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Abstract

A model two-dimensional acoustic waveguide with lateral impedance boundary conditions
(and outgoing boundary conditions at the waveguide outlet) is considered. The governing oper-
ator is proved to be bounded below with a stability constant inversely proportional to the length
of the waveguide. The presence of impedance boundary conditions leads to a non self-adjoint
operator which considerably complicates the analysis. The goal of this paper is to elucidate these
complications, and tools that are applicable, as simply as possible. This work is a continuation of
prior waveguide studies (where selfadjoint operators arose) by Melenk et al., “Stability Analysis
for Electromagnetic Waveguides. Part 1: Acoustic and Homogeneous Electromagnetic Waveg-
uides” (2023) [9], and Demkowicz et al. “Stability Analysis for Acoustic and Electromagnetic
Waveguides. Part 2: Non-homogeneous Waveguides (2023) [4].

Key words: acoustic waveguides, well-posedness analysis

AMS classification: 78A50, 35Q61

Acknowledgments

L. Demkowicz and J. Gopalakrishnan were supported by AFOSR grant FA9550-23-1-0103, N. Heuer
was supported by a JTO fellowship and ANID Fondecyt project 1230013.

1 Introduction

Typical acoustic waveguides have a length l which is many times the wavelength of the waves
propagating within it. While solving a Helmholtz boundary value problem within the waveguide,
it is of interest to know how the stability depends on l. Methods like the DPG method [2, 3]
rely on a well-posedness estimate, or stability estimate, for the undiscretized problem. This paper
is devoted to understanding this dependence for waveguides with impedance boundary conditions
that give rise to non self-adjoint operators. It is the third part of a series of papers devoted to the
stability analysis of acoustic and electromagnetic (EM) waveguides—see the first part [9] for further
motivations driving this study.

1Corresponding author: leszek@oden.utexas.edu,ORCID:0000-0001-7839-8037
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A more specific motivation comes from the analysis of circular waveguides. Contrary to straight
open waveguides where boundary conditions (BC) at infinity are replaced with a finite energy
assumption, the analysis of open circular waveguides calls for the imposition of a radiation condition
at r = ∞. The analysis of a circular waveguide illustrated in Fig.1, with an impedance BC at r = b,

Figure 1: A circular acoustic waveguide

is the usual stepping stone towards the analysis of the open circular waveguide. The analysis
of a straight waveguide with an impedance BC presented in this paper is thus ‘a stepping stone’
for a more complicated ‘stepping stone’. Separation of variables for a circular waveguide with an
impedance BC leads to the Bessel equation:

r(rR′)′ + ω2r2R = k2R,

with an arbitrary complex order k ∈ C. It is much harder to analyze than the straight waveguide
studied in this paper.

Formulation of the Problem

The problem of interest is illustrated in Fig. 2. The domain is Ω = I×(0, l) where I = (0, a). We are
looking for pressure p(x, z) and velocity field u(x, z) satisfying the system of linear time-harmonic
acoustic equations: {

iωp+ div u = f

iωu+∇p = g .
(1.1a)

The system is accompanied with the following Boundary Conditions (BC) where un denotes the
exterior normal component of u:

• hard BC on the left-hand side of the lateral boundary:

un = 0 on Γu := {(0, z) : z ∈ (0, l)} , (1.1b)

• impedance BC on the right-hand side of the lateral boundary:

un = −dp on Γimp := {(a, z) : z ∈ (0, l)} , (1.1c)

2



Figure 2: Acoustic waveguide problem.

• soft BC on the inflow boundary:

p = 0 on Γin := {(x, 0) : x ∈ (0, a)} , (1.1d)

• a non-local Dirichlet-to-Neumann (DtN) BC on the outflow boundary:

un = DtNp on Γout := {(x, l) : x ∈ (0, a)} . (1.1e)

The definition of the DtN BC involves the decomposition of the solution into modes (to be
introduced), and is explained below.

Here, ω > 0 is the angular frequency (we are using the e−iωt ansatz in time), and d > 0 is an
impedance constant. The DtN condition secures that the wave is outgoing. Formulation of the DtN
condition involves the use of propagation modes and in essence forces the analysis of the problem
using the modal decomposition. The goal of this paper is to show that the operator governing the
equations is bounded below, namely

∥p∥2L2(Ω) + ∥u∥2(L2(Ω))2 ≤ C(∥f∥2L2(Ω) + ∥g∥2(L2(Ω))2) , (1.2)

and to investigate the dependence of the constant C upon the waveguide length l. Note that C may
depend on ω, a dependence we do not explicitly track.

Reduction to the Helmholtz problem. Let q ∈ H1(Ω), q = 0 on Γin, be a test function. We
multiply (1.1a)1 with factor iω, then with test function q̄, integrate over the domain Ω, integrate
by parts, and incorporate BCs to obtain

−ω2(p, q)− iω(u,∇q)− iωd⟨p, q⟩Γimp + iω⟨DtNp, q⟩Γout = iω(f, q) .
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Next we multiply (1.1a)2 with the gradient of the test function ∇q̄ and integrate over the domain
Ω to obtain

iω(u,∇q) + (∇p,∇q) = (g,∇q) .

Summing up the two equations, we obtain the Helmholtz problem in its variational form,
p ∈ H1(Ω) : p = 0 on Γin,

(∇p,∇q)− ω2(p, q)− iωd⟨p, q⟩Γimp + iω⟨DtNp, q⟩Γout = iω(f, q) + (g,∇q)

q ∈ H1(Ω), q = 0 on Γin .

The right-hand side above represents a linear and continuous functional on H1(Ω) and, for conve-
nience, we will replace it with its Riesz representation r ∈ H1(Ω),

p ∈ H1(Ω) : p = 0 on Γin,

(∇p,∇q)− ω2(p, q)− iωd⟨p, q⟩Γimp + iω⟨DtNp, q⟩Γout = (r, q)H1(Ω)

q ∈ H1(Ω), q = 0 on Γin .

(1.3)

Note that
∥r∥H1(Ω) ≤ (ω2∥f∥2 + ∥g∥2)

1
2 .

It is easy to show that the original boundedness below condition (1.2) is equivalent to

∥p∥H1(Ω) ≤ C∥r∥H1(Ω) . (1.4)

The modes. We seek first solutions to the homogeneous system satisfying only the hard and
impedance BCs. Assuming an exponential ansatz in z, we look for the solution in the form

p = p(x)eiβz and u = (ux, uz) with ux = ux(x)e
iβz, uz = uz(x)e

iβz .

Above, we have overloaded symbols for p, ux, uz. It should be clear from the context which functions
we have in mind. Substituting the ansatz into the equations, we obtain a system of three first order
ordinary differential equations (ODEs) for unknowns p(x), ux(x), uz(x),

iωp+ u′x + iβuz = 0 (iωq̄,
∫
, relax)

iωux + p′ = 0 (q̄′,
∫
)

iωuz + iβp = 0 (−iβq̄,
∫
) .

(1.5)

The system is accompanied with BCs:

• hard BC on Γu: ux = 0,

• impedance BC on Γimp: ux = −dp.
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Multiplying the equations with terms indicated in (1.5), relaxing the first equation2, and adding
the equations, we obtain a variational eigenvalue problem for a mode p (recall that I = (0, a)):

Find p ∈ H1(I) \ {0}, β2 ∈ C such that∫ a

0
{p′q̄′ + pq̄} dx− iωd p(a)q(a) = (ω2 − β2 + 1︸ ︷︷ ︸

=λ

)

∫ a

0
pq dx ∀ q ∈ H1(I) .

(1.6)

The propagation constant β is related to the (complex) eigenvalue λ by β2 = ω2 + 1 − λ. For
impedance constant d = 0, the sesquilinear form on the left corresponds to the 1D Laplacian with
Neumann BCs which possesses a sequence of real, non-negative eigenvalues λn → ∞. We have thus
a finite number of propagating modes (β2 > 0) followed by an infinite number of evanescent modes
(β2 ≤ 0). The eigenvalue problem can also be formulated using the language of closed operators.
Introducing the operator,

A : L2(I) ⊃ D(A) ∋ p 7→ Ap = −p′′ + p ∈ L2(I) (1.7a)

with

D(A) :={p ∈ L2(I) : p′′ ∈ L2(I), p′(0) = 0, p′(a) = iωdp(a)}

={p ∈ H2(I) : p′(0) = 0, p′(a) = iωdp(a)} (1.7b)

we can restate the eigenvalue problem as

Ap = λp . (1.7c)

The operator is formally self-adjoint but it is not self-adjoint if d ̸= 0, as in that case

D(A∗) = {p ∈ H2(I) : p′(0) = 0, p′(a) = −iωdp(a)} ≠ D(A) .

The non-local DtN boundary operator. The same modes are needed to formulate the Dirichlet-
to-Neumann operator present in the BC at Γout. Extending the waveguide all the way to infinity, we
seek the solution of the homogeneous waveguide problem for z > l with an outgoing (or radiation)
BC at infinity. The solution is of the form:

p =
∑
j

pjXj(x)e
iβjz, pj ∈ C .

Note that the contributions e−iβjz have been eliminated by the outgoing radiation condition at
z = ∞. The DtN operator is now readily obtained:

DtN :
∑
j

pjXj(x)e
iβjz = p 7→ ∂p

∂z
=

∑
j

iβjpjXj(x)e
iβjz .

2By relaxing we mean integrating by parts and incorporating the BCs.
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For a single mode Xj , the DtN BC reduces thus to an impedance BC with a mode dependent
impedance constant iβj . In order to represent the BC in terms of velocity, we expand first the
z-component of the velocity in the same nodes,

uz =
∑
j

uz,jXj(x)e
iβjz,

and extend equation (1.1a)2 to the boundary to obtain the relation relating the spectral components
of the velocity and pressure:

−iωuz,j = iβjpj .

See [9] for a detailed mathematical discussion of the DtN operator for the self-adjoint case.

The strategy. Let us assume for a moment that the eigenvalue problem (1.6) admits a sequence
of eigenvectors Xn with corresponding eigenvalues λn and β2n. The conjugate X̄n represents the
eigenvectors of adjoint A∗. Let us also assume for simplicity that all eigenvalues are simple and
distinct3. We seek the solution to the Helmholtz problem (1.3) in the form

p(x, z) =
∑
j

Xj(x)pj(z) .

Substituting the ansatz into the variational equation (1.3) and testing with Xkq(z) we obtain a
system of decoupled 1D variational Helmholtz problems for the spectral components pk(z):

pk ∈ H1
(0(0, l)∫ l

0
{p′kq̄′ − β2kpkq̄} dz + iβkpk(l)q̄(l) =

∫ l

0
(r,Xk)H1(I)q̄ dz +

∫ l

0
(
∂r

∂z
,Xk)L2(I)q̄

′ dz

q ∈ H1
(0(0, l)

where
H1

(0(0, l) := {q ∈ H1(0, l) : q(0) = 0} .

The following stability estimate can be found in [9] (Lemma 4),∫ l

0
|p′k|2 dz + |βk|2

∫ l

0
|pk|2 dz ≲ l2

{∫ l

0
|(∂r
∂z
,Xk)L2(I)|2 +

1

|βk|2

∫ l

0
|(r,Xk)H1(I)|2

}
dz. (1.8)

Estimation for the self-adjoint case. For vanishing impedance, d = 0, operator A is self-
adjoint, and the corresponding eigenvectors are simultaneously orthogonal and complete in L2(I)

3This is indeed the case for our model problem.
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and H1(I). Normalizing them in the L2-norm, we proceed as follows [9]:

∥
∑
j

pjXj∥2H1(Ω)

=

∫ l

0

∥
∑
j

pjXj∥2H1(I) + ∥
∑
j

p′jXj∥2L2(I)

 dz (definition of H1(Ω)-norm)

=
∑
j

{∫ l

0
λj |pj(z)|2 dz +

∫ l

0
|p′j(z)|2 dz

}
(orthogonality and scalings)

≲ l2
∑
j

{∫ l

0
|(∂r
∂z
,Xj)L2(I)|2 dz +

1

λj

∫ l

0
|(r,Xj)H1(I)|2 dz

}
(

1D Helmholtz stability
βj ≈ λj

)

= l2
∑
j

{∫ l

0
|(∂r
∂z
,Xj)L2(I)|2 dz +

∫ l

0
|(r, Xj

∥Xj∥H1(I)
)H1(I)|2 dz

}
(∥Xj∥2H1(I) = λj)

= l2
∫ l

0

∑
j

|(∂r
∂z
,Xj)L2(I)|2 +

∑
j

|(r, Xj

∥Xj∥H1(I)
)H1(I)|2

 dz

= l2
∫ l

0

{
∥∂r
∂z

∥2L2(I) + ∥r∥2H1(I)

}
(orthogonality)

= l2∥r∥2H1(Ω) .

The goal of this paper is to extend this analysis to the non self-adjoint case for d > 0.

Scope of the paper. In Section 2, we review several fundamental results from the theory of
non self-adjoint operators relevant to our problem. Section 3 is devoted to the analysis of the 1D
eigenvalue problem with the impedance BC. Although a similar such 1D problem was studied by
J. Schwartz 70 years ago [10], we include, for completeness, some details of the 1D results needed
for analysis of the 2D waveguide. In particular, we analyze eigenbasis expansions both in H1 and
L2. We also show how to leverage the 1D estimates to apply the Glazman theorem (which seems to
not have been available at the time of Schwartz’s writing). The final 2D stability estimate, tracking
dependence on waveguide length, is presented in Section 4, which to the best of our knowledge, is
original. The paper concludes with a short summary of our results in Section 5.

2 Fundamental Results on Non-selfadjoint Operators

In this section, we recall a few fundamental concepts (see e.g., [6]) that will be useful for analyzing
our non-selfadjoint waveguide problem. Let X be a separable Banach space. A sequence ϕj ∈
X, j = 1, 2, . . . , is a Schauder basis for space X if

∀x ∈ X ∃!xj ∈ C, j = 1, 2, . . . : x =
∞∑
j=1

xjϕj .

Thus, given a Schauder basis, the coefficients in the basis expansion, i.e., the numbers xj above,
exist and are unique. Moreover the partial sums of the above infinite sum converges in the norm
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of the Banach space. The basic properties of Schauder basis are summarized next (see, e.g., [6,
p. 306]).

THEOREM 1
[(Schauder,Banach)]
Let (ϕj)j be a Schauder basis for a Hilbert space X. The following holds.

• There exists a biorthogonal sequence (ψj)j, i.e., (ϕj , ψk)X = δjk.

• “Linear independence” of vectors ϕj: ϕj ̸∈ span{ϕk : k ̸= j} .

• Sequence (ϕj)j is complete in X, i.e., span{ϕj} = X .

• Sequence (ψj)j is also a Schauder basis.

In the remainder, unless otherwise stated, X denotes a Hilbert space.

Riesz basis. A sequence ϕj ∈ X, j = 1, 2, . . . , is a Riesz basis for a Hilbert space X if there exists
a linear bounded operator A : X → X with a bounded inverse such that

ϕj = Aχj

for some orthonormal basis χj , j = 1, 2, . . ..

THEOREM 2
[Bari]
The following conditions are equivalent to each other.

(i) Sequence (ϕj)j is a Riesz basis.

(ii) Sequence (ϕj)j represents an orthonormal basis in an inner product norm equivalent to the
original inner product in X.

(iii) Sequence (ϕj)j is complete in X, and there exist positive constants α1, α2 such that

α1

n∑
j=1

|xj |2 ≤ ∥
n∑

j=1

xjϕj∥2 ≤ α2

n∑
j=1

|xj |2 (2.1)

for any n > 0, and any sequence of complex numbers xj , j = 1, . . . , n.

Proof: See [1] or [6, p. 310].
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Dissipative operators. A linear operator: X ⊃ D(A) ∋ x 7→ Ax ∈ X is called dissipative if

ℑ(Ax, x) ≥ 0, x ∈ D(A) .

If A is bounded (and, therefore, defined on the whole X), then

ℑ(Ax, x) = 1

2i
[(Ax, x)− (Ax, x)] = (

1

2i
(A−A∗)x, x) ,

so the condition is equivalent to the semi-positive definiteness of 1
2i(A−A∗).

THEOREM 3
[Glazman]
Let ψj , j = 1, 2, . . ., be a system of unit eigenvectors corresponding to distinct eigenvalues λj of a
dissipative operator such that

∞∑
j, k = 1
j ̸= k

ℑλj ℑλk
|λj − λk|2

<∞ . (2.2)

Then the system (ψj)j forms a Riesz basis for the closure of its span,

span{ψj , j = 1, 2, . . .} .

Proof: See [5] or [6, p. 328].

Schatten class operators. Let p ∈ [1,∞). A compact operator A : X → X is in the p Schatten
class, denoted by Cp, if

∞∑
j=1

spj (A) <∞

where sj are singular values of operator A. One can show that the Schatten operators form a
scale, i.e., Cp ⊂ Cq for p < q. Operators in C1 are called nuclear operators, and those in C2 are the
Hilbert–Schmidt operators. Defining

p(A) := inf{p :

∞∑
j=1

|sj |p <∞},

we call A a Schatten operator if p(A) <∞.

Consider the eigenvalue problem to find λ0 ∈ C and 0 ̸= x0 ∈ X satisfying

(I − T )x0 = λ0Hx0 (2.3)

where T : X → X is an arbitrary compact operator, and H : X → X is an injective, compact,
selfadjoint Schatten operator. The associated eigenvectors of such a λ0 are x1, x2, . . . , xm ∈ X

satisfying
(I − T − λ0H)xj = Hxj−1, j = 1, 2, . . . ,m, (2.4)
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and the generalized eigenspace of the operator pencil L(λ) = I − T − λH, associated to such a λ0,
is the span of all such xj , j = 0, 1, 2, . . . , xm. Then, the algebraic multiplicity of λ0 is m + 1. The
following result is a corollary of the well-known Keldyš theorems: see [8] or [6, p. 257–260] (cf. [7,
Theorem 2.1]).

THEOREM 4
[Keldyš]
In the above setting, the sum of all the generalized eigenspaces of L(λ) is dense in X. The spectrum
of L(λ) consists of an infinite sequence of eigenvalues, each of finite algebraic multiplicity, which
do not accumulate in C. If in addition H is non-negative, then, for any ε > 0, only finitely many
eigenvalues lie outside the sector {z ∈ C : | arg z| < ε}.

3 Analysis of the Eigenvalue Problem

In operator form eigenvalue problem (1.6) reads{
p ∈ H1(I) \ {0}, λ ∈ C

Rp−Dp = λMp
(3.1)

where R : H1(I) → (H1(I))′ is the Riesz operator, D : H1(I) → (H1(I))′ is an operator with
a non-negative imaginary part and of finite rank, and M is a compact operator representing the
composition of two embeddings H1(I) ↪→ L2(I) and L2(I) ↪→ (H1(I))′, i.e.,

⟨Rp, q⟩ = (p, q)H1(I),

⟨Dp, q⟩ = iωd p(a)q(a),

⟨Mp, q⟩ = (p, q)L2(I).

where ⟨·, ·⟩ denotes the duality pairing in H1(I). Applying R−1 to both sides of (3.1), we get{
p ∈ H1(I) \ {0}, λ ∈ C

(I −R−1D)p = λR−1Mp .
(3.2)

Putting T = R−1D and H = R−1M , this fits into the setting of (2.3). Indeed, since D has finite
rank, it is compact, and by the Rellich embedding, H is compact. Moreover, H is selfadjoint in
H1(I) as

(Hp, q)H1(I) = (R−1Mp, q)H1(I) = ⟨Mp, q⟩ = (p, q)L2(I) = (q, p)L2(I)

= ⟨Mq, p⟩ = (R−1Mq, p)H1(I) = (p,Hq)H1(I).

This also shows that H is positive definite (and hence injective). Finally, H is also a Schatten
operator—in fact, it is easy to see that it is a Hilbert-Schmidt operator.

Hence, by Theorem 4, it follows that the spectrum of (3.2) consists of an infinite sequence
of eigenvalues which do not accumulate in C. Furthermore, every eigenvalue has finite algebraic
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multiplicity and, for any δ > 0, there are only finitely many eigenvalues outside of the sector
{z ∈ C : |arg(z)| < δ}. We continue to refine this conclusion further.

Lemma 1
The algebraic multiplicity of every eigenvalue of (3.2) is one.

Proof: Suppose p ∈ H1(I) solve (3.2) for some eigenvalue λ. Then

p′′ + (λ− 1)p = 0, p′(0) = 0, p′(a)− iωdp(a) = 0. (3.3)

By (2.4), an associated eigenvector p1 ∈ H1(I), if it exists, satisfies (I − T − λH)p1 = Hp. Multi-
plying through by R,

(R−D − λM)p1 =Mp,

or, equivalently, for all q ∈ H1(I),

(p′1, q
′) + (p1, q)− iωdp1(a)q(a)− λ(p1, q) = (p, q).

For smooth enough q, after integration by parts, this implies

−
∫ a

0
p1(q′′ + (λ− 1)q) + p1(a)(q′(a) + iωdq(a))− p1(0)q′(0) =

∫ a

0
pq,

a relation which can be extended by density to eigenfunctions q. Substituting q = p and using every
equation of (3.3) after conjugating, we find that the left hand side vanishes, while the right hand
side equals ∥p∥2L2(I)). Hence p1 cannot exist.

Now, returning to the specific form of (3.2) given by the boundary value problem (3.3), we
impose the boundary conditions on the general form of the solution p(x) = c1 sin(

√
λ− 1x) +

c2 cos(
√
λ− 1x). We conclude that c1 = 0, c2 ̸= 0, and z := a

√
λ− 1 solves the following transcen-

dental equation (similar to an equation studied by [10, §6]),

iz tan z = ωda. (3.4)

Note that if z is a root, then −z is also a root of (3.4). We use the properties of z with positive
real part to deduce the properties of the eigenvalues

λ− 1 =
z2

a2
= ω2 − β2. (3.5)

In the selfadjoint case of d = 0, the eigenvalues can easily be computed and enumerated as zn = nπ.
The next lemma shows how zn values are perturbed off the real axis in the d > 0 case.

Lemma 2
The roots of (3.4) are simple, and the ones with positive real part, except possibly for a finite number
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of them, form a sequence zn = xn + iyn, as n→ ∞, with

xn = nπ +O(n−3)

yn = −ωda
nπ

+ o(n−1).

Proof: Fix an arbitrarily small δ > 0. As we have seen, by Theorem 4, almost all the eigenvalues
λ lie in the sector |arg(z)| < δ, and form a sequence λn with |λn| → ∞ (since they cannot have an
accumulation point). It follows that the roots z = a

√
λ− 1 of (3.4) with positive real part form a

sequence
zn = xn + iyn, with xn → ∞, (3.6)

as n → ∞. From relation (3.4) it is clear that, for sufficiently large integer n, there is at least one
root in every strip (n − 1/2)π < ℜz < (n + 1/2)π (since tan maps these strips onto C \ {±i} and
−iωda/z ̸= ±i is bounded there). Asymptotic uniqueness of roots within these strips will be shown
below.

Equations for real and imaginary parts of z. Dropping the subscript n temporarily, let z = x+iy

be a root of (3.4). Taking the imaginary part of both sides of the variational formulation (1.6) after
setting q = p there, we conclude that ℑλ < 0. By (3.5), this gives

xy < 0, so y < 0 as x→ +∞ (3.7)

per (3.6). Calculating the real and imaginary parts of tan z,

iz tan z = i(x+ iy)
sin 2x+ i sinh 2y

cos 2x+ cosh 2y
= i

(x sin 2x− y sinh 2y) + i(x sinh 2y + y sin 2x)

cos 2x+ cosh 2y
. (3.8)

Comparing with the real and imaginary parts of (3.4), we see that z solves (3.4) if and only if

x sin 2x = y sinh 2y, (3.9a)

and x sinh 2y + y sin 2x = −ωda(cos 2x+ cosh 2y). (3.9b)

Multiplicity of z. If z is a multiple root of iz tan z−ωda then, by (3.9a), (x, y) is a multiple root
of f(x, y) = x sin 2x− y sinh 2y. But f(x, ·) is strictly concave with the only double root at 0, and
y ̸= 0. Therefore, the roots of (3.4) are simple.

Characterization of z when x > ωda. Relation (3.9b) with y replaced through (3.9a) reads

x(sinh2 2y + sin2 2x) = −ωd sinh(2y)(cos 2x+ cosh 2y). (3.10)

By (3.7), we have sinh(2y) < 0 as x→ ∞, so (3.10) implies x sinh2 2y < −ωda sinh(2y)(1+cosh 2y).
Hence

x < ωda
1 + cosh 2y

sinh |2y|
= ωda

2 + v + v−1

v − v−1
= ωda

2v + v2 + 1

v2 − 1
= ωda

v + 1

v − 1
,
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with v = e2|y|. Equality holds iff x > ωda and v = (x + ωda)/(x − ωda). If x > ωda, then
1 < v = e2|y| < (x+ ωda)/(x− ωda) and

|y| = 1

2
log v ≤ 1

2
log

x+ ωda

x− ωda
, so 0 < −y → 0 as x→ ∞. (3.11)

Asymptotic behavior. Comparing signs in (3.9a) shows that x has a representation

x = nπ + δx with n ∈ N0, δx ∈ (0, π/2).

Setting x = nπ + δx in (3.9a), we obtain

sin 2δx =
y sinh 2y

x
.

Therefore, by (3.11), δx ∈ (0, π/2) tends to 0 or π/2 when x→ ∞. If δx→ π/2, then |z tan z| → ∞
contradicting relation iz tan z = ωda. Therefore, δx→ 0 and

xδx

y2
→ 1 as x→ ∞.

Taking the limit x→ ∞ (implying δx→ 0 and y → 0) in (3.10) reveals that

lim
x→∞

(xy + δxy) = lim
x→∞

xy = −ωda. (3.12)

Combination of the two asymptotics yields

lim
x→∞

x3δx = (ωda)2. (3.13)

Relations (3.12), (3.13) can be resumed as

y = −ωda
x

+ o(x−1), δx =
(ωda)2

x3
+ o(x−3) (x→ ∞).

Asymptotic uniqueness. We have seen that, asymptotically, z = nπ + δx + iy with δx, y → 0

(n → ∞). To finish the proof of the lemma it remains to show that, given a sufficiently large n,
the perturbations δx and y are unique. This follows from system (3.9). Given n ∈ N, its solution
(δx, y) is the root of a function F = (F1, F2) with derivative of order 2nπ id where id ∈ R2×2 is the

identity matrix. We select n ≥ n0 large enough so that F ′[ξ1, ξ2] :=

(
gradF1(ξ1)

⊤

gradF2(ξ2)
⊤

)
is invertible

for ξ1, ξ2 ∈ [0, 1] × [−1, 0] (to fix a compact set that contains (δx, y) for n ≥ n0). If there are
two roots w1, w2 ∈ (0, 1) × (−1, 0) for a strip with n ≥ n0, then the component-wise application
of the mean value theorem implies the existence of ξ1, ξ2 on the line connecting w1 and w2 with
F ′[ξ1, ξ2](w2 − w1) = 0, that is, w1 = w2.

We conclude with properties of the eigenvalue problem (3.2).

PROPOSITION 1
The operator −R + iωdD from (3.2) (with opposite sign) is dissipative. Its eigenvalues are simple
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and form a sequence (λn) with |λn| → ∞ (n→ ∞) satisfying the Glazman criterion∑
j ̸=k

ℑλjℑλk
|λj − λk|2

<∞.

Proof: The variational form (1.6) of (3.2) gives −ℑ(⟨(R−iωdD)p, p⟩(H1(I))′×H1(I) = ωd|p(a)|2 ≥
0, showing dissipativity. We have seen that the eigenvalues λ of (3.2) are related to the roots z of
(3.4) by λ = z2

a2
+1. By Lemma 2 the roots are simple and so are the eigenvalues λ. The eigenvalues

form a sequence (λn) with λn = a−2(x2n − y2n + 2ixnyn) + 1 where x2n − y2n = n2π2 + O(n−2) and
2xnyn = −ωda+ o(1), n→ ∞. The Glazman criterion holds since∑

j ̸=k

ℑλjℑλk
|λj − λ̄k|2

≤ C
∑
j ̸=k

1

|j2 − k2|2
<∞

for a positive constant C.

The fundamental results from Section 2 lead to the following properties of the eigenfunctions
of (3.2).

PROPOSITION 2
Eigenvalue problem (3.2) possesses a sequence of eigenpairs (λj , Xj), j = 1, . . .. The space generated
by the eigenfunctions is dense in L2(Ω) and H1(Ω). Normalizing the eigenfunctions in the L2-norm,
and selecting coefficients uj ∈ C, j = 1, . . ., they satisfy

c1

N∑
j=1

ℜλj |uj |2 ≤ ∥
N∑
j=1

ujXj∥2H1(I) ≤ c2

N∑
j=1

ℜλj |uj |2 ,

c1

N∑
j=1

|uj |2 ≤ ∥
N∑
j=1

ujXj∥2L2(I) ≤ c2

N∑
j=1

|uj |2

for some constants c1, c2 > 0, uniformly in N .

Proof: Let (λj , Xj), j = 1, . . ., be the eigenpairs of system (3.2) with eigenfunctions normalized
in H1(I), ∥Xj∥H1(I) = 1. By Proposition 1, the (negative) operator is dissipative, its eigenvalues
are simple, |λj | → ∞, and satisfy the Glazman criterion (2.2). By the Glazman Theorem the
eigenfunctions constitute a Riesz basis for the closure of their span, and by the Keldyš Theorem the
closure equals the whole space H1(I). In particular, we have

c1

N∑
j=1

|uj |2 ≤ ∥
N∑
j=1

ujXj∥2H1(I) ≤ c2

N∑
j=1

|uj |2 (3.14)
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for some c1, c2 > 0, uniformly in N .

We need a corresponding estimate for the L2-norm. Recall the eigenvalue problem reformulated
in the closed operator setting (1.7). Applying A−1 gives

u ∈ L2(I) \ {0}, λ ∈ C

(I +A−1)u = (
1

λ
+ 1︸ ︷︷ ︸

=:µ

)u .

Let us check the Glazman criterion for the µ eigenvalues:

ℑµj = ℑ( 1
λj

+ 1) = ℑ 1
λj

= − ℑλj

|λj |2 ,

|µj − µk| = | 1
λj

− 1
λk
| = |λj−λk|

|λj | |λk| ,∑
j ̸=k

ℑµjℑµk
|µj − µk|2

=
∑
j ̸=k

ℑλjℑλk
|λj − λk|2

<∞ .

Tapping thus once again into the Glazman and Keldyš results, we find that the same eigenbasis,
but now normalized in the L2-norm, is also a Riesz basis in L2(I). This implies that

d1

N∑
j=1

|uj |2∥Xj∥2L2(I) ≤ ∥
N∑
j=1

ujXj∥2L2(I) =
∥∥∥ N∑
j=1

uj∥Xj∥L2(I)
Xj

∥Xj∥L2(I)

∥∥∥2
L2(I)

≤ d2

N∑
j=1

|uj |2∥Xj∥2L2(I)

(3.15)
with some other constants d1, d2 > 0, uniformly in N .

Switching to L2-normalized eigenfunctions, estimates (3.14) and (3.15) read

c1

N∑
j=1

|uj |2∥Xj∥2H1(I) ≤ ∥
N∑
j=1

ujXj∥2H1(I) ≤ c2

N∑
j=1

|uj |2∥Xj∥2H1(I),

d1

N∑
j=1

|uj |2 ≤ ∥
N∑
j=1

ujXj∥2L2(I) ≤ d2

N∑
j=1

|uj |2 .

We obtain the stated inequalities by noting that

∥Xj∥2H1(I) = ℜλj∥Xj∥2L2(I) = ℜλj .

4 Stability of the Waveguide Problem

We are in position to prove the stability of the waveguide problem with impedance boundary
condition on rectangular domains, as claimed in (1.2).

THEOREM 5
If p, u solve the waveguide problem (1.1) on Ω = (0, a) × (0, l) with fixed ω, a > 0 and data
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f, g ∈ L2(Ω), then
∥p∥L2(Ω) + ∥u∥(L2(Ω))2 ≤ C l (∥f∥L2(Ω) + ∥g∥(L2(Ω))2)

holds with a constant C > 0 that does not depend on f , g, and l.

Proof: It is enough to bound ∥p∥H1(Ω) ≲ l ∥r∥H1(I) for the Riesz representation r of the right-
hand side functional, cf. (1.4). We denote the eigenpairs of (3.2) by (λj , Xj), j = 1, . . .. Recall that
λj = ω2 − β2j + 1, cf. (1.6). By Proposition 2, we can expand p(x, z) =

∑
j pj(z)Xj(x), and the

estimates by Proposition 2 and stability (1.8) show that

∥p∥2H1(Ω) = ∥
∑
j

pjXj∥2H1(Ω) =

∫ l

0

∥
∑
j

pjXj∥2H1(I) + ∥
∑
j

p′jXj∥2L2(I)

 dz

≲
∑
j

{∫ l

0
ℜλj |pj(z)|2 dz +

∫ l

0
|p′j(z)|2 dz

}

≲ l2
∑
j

{∫ l

0
|(∂r
∂z
,Xj)L2(I)|2 dz +

1

ℜλj

∫ l

0
|(r,Xj)H1(I)|2 dz

}

= l2
∑
j

{∫ l

0
|(∂r
∂z
,Xj)L2(I)|2 dz +

∫ l

0
|(r, Xj

∥Xj∥H1(I)
)H1(I)|2 dz

}

= l2
∫ l

0

∑
j

|(∂r
∂z
,Xj)L2(I)|2 +

∑
j

|(r, Xj

∥Xj∥H1(I)
)H1(I)|2

 dz

≲ l2
∫ l

0

∥
∑
j

|(∂r
∂z
,Xj)L2(I)Xj∥2L2(I) +

∥∥∥∑
j

|(r, Xj

∥Xj∥H1(I)
)H1(I)

Xj

∥Xj∥

∥∥∥2
H1(I)


= l2

∫ l

0

{
∥∂r
∂z

∥2L2(I) + ∥r∥2H1(I)

}
dz

= l2∥r∥2H1(Ω) .

5 Conclusions

In the paper, we analyzed the well-posedness of a 2D model acoustic waveguide with an impedance
BC. We have extended the stability analysis from [9] proving that the operator is bounded below
with a constant inversely proportional to the length l of the waveguide. The same techniques can be
used to show that the adjoint operator is also bounded below. Consequently, by the Closed Range
Theorem, both the discussed problem and its adjoint are well-posed. The work constitutes a first
step towards analyzing bent optical fibers.
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