∑
j=1

r∑
k=1

〈
vi,H(p) (vj , vk;µ)

〉
ûj ûk.

(2.6)

Collecting (2.6) for i = 1, . . . , r yields a uniquely-defined system of ordinary differ-
ential equations (ODEs) with state vector û(t;µ) = [û1(t;µ) · · · ûr(t;µ)]> ∈ Rr,

d

dt
û(t;µ) =

(
qc∑
p=1

θ(p)
c (µ)ĉ(p)

)
+

(
qA∑
p=1

θ
(p)
A (µ)Â(p)

)
û(t;µ)

+

(
qH∑
p=1

θ
(p)
H (µ)Ĥ(p)

)(
û(t;µ) �̂ û(t;µ)

)
,

(2.7a)

û(t0;µ) =
[
〈v1, u0(µ)〉 · · · 〈vr, u0(µ)〉

]>
∈ Rr,(2.7b)

where ĉ(p) ∈ Rr, Â(p) ∈ Rr×r, Ĥ(p) ∈ Rr×(r+1
2 ), and �̂ denotes a compact Khatri-Rao

product, i.e., u �̂u extracts the unique components of the Khatri-Rao product of u
with itself (see Appendix A). Note that (2.7a) and (2.3a)–(2.3b) are both quadratic in
their respective state and affine-parametric with respect to µ, with the same functions

θ
(p)
c , θ

(p)
A , and θ

(p)
H in the affine expansions.

The system (2.7a)–(2.7b) is a ROM for (2.1a)–(2.1d) in which the boundary
conditions are embedded through the basis functions. The quality of the ROM as
a surrogate for (2.1a)–(2.1d) depends heavily on the basis {vj}rj=1, but the form of
the equations is the same for any choice of basis. In subsection 2.2, we leverage
this property to develop a procedure for learning such a model without explicitly
evaluating the terms in (2.6).
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Remark 2.1. As written above, (2.7a) is the most general form of a quadratic
ODE with affine-parametric structure as in (2.3b). However, as we will see in ex-
amples, the constant, linear, and quadratic terms are not always present in practice,
and when they are the number of terms in the affine expansions (i.e. qc, qA, and qH)
tends to be small. In other words, projection-based ROMs of the form (2.7a) have the
same number of nonzero terms as the original PDE (2.1a).

Example 2.2 (Heat Equation). Consider the one-dimensional spatial domain
Ω = (0, 1) ⊂ R and the parameter domain P = [.01, 2.5]× [0.1, 2.5] ⊂ R2. For a fixed
x̄ ∈ Ω, let χ[0,x̄) and χ[x̄,1] be indicator functions over Ω,

χ[0,x̄)(x) =

{
1, 0 < x < x̄,

0, x̄ ≤ x < 1,
χ[x̄,1](x) =

{
0, 0 < x < x̄,

1, x̄ ≤ x < 1.

The following equation models the diffusion of heat through a one-dimensional rod
composed of two materials with distinct thermal diffusivities µ = (α, β) ∈ P, with the
temperature prescribed at each end of the rod:

∂u

∂t
=
(
αχ[0,x̄) + βχ[x̄,1]

) ∂2u

∂x2
x ∈ Ω, t ∈ (t0, tf ], µ ∈ P,(2.8a)

u(x, t0;µ) = u0(x;µ), x ∈ Ω, µ ∈ P,(2.8b)

u(0, t;µ) = u(1, t;µ) = 0, t ∈ [t0, tf ], µ ∈ P.(2.8c)

The underlying Hilbert space containing the state u is V = H2(Ω) ∩ H1
0 (Ω), the set

of twice weakly differentiable functions satisfying the homogeneous Dirichlet boundary
conditions (2.8c). In the language of (2.3a)–(2.3b), C ≡ H ≡ 0 and

A(u;µ) = θ
(1)
A (µ)A(1)(u) + θ

(2)
A (µ)A(2)(u)

with θ
(1)
A (µ) = α, θ

(1)
A (µ) = β, A(1)(u) = χ[0,x̄)

∂2u
∂x2 , and A(2)(u) = χ[x̄,1]

∂2u
∂x2 . A

projection-based ROM for this problem as in (2.7a) has the form

d

dt
û(t;µ) =

(
αA(1) + βA(2)

)
û(t;µ),(2.9)

with the initial condition as in (2.7b).

2.2. Affine Operator Inference for PDEs. Constructing ĉ(p), Â(p), and Ĥ(p)

in the ODE system (2.7a) by evaluating the terms of (2.6) is an inherently intrusive
process, requiring explicit access to the differential operators C(p), A(p), and H(p).
In this section, we construct affine-parametric Operator Inference to learn the ROM
through a data-driven optimization problem, given a basis and observations of the
solution u.

Consider (2.7a) with fixed, known integers qc, qA, qH ≥ 0 and affine coefficient

functions θ = {θ(1)
c , . . . , θ

(qH)
H }, which define the polynomial and affine-parametric

structure of the system. Define

d

dt
û(t;µ) = F(Ô; û, t, θ, µ) =

(
qc∑
p=1

θ(p)
c (µ)ĉ(p)

)
+

(
qA∑
p=1

θ
(p)
A (µ)Â(p)

)
û(t;µ)

+

(
qH∑
p=1

θ
(p)
H (µ)Ĥ(p)

)(
û(t;µ) �̂ û(t;µ)

)
,

(2.10a)
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where the as yet unknown operator matrix Ô is the concatenation

Ô =
[

ĉ(1) · · · ĉ(qc) Â(1) · · · Â(qA) Ĥ(1) · · · Ĥ(qH)
]
∈ Rr×q(r),(2.10b)

with column dimension q(r) = qc+qAr+qH
(
r+1

2

)
. Equipped with the initial condition

(2.7b), (2.10a)–(2.10b) describe the family of ROMs with the same polynomial and
parametric form as (2.7a), with particular realizations determined by the operator

matrix Ô. The goal is to choose Ô such that the corresponding ROM accurately
captures the dynamics of the governing PDE (2.1a)–(2.1d) for all µ ∈ P.

We learn Ô by solving a data-driven least-squares regression problem. Suppose
we can sample the solution of (2.1a)–(2.1d) at s parameter values {µi}si=1 ⊂ P and
K times {tj}Kj=1 ⊂ [t0, tf ]. We define the loss function L : Rr×q(r) → R associated
with these solution samples to be the sum of the residuals of (2.10a),

L(Ô) =
s∑

i=1

K∑
j=1

∥∥∥∥F(Ô; û, tj , θ, µi)−
d

dt
û(t;µi)

∣∣∣
t=tj

∥∥∥∥2

2

,(2.11)

where û(t;µ) = [〈v1, u(·, t;µ)〉 · · · 〈vr, u(·, t;µ)〉]> ∈ Rr as before, and with F and Ô
as in (2.10a)–(2.10b). To write the minimization of (2.11) in a standard form, define
the matrices

Û(µi) =
[

û(t1;µi) · · · û(tK ;µi)
]
∈ Rr×K ,

˙̂
U(µi) =

[
d
dt û(t;µi)

∣∣∣
t=t1

· · · d
dt û(t;µi)

∣∣∣
t=tK

]
∈ Rr×K ,

which group the projected solution and the associated time derivatives for each pa-
rameter sample, and define the row vectors

θc(µi) =
[
θ

(1)
c (µi) · · · θ

(qc)
c (µi)

]
∈ R1×qc ,

θA(µi) =
[
θ

(1)
A (µi) · · · θ

(qA)
A (µi)

]
∈ R1×qA ,

θH(µi) =
[
θ

(1)
H (µi) · · · θ

(qH)
H (µi)

]
∈ R1×qH ,

which encode the affine parametric dependencies of C, A, and H, respectively. Finally,
define the data matrix

D =
[

Dc DA DH

]

=


θc(µ1)⊗ 1K θA(µ1)⊗ Û(µ1)> θH(µ1)⊗

(
Û(µ1) �̂ Û(µ1)

)>
...

...
...

θc(µs)⊗ 1K θA(µs)⊗ Û(µs)
> θH(µs)⊗

(
Û(µs) �̂ Û(µs)

)>
 ,

(2.12)

where 1K ∈ RK is a column vector of unity of length K. We then have

pOpInf: min
Ô
L(Ô) = min

Ô

∥∥∥DÔ> −R>
∥∥∥2

F
,(2.13)

where D ∈ RsK×q(r), Ô ∈ Rr×q(r), and R = [
˙̂
U(µ1) · · · ˙̂

U(µs)] ∈ Rr×sK . We call
(2.13) the affine-parametric Operator Inference problem (pOpInf). Note that (2.13)
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is a linear least-squares problem which decouples by the columns of Ô>, meaning the
dynamics for each ûi are learned independently [34].

If the data matrix D has full column rank, then (2.13) has a unique closed-
form solution [12, 18, 45]. However, D is susceptible to rank deficiencies due to its
Kronecker block structure. Theorem 2.3 establishes necessary conditions for the well-
posedness of the pOpInf problem (2.13) and sufficient conditions in the monomial case
(e.g., C = A = 0 but H 6= 0 so that D = DH).

Theorem 2.3. Let Θc ∈ Rs×qc , ΘA ∈ Rs×qA , and ΘH ∈ Rs×qH be the matrices
with entries

[Θc]ij = θ(j)
c (µi), [ΘA]ij = θ

(j)
A (µi), [ΘH ]ij = θ

(j)
H (µi),(2.14)

that is, the ith row of Θc is θc(µi), the ith row of ΘA is θA(µi), and the ith row of
ΘH is θH(µi). If any of Θc, ΘA, or ΘH do not have full column rank, then the data
matrix D = [Dc DA DH ] defined in (2.12) is rank deficient. Furthermore, if either
of the block matrices

ÛA =


Û(µ1)>

...

Û(µs)
>

 , ÛH =


(
Û(µ1) �̂ Û(µ1)

)>
...(

Û(µs) �̂ Û(µs)
)>


do not have full column rank, then neither does D. On the other hand, if ΘA and
each Û(µi)

> (i = 1, . . . , s) have full column rank, then so does DA; and if ΘH and

each (Û(µi) �̂ Û(µi))
> have full column rank, then so does DH .

Proof. Note that Θc = Dc, the leftmost block of D. Therefore, if Θc does not
have full column rank, then D has linearly dependent columns. Lemma B.1 gives
the result for the remaining cases: if ΘA or ÛA do not have full column rank, apply
Lemma B.1 with yi = θA(µi)

>, Zi = Û(µi)
>, and W = DA to show DA is rank

deficient; a similar argument holds for ΘH and ÛH , showing DH is rank deficient.
The results to the converse also hold by Lemma B.1.

Selecting appropriate parameter samples is an important issue for all parametric
model reduction methods [9]. Theorem 2.3 provides numerically relevant guidance for
parameter selection in the context of (2.13): for a set of parameter values {µi}si=1,
the (small) matrices Θc, ΘA, and ΘH can be explicitly formed and checked for rank
deficiencies without any information about the solution trajectories. If any of the
matrices are unsatisfactorily conditioned, different parameter values must be chosen
at which to sample the solution. Note that if s < max{qc, qA, qH}, then the problem
is guaranteed to be ill-posed. Section 4 further addresses numerical issues that may
arise from other sources of poor conditioning.

Example 2.4 (Heat Equation). Recall the problem introduced in Example 2.2.
Given parameter samples {µi = (αi, βi)}si=1, we learn a ROM of the form (2.9) by
solving the pOpInf problem (2.13) with operator and data matrices

Ô =
[

Â(1) Â(2)
]
∈ Rr×2r, D =


α1Û(µ1)> β1Û(µ1)>

...
...

αsÛ(µs)
> βsÛ(µs)

>

 ∈ RsK×2r.
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Per Theorem 2.3, the rank of the data matrix D depends on each Û(µi) and the matrix

ΘA =


θ

(1)
A (µ1) θ

(2)
A (µ1)

...
...

θ
(1)
A (µs) θ

(2)
A (µs)

 =


α1 β1

...
...

αs βs

 ∈ Rs×2.

In particular, if ΘA does not have full column rank, then the data matrix D will be
rank deficient. Our goal, then, is to choose s ≥ 2 parameter samples such that ΘA

has a small condition number.

Reduced-order models learned through pOpInf and those constructed via intrusive
projection, i.e., by explicitly evaluating (2.6), are related in the following sense.

Theorem 2.5. Let u be the unique solution of (2.1a)–(2.1d), where the differen-
tial operator F has the quadratic, affine-parametric form described in (2.3a)–(2.3b).
Suppose there exists an orthonormal set {vj}rj=1 ⊂ V, and let {µi}si=1 ⊂ P be a finite
set of parameter samples. Define the loss function

L (Ô) =

s∑
i=1

∫ tf

t0

∥∥∥∥F(Ô; û, t, θ, µi

)
− d

dt
û(t;µi)

∥∥∥∥2

2

dt,(2.15)

where û(t;µ) = [〈v1, u(·, t;µ)〉 · · · 〈vr, u(·, t;µ)〉]> ∈ Rr, and with F and Ô given by
(2.10a)–(2.10b). Consider the following conditions.

1. There exist functions ûj : [t0, tf ] × P → R, j = 1, . . . , r, such that the finite
sum representation (2.5) is exact for all x ∈ Ω, t ∈ [t0, tf ], and µ ∈ {µi}si=1,
i.e., there is no truncation error at the sample parameter values.

2. For i = 1, . . . , s, there exist times {τi,j}Kj=1 ⊂ [t0, tf ], K = 1 + r+
(
r+1

2

)
, such

that the matrix

D̃(µi) =

[
1K Ũ(µi)

>
(
Ũ(µi) �̂ Ũ(µi)

)> ]
∈ RK×K

is invertible, where Ũ(µi) = [û(τi,1;µi) · · · û(τi,K ;µi)] ∈ Rr×K .
3. The matrices Θc ∈ Rs×qc , ΘA ∈ Rs×qA , and ΘH ∈ Rs×qH of (2.14) have full

column rank.
If condition 1 holds, then the loss function L has a global minimizer Ô satisfying
L (Ô) = 0. If conditions 2 and 3 also hold, then that minimizer is unique.

Proof. Assume condition 1 (no truncation error at the parameter samples). Then

the system of ODEs (2.7a) with operators ĉ(p), Â(p), and Ĥ(p) derived from (2.6)
holds exactly for all x ∈ Ω, t ∈ [t0, tf ], and µ ∈ {µi}si=1, i.e., it is equivalent to (2.1a)–

(2.1d) at the parameter samples. Constructing Ô from these operators, we have
d
dt û(t;µ) = F(Ô; û, t, θ, µ) exactly for each µ ∈ {µi}si=1. By construction, L (Ô) = 0,

which—since L is non-negative—shows that Ô is a global minimizer of L .
To prove uniqueness, assume conditions 2 and 3 and suppose Ô(1) and Ô(2) both

minimize L . By the previous argument, L (Ô(1)) = L (Ô(2)) = 0, which implies

0r = F(Ô(1); û, τi,j , θ, µi)− F(Ô(2); û, τi,j , θ, µi) = F(Õ; û, τi,j , θ, µi)(2.16)

for i = 1, . . . , s and j = 1, . . . ,K, where 0r ∈ Rr is a column vector of zeros and

Õ = Ô(1) − Ô(2) =
[

c̃(1) · · · c̃(qc) Ã(1) · · · Ã(qA) H̃(1) · · · H̃(qH)
]
∈ Rr×q(r).

8



For fixed i, (2.16) with j = 1, . . . ,K can be written as the linear system

D̃(µi)
[ ∑qc

p=1 θ
(p)
c (µi)c̃

(p)
∑qA

p=1 θ
(p)
A (µi)Ã

(p)
∑qH

p=1 θ
(p)
H (µi)H̃

(p)
]>

= 0K×r,

where 0K×r ∈ RK×r is the zero matrix. As each D̃(µi) is invertible (condition 2), for
i = 1, . . . , s we have

qc∑
p=1

θ(p)
c (µi)c̃

(p) = 0r,

qA∑
p=1

θ
(p)
A (µi)Ã

(p) = 0r×r,

qH∑
p=1

θ
(p)
H (µi)H̃

(p) = 0r×(r+1
2 ).

Collecting these equations component-wise for i = 1, . . . , s yields the equations

Θc


[c̃(1)]j

...

[c̃(qc)]j

 = ΘA


[Ã(1)]jk

...

[Ã(qA)]jk

 = ΘH


[H̃(1)]jk

...

[H̃(qH)]jk

 = 0s

for every index pair j,k. But Θc, ΘA, and ΘH each have full column rank (condition

3), implying [c̃(p)]j = [Ã(p)]jk = [H̃(p)]jk = 0 for all j, k, p. Thus, Õ is the zero

matrix, hence Ô(1) = Ô(2).

Theorem 2.5 shows that for finite-dimensional PDEs (condition 1) with a polyno-
mial, affine-parametric structure, the operators defined via (2.6) uniquely minimize
the loss function L defined in (2.15), provided that the dynamics are sufficiently di-
verse (as quantified by conditions 2 and 3). As the time step between the data samples
defining the pOpInf loss L of (2.11) decreases, i.e., tj+1 − tj → 0 for all j, then L
converges to L (up to a constant), in which case the pOpInf ROM and the intrusive
projection-based ROM will be the same. For infinite-dimensional PDEs, condition
1 is realized as the number of basis functions in the approximation increases, i.e.,
r → ∞. Thus, there are two factors explaining why ROMs learned through pOpInf
are not guaranteed to agree with (2.6): 1) the truncation error of the representation
(2.5), and 2) the finite sampling of the solution in time. See [33, 46] for additional
work connecting the intrusive and data-driven ROMs.

3. Affine Operator Inference for Systems of PDEs. Systems of partial
differential equations with affine polynomial structure admit low-dimensional repre-
sentations similar to (2.7a)–(2.7b) [17]. Consider the system of d partial differential
equations where each equation can be written as in (2.1a)–(2.1d):

∂u`
∂t

= F`(u`, . . . , ud;µ), ` = 1, . . . , d,(3.1a)

where each state variable u` is contained in a Hilbert space V` of real-valued functions
satisfying appropriate homogeneous boundary conditions. Suppose each spatial dif-
ferential operator F` : V1×· · ·×Vd×P → V∗` is polynomial in the variables u1, . . . , ud
and their spatial derivatives,

F`(u1, . . . , ud;µ) = C`(µ) +

d∑
m=1

A`,m(um;µ) +

d∑
m=1

d∑
n=m

H`,mn(um, un;µ),(3.1b)

where C` : P → V∗` , A`,m : Vm × P → V∗` , H`,mn : Vm × Vn × P → V∗` , and each
A`,m and H`,mn is linear in each state argument. This is the natural multivariate
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extension of (2.3a). We further assume that each operator C`, A`,m, and H`,mn has
an affine-parametric expansion, that is,

C`(µ) =

qc∑̀
p=1

θ(p)
c`

(µ)C(p)
` . A`,m(u;µ) =

qA`,m∑
p=1

θ
(p)
A`,m

(µ)A(p)
`,m(u).

H`,mn(u, v;µ) =

qH`,mn∑
p=1

θ
(p)
H`,mn

(µ)H(p)
`,mn(u, v).

(3.1c)

For each ` = 1, . . . , d, let {v`j}r`j=1 ⊂ V` be an orthonormal set. We assume a
reduced representation ŭ` of u`, confined to span({v`1 , . . . , v`r`}) ⊂ V`, given by

ŭ`(x, t;µ) =

r∑̀
j=1

û`j(t;µ)v`j(x), û`j(t;µ) = 〈v`j , u`(·, t;µ)〉V` ,(3.2)

where 〈·, ·〉V` is the duality pairing of V` with its dual. Inserting ŭ` into (3.1a) for each
` and proceeding as before, we obtain d ODEs that serve as a ROM for (3.1a)–(3.1c):

d

dt
û`(t;µ) = F`(Ô`; û1, . . . , ûd, t, θ, µ)

=

( qc∑̀
p=1

θ(p)
c`

(µ)ĉ
(p)
`

)
+

d∑
m=1

qA`,m∑
p=1

θ
(p)
A`,m

(µ)Â
(p)
`,m

 ûm(t;µ)

+

d∑
m=1

qH`,mm∑
p=1

θ
(p)
H`,mm

(µ)Ĥ
(p)
`,mm

(ûm(t;µ) �̂ ûm(t;µ)
)

+

d∑
m=1

d∑
n=m+1

qH`,mn∑
p=1

θ
(p)
H`,mn

(µ)Ĥ
(p)
`,mn

(ûm(t;µ)� ûn(t;µ)
)
,

(3.3a)

û`(t;µ) =
[
〈v`1, u`(·, t;µ)〉 · · · 〈v`,r` , u`(·, t;µ)〉

]>
∈ Rr` ,(3.3b)

Ô` =
[

ĉ
(1)
` · · · ĉ

(qc` )

` Â
(1)
`,1 · · · Â

(qA`,d )

`,d Ĥ
(1)
`,11 · · · Ĥ

(qH`,dd )

`,dd

]
,(3.3c)

where ĉ
(p)
` ∈ Rr` , Â

(p)
`,m ∈ Rr`×rm , Ĥ

(p)
`,mm ∈ Rr`×(rm+1

2 ), and Ĥ
(p)
`,mn ∈ Rr`×rmrn

(m 6= n). Here � denotes the Khatri-Rao product, whereas �̂ is the compact Khatri-
Rao product that omits redundant terms (see Appendix A). Higher-order operators
(e.g., cubic terms) can be similarly accounted for.

The low-dimensional system (3.3a) retains the differential and parametric struc-
ture of the PDE system (3.1a)–(3.1b). The corresponding affine pOpInf problem
decouples into d instances of (2.13) which can be solved independently :

min
Ô`

∥∥∥D`Ô
>
` −R>`

∥∥∥2

F
, ` = 1, . . . , d,(3.4)

where

R` =
[

˙̂
U`(µ1) · · · ˙̂

U`(µs)

]
∈ Rr`×sK ,
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˙̂
U`(µi) =

[
d
dt û`(t;µi)

∣∣∣
t=t1

· · · d
dt û`(t;µi)

∣∣∣
t=tK

]
∈ Rr`×K ,

and where each D` is constructed from the matrices Û1(µi), . . . , Ûd(µi) where

Û`(µi) =
[

û`(t1;µi) · · · û`(tK ;µi)
]
∈ Rr`×K .

See Appendix C for the general construction, and note that the number of terms in
the PDE dictates the number of terms in the ROM and hence the size of the pOpInf
problem. This is best illustrated by example.

Example 3.1 (FitzHugh-Nagumo System). Let Ω = (0, 1) and define the param-
eters µ = (α, β, γ, ε) ∈ R4. The following system of equations is a simplification of the
Hodgkin-Huxley model for activation and deactivation in a spiking neuron [16, 30]:

∂u1

∂t
= ε

∂2u1

∂x2
+

1

ε

(
−u3

1 + 1.1u2
1 − 0.1u1 − u2 + α

)
,(3.5a)

∂u2

∂t
= βu1 − γu2 + α,(3.5b)

with initial conditions u1(x, t0) = u2(x, t0) = 0 and Neumann boundary conditions

∂u1

∂x

∣∣∣∣
x=0

= f(t) := −50000t3e−15t,
∂u1

∂x

∣∣∣∣
x=1

= 0.(3.5c)

We write (3.5a)–(3.5c) in the language of (3.1a)–(3.1c) as

∂u1

∂t
= θ(1)

c1 (µ) C(1)
1 + θ

(1)
A1,1

(µ)A(1)
1,1(u1) + θ

(2)
A1,1

(µ)A(2)
1,1(u1) + θ

(1)
A1,2

(µ)A(2)
1,2(u2)

+ θ
(1)
H1,11

(µ)H(1)
1,11(u1, u1) + θ

(1)
G1,111

(µ)G(1)
1,111(u1, u1, u1),

∂u2

∂t
= θ(1)

c2 (µ) C(1)
2 + θ

(1)
A2,1

(µ)A(1)
2,1(u1) + θ

(1)
A2,2

(µ)A(1)
2,2(u2),

with the operators and the affine coefficient functions given in Table 1. This motivates
a ROM of the form

d

dt
û1(t;µ) = θ(1)

c1 (µ) ĉ
(1)
1 +

(
θ

(1)
A1,1

(µ) Â
(1)
1,1 + θ

(2)
A1,1

(µ) Â
(2)
1,1

)
û1(t;µ)

+ θ
(1)
A1,2

(µ) Â
(1)
1,2û2(t;µ) + θ

(1)
H1,11

(µ) Ĥ
(1)
1,11

(
û1(t;µ) �̂ û1(t;µ)

)
+ θ

(1)
G1,111

(µ) Ĝ
(1)
1,111

(
û1(t;µ) �̂ û1(t;µ) �̂ û1(t;µ)

)
+ θ

(1)
B1

(µ)B̂
(1)
1 f(t),

d

dt
û2(t;µ) = θ(1)

c2 (µ) ĉ
(1)
2 + θ

(1)
A2,1

(µ) Â
(1)
2,1û1(t;µ) + θ

(1)
A2,2

(µ) Â
(1)
2,2û2(t;µ),

where the sizes of each discretized operators are listed in Table 1. The operator B̂
(1)
1

accounts for the Neumann boundary condition on u1 in (3.5c); it has the coefficient

function θ
(1)
B1

(µ) = ε. The term Ĝ
(1)
1,111 represents the cubic nonlinearity for u1.

The corresponding pOpInf problem is (3.4) with d = 2 and

Ô1 =
[

ĉ
(1)
1 B̂

(1)
1 Â

(1)
1,1 Â

(2)
1,1 Â

(1)
1,2 Ĥ

(1)
1,11 Ĝ

(1)
1,111

]
∈ Rr1×q1(r1,r2),

D1 =
[

Dc1 DA1
DH1

DG1

]
∈ RsK×q1(r1,r2),
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Dc1 =


θ

(1)
c1 (µ1)1K θ

(1)
B1

(µ1)f
...

...

θ
(1)
c1 (µs)1K θ

(1)
B1

(µs)f

 ,

DA1 =


θ

(1)
A1,1

(µ1)Û1(µ1)> θ
(2)
A1,1

(µ1)Û1(µ1)> θ
(1)
A1,2

(µ1)Û2(µ1)>

...
...

...

θ
(1)
A1,1

(µs)Û1(µs)
> θ

(2)
A1,1

(µs)Û1(µs)
> θ

(1)
A1,2

(µs)Û2(µs)
>

 ,

DH1
=


θ

(1)
H1,11

(µ1)
(
Û1(µ1) �̂ Û1(µ1)

)>
...

θ
(1)
H1,11

(µs)
(
Û1(µs) �̂ Û1(µs)

)>
 ,

DG1
=


θ

(1)
G1,111

(µ1)
(
Û1(µ1) �̂ Û1(µ1) �̂ Û1(µ1)

)>
...

θ
(1)
G1,111

(µs)
(
Û1(µs) �̂ Û1(µs) �̂ Û1(µs)

)>
 ,

Ô2 =
[

ĉ
(1)
2 Â

(1)
2,1 Â

(1)
2,2

]
∈ Rr2×q2(r1,r2),

D2 =


θ

(1)
c2 (µ1)1K θ

(1)
A2,1

(µ1)Û1(µ1)> θ
(1)
A2,2

(µ1)Û2(µ1)>

...
...

...

θ
(1)
c2 (µs)1K θ

(1)
A2,1

(µs)Û1(µs)
> θ

(1)
A2,2

(µs)Û2(µs)
>

 ∈ RsK×q2(r1,r2),

where f = [f(t1) · · · f(tK)]> ∈ RK , q1(r1, r2) = 2 + 2r1 + r2 +
(
r1+1

2

)
+
(
r1+2

3

)
, and

q2(r1, r2) = 1 + r1 + r2. The data matrix D1 and the operator matrix Ô1 have been
modified from (3.3a)–(3.3c) to account for the cubic term present (3.5a).

Remark 3.2. Even though since [15], the FitzHugh-Nagumo system has been
widely used as a benchmark problem for the development of general nonlinear model
reduction methods, a fully cubic intrusive model can be directly derived for this sys-
tem (i.e., the nonlinear terms in the system are point-wise local and exactly quadratic
and cubic), circumventing the need for the second layer of approximation introduced
through hyper-reduction.

4. Computational Procedure. Solving the pOpInf problem (2.13) requires
samples of the solution u(x, t;µ) and its time derivative at times {tj}Kj=1 for each
selected parameter value {µi}si=1. The quality of the resulting ROM depends on how
well the orthonormal basis functions {vj}rj=1 represent the solution at each parameter
value and throughout the spatial and temporal domains. We therefore adopt the
widely used proper orthogonal decomposition (POD) [1, 10, 28, 41], defined by the
set of orthonormal functions that minimize the mean squared projection error of the
sample data, i.e., solving the problem

min
v1,...,vr∈V

s∑
i=1

K∑
j=1

∥∥∥∥∥u(·, tj ;µi)−
r∑

`=1

〈
v`, u(·, tj ;µi)

〉
v`

∥∥∥∥∥
2

V

subject to 〈vi, vj〉 = δij ,
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Table 1
The operators in the continuous setting, the associated affine coefficient functions, and the size

of the reduced operators in discretized setting for the FitzHugh-Nagumo system of Example 3.1.

continuous term affine coefficient discretized operator

E
q
.

(3
.5

a
)

constant C(1)1 = 1 θ
(1)
c1 (µ) = α/ε ĉ

(1)
1 ∈ Rr1

input ∂u1
∂x

∣∣
x=0

= f(t) θ
(1)
B1

(µ) = ε B̂
(1)
1 ∈ Rr1

linear

A(1)
1,1(u) = ∂2u

∂x2 θ
(1)
A1,1

(µ) = ε Â
(1)
1,1 ∈ Rr1×r1

A(2)
1,1(u) = u θ

(2)
A1,1

(µ) = −0.1/ε Â
(2)
1,1 ∈ Rr1×r1

A(1)
1,2(u) = u θ

(1)
A1,2

(µ) = −1/ε Â
(1)
1,2 ∈ Rr1×r2

quadratic H(1)
1,11(u, v) = uv θ

(1)
H1,11

(µ) = 1.1/ε Ĥ
(1)
1,11 ∈ Rr1×

(
r1+1

2

)

cubic G(1)1,111(u, v, w) = uvw θ
(1)
G1,111

(µ) = −1/ε Ĝ
(1)
1,111 ∈ Rr1×

(
r1+2

3

)

E
q
.

(3
.5

b
)

constant C(1)2 = 1 θ
(1)
c2 (µ) = α ĉ

(1)
2 ∈ Rr2

linear
A(1)

2,1(u) = u θ
(1)
A2,1

(µ) = β Â
(1)
2,1 ∈ Rr2×r1

A(1)
2,2(u) = u θ

(1)
A2,2

(µ) = −γ Â
(1)
2,2 ∈ Rr2×r2

where ‖v‖V =
√
〈v, v〉 is the natural norm on V. This data-driven choice of basis opti-

mally represents the solution at the sampled parameter values, although the resulting
ROM does not share such guarantees [9].

The conditioning of the linear least-squares problem (2.13) depends on the data
matrix D. If the parameter samples are chosen so that the pitfalls described in
Theorem 2.3 are avoided, then the condition number of D depends on the nature
of the solution at the quadrature points {tj}Kj=1. To improve the conditioning, we
introduce a Tikhonov regularization [44] so that (2.13) becomes

min
Ô

∥∥∥DÔ> −R>
∥∥∥2

F
+
∥∥∥ΛÔ>

∥∥∥2

F
, Λ ∈ Rq(r)×q(r).(4.1)

The solution to this regularized problem satisfies the modified normal equations,(
D>D + Λ>Λ

)
Ô> = D>R>.(4.2)

The regularizer Λ can be parameterized in a number of ways [29]. One choice that
provides flexibility without introducing a large number of hyperparameters is the
diagonal matrix Λ = Λ(λ1, λ2), defined such that

∥∥∥Λ(λ1, λ2)Ô>
∥∥∥2

F
= λ2

1

(
qc∑
p=1

∥∥∥ĉ(p)
∥∥∥2

2
+

qA∑
p=1

∥∥∥Â(p)
∥∥∥2

F

)
+ λ2

2

qH∑
p=1

∥∥∥Ĥ(p)
∥∥∥2

F
.(4.3)

This regularization structure groups the operators defining the ROM according to
their polynomial order and drives Ô toward the zero matrix as λ1, λ2 →∞. Therefore,
the regularization drives the resulting ROM toward the globally stable zero system
d
dt û(t;µ) = 0. As before, the extension of (4.1) to a system of PDEs is straightforward
where each PDE is written as an independent pOpInf problem (see (3.4)).

We choose the regularization hyperparameters λ1, λ2 ≥ 0 to minimize the mean
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squared training error

1

s

s∑
i=1

K∑
j=1

‖û(tj ;µi)− ũ(tj ;µi)‖22 ,

where û(tj ;µi) is the training data and ũ(tj ;µi) is the result of integrating the ODE
d
dt ũ(t) = F(Ô; ũ, t, µ) defined by the solution Ô of (4.1) with regularization hyper-
parameters λ1 and λ2. This is an optimization problem in the principal quadrant of
R2 (but is otherwise free of constraints), which we carry out with a sparse grid search
followed by a derivative-free search method [31].

We now summarize the computational procedure for solving (2.13): 1) select
parameter values {µi}si=1 such that the associated Θc, . . . ,ΘG have full column rank;
2) sample the PDE solution u(x, t, µ) and its time derivative for t ∈ {tj}Kj=1 for each
µ ∈ {µi}si=1; 3) compute the POD basis associated with the sampled solution data;

4) use the POD basis to project the solution data, obtaining Û(µi) and
˙̂
U(µi); 5) form

the data matrix D and the time derivative matrix R; 6) choose optimal regularization
hyperparameters and solve (4.1) with these hyperparameters. In the computational
setting, we sample the solution in step 2 by obtaining approximate discretized solution
snapshots via a high-fidelity solver. For example, let {x`}N`=1 ⊂ Ω be a discretization
of Ω, and define

U(µi) =


u(x1, t1;µi) · · · u(x1, tK ;µi)

...
...

u(xN , t1;µi) · · · u(xN , tK ;µi)

 ∈ RN×K ,

the snapshot matrix for parameter µi. The rank-r POD basis of step 3 is comprised
of the first r left singular vectors of the concatenated snapshot matrices, that is,

ΦΣΨ> =

 U(µ1) · · · U(µs)

 ∈ RN×sK , V = Φ:,1:r ∈ RN×r,(4.4)

where ΦΣΨ> is the singular value decomposition (SVD). With this notation, the

projection of step 4 is given by Û(µi) = V>U(µi), i = 1, . . . , s. If the time derivatives
of u are not provided by the high-fidelity solver, they may be estimated as finite
differences of the solution snapshots. The time integration error of the high-fidelity
model, as well as the approximation error accompanying finite differences for the
time derivatives, are additional motivations for utilizing the regularization strategy
described previously. Algorithm 4.1 fully details the procedure. The algorithm is
presented for the general case of a system of d partial differential equations, but it
may be simplified to a case of a single PDE by setting d = 1.

5. Numerical Examples. We now present numerical results for the heat equa-
tion and FitzHugh-Nagumo system introduced in Section 2 and Section 3, respectively.

5.1. Heat Equation. We return to the heat equation of Example 2.2 and 2.4,
setting x̄ = 2/3 and u0(x;µ) = 1 − (1− x)

50 − x50. For each of the s = 5 parameter
samples shown in Figure 1, we generate high-fidelity solutions by discretizing the
spatial domain Ω = (0, 1) with a uniform grid of N = 1000 points and approximating
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Algorithm 4.1 Regularized parametric Operator Inference for systems of PDEs

1: procedure pOpInf(training parameters µ1, . . . , µs ∈ P, high-fidelity training
snapshots U1(µi), . . . ,Ud(µi) ∈ RN×K for i = 1, . . . , s, affine coefficient functions

θ = {θ(1)
c1 , . . . , θ

(qHd,dd )

Hd,dd
} : P → R, reduced dimensions r1, . . . , rd ∈ N )

2: # Project training data to low-dimensional subspaces.

3: for ` = 1, . . . , d do
4: V` ← pod([U`(µ1) · · · U`(µs)], r`) # Rank-r` POD basis.

5: for i = 1, . . . , s do
6: Û`(µi)← V>` U`(µi) # Projected solution data.

7:
˙̂
U`(µi)← d

dtÛ`(µi) # Projected time derivatives.

8: # Construct pOpInf matrices.

9: for ` = 1, . . . , d do
10: D` ← build the `th data matrix from Û1(µ1), . . . , Ûd(µs), θ, µ1, . . . , µs

11: R` ← [
˙̂
U`(µ1) · · · ˙̂

U`(µs)]

12: # Compute pOpInf solution with optimal hyperparameters.

13: λ∗1, λ
∗
2 ← argmin TrainingError(λ1, λ2)

14: return RegOpInf(λ∗1, λ
∗
2)

1: procedure TrainingError(λ1, λ2)

2: Ô1, . . . , Ôd ← RegOpInf(λ1, λ2)
3: for i = 1, . . . , s do # Calculate error at training parameters.

4: Ũ1(µi), . . . , Ũd(µi)← integrate (3.3a), ` = 1, . . . , d, over [t0, tf ]

5: return 1
sd

∑d
`=1

∑s
i=1 ‖Û`(µi)− Ũ`(µi)‖2F

1: procedure RegOpInf(λ1, λ2)
2: Λ2 ← Λ(λ1, λ2)>Λ(λ1, λ2) # Construct the regularizer.

3: for ` = 1, . . . , d do

4: Ô>` ←
(
D>` D` + Λ2

)−1
D>` R>` # Solve the `th pOpInf problem.

5: return Ô1, . . . , Ôd

the spatial derivative with second-order central finite differences, then integrating
the resulting semi-discrete ODE in time with the first-order implicit Euler scheme
on K = 1500 uniformly spaced time steps in [t0, tf ] = [0, 1.5]. Figure 1 also shows
example snapshots for each parameter sample, demonstrating that variation in the
parameters µ = (α, β) determines the diffusion dynamics. To select the number of
modes in the POD basis, define the cumulative energy

E(r) =

r∑
j=1

σ2
j

/ N∑
j=1

σ2
j ,

where σj is the jth singular value in the POD factorization (4.4). Note that E(r) is
a nondecreasing function of r. We select r to be the smallest integer such that the
residual energy 1− E(r), or the energy in the non-retained modes, lies below a fixed
threshold ε > 0 (see Figure 2). In this case, setting ε = 10−12 results in r = 24.

We compute Ô using Algorithm 4.1. Since (2.9) is a linear system, the regular-
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Fig. 1. Experimental parameter samples (left) and associated snapshots at intermediate time
t = t75 = 0.075 (right) for the heat equation problem (2.8a)–(2.8c). The vertical line x = x̄ marks
the point in the domain where the diffusion constant switches between α and β.
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Fig. 2. Residual energy decay (left) and the six dominant POD basis functions (right) for the
snapshot set generated at the parameter samples in Figure 1. For r ≥ 24, we have 1−E(r) < 10−12.

ization is parameterized by a single hyperparameter, i.e., we minimize the residual

min
Ô

∥∥∥DÔ> −R>
∥∥∥2

F
+ λ2

1

(
‖Â(1)‖2F + ‖Â(2)‖2F

)
.

To evaluate the performance of the resulting ROM in terms of the parameters, we
discretize P in a 40×40 uniform grid and, for each µ in the grid, compute high-fidelity
solutions u(t1;µ), . . . ,u(tK ;µ) ∈ RN and integrate the ROM to obtain reduced states
ũ(t1;µ), . . . , ũ(tK ;µ) ∈ Rr, then compute the relative L2-norm error

‖Vũ(· ;µ)− u(· ;µ)‖L2([t0,tf ])

‖u(· ;µ)‖L2([t0,tf ])

, ‖w(·)‖L2([t0,tf ]) =

(∫ tf

t0

‖w(t)‖22 dt
)1/2

,(5.1)

estimating the time integrals via the trapezoidal rule. Figure 3 shows the results and
compares them to the relative projection error induced by the basis, given by∥∥u(· ;µ)−VV>u(· ;µ)

∥∥
L2([t0,tf ])

‖u(· ;µ)‖L2([t0,tf ])

.(5.2)

The relative projection error (5.2) is on the order of 10−7 throughout P, which indi-
cates that the training snapshots have sufficient information to represent the solution
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Fig. 3. Relative L2 projection errors (left) and pOpInf ROM errors (right) over the parameter
domain P for the problem (2.8a)–(2.8c). The parameter samples used to generate the training set
are marked as stars and r = 24 basis functions are used. The geometric means of the projection and
ROM errors are approximately 7.68× 10−7 and 3.48× 10−5, respectively.

well for any µ ∈ P. The ROM error (5.1) is on the order of 10−5 throughout P
(less than 0.02% everywhere) and runs with a computational speedup of ∼ 10 times
compared to the high-fidelity model. The results in Figure 3 highlight the ability of
the ROM to generalize beyond the training data: in particular, the ROM performs
well for (α, β) pairs away from the arc α2 + β2 = 4 where the parameter samples lie.

5.2. FitzHugh-Nagumo System. The neuron model (3.5a)–(3.5b) introduced
in Example 3.1 features a four-dimensional parameter space. We generate training
data at each of the 504 = 6× 6× 2× 7 unique parameters µ = (α, β, γ, ε) for

α ∈ {0.025, 0.035, . . . , 0.075}, β ∈ {0.25, 0.35, . . . , 0.75},
γ ∈ {2.0, 2.5}, ε ∈ {0.010, 0.015, . . . , 0.040}.

(training set)

The full-order problem is solved by discretizing the domain Ω = (0, 1) with Nx = 512
spatial points (so the total spatial dimension is N = 2Nx = 1024), approximating
the differential term with central finite differences, and integrating the equation in
time via the first-order implicit-explicit Euler scheme (treating the linear terms with
a backward Euler step and the nonlinear terms with a forward Euler step [5]) with
step size δt = 10−3 over [t0, tf ] = [0, 4]. Every 10th snapshot is recorded, resulting in
K = 400 training snapshots per parameter sample. Figure 4 shows the phase plot of
u1 against u2 at multiple spatial coordinate values for three of the training parameter
samples, demonstrating that the system exhibits a diverse range of dynamical behav-
iors as the parameter values are varied. To evaluate ROM performance with respect to
the parameters, we also solve the full-order model at the 10,749 = 11×11×3×31−504
additional parameters µ = (α, β, γ, ε) with

α ∈ {0.025, 0.030, . . . , 0.075}, β ∈ {0.25, 0.30, . . . , 0.75},
γ ∈ {2.00, 2.25, 2.50}, ε ∈ {0.010, 0.011, . . . , 0.040}.

(testing set)

Parameters from the training set are not included in the testing set.
The FitzHugh-Nagumo system (3.5a)–(3.5b) exhibits a rapid singular Hopf bi-

furcation with respect to ε wherein the limit cycle collapses to a stable fixed point
as ε increases [6]. At parameters near this transition, the full-order model and ROM
solutions are highly sensitive to ε and the time step δt. Including such parameters

17



0 1

u1(xj, t)

0.0

0.1

0.2

u
2
(x

j
,t

)

α = 0.035, β = 0.65,
γ = 2.00, ε = 0.010

0 1

u1(xj, t)

α = 0.055, β = 0.55,
γ = 2.00, ε = 0.025

0 1

u1(xj, t)

α = 0.075, β = 0.45,
γ = 2.50, ε = 0.040

0.00

0.25

0.50

0.75

1.00

sp
at

ia
l

co
or

d
in

at
e
x

Fig. 4. Phase portraits of training trajectories for the FitzHugh-Nagumo system (3.5a)–(3.5b),
traced out at various points in the spatial domain. The center trajectory has a limit cycle, while the
trajectories on the left and right converge to a single point. Small ε values de-emphasize the diffusion
term and drive the system toward spatial homogeneity; larger ε values result in more variation across
the spatial domain but which decreases with time.
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Fig. 5. Decay of the residual energy in the training data for u1 and u2 in the FitzHugh-
Nagumo problem (3.5a)–(3.5b) (left) and the corresponding selected basis sizes (right). Demanding
that 1− E(r`) < 10−7 requires r1 = 12 and r2 = 9 POD modes for u1 and u2, respectively.

in the training and testing sets makes it difficult to assess ROM accuracy. We select
δt = 10−3 as the baseline time step for which most of the full-order simulations con-
verge, then eliminate the small number of points from our training and testing sets
for which refining the time step from δt = 10−3 to δt = 10−5 results in a 30% change
in the full-order solution as measured by the L2([t0, tf ]) norm. This prompts us to re-
move five training parameters (∼ 1% of the original training set) and fifty-two testing
parameters (∼ 0.5% of the original testing set). Hence the size of the final training set
is s = 504− 5 = 499 and the size of the final testing set is 10,749− 52 = 10,697, with
size ratio 10,697/499 ≈ 21.4. With this approach, ROMs obtained through pOpInf
are stable throughout almost the entire testing set; for the few testing parameters
where the ROMs are unstable with time step δt = 10−3, the time step is adjusted to
maintain stability.

We select the number of POD modes r1 and r2 for the variables u1 and u2,
respectively, based on the residual energy 1 − E(r`) of the training data, ` = 1, 2.
For each of the resulting (r1, r2) pairs shown in Figure 5, we learn a pOpInf ROM
via Algorithm 4.1. To simplify the hyperparameter search, we regularize only the
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Fig. 6. Relative errors (calculated over space and time) of the learned pOpInf ROM and the
intrusive ROM for the FitzHugh-Nagumo system. As residual energy decreases from left to right,
the sizes of the underlying POD bases increase according to Figure 5. The shaded regions show the
10%–90% interdecile range of the error across all training samples (left) or testing samples (right),
with the corresponding median and maximum errors denoted by the lines for the pOpInf ROMs and
dashed lines for the intrusive ROMs.

quadratic and cubic terms, so that the regularized pOpInf data residuals are

min
Ô1

∥∥∥D1Ô
>
1 −R>1

∥∥∥2

F
+ λ2

∥∥∥Ĥ(1)
1,11

∥∥∥2

F
+ λ3

∥∥∥Ĝ(1)
1,111

∥∥∥2

F
, min

Ô2

∥∥∥D2Ô
>
2 −R>2

∥∥∥2

F
.

Regularization of the additional terms (λ1 in (4.3)) was observed to have a marginal
effect on the results. For each chosen basis size, we also compute a ROM based
on intrusive projection for comparison with the pOpInf ROM. The intrusive ROM
is derived explicitly without any need for approximation of the nonlinear terms via
DEIM (see Remark 3.2). Both ROMs are integrated with time step δt = 10−3 for each
parameter in the testing set, and the relative error compared to the full-order model
is computed as in (5.1). This procedure yields a single error value for each point in
the testing set. The intrusive ROMs are stable throughout the testing set, as are the
pOpInf ROMs except at a small number of testing parameters (one for r1 = 12, r2 = 9;
two for r1 = r2 = 4 and r1 = 14, r2 = 11; and nine for r1 = 9, r2 = 7). At these
points, we adjust the time step to δt = 10−2, producing stable results. For larger
basis sizes (r1 > 14, r2 > 11), the pOpInf ROMs are stable throughout the testing
set with δt = 10−3.

Figure 6 shows the 10% quantile, median, 90% quantile, and maximum of the
relative errors for each ROM. The median relative error is similar in the training and
testing sets and decreases steadily as the basis sizes increase. The pOpInf ROMs
generally outperform the intrusive ROMs. The tight interdecile range shows that
the ROM error is mostly consistent throughout the parameter space; though not
shown, the parameters with higher ROM error are also where the projection error is
significantly higher than average. For additional comparison, Figure 7 shows select
trajectories of a single pOpInf ROM versus the full-order model. The reduced-order
and full-order results are indistinguishable to the eye, which is representative of the
ROM performance throughout the testing set.

6. Conclusions. This paper has proposed a non-intrusive parametric model re-
duction method for parameterized PDEs based on the Operator Inference framework.
The approach eliminates the need for interpolation by explicitly learning the reduced
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Fig. 7. Phase portraits of testing trajectories for the FitzHugh-Nagumo problem (3.5a)–(3.5b),
traced out at various points in the spatial domain. The solid lines are the full-order trajectories,
and the dashed lines are the outputs of the learned pOpInf ROM with r1 = 12 and r2 = 9 POD
modes. The total ROM relative errors in space and time are, from left to right, 0.034%, 0.777%,
and 0.009%; the median relative error on the testing set for r1 = 12 and r2 = 9 is 0.014%.

operators of the affine-parametric representation and uses an optimization-based reg-
ularization strategy to ensure well-posedness in the learning problem. The parametric
ROMs can later be used in outer-loop applications to expedite model evaluations for
any choice of the parameters. The efficacy of the method has been demonstrated for
two numerical examples: a heat equation with a two-dimensional parametric space,
and the FitzHugh-Nagumo system with a four-dimensional parametric space. The
resulting ROMs are capable of capturing the behavior of the PDE for parameters
outside of the training set and, as shown in the latter example, perform favorably on
average when compared to the intrusive ROM with the same affine structure.

It was shown in the FitzHugh-Nagumo example that the learned ROMs success-
fully capture the inherently different behaviors of the system that come with changes
in the parameters (see Figure 7). Yet, as with other data-driven approaches, the
quality of inferred ROMs depends strongly on the training set, and one cannot expect
a data-driven ROM to produce a particular dynamical behavior that differs wildly
from the training data. An important future direction is therefore the automation of
an efficient parameter sampling strategy for the offline stage.

Appendix A. Matricization of Tensors. Following the notation of [25], for
matrices W ∈ Rr×s and Z ∈ Rm×n, let W⊗Z denote the Kronecker product [25, 47]:

W ⊗ Z =


w11 · · · w1s

...
. . .

...

wr1 · · · wrs

⊗ Z :=


w11Z · · · w1sZ

...
. . .

...

wr1Z · · · wrsZ

 ∈ Rrm×sn,

where wij is the component from the ith row and jth column of W. The definition
applies to vectors by setting s = n = 1. For Z ∈ Rm×s (i.e., n = s), define W � Z to
be the Khatri-Rao product, i.e., the column-wise Kronecker product [23, 25]:

W � Z :=
[

w1 ⊗ z1 w2 ⊗ z2 · · · ws ⊗ zs

]
∈ Rrm×s,

where wi and zi are the ith columns of W and Z, respectively.
Let w = [w1 · · · wr] ∈ Rr. As the product w � w = w ⊗ w has redundant

terms (for instance, w1w2 = w2w1 appears twice), we introduce compact second- and
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third-order Khatri-Rao products, defined as

w �̂w :=


w2

1

w2(w1:2)
...

wr(w1:r)

 ∈ R(r+1
2 ), w �̂w �̂w :=


w3

1

w2(w1:2 �̂w1:2)
...

wr(w1:r �̂w1:r)

 ∈ R(r+2
3 ),

where w1:i = [w1 · · · wi]
> ∈ Ri contains the first i entries of w. Each entry of

w �̂w is a product of 2 entries of w, and each product appears exactly once; in
other words, w �̂w contains the unique terms of ww>, the 2-fold tensorization of w
[25, 32]. Similarly, each entry of w �̂w �̂w is a unique product of 3 entries of w. For
matrices, the definition applies column-wise:[

w1 · · · ws

]
�̂
[

w1 · · · ws

]
=
[

w1 �̂w1 · · · ws �̂ws

]
.

With this notation, any linear combination of products of two entries of w can
be represented by the product

z>
(
w �̂w

)
= z1w

2
1 + z2w1w2 + z3w

2
2 + z4w1w3 + · · · , z =


z1

z2

...

 ∈ R(r+1
2 ).

This observation allows us to convert (2.6) to a compact matrix product represen-

tation. Specifically, we define Ĥ ∈ Rr×(r+1
2 ) to be the matrix such that the ith

component of the product Ĥ
(
û �̂ û

)
is given by

[Ĥ
(
û �̂ û

)
]i :=

r∑
j=1

r∑
l=1

〈vi,H (vj , vl;µ)〉 ûj ûl.

Appendix B. Technical Lemma. The following lemma supports Theorem 2.3.
Here, 0k ∈ Rk is the vector of k zeros and 1k ∈ Rk denotes the vector of k ones.

Lemma B.1. Let y1, . . . ,ys ∈ Rq and Z1, . . . ,Zs ∈ Rk×r. Consider the matrix

W :=


y>1 ⊗ Z1

...

y>s ⊗ Zs

 ∈ Rsk×qr.

If either of the matrices

Y :=


y>1
...

y>s

 ∈ Rs×q, Z :=


Z1

...

Zs

 ∈ Rsk×r

do not have full column rank, then neither does W. Conversely, if Y and each
Z1, . . . ,Zs have full column rank, then so does W.
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Proof. Assume that Y does not have full column rank. Then there exists a
nonzero vector α ∈ Rq such that Yα = 0s, that is, y>i α = 0 for i = 1, . . . , s. Using
the mixed-product property of the Kronecker product,(

y>i ⊗ Zi

)
(α⊗ 1r) =

(
y>i α

)
⊗ (Zi1r) = 0⊗ (Zi1r) = 0k

for i = 1, . . . , s. Then W (α⊗ 1r) = 0sk. But α ⊗ 1r is a nonzero vector, which
implies that the columns of W are linearly dependent.

Next, suppose that Z does not have full column rank. Then Zβ = 0sk for some
nonzero vector β ∈ Rr, implying Ziβ = 0k for i = 1, . . . , s. Then(

y>i ⊗ Zi

)
(1q ⊗ β) =

(
y>i 1q

)
⊗ (Ziβ) =

(
y>i 1q

)
⊗ 0k = 0k

for i = 1, . . . , s, so that W (1q ⊗ β) = 0sk. Since 1q ⊗ β is a nonzero vector, W does
not have full column rank.

For the converse statement, assume that Y and Z1, . . . ,Zs each have full column
rank, and suppose γ = [γ>1 · · · γ>q ]> ∈ Rqr, γj ∈ Rr, satisfies Wγ = 0sk, i.e.,

(y>i ⊗ Zi)γ = 0k for i = 1, . . . , s. Denoting Γ = [γ1 · · · γq] ∈ Rr×q, we have

0k = (y>i ⊗ Zi)γ =

q∑
j=1

yijZiγj = Zi

 q∑
j=1

yijγj

 = ZiΓyi,

where yij is the jth entry of yi. Since each Zi has full column rank, it must be the case

that Γyi = 0r for each i = 1, . . . , s, which in turn implies YΓ> =
(
ΓY>

)>
= 0s×r.

But Y having full column rank implies Γ = 0r×q, hence γ = 0qr. Thus, the columns
of W are linearly independent, so W has full column rank.

Appendix C. General Construction for PDE Systems. We provide here
a general construction for the affine Operator Inference problem for systems of PDEs
to learn reduced-order models of the form (3.3a)–(3.3b). The problem decouples into
d instances of (2.13), that is,

min
Ô`

∥∥∥D`Ô
>
` −R>`

∥∥∥2

F
, ` = 1, . . . , d,

where

D` =
[

Dc` DA`,1 · · · DA`,d DH`,11 DH`,12 · · · DH`,dd

]
,

Ô` =
[
Ĉ` Â`,1 · · · Â`,d Ĥ`,11 Ĥ`,12 · · · Ĥ`,dd

]
,

R` =
[

˙̂
U`(µ1) · · · ˙̂

U`(µs)

]
∈ Rr`×sK ,

with

Dc` =


θc`(µ1)⊗ 1K

...

θc`(µs)⊗ 1K

 ∈ RK×qc` ,

DA`,m =


θA`,m(µ1)⊗ Ûm(µ1)>

...

θA`,m(µs)⊗ Ûm(µs)
>

 ∈ RK×qA`,mrm ,
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DH`,mm =


θH`,mm(µ1)⊗

(
Ûm(µ1) �̂ Ûm(µ1)

)>
...

θH`,mm(µs)⊗
(
Ûm(µs) �̂ Ûm(µs)

)>
 ∈ RK×qH`,mmrm(rm+1)/2,

DH`,mn =


θH`,mn(µ1)⊗

(
Ûm(µ1)� Ûn(µ1)

)>
...

θH`,mn(µs)⊗
(
Ûm(µs)� Ûn(µs)

)>
 ∈ RK×qH`,mnrmrn , (n 6= m)

Ĉ` =
[

ĉ
(1)
` · · · ĉ

(qc` )

`

]
∈ Rr`×qc`

Â`,m =
[

Â
(1)
`,m · · · Â

(qA`,m )

`,m

]
∈ Rr`×qA`,mrm

Ĥ`,mm =
[

Ĥ
(1)
`,mm · · · Ĥ

(qH`,mm )

`,mm

]
∈ Rr`×qH`,mmrm(rm+1)/2

Ĥ`,mn =
[

Ĥ
(1)
`,mn · · · Ĥ

(qH`,mn )

`,mn

]
∈ Rr`×qH`,mnrmrn , (m 6= n)

Û`(µi) =
[

û`(t1;µi) · · · û`(tK ;µi)
]
∈ Rr`×K ,

˙̂
U`(µi) =

[
d
dt û`(t;µi)

∣∣∣
t=t1

· · · d
dt û`(t;µi)

∣∣∣
t=tK

]
∈ Rr`×K ,

θc`(µi) =
[
θ

(1)
c` (µi) · · · θ

(qc` )
c` (µi)

]
∈ R1×qc` ,

θA`,m(µi) =
[
θ

(1)
A`,m

(µi) · · · θ
(qA`,m )

A`,m
(µi)

]
∈ R1×qA`,m ,

θH`,mn(µi) =
[
θ

(1)
H`,mn

(µi) · · · θ
(qH`,mn )

H`,mn
(µi)

]
∈ R1×qH`,mn .

In practice, this construction is often sparse due to the limited number of terms in
the governing PDE.
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