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Abstract
In modular design, one of the most important roles of designers is to select appropriate 
combination of the functional parts. To support part selection, this paper proposes hu-
man-computer interaction system. We !rstly propose a classi!er to estimate the functional 
relationship between the design requirement and the modularized functional parts based 
on data of parts usage in actual products. Simulations revealed the e"ectiveness of the pro-
posed classi!er. As another proposal, we also propose the parts recommendation system to 
suggest good combination of the parts to designers in order to !nd less cost combination 
of the parts within limited time. Simulations revealed the e"ectiveness of the proposed 
algorithm.

Introduction
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy 
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi 
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis 
nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in 
hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat 
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit prae-
sent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum 
dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod 
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim 
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip 
ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vul-
putate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at 
vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril 
delenit augue duis dolore te feugait nulla facilisi.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy 
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi 
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis 
nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in 
hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat 
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent 
luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy 
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi 
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis 
nisl ut aliquip ex ea commodo consequat.
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Abstract
Educational mapping is the process of analyzing an educational system to identify entities,
relationships and attributes. Current mapping processes in education typically represent
data in forms that do not support scalable learning analytics. To overcome this limitation,
this paper proposes a network modeling approach to educational mapping. The paper
presents network models for educational use cases, with concrete examples in curriculum
mapping, accreditation mapping and concept mapping. Illustrative examples demonstrate
how the formal modeling approach enables visualization and learning analytics. The
analysis provides insight into learning pathways, supporting design of adaptive learning
systems. It also permits gap analysis of curriculum coverage, supporting curricular design
at scales ranging from an entire institution to an individual course.

Introduction
Education contains a wealth of linked data whose key value lies in its connections.
Existing processes underscore the value in exploring these relationships at a
variety of scales: the mapping of prerequisite linkages across courses can identify
gaps, overlaps and pathways in a curriculum redesign [13, 2, 16], the linking of
learning outcomes to educational resources is a necessary ingredient in designing
adaptive learning systems, and the mapping of concepts in a concept map is
a valuable exercise for instructional designers [22]. By analyzing the linkages
within connected data, we can better design educational experiences [9, 16].

Educational mapping is the process of analyzing an educational system to
identify entities, relationships and attributes. Current mapping processes in
education (such as curriculum mapping and concept mapping) typically represent
data in forms that do not support scalable analysis. In particular, highly-
connected data are often represented in implicit forms where relationships within
the data appear as flattened attributes of the entities they link [12]. This lack
of a first-class representation results in loss of information and forces ad-hoc
mechanisms to analyze connections in the system [1]1. While acceptable for the
one-off study, this manual approach does not scale to large or dynamic data sets,
nor does it provide a structured foundation for visualization and analytics.

In this paper, we provide a structured scalable model on which to conduct
educational mapping. We propose a network-based approach to modeling
highly-connected educational data. Network models are used in many fields
to model entities and the relationships between them. Examples include social
and organizational networks [8, 10, 11, 15], biological networks [3, 18], and

1For an introductory background on the notion of first-class citizenship in computer science, we
refer the reader to [19].
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transportation networks [4]. A primary strength of network models lies in their
ability to explicitly represent relationships as first-class objects instead of as
derived properties of other objects in the model. Here, we make the case that
such a modeling approach is essential for representing, visualizing and analyzing
educational data at scale. Scalable modeling is particularly important if the
promise of learning analytics and educational analytics is to be fully unlocked
[7, 21]. To motivate from concrete examples, we consider three use cases highly
relevant in educational analytics—curriculum mapping, accreditation mapping
and concept mapping—and we present an approach to formally model and
analyze the corresponding data sets as a network.

Network models for education
In this section we first introduce some basic concepts of network modeling and
graph theory. We then present three educational network models: a curriculum
mapping model, an accreditation mapping model, and a concept mapping model.
For each, we define the elements of the network model and discuss how the
tools of graph theory can provide analysis and design of educational structures at
different scales.

Basic concepts of network modeling
A graph structure G, notionally portrayed in Figure 1, consists of a set of vertices
and edges between vertices. Vertices represent entities in a system, and edges
between vertices represent relationships between entities. An edge is assigned
text and numeric attributes, such as name, directionality, cost and weighting of
the relationship. A vertex is assigned text and numeric attributes that represent
information on the entity, including its name and other relevant properties. For
a directed edge, the relationship applies only in one direction—the direction of
the edge matters and is indicated visually with an arrow. An undirected edge
is bidirectional—the relationship applies in both directions. Visually, this is
typically indicated by no arrow. The words graph and network are often used
interchangeably; in this paper we will use the term graph when discussing the
theory and methods of graph structures and the term network to describe a
situational structure with real world data representation.

Figure 1: A graph structure G with three vertices and two edges. The edge from
vertex A to vertex C is directed, while the edge between vertex A and vertex B is
undirected.

Several basic concepts of graph theory will be useful in analyzing our
educational network models. We summarize those concepts here (with a minimal
level of mathematical detail) and refer the reader to the textbooks [5, 6, 23] for
more detail.2

2Wikipedia also has a useful “Glossary of graph theory terms” https://en.wikipedia.org/wiki/
Glossary of graph theory terms.

2/20



Design Science

The degree of a vertex is defined as the number of edges between the vertex
and other vertices in the graph. The degree distribution of the graph P(k) is the
fraction of vertices in the graph with degree k. When edges are directed, the
analysis of a vertex’s degree accounts for directionality: the indegree of a vertex
is defined as the number of incoming directed edges from other vertices, and the
outdegree of a vertex is defined as the number of outgoing directed edges to other
vertices.

We will sometimes be interested in analyzing just a portion of the network
model. The term subgraph of a graph G is another graph formed from a subset
of the vertices and edges of G. In some cases, we will analyze the pathways
associated with a directed subgraph. A topological sort of this subgraph results
in an ordering of its vertices where for every directed edge from a vertex A to
a vertex B, A is ordered before B. We can visually draw this subgraph with
vertices arranged according to increasing path length from a source vertex, as
shown notionally in Figure 2. We can then assign a rank to each vertex in the
subgraph, where the rank of vertex V is defined to be the length of the longest
path from the source vertex to vertex V .

Figure 2: A directed graph with vertices arranged by assigned rank. Relative to
the source vertex (Vertex A): Vertex A has a rank of 0; Vertex B has a rank of 1;
Vertex C, Vertex D and Vertex E have a rank of 2; and Vertex F has a rank of 3.

The curriculum mapping model
We define a curriculum mapping network model as follows. We first define the
different types of entities that reflect organization of the curriculum. In our basic
curriculum model, our entities have type Course, Department or Institution. We
then define all the entities in the curriculum model: the courses, the departments,
and the institution. Each entity of these various types is modelled as a vertex
in the curriculum network model. They are assigned attributes, which might
include their name, course number, schedule information, website listing, etc. If
the curriculum comprises n courses across m departments and a single institution,
then the total number of vertices in the network model is n + m + 1.

Next, we define different types of relationships among the entities. A
basic curriculum model has three types of relationships: has-parent-of, has-
prerequisite-of and has-corequisite-of. The has-parent-of relationship is a
directed relationship that specifies organizational hierarchy in the curriculum.
For example, we define has-parent-of relationships from a course to its parent
department, and from a department to an institution. These relationships are
modelled as directed edges between the appropriate vertices in the curriculum
network model. The has-prerequisite-of and has-corequisite-of relationships
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are directed; they exist between courses to define prerequisite and corequisite
relationships. Again, these relationships are modelled as directed edges between
the appropriate vertices in the curriculum network model. If each course and each
department has a single parent, there are n+m parent grouping relationships. With
r prerequisite relationships among classes and q corequisite relationships, there
is a total of n + m + r + q directed edges in the network model.

Figure 3 shows the curriculum model ontology corresponding to this network
model. In the models presented in this paper, a course is the most granular entity
of a curriculum model, but one could also define a more granular entity type, such
as module (or some other unit of learning smaller than a full course). Similarly,
one could introduce other units of organization, such as degree program, school,
etc.

Figure 3: A curriculum mapping model ontology.

This modeling approach can be used to model other, more complicated
aspects of a curriculum. For example, sometimes multiple courses can fulfil
a given prerequisite requirement. In this case, the basic has-prerequisite-of
relationship does not capture the “or” nature of the requirement; however, the
network model can be extended to represent this situation. Consider a course
A that requires the student to complete ℓ prerequisite courses chosen from a set
C = {c1, c2, . . . cs}, where each ci is a course and s is the number of courses in the
set of possibilities. Note that by definition, s ≥ ℓ, and if s = ℓ, we are in the simple
case where there are no alternative options for a given prerequisite. C can then be
modelled by a single vertex labeled OR. We attach a required-number attribute to
the vertex with value ℓ. The vertex representing course A is connected to the OR
vertex via a has-prerequisite-of relationship. The OR vertex is further connected
to the s vertices representing the courses in the set C, via can-be relationships.
This modeling is illustrated in Figure 4.

Figure 4: Capturing the situation of alternate prerequisite requirements by
introducing an OR vertex and can-be relationship to the network model.
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With the curriculum network model defined, we can now use the tools of
graph theory to analyze and visualize the curriculum. A reachability analysis
reveals pathways through the curriculum, i.e., we can identify all the class nodes
in a curriculum network model that are reachable from a given class node, thus
showing all the downstream courses that flow from an upstream prerequisite.
Similarly, one could apply topological sorting to subgraphs of the curriculum
network, to identify entire prerequisite chains of a course.

To visualize the curriculum network, we could simply draw all entities and
relationships as nodes and edges, as many graph visualizations do. However,
we find that for the purposes of curriculum design and institutional analysis, it
is more useful to visualize courses grouped into their respective departments.
Therefore, in our visualization application, we draw nodes for only courses,
and edges between nodes for only has-prerequisite-of and has-corequisite-of
relationships. Nodes are visually grouped into clusters, driven by the existence
of has-parent-of relationships. The types of entities and relationships for the
curriculum network model and its visualization can be seen in Table 1.

Table 1: Our educational network models are defined by different types of entities
and relationships. Each model has a tailored visualization strategy.

Model Entities Visualized nodes Relationships Visualized edges

Curriculum mapping Course
Department
Institution

Course has-parent-of
has-prerequisite-of
has-corequisite-of
can-be

has-prerequisite-of
has-corequisite-of

Accreditation mapping Outcome
Course
Program

Outcome
Course

has-parent-of
addresses

addresses

Concept mapping Outcome
Concept
Module
Course

Concept
Outcome

has-parent-of
leads-to
addresses

leads-to
addresses

The accreditation mapping model
Accreditation mapping is the process of mapping learning evidence to accredi-
tation outcomes in order to show how accreditation outcomes are met. As well
as supporting program evaluation, accreditation mapping is used in curriculum
redesign [14, 17].

We define an accreditation mapping network model as follows. We define
four different types of entities: Outcome, Course, Group and Program. Each
entity of these various types is modelled as a vertex in the accreditation network
model. We define two types of relationships: has-parent-of and addresses. As
in the curriculum model, the has-parent-of relationship is a directed relationship
that specifies organizational hierarchy; in this case it relates courses to a group,
and groups to a program. The addresses relationship is a directed relationship that
indicates that a course addresses an outcome. These relationships are modelled
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as directed edges between the appropriate vertices in the accreditation network
model. We create a directed edge of has-parent-of type from Course A to Group
X if Course A belongs to Group X (examples of groups are Elective Courses,
Core Courses, Capstone Courses, etc.). Similarly, we create a directed edge of
addresses type from Course A to Outcome T if Course A addresses Outcome
T. The addresses edges are assigned a weighting to indicate how strongly a
course addresses an outcome. Figure 5 shows this accreditation mapping model
ontology. Note that one could easily introduce additional types of entities and/or
relationships to the model as desired.

Figure 5: The accreditation mapping model ontology.

With the accreditation network model defined, graph analytics reveal how
program structure relates to accreditation requirements. The indegree of an
outcome vertex defines how many courses contribute to addressing that outcome.
For a given course vertex, the outdegree corresponding to edges of type addresses
defines the number of outcomes addressed by that course. Analyzing the
distribution of indegree and outdegree over the network model gives insight into
a program’s strength of coverage across outcomes.

As with the curriculum model, a tailored graph visualization is more useful
than a generic graph visualization. In our visualization application, we draw
nodes for only courses and outcomes. We visualize courses grouped into
their respective groups and programs, driven by the existence of has-parent-of
relationships. We draw edges between nodes for only addresses relationships.
The types of entities and relationships for the accreditation network model can
be seen in Table 1.

The concept mapping model
In our concept mapping network model, we define four types of entities:
Outcome, Concept, Module and Course. In our ontology, a module is a unit of
curricular organization smaller than a course. The size of a module may vary, but
we find that a typical semester-long course tends to comprise three to six modules.
We define three types of relationships: has-parent-of relationships, addresses
relationships, and leads-to relationships. The has-parent-of relationship is
a directed relationship that specifies organizational hierarchy; in this case it
relates outcomes to modules, concepts to modules, and modules to courses.
The addresses relationship is a directed relationship indicating that a concept
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addresses an outcome and may be weighted to indicate strength of connection.
The leads-to relationship is a directed relationship between outcomes and is
used to represent prerequisite relationships among outcomes as described in
the outcomes mapping framework of [20]. Thus, our concept map represents
relationships between outcomes and concepts, as well as relationships among the
outcomes themselves. Figure 6 shows this concept mapping model ontology.

Our visualization application for the concept map draws nodes for concepts
and outcomes. Using the specified has-parent-of relationships, we visualize
concepts and outcomes grouped into modules, and modules grouped into their
respective courses. We draw a directed edge from a concept node to an outcome
node to visualize an addresses relationship. We draw a directed edge from one
outcome node to another outcome node to show a leads-to relationship. The types
of entities and relationships for the concept map network model can be seen in
Table 1.

Figure 6: A concept mapping model ontology.

Educational mapping
In this section we define and describe our process of mapping. Here, we define the
mapping process as the process of transforming an initial data set into a mapped
data set consisting of entities and relationships as described in our network
models.

Table 2 shows a list of notional raw input data. The input data may come
in many forms, but often its form will be similar to that depicted in Table 2.
Mapping is the process of converting this data set into a structured form according
to the mathematical network models presented in the previous section.

Table 2: Before mapping: input data.

Id Name Type Prerequisites

entity-A An entity in the data set Type 1 entity-C, entity-F

entity-B Another entity Type 2 entity-C

The first step in mapping is to identify the entities of interest in the system.
We step through the data set and construct entity objects. We assign each entity
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a unique identifier, and attach to it its type and other attributes. The constructed
entity object may be minimally described in plain-text JSON as:

1 {
2 "id": "entity-A",

3 "name": "An entity in the data set",

4 "type": "Type 1"

5 }

The second step in mapping is to construct relationship objects—we em-
phasize the construction of relationships as explicit objects. Current modeling
formalisms flatten relationships to be attributes of an entity, as seen in Table 2.
As discussed in [1], such attribute-based modeling makes it difficult to analyze
the ontological structure of the data and requires ad-hoc mechanisms to derive
inferences. For example, attribute-based modeling makes it difficult to ask
questions about pathways such as, what entities are joined to other entities that are
in themselves joined to other entities via prerequisites? The explicit modeling of
relationships is a key contribution of our educational modeling work. We create
an object for every relationship that appears, and assign the relationship a unique
identifier. We also assign attributes representing the directionality, weighting,
cost and other attributes of each relationship. A relationship object may be
minimally represented in JSON as:

1 {
2 "id": "edge-has-prerequisite -of-AF",

3 "type": "has-prerequisite -of",

4 "genus": "DIRECTED",

5 "sourceId": "entity-A"

6 "targetId": "entity-F",

7 "weight": 1

8 }

In this JSON example, the fields sourceId and targetId point to the unique
identifiers of the source and target entity objects. Additional attributes may be
present, depending on the data and application use case.

Results
In this section we present three case studies to demonstrate application of our
network-based educational models at multiple scales: 1) curriculum mapping
at the institutional level, 2) outcomes-based accreditation at the degree program
level and 3) instructional planning at the course level. In each case, we describe
the mapping process and the resulting network model. We present example
visualizations and analytics to illustrate the power of the modelling approach.
Our implementation uses a scalable decoupled architecture that enables data
to be accessed by multiple independent applications (in our case analytics and
visualization) as illustrated in Figure 7.

8/20



Design Science

Figure 7: A decoupled architecture consisting of three layers, from left to right:
the backend, the web service, and the frontend applications.

Modeling at the institutional scale
In this example, we model the undergraduate curriculum of the Massachusetts
Institute of Technology (MIT).

Mapping
The MIT curriculum model uses the structure specified in Table 1. From a
curriculum file provided by the MIT registrar office, we create the mapped data
set consisting of entities and relationships as described by our network model.
This data set represents a snapshot of the MIT undergraduate curriculum as of
Fall 2015. Table 3 shows a sample of the input data file to the mapping process.

The first step in the mapping process is to identify the entities. To create the
curriculum mapping, we step through each row of the input file and construct
an entity of type Course for each row. We attach a units attribute for each
course entity, which indicates the number of units (credits) associated with the
course, and a URL attribute, which points to the course listing at the official
MIT registrar website. We further construct entities of type Department for each
unique department by parsing the number of the course3. Finally we construct
one entity of type Institution, representing the institution MIT.

The second step in the mapping process is to construct relationship objects.
To do this, we make a second pass through the data and construct a relationship
object for every prerequisite and corerequisite requirement that appears in
the entity’s Prereqs and Coreqs columns. We also construct a has-parent-
of relationship object for every Course–Department relationship and every
Department–Institution relationship. Table 4 summarizes the mapped data set.

Analysis
Figure 8 shows a snapshot of the resulting network visualization, in which
courses are visualized as nodes, clustered by their parent departments. The
zoomed-in views illustrate the prerequisite relationships visualized as directed
edges between the appropriate course nodes. In the example shown, we use
node color to visualize how courses vary in unit count across the institute. A
standard MIT course is 12 units (representing 12 total hours per week over a
semester of length 14 calendar weeks). In Figure 8, orange nodes represent
courses that are greater than 12 units—these are typically laboratory and project-
based courses. As well as laboratory and project-based courses across the
engineering and science departments, we see in Global Studies and Languages
several courses that include research projects conducted in the relevant foreign

3At MIT, courses begin with the number of their department. For example, the course 2.007
belongs in Course 2 Mechanical Engineering.
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Table 3: Before mapping: sample of MIT curriculum file.

Name Prereqs Coreqs Units

2.007 Design and Manufacturing I 2.001,2.670 2.086 12

2.670 Mechanical Engineering Tools 3

6.0001 Intro. to Comp. Sci. Prog. in Python 6

6.005 Elements of Software Construction 6.01 6.042 12

6.009 Fundamentals of Programming 6.0001 12

15.301 Managerial Psychology Laboratory 15

. . . . . . . . . . . .

Table 4: After mapping: summary of mapped MIT curriculum data set.

Entities Count Attributes

Course 1264 Units, URL

Department 31

Institution 1

Relationships Count Attributes

has-parent-of 1295 Type, Directionality

has-prerequisite-of 941 Type, Directionality

has-corequisite-of 63 Type, Directionality

Figure 8: Visualization of MIT curriculum mapping: grey nodes indicate courses
with 12 units (a standard semester-long course), blue nodes indicate courses with
fewer than 12 units, and orange nodes indicate courses with more than 12 units.
Here, three zoom levels of the visualization are shown.
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language. Blue nodes represent courses that are fewer than 12 units. Here, we
see evidence of the recent curricular redesigns of several MIT departments to
include more flexibility in their undergraduate degree programs. For example,
Mechanical Engineering at MIT offers a both a traditional and a flexible degree
program. In the flexible degree program, students complete a core in mechanical
engineering and combine it with a six-course concentration in one of several
modern engineering areas. In part, this flexibility is enabled through half-
semester courses (6 units) in the mechanical engineering core. The highlighted
pathway in Figure 8 shows a full-semester course Mechanics and Materials I
leading to a half-semester course Thermodynamics, which in turn leads to another
half-semester course Introduction to Heat Transfer. Mechanics and Materials
I is required for students in both the traditional and the flexible mechanical
engineering degree programs. The two follow-on six-unit courses are required
for the flexible degree program (whereas the traditional degree program has a
different requirement), but the offering as two half-semester courses is intended
to give the students greater scheduling flexibility to accommodate their broader
degree requirements.

Another analysis of the curriculum model is of prerequisite relationships. For
each course, we find its entire prerequisite chain—i.e., the course’s prerequisites,
the prerequisites of its prerequisites, and so on. This prerequisite chain is a
subgraph within our network model. We then compute a topological sort on
the subgraph to find a valid ordering of the prerequisite pathway of the course.
Figure 9 visualizes some prerequisite pathways in a tree-like structure. In the
visualization, nodes are ranked according to the maximum length of the pathway
from the source node(s) in the subgraph to that node. Shown is a collection of
prerequisite pathways with courses ordered by increasing rank. Note that in the
interest of presenting a simple illustrative graphic, these visualizations do not
attempt to represent “or” conditions in the prerequisite pathways.

Modeling at the program scale
In this example, we model an individual program—the Engineering Product
Development (EPD) degree program at the Singapore University of Technology
and Design (SUTD). We discuss how our network model can be used to support
accreditation analysis.

Mapping
The SUTD EPD program model uses the structure specified in Table 1. We
obtained from SUTD a list of program learning outcomes and courses, organized
into groups according to the type of course. Each course has a list of outcomes
that it addresses. The degree to which a course addresses an outcome is
indicated by a numeric weighting from one (addresses weakly) to three (addresses
strongly). To create the accreditation mapping network model, we step through
the list to construct entity objects for each outcome, course, grouping and degree
program that appear. These constructed entities are vertices in the network model
and have type of Outcome, Course, Group or Program. We also attach attributes
to each entity, such as an URL for each course that directs the user to a repository
of materials for that course, including evidence that is provided to accreditors
during a site visit.
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(a) The course 2.00 Introduction to Design has a rank
of 0.

(b) The course 18.03 Differential Equations has a rank
of 2.

(c) The course 6.006 Introduction to Algorithms has a
rank of 3.

(d) The course 6.814 Database Systems has a rank of
5.

Figure 9: These panels visualize the prerequisite pathways of courses. Within a
pathway, course nodes are ordered by increasing rank.

The second step in the mapping process is to construct relationship objects. To
do this, we make a second pass through the list and construct a relationship object
of type addresses pointing from each course to the corresponding outcomes.
These relationships are each assigned a weighting. We construct a has-parent-
of relationship object for every Course–Group, Outcome–Group, and Group–
Program relationship.

Table 5 summarizes the mapped data set and Figure 10 shows a snapshot of
the resulting network visualization. In our visualization application, we visualize
outcomes as nodes (small red circles) and courses as nodes (larger circles). The
color of a course node indicates the number of outcomes it addresses, with
brighter nodes addressing more outcomes. Groups are used to visually cluster
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outcomes and courses using has-parent-of relationships and for suburb labels in
the map. The addresses relationships are shown as arrows pointing from a course
node to an outcome node.

Table 5: After mapping: summary of the mapped SUTD EPD data set.

Entities Count Attributes

Outcome 40 Description

Course 85 Learning evidence URL

Group 7

Program 1

Relationships Count Attributes

has-parent-of 132 Type, Directionality

addresses 1559 Type, Directionality, Strength

Figure 10: Visualization of SUTD Engineering Product Development degree
program mapping.

Analysis
This network model provides a basis on which to conduct analysis of the program
and its coverage of accreditation outcomes. For each outcome we can analyze
its coverage in the EPD program. The indegree of an outcome vertex specifies
the number of courses that address that outcome. The weighted indegree of
an outcome vertex is computed by summing up the weights of the incoming
edges. This gives an indication of the strength of coverage of that outcome across
the curriculum. For example, the outcome “Identify responsibilities relevant to
professional engineering practice through a clear needs statement in capstone
or design projects” is addressed by the following courses (weighting shown in
parentheses): Introduction to Design (1), Modelling the Systems World (1), The
Digital World (1), Engineering Design & Project Engineering (2), Capstone (3),
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Entrepreneurship (3), Power Electronics (1), Design & Fabrication of MEMS
(1), Electric Power Systems Analysis and Design (1), Micro-Nano Projects
Laboratory (2), Digital Integrated Circuits Design (1), Topics in Biomedical &
Healthcare Engineering (1), Design Management (3), Design and Manufacturing
(1), Engineering Management (2), Culture Formation and Innovative Design
(3), Energy Systems (3), Urban Transportation (1), The History of International
Development in Asia: The Role of Engineers and Designers (1), Social Theories
of Urban Life (1), Who Gets Ahead? Sociology of Social Networks and Social
Capital (2), Rice Cultures: Technology, Society, and Environment in Asia (2),
How the Things People Make, Make People: Material Things in Social Life (1).
This gives a weighted indegree score for the outcome vertex of 38.

Figure 11 plots the weighted indegree scores for all 40 outcomes. These
data emphasize the strongly interdisciplinary and design-focused nature of the
SUTD curriculum, with a strong mapping between courses and outcomes. This
strong mapping is not coincidental—SUTD is a newly founded university and
its curriculum was designed from scratch to emphasize cross-cutting skills and
challenges, rather than the traditional disciplinary approach of most engineering
programs. In general, this kind of network analysis will reveal potential gaps
of coverage in a curriculum, although in the SUTD EPD case, no such gaps are
apparent.

Figure 11: The weighted indegree score for each outcome shows how strongly
the outcome is addressed by courses across the SUTD EPD curriculum.

An analysis of course vertices reveals how strongly a particular course
contributes to addressing program outcomes. Similar to the weighted indegree
calculation described above, we can compute the weighted outdegree of a
course vertex by summing the weights associated with all outgoing addresses
relationship edges. Figure 12 plots the results for the 20 courses in the
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SUTD EPD curriculum that have the highest outdegree scores. These analytics
are useful, for example, in considering the effects of curriculum redesign on
coverage of program outcomes. These scores could also be combined with
student enrolment data to provide a quantitative assessment of student coverage
of outcomes, either by individual student or in aggregate across the student
population.

Figure 12: The weighted outdegree score for each course shows how strongly the
course contributes to outcomes across the SUTD EPD curriculum.

Modeling at the course scale
In this example we model and map a single course, Computational Methods in
Aerospace Engineering.

Mapping
The concept map model uses the structure specified in Table 1. The course has
59 learning outcomes describing what a student is expected to be able to do
after completing the course. The instructor identified 67 concepts, highlighting
what she thought to be the key topics covered in the course. These outcomes
and concepts are grouped into four modules: Integration Methods for Ordinary
Differential Equations (ODEs), Finite Difference and Finite Volume Methods for
Partial Differential Equations (PDEs), Finite Element Methods for PDEs, and
Probabilistic Simulation and Intro to Design Optimization. Within each of these
modules, the concepts and outcomes are each grouped into a sub-module. This
leads to the concept map network model with a total of 139 entities as shown in
Table 6.

The second step in the mapping process is to construct relationship objects.
Relationships contained in the provided course data include the relationships
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between concepts and outcomes; these specify which outcomes each concept
addresses. The data also contain information on the relationships among
outcomes, by specifying for each outcome a a list of its prerequisite outcomes
(i.e., the other outcomes that must be mastered in order to achieve that particular
outcome).

To construct the relationship objects in the network model, we step through
each concept and identify the outcomes it addresses. For each, we construct a
relationship object of type addresses pointing from the concept to the outcome.
We step through each outcome and construct a relationship object of type leads-
to pointing from the outcome to any downstream outcomes for which it is a
prerequisite. We construct a has-parent-of relationship object for every Concept–
Module, Outcome–Module, and Module–Course grouping. Table 6 summarizes
the mapped dataset and Figure 13 shows a snapshot of the resulting network
visualization.

Table 6: After mapping: summary of mapped dataset for course Computational
Methods in Aerospace Engineering.

Entities Count Attributes

Outcome 59

Concept 67

Module 12

Course 1

Relationships Count Attributes

has-parent-of 138 Type, Directionality

addresses 157 Type, Directionality

leads-to 50 Type, Directionality

Analysis
As with the accreditation map example above, an analysis of the indegree of
outcomes and outdegree of concepts reveals how course content covers the course
learning outcomes. One could further model the relationship between course
assessments (exams, projects, homeworks, etc.) and outcomes. Layering student
assessment results could then provide granular insight into student achievement
of course learning outcomes.

As one example of analysis on the concept mapping network model, we
consider the subgraph corresponding to only the leads-to relationships and
perform a topological sort of the subgraph. We then rank the outcomes according
to the length of their prerequisite chains. The outcomes with the highest
rankings are those that have the most prerequisites, and thus represent skills
that build upon and synthesize upstream skills. In Computational Methods
in Aerospace Engineering, the highest rank of an outcome is four (i.e., there
is at least one path that includes four prerequisite outcomes that lead to this
outcome). The three outcomes of rank four are shown in Table 7. The table also
shows the total number of prerequisite outcomes for each outcome (including
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Figure 13: Visualization of concept map for course Computational Methods for
Aerospace Engineering.

inherited prerequisites, i.e., prerequisites of prerequisites). For example, the
outcome “Implement multi-step and multi-stage methods to solve a representative
system of ODEs from an engineering application” is a synthesizing outcome
that requires students to have mastered upstream skills such as determining a
method’s convergence properties, determining stability boundary, and explaining
the difference between explicit and implicit methods. Figure 14 shows a tree
visualization of this outcome and its prerequisite outcomes within the course.
The rank of four is apparent from the number of levels in the tree-like structure.

Table 7: Outcomes of high rank are synthesizing skills that build on earlier
material in the course Computational Methods in Aerospace Engineering.

Learning Outcome Rank Total number
of prerequisite
outcomes

Implement multi-step and multi-stage methods to
solve a representative system of ODEs from an
engineering application.

4 13

Obtain confidence intervals for sample estimates of
the mean, variance, and event probability.

4 9

Describe the meaning of the entries (rows and
columns) of the stiffness matrix and of the right-
hand side vector for linear problems.

4 9
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Figure 14: Visualization of the tree-like structure yielded by the outcome
Implement ODE integration methods and its prerequisite chain.

Conclusion
This paper has presented a flexible and scalable mathematical framework for
educational modeling, with modeling examples ranging from an institutional-
wide curriculum to an engineering degree program to a single course. The
resulting network models embody the mappings that represent the rich relation-
ships among different educational entities, such as courses, concepts, outcomes,
departments and degree programs. The network models enable visualization
and analytics, either using standard graph visualization and graph analytics
tools, or using components tailored to the specific educational setting. In the
examples presented, viewing the elements of an educational curriculum through
the structured lens of a network model provides insight into learning pathways
and permits gap analysis of curriculum coverage, supporting curricular design.

For privacy reasons, this paper has avoided any examples that use actual stu-
dent data; however, clearly the presented models provide a structured foundation
that, in concert with student data, could enable adaptive learning, personalized
learning and data-driven institutional resource allocation.
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