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Abstract

Characterizing physical properties of faults, such as their transmissibility, is
crucial to perform predictive numerical simulation of subsurface flow prob-
lems, such as those encountered in petroleum engineering and remediation of
subsurface contamination. This paper provides a complete investigation of
inversion of the fault transmissibility for subsurface flow models under appro-
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are considered: 1) fault modeling and well-posedness of the forward problems;
2) finite element (FEM) discretizations of the forward problem and their rig-
orous a priori convergence analysis; 3) Well-posedness of the Bayesian inverse
problem, FEM discretization of infinite dimensional Bayesian inverse formu-
lation, and its rigorous a priori analysis. Maximum a posteriori computation
as deterministic optimization and a Laplace approximation of the Bayesian
posterior are also presented. Numerical results illustrates the use of the pro-
posed fault model for forward and inverse simulation of subsurface flows in
two dimensional domain with multiple faults.
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1. Introduction

Accurate modeling and numerical simulation of subsurface flows are im-
portant for various applications such as petroleum engineering and contam-
inant transport. In subsurface flow models the fault (or fracture) structure
has a great influence on the fluid flows. Therefore, modeling fault structures
with appropriate physical parameters is important for accurate simulations
of the subsurface flows when fault structures exist in the subsurface domain
(see, e.g., [1, 2, 3, 4] and more references in a recent review article [5]).

Faults in oil reservoirs can be complex geometric structures with rel-
atively thin volumes compared to the whole domain of reservoir models.
Therefore, high resolution modeling of faults as volumetric objects requires
very fine grid/mesh to describe the full geometric complexity of faults. Such
an approach, though providing high fidelity simulations, is at the expense of
extremely high computational costs. Moreover, faults’ detailed information
for high resolution models are usually not available in practical applications.
Existing approaches typically model fault structures as a manifold of codi-
mension one in the whole domain. This is meaningful as the thickness of
faults is negligibly small compared to the length scale of the whole reservoir
model [6, 7, 8]. In this paper, we also adopt this approach for modeling fault
structures.

Some previous studies on subsurface flow models with faults consider a
geometric multiscale framework in which specifically designed interface con-
ditions are used to couple the flow equations in the whole domain with those
in the faults’ domain [6, 7]. In this paper, we assume that the permeability
parameters on faults are much lower than the surrounding media, so there
is no fluid flows along fault structures [9]. As a consequence, we obtain a
reduced single-phase flow model that does not need the velocity and the
pressure fields on faults as independent unknowns. Moreover, the physical
parameters associated to the permeability on faults are reduced to the fault
transmissibility fields (see Section 2 and [9]).

In this paper we discuss fault modeling and numerical methods together
with their analyses for both forward simulation and inversion of the fault
transmissibility for the aforementioned single-phase subsurface flow model.
For discretization of the forward model, one can use many different numerical
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methods such as the mixed method [6, 9], the multipoint flux approximation
[9], the finite volume method [7], and the mimetic finite difference method
[10]. In this paper we use the mixed finite element method as it is well-
supported by FEniCS [11, 12] and hIPPYlib [13, 14], the two open source
software packages for finite element methods and Bayesian inversion problems
that we use for numerical results.

The remainder of the paper is organized as follows. In Section 2 we present
preliminary background notions on function spaces, derive the single-phase
forward partial differential equation (PDE) of subsurface flow id domain with
faults, and show its Babška–Brezzi stability. In Section 3 we discretize the
model with mixed finite elements and prove a priori error estimates. In
Section 4 we first present an infinite Bayesian inversion framework and show
its well-posedness. This is followed by FEM discretizations of the prior and
the likelihood and their error analyses. We then combine prior and likelihood
discretizations to construct a FEM discretization of the infinite Bayesian
posterior measure and provide its convergence analysis. MAP computation
as deterministic optimization and a Laplace approximation of the Bayesian
posterior are also presented. Numerical results illustrating our theoretical
findings are presented in Section 5. Section 6 concludes the paper with
future research directions.

2. Preliminaries

2.1. Notations

Let Ω be a bounded domain in Rn with n = 2 or 3. For a nonnegative
integer m, Hm(Ω), Hm(Ω;Rn) denote the standard R and Rn-valued Sobolev
spaces based on L2 norm, and ‖ · ‖m with m ≥ 0 the scalar- or vector-valued
Hm-norms. Boldface letters are preserved for vector-valued functions.

For functions f, g ∈ L2(Ω) and f , g ∈ L2(Ω;Rn) let

(f, g) :=

∫
Ω

fg dx, (f , g) :=

∫
Ω

f · g dx.

Similarly, for an (n−1)-dimensional submanifold D ⊂ Ω and functions f, g ∈
L2(D), f , g ∈ L2(D;Rn) we define

〈f, g〉D :=

∫
D

f · g ds, 〈f , g〉D =

∫
D

f · g ds.
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2.2. Modeling fault transmissibility

In this section we derive the fault transmissibility model under the as-
sumption of an infinitesimal fault thickness. Let us consider the model do-
main illustrated in Figure 1 comprising two subdomains Ω+ and Ω− divided
by a fault domain Γf with thickness df . For simplicity we assume that the
two interfaces Γ+ := ∂Ω+ ∩ ∂Γf , Γ− := ∂Ω− ∩ ∂Γf are parallel to each other.
The constant permeability parameters on the subdomains are κ+, κ−, κf ,
respectively, and p+, p− are the pressure values on the interfaces Γ+, Γ−. We
denote by n the unit normal vector field on Γ+ from Ω− to Ω+. We assume

Figure 1: Modeling of fault.

that fluid flows follow the Darcy law, i.e., the velocity of fluid is −κ∇p for a
pressure field p. Here we assume that the pressure field p is continuous, so if
we denote the pressure field in the fault of thickness df by pf , then p− = pf |Γ−
and p+ = pf |Γ+ . We also assume that Γf is thin and κf � κ+, κ−, so the
fault has no absorption, drainage of fluids, and tangential fluid flows. By this
assumption and flux conservation

−(κ+∇p) · n|Γ+ = −(κf∇pf ) · n|Γ+ , −(κ−∇p) · n|Γ− = −(κf∇pf ) · n|Γ− .

By the fundamental theorem of calculus along the direction orthogonal
to Γ+, we have

−κf (p+ − p−) = −
∫ df/2

−df/2
(κf∇pf ) · n dl.
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In our modeling, df is small, so we may assume that κf is nearly a constant
on the fault. The approximation of the above integral with the trapezoidal
rule and the flux continuity give

−κf (p+ − p−) ≈ −df
2

((κ+∇p) · n|Γ+ + (κ−∇p) · n|Γ−).

and the pressure gradient in Γf is high. The difference of p+ and p− is thus
not negligible. In addition, since we assume that there is no tangential flows
along the fault, we have

(κ+∇p) · n|Γ+ = (κ−∇p) · n|Γ− ,

which results in the following constitutive equation for the fault

[[p]] := p+ − p− = tf (κ+ · ∇p) · n|Γ+ = tf (κ− · ∇p) · n|Γ− , tf =
df
κf
. (1)

Since df is much smaller than the characteristic length scale of our subsurface
model, Γf is considered as a zero thickness fault in our partial differential
equation model in Section 2.3.

2.3. Partial differential equation model (forward problem)

A fault Γ is a union of disjoint (n−1)-dimensional Lipschitz submanifolds
in Ω and we denote Ω\Γ by Ω̊. We assume that there exist open subdomains
Ω+,Ω− ⊂ Ω̊ with Lipschitz boundaries such that Ω = Ω+ ∪ Ω−, Γ ⊂ ∂Ω+ ∩
∂Ω−, and only one side of Γ is in contact with Ω+ or Ω−. Let n+ and n− be
the two unit normal vector fields on Γ with opposite directions (n+ = −n−)
such that n± correspond to the unit outward normal vector fields from Ω±.
Suppose that ΓD and ΓN are (n− 1)-dimensional open submanifolds on ∂Ω
such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. Here we use the convention that
(·, ·) is the integration on Ω and 〈·, ·〉Γ is the integration on Γ.

We also assume that

(A1) for any q ∈ L2(Ω) there exists w ∈ H1(Ω;Rn) such that w|Γ = 0,
divw = q and ‖w‖1 ≤ C‖q‖0 with a constant C > 0 depending only
on Ω and Γ.
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The assumption (A1) holds, for instance, if both of ∂Ω+ ∩ ∂Ω and ∂Ω− ∩ ∂Ω
have positive (n− 1)-dimensional Lebesgue measures. A proof can be found
in [15, Corollary 2.4].

Let γ+ : H1(Ω+) → H1/2(Γ) and γ− : H1(Ω−) → H1/2(Γ) be the trace
operators. For a function p ∈ H1(Ω̊), we define p± on the fault Γ as

p−(x) = γ−p, p+(x) = γ+p, ∀x ∈ Γ.

Suppose that tf > 0 is a fault transmissibility function on Γ and u is a
vector-valued function on Ω such that u · n+ = −u · n− is single-valued on
Γ.

Assume that κ is a permeability symmetric positive definite tensor on
Ω. The pressure and flux boundary conditions are given as gD on ΓD and
gN on ΓN . Recalling (1), for pressure p and flux u = κ∇p in Ω̊, a mixed
formulation of the Darcy equation in domain Ω with fault Γ reads:

κ−1u +∇p = 0 in Ω̊, divu = f in Ω̊, (2a)

u · n = gN on ΓN , p = gD on ΓD, (2b)

u · n− t−1
f [[p]] = 0 on Γ. (2c)

Hereafter, we assume that ΓD = ∂Ω and gD = 0 for the simplicity of the
exposition. Let Q = L2(Ω), and H(div,Ω) be the space of Rn-valued L2

functions on Ω such that its distributional divergence is in L2(Ω). We define
V as

V = {v ∈ H(div,Ω) : v · n|Γ ∈ L2(Γ)}

and the norm on V is defined by

‖v‖V =
(
‖v‖2

0 + ‖ div v‖2
0 + ‖v · n‖2

0,Γ

) 1
2

where ‖q‖0,Γ := 〈q, q〉1/2Γ . Here we derive a variational formulation with
the interior Robin-type boundary condition (2c) on Γ with an additional
regularity assumptions on the exact solution u and p. More specifically, we
assume that the exact solution u and p satisfy p ∈ H1(Ω̊) and u ∈ V with
additional regularity satisfying (2c) almost everywhere on Γ. We remark that
this approach is inspired by [16] on mixed finite element methods for Robin
boundary condition problems.
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From the integration by parts of the first equation in (2a), we have∫
Ω

κ−1u ·v dx−
∫

Ω

p div v dx+ 〈p+,v · n+〉Γ + 〈p−,v · n−〉Γ = 0 ∀v ∈ V ,

which, after invoking v · n+ = −v · n−, 〈p+,v · n+〉Γ + 〈p−,v · n−〉Γ =
〈[[p]] ,v · n+〉Γ, and u · n+ − t−1

f [[p]] = 0, becomes∫
Ω

κ−1u · v dx−
∫

Ω

p div v dx+ 〈tfu · n+,v · n+〉Γ = 0 ∀v ∈ V . (3)

In the following, we use 〈tfu · n,v · n〉Γ to denote 〈tfu · n+,v · n+〉Γ since
the bilinear form 〈tfu · n,v · n〉Γ is same for n = n+ and n = n−.

In the final variational formulation the exact solution (u, p) satisfies{
(κ−1u,v)− (p, div v) + 〈tfu · n,v · n〉Γ = 0 ∀v ∈ V ,

(divu, q) = (f, q) ∀q ∈ Q.
(4)

When ‖tf‖L∞(Γ) → 0 the above system approaches the mixed formulation of
Darcy equation with no faults. On the other hand, the above system becomes
the complete sealing fault case as ‖t−1

f ‖L∞(Γ) → 0 because u ·n+ → 0 in (2c).
The system (4) can be viewed as a saddle point problem{

a (u,v) + b(v, p) = F (v),
b (u, q) = G(q)

(5)

with the two bilinear form and two linear forms

a (u,v) =
(
κ−1u,v

)
+ 〈tfu · n,v · n〉Γ , b(v, q) = (div v, q) ,

F (v) = 0, G(q) = −(f, q).

Theorem 1. Suppose that ‖tf‖L∞(Γ), ‖t−1
f ‖L∞(Γ) < +∞ and F and G are

bounded linear functionals on V and L2(Ω) in (5). Then, (5) has a unique
solution (u, p) ∈ V × L2(Ω).

Proof. By the definition of ‖v‖V it is easy to check

|a (v,v′) | ≤ ‖a‖‖v‖V ‖v′‖V , |b(v, q)| ≤ ‖v‖V ‖q‖0

with

‖a‖ := max{‖κ−1‖L∞(Ω), ‖tf‖L∞(Γ)}. (6)
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By (A1) we can obtain the inf-sup condition for the Babuška–Brezzi stability
theory (cf. [17])

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖0

≥ β > 0 (7)

where β depends on Ω. Since we assume ‖t−1
f ‖L∞(Γ) < +∞ the coercivity

inf
v∈Z

a(v,v)

‖v‖2
V

≥ α > 0, Z := {v′ ∈ V : div v′ = 0} (8)

with α = min{‖κ‖−1
L∞(Ω), ‖t

−1
f ‖

−1
L∞(Γ)}, is obtained by

a(v,v) =
(
κ−1v,v

)
+ 〈tfv · n,v · n〉Γ

≥ min{‖κ‖−1
L∞(Ω), ‖t

−1
f ‖

−1
L∞(Γ)}

(
‖v‖2

0 + ‖v · n‖2
0,Γ

)
≥ min{‖κ‖−1

L∞(Ω), ‖t
−1
f ‖

−1
L∞(Γ)}‖v‖

2
V

for v ∈ Z. Then, the well-posedness of (4) follows from the Babuška–Brezzi
theory [17].

For an analysis of inverse problem presented in Section 4, we claim that
the solution of (5) depends continuously on tf under additional assumptions.

Theorem 2. Suppose that m, m̃ are Hölder continuous functions in C0,t(Γ)
for some t > 0. Suppose that (u, p) and (ũ, p̃) in V ×Q are the solutions of
(5) for tf = em and tf = em̃, respectively. Then,

‖u− ũ‖V + ‖p− p̃‖0 ≤ C‖tf − t̃f‖L∞(Γ)

with C > 0 depending on ‖κ−1‖L∞(Ω), ‖tf‖L∞(Γ), and ‖t̃f‖L∞(Γ).

Proof. For tf = em and t̃f = em̃ the coercivity constants of a(·, ·) are

α = min{‖κ‖−1
L∞(Ω), e

−‖m‖L∞(Γ)}, α̃ = min{‖κ‖−1
L∞(Ω), e

−‖m̃‖L∞(Γ)}.

By [17, Theorem 4.2.3], the solution (u, p) of (5) satisfies

‖u‖V ≤
1

α
‖F‖V ′ +

2‖a‖1/2

α1/2β
‖G‖0, (9)

‖p‖0 ≤
2‖a‖1/2

α1/2β
‖F‖V ′ +

‖a‖
β2
‖G‖0 (10)
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with α, β, ‖a‖ in (8), (7), (6) where

‖F‖V ′ := sup
v∈V

F (v)

‖v‖V
, ‖G‖0 := sup

q∈L2(Ω)

G(q)

‖q‖0

.

From (5) it is easy to see that(
κ−1(u− ũ),v

)
+ 〈tf (u− ũ) · n,v · n〉Γ + b(p− p̃,v) + b(u− ũ, q)

= −
〈
(tf − t̃f )ũ · n,v · n

〉
Γ
.

By (9), (10),

‖u− ũ‖V ≤
1

α
sup
v∈V

−
〈
(tf − t̃f )ũ · n,v · n

〉
Γ

‖v‖V

≤ 1

α
C(m, m̃)‖m− m̃‖L∞(Γ)‖ũ · n‖L2(Γ),

and similarly,

‖p− p̃‖0 ≤
2‖a‖1/2

α1/2β
C(m, m̃)‖m− m̃‖L∞(Γ)‖ũ · n‖L2(Γ).

Finally, ‖ũ ·n‖L2(Γ) is bounded by the formulas (9) with F = 0, G = f where
‖a‖ and α are replaced by

‖ã‖ := max{‖κ−1‖L∞(Ω), ‖t̃f‖L∞(Γ)},

and α̃, and it leads to the conclusion.

3. Discretization with mixed methods and the a priori error anal-
ysis

In this section we discuss the finite element discretization and the a priori
error analysis of (4). Throughout this section we assume that Ω is a bounded
domain with a polygonal/polyhedral boundary.

Let Th be a triangulation of Ω with n-dimensional simplices without hang-
ing nodes with discretization parameter h > 0 which is the maximum diam-
eter of n-dimensional simplices in Th. Eh is the corresponding set of (n− 1)-
dimensional simplices generated by Th. We always assume that a subset of Eh,
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denoted by EΓ
h , forms a triangulation of the fault Γ, and Th is shape-regular

with an upper-bound of shape regularity which is uniform in h (cf. [18]).
For an integer k ≥ 0 and a set D ⊂ Rn, Pk(D) is the space of polynomials

defined on D of degree at most k. Similarly, Pk(D;Rn) is the space of Rn-
valued polynomials of degree at most k. For given k ≥ 1 let us define

V RTN
h (T ) = Pk−1(T ;Rn) +

x1
...
xn

Pk−1(T ),

V BDM
h (T ) = Pk(T ;Rn), T ∈ Th.

Suppose that V h ⊂ V is the Raviart–Thomas–Nedelec (RTN) or Brezzi–
Douglas–Marini (BDM) element defined by

V h = {v ∈ V : v|T ∈ V RTN
h (T ), ∀T ∈ Th},

or V h = {v ∈ V : v|T ∈ V BDM
h (T ), ∀T ∈ Th}.

The finite element space Qh is defined by

Qh = {q ∈ Q : q|T ∈ Pk−1(T ) ∀T ∈ Th}.

Then divV h = Qh and it is well-known that the pair (V h, Qh) satisfies (7)
with a discrete inf-sup constant β̄ independent of h [17, p. 406].

The discretization of (4) is to seek (uh, ph) ∈ V h ×Qh such that{
(κ−1uh,v)− (ph, div v) + 〈tfuh · n,v · n〉Γ = 0 ∀v ∈ V h,

(divuh, q) = (f, q) ∀q ∈ Qh.
(11)

Since (7) and (8) hold with (V h, Qh), well-posedness and the stability of this
system follow from the standard Babuška-Brezzi theory.

3.1. The a priori error analysis

For error analysis we consider the difference of (4) and (11) which reads

(κ−1(u− uh),v)− (p− ph, div v) (12a)

+ 〈tf (u− uh) · n,v · n〉Γ = 0 ∀v ∈ V h,

(div(u− uh), q) = 0 ∀q ∈ Qh. (12b)
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Let Πh be the canonical interpolation operator into V h by the standard
degrees of freedom and Ph be the L2 projection into Qh. Then it is known
(cf. [17]) that

Ph div v = div Πhv (13)

holds for v ∈ V ∩ Lr(Ω;Rn), r > 2.

Theorem 3. Suppose that (u, p) and (uh, ph) are the solutions of (4) and
(11). Assuming that u and p are sufficiently regular to make the norms below
well-defined, then∥∥κ−1/2(u− uh)

∥∥
0

+
∥∥∥t1/2f (u− uh) · n

∥∥∥
0,Γ

(14)

≤

{
Chk−1/2 ‖u‖k if V h is RTN element

Chk+1/2 ‖u‖k+1 if V h is BDM element
,

‖p− ph‖0 ≤

{
Chk−1/2 (‖u‖k + ‖p‖k) if V h is RTN element

Chk(‖u‖k+1/2 + ‖p‖k) if V h is BDM element
. (15)

Proof. We decompose the errors as the following

u− uh = (u− Πhu) + (Πhu− uh)︸ ︷︷ ︸
eu

=: (u− Πhu) + eu,

p− ph = (p− Php) + (Php− ph)︸ ︷︷ ︸
ep

=: (p− Php) + ep.

From (12b) Ph divu = divuh holds, therefore div eu = 0 by the definition of
eu. Taking v = eu in (12a), we have

(κ−1eu, eu) + 〈tfeu · n, eu · n〉Γ
= −(κ−1(u− Πhu), eu)− 〈tf (u− Πhu) · n, eu · n〉Γ . (16)

Applying the Cauchy–Schwarz inequality to (16) we obtain∥∥κ−1/2eu
∥∥

0
+
∥∥∥t1/2f eu · n

∥∥∥
0,Γ

≤ 2
∥∥κ−1/2(u− Πhu)

∥∥
0

+ 2
∥∥∥t1/2f (u− Πhu) · n

∥∥∥
0,Γ
.

The interpolation Πh gives an optimal order of approximation in L2(Ω) [17]

but we lose 1/2 order in the approximation of
∥∥∥t1/2f eu · n

∥∥∥
0,Γ

because of the
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scaling factor in trace inequalities in the theory of finite element methods (cf.
[19, Lemma 1.49]).

Assuming that u is sufficiently regular, we obtain error estimates

∥∥κ−1/2eu
∥∥

0
+
∥∥∥t1/2f eu · n

∥∥∥
0,Γ
≤

{
Chk−1/2 ‖u‖k if V h is RTN element

Chk+1/2 ‖u‖k+1 if V h is BDM element

where C > 0 depends on ‖κ−1‖L∞ and ‖tf‖L∞ . Then, (14) is obtained by
the triangle inequality.

To estimate ‖p− ph‖0, note that (p− ph, div v) = (ep, div v) for v ∈ V h

owing to (p − Php, div v) = 0 by definition of Ph. By (A1), there exists
w ∈ H1(Ω;Rn) such that divw = ep, ‖w‖1 ≤ C‖ep‖0, w|Γ = 0. Then
v = Πhw ∈ V h satisfies

div v = ep, ‖v‖div . ‖ep‖0 , v · n|Γ = 0, (17)

thanks to (13). Taking this v in (12a), we have

‖ep‖2
0 = (κ−1(u− uh),v) ≤ C ‖u− uh‖0 ‖v‖0 ≤ C ‖u− uh‖0 ‖ep‖0

As a consequence,

‖ep‖0 ≤

{
Chk−1/2 ‖u‖k if V h is RTN element

Chk+1/2 ‖u‖k+1 if V h is BDM element

In this estimate, the convergence order of ‖ep‖0 is 1/2 order superconver-
gent if the BDM element is used. Finally, (15) is obtained by the triangle
inequality.

3.2. Improved error analysis

In this subsection we show an improved error analysis under additional
assumptions on tf . Recall that a function g on a domain D is in W 1,∞(D) if
g is differentiable in the sense of distributions on D and the derivative of g
is in L∞(D). For more details on W 1,∞ we refer to standard references, e.g.,
[20, 21]. We say that tf is element-wise W 1,∞ on Γ if tf |e ∈ W 1,∞(e) for all
e ∈ EΓ

h , and ‖tf‖W 1,∞
h (Γ) := maxe∈EΓ

h
‖tf |e‖W 1,∞ .

Let tf be the piecewise constant function on Γ such that tf |e is the mean
value of tf on e ∈ EΓ

h .
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Theorem 4. Assume that tf is element-wise W 1,∞ on Γ. Then,

∥∥κ−1/2(u− uh)
∥∥

0
≤

{
Chk ‖u‖k if V h is RTN element

Chk+1 ‖u‖k+1 if V h is BDM element
(18)

and

‖p− ph‖0 ≤ Chk (‖u‖k + ‖p‖k) . (19)

Proof. Let P Γ
h be the L2 projection to the space

Λh := {λ ∈ L2(Γ) : λ|e ∈ Pl(e) ∀e ∈ Fh}

with l = k if V h is a BDM element and l = k − 1 if V h is an RTN element.
From the definition of Πh one can see Πhu ·n|e = P Γ

h (u ·n)|e for all e ∈ Fh.
Then

〈tf (u− Πhu) · n, eu · n〉Γ =
〈
(tf − tf )(u− Πhu) · n, eu · n

〉
Γ
. (20)

Applying the Hölder, the Cauchy–Schwarz inequalities, and the Bramble–
Hilbert lemma to (20) gives

| 〈tf (u− Πhu) · n, eu · n〉Γ |
≤ Ch ‖tf‖W 1,∞

h (Γ) ‖(u− Πhu) · n‖0,Γ ‖eu · n‖0,Γ . (21)

If we use the above inequality to (16), then the Cauchy–Schwarz inequality
gives∥∥κ−1/2eu

∥∥
0

+
∥∥∥t1/2f eu · n

∥∥∥
0,Γ

≤ C
(∥∥κ−1/2(u− Πhu)

∥∥
0

+ h ‖tf‖W 1,∞
h
‖(u− Πhu) · n‖0,Γ

)
(22)

with a constant C > 0 depending on ‖t−1
f ‖L∞(Γ). From this and the triangle

inequality we have an improved estimate

∥∥κ−1/2(u− uh)
∥∥

0
≤

{
Chk ‖u‖k if V h is RTN element

Chk+1 ‖u‖k+1 if V h is BDM element
(23)
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To estimate ‖p− ph‖0 we take v ∈ V h satisfying (17) in (12a), then we
have

‖ep‖2
0 = (κ−1(u− uh),v) ≤ C ‖u− uh‖0 ‖v‖0 ≤ C ‖u− uh‖0 ‖ep‖0 .

As a consequence,

‖ep‖0 ≤

{
Chk ‖u‖k if V h is RTN element

Chk+1 ‖u‖k+1 if V h is BDM element

In this estimate, the convergence order of ‖ep‖0 is one order superconver-
gent if the BDM element is used. Finally, (19) is obtained by the triangle
inequality.

4. Inversion of Transmissibility

In this section we present a statistical inversion of tf . We start with a
Bayesian formulation, prove its well-posedness, present and analyze FEM
discretizations of both the state and parameters, and rigorously establish the
convergence of a FEM approximation of the Bayesian posterior measure. We
conclude the section with the existence of the maximum a posteriori (MAP)
point. A Gaussian approximation of the posterior at the MAP point is also
discussed.

4.1. Bayesian inversion on infinite dimensional parameter space

Since tf is positive on Γ we can define tf = em for m ∈ L2 (Γ). We choose
to solve the inverse transmissibility problem using the Bayesian framework
as it allows us to take into account of uncertainties. We assume that there is
no model inadequacy and thus only uncertainties due to limited noisy data
and the prior knowledge are taken into account. The Bayesian framework
starts with a prior distribution µpr of the parameter m and then update it
to the posterior distribution µpost using information from observable data by
the Bayes’ rule

dµpost

dµpr

∝ πlike(yd|m) (24)

where dµpost/dµpr is the Radon–Nikodym derivative of the posterior measure
µpost with respect to the prior measure µpr, and πlike(yd|m) is the likelihood
according to the observation data yd.

14



To show that (24) is well-posed, we postulate the prior distribution of m
as a Gaussian measure in L2 (Γ), i.e., µpr = N (mpr, Cpr), where mpr resides
in the Cameron-Martin spaceM of Cpr. It is sufficient for the prior Gaussian
measure to be well-defined if we choose Cpr = (δI − γ∆)−σ for σ > (n− 1)/2
with constants δ, γ > 0 [22, 23, 22], where we have assumed that Γ is piecewise
flat so that the standard Laplacian operator ∆ is meaningful. In this case,
the parameter m, distributed under the prior µpr, is almost surely r-Hölder
continuous on Γ for any 0 < r < min {1, σ − (n− 1)/2}, i.e., m ∈ C0,r (Γ),
and almost surely in Hr (Γ) for 0 ≤ r < σ − (n − 1)/2. By forcing the
domain of δI − γ∆ to consist of functions having homogeneous Dirichlet
and/or Neuman boundary conditions, we can show that the Cameron-Martin
space is M = Hσ (Γ).

For the likelihood, we adopt the additive noise model

yd = F(m) + η (25)

where F : L2(Γ) 7→ Rnobs is the parameter to observable map and the noise
η follows a Gaussian distribution N (0,Γnoise). For a fixed radius R > 0 the
local average operator of a function g at a point x is defined by

avgx(g) :=
1

|b(x,R)|

∫
b(x,R)

g(y) dy, (26)

where b(x, r) is the ball of radius R centered at x. The observation operator
B is defined by the linear operator B : Q → Rnobs which takes the local
average of pressure at nobs-points in Ω (with given 0 < R� 1)

F(m) := Bp(m), . (27)

where p(m) solves (4) with tf = em. In this case the likelihood has a form

πlike(yd|m) ∝ exp

(
−1

2
‖F(m)− yd‖2

Γ−1
noise

)
.

Lemma 1. The Radon-Nikodym derivative in (24) is well-defined in L2 (Γ),
and the parameter m, under the posterior µpost, almost surely resides in X :=
C0,r (Γ) for any 0 < r < min {1, σ − (n− 1)/2}. Furthermore, the posterior
measure is Lipschitz continuous with respect to the data yd in the Hellinger
distance.
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Proof. From the definition of observation operator we have, for any ε > 0
and m ∈ X

‖F (m)‖2 ≤
√
nobs max

i=1,...,nobs

∣∣avgxi(p)
∣∣ ≤ √nobs |Ω|

|b(0, R)|
‖p‖0

≤
√
nobs |Ω|
|b(0, R)|

‖a‖
β2
‖f‖0 ≤

√
nobs |Ω|
|b(0, R)|

‖f‖0

β2
C(κ)e‖m‖∞ ,

where C (κ) is a constant depending only on κ and we have used the bounds
on ‖p‖0 and ‖a‖ in the proof of Theorem 2. In addition, from Theorem 2,
p, as a function of tf , and hence m, is Lipschitz continuous, and as a result,
the forward map is locally Lipschitz continuous in m, i.e.,∥∥F (m1

)
−F

(
m2
)∥∥

2
≤ C

∥∥m1 −m2
∥∥
X

for some constant C. The well-definedness of the Radon-Nikodym derivative
in (24) then follows [22, Theorem 4.1] and the local Lipschitz continuity with
respect to the data in the Hellinger distance follows [22, Theorem 4.2].

4.2. Analysis of a FEM approximation of the Bayesian posterior

In this section, we first approximate the forward (and hence the like-
lihood) of the Radon-Nikodym derivative (24) using the mixed FEM pre-
sented in section 3. We then approximate the parameter, and hence the
prior measure, with a continuous FEM method. We then combine these two
approximations to arrive at a FEM approximation of Bayesian posterior.
Rigorous analysis of each approximation will be presented.

4.2.1. Likelihood approximation with mixed FEM

For clarity of the exposition, we consider only the mixed FEM with BDM
element as the analysis for RTN element follows similarly. We denote by
Fh (m) the observation operator Bph where (uh, ph) is the solution of (11)
with tf = em. The following result is a direct consequence of Theorem 3.

Lemma 2. For any R > 0 in (26), and m ∼ µpr, there exists a constant C
independent of the mesh size h such that

‖F (m)−Fh (m)‖ ≤ Chke‖m‖∞ .
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4.2.2. Prior approximation with continuous FEM

We denote by mh,1 = Πhm the discretization (interpolation) of m using
the standard C0 finite element method of degree km ≥ 1 on the triangulation
EΓ
h of Γ (cf. [18]). Note that due to the low regularity of m ∈ C0,r(Γ),

the usual O(hkm) convergence rate of the FEM interpolation error does not
apply here. To obtain such an estimate, we first recall an embedding result
of Hölder spaces into Sobolev spaces: for (s, q), s ≥ 0, 1 ≤ q <∞ satisfying
(n− 1)/q + s = r we have

‖m‖W s,q(Γ) ≤ C‖m‖C0,r(Γ), (28)

for C > 0 depending only on Γ. By choosing a sufficiently large q, we can
take s < r as close to r as we desire. For fixed 0 ≤ r < min{1, σ−(n−1)/2)},
we can use (28) to conclude that m ∈ W s,q(Γ) for (s, q) satisfying

s = r − ε

2
,

n− 1

q
=
ε

2
,

with an arbitrarily small 0 < ε � min{1, σ − (n − 1)/2}. For this (ε, s, q),
by [18, Theorem 4.4.20], we have

‖m−mh,1‖∞ ≤ Chs−
n−1
q ‖m‖W s,q(Γ) = Chr−ε ‖m‖W s,q(Γ) . (29)

Here, the FEM interpolation order km is not involved1 in this estimate due
to r < 1.

The following is a simple application of Theorem 2 to the discrete system
(11) together with the error bound (29), Lemma 2, and (28).

Lemma 3. Let ph and ph,1 be the solutions of the discrete system (11) cor-
responding to m and mh,1, respectively. Let m ∼ µpr, and thus m ∈ C0,r(Γ),
where r ∈ (0,min{1, σ − (n− 1)/2}), and 0 < ε � min{1, σ − (n − 1)/2}.
Then there exists a constant C independent of the meshsize h such that

‖Fh (m)−Fh (mh,1)‖ ≤ Chr−εe‖m‖∞ ,

1If σ > (n− 1), then m resides in C0,r for 0 < r < min {1, σ − (n− 1)/2} and ‖m‖∞ ≤
C‖m‖Hr(Γ) for (n − 1)/2 < r < σ − (n − 1)/2. In this case, a higher order estimate by
polynomials of degree km can be obtained as

‖m−mh,1‖∞ ≤ Ch
s−n−1

2 ‖m‖Hs(Γ) ,
n− 1

2
< s ≤ min{r, km},

by [18, Theorem 4.4.20].
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and
‖F (m)−Fh (mh,1)‖ ≤ C

(
hr−ε + hk

)
e‖m‖∞ .

Since the interpolation Πh is a linear operator on m ∈ X and µpr is
Gaussian, mh,1 = Πhm is distributed by the pushforward measure µhpr induced
by Πh that is also a Gaussian. Let us denote by µ⊥pr the complement measure
of µhpr in X := C0,r (Γ) such that µpr = µhpr

⊗
µ⊥pr, as this will be useful for

the fully discrete Bayes formula presented below.

4.2.3. FEM approximation of the Bayesian posterior

Let us denote by µh,1post the FEM approximation of the posterior measure
µpost using the likelihood and prior approximations in sections 4.2.1–4.2.2.

Theorem 5 (Well-posedness and convergence of FEM posterior µh,1post). The

FEM posterior measure µh,1post is absolutely continuous with respect to the prior
measure µpr and the Radon-Nikodym derivative is given by

dµh,1post

dµpr

∝ exp

(
−1

2
‖Fh(mh,1)− yd‖2

Γ−1
noise

)
. (30)

Furthermore, there hold:

• the FEM posterior measure µh,1post is locally Lipschitz continuous with
respect to the data yd in the Hellinger distance.

• dHell

(
µpost, µ

h,1
post

)
≤ C

(
hr−ε + hk

)
, where dHell (·, ·) is the Hellinger

distance and 0 < ε � min{1, σ − (n − 1)/2}. Thus, the FEM poste-
rior µh,1post converges to the true posterior measure µpost as the mesh is
refined.

Proof. Similar to Lemma 1, it is sufficient to show that Fh(mh,1) is exponen-
tially bounded in m and locally Lipschitz continuous with respect to m. For
the boundedness, we have

‖Fh (mh,1)‖2 ≤
√
nobs |Ω|
|b(0, R)|

‖ph,1‖0 ≤
√
nobs |Ω|
|b(0, R)|

‖a‖
β2
‖f‖0

≤
√
nobs |Ω|
|b(0, R)|

‖f‖0

β2
C(κ)e‖mh,1‖∞ ≤ C

√
nobs |Ω|
|b(0, R)|

‖f‖0

β2
C(κ)e‖m‖∞ ,
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where, in the second last inequality, we used the linearity and the bound-
edness of the finite element interpolant Πh . For the Lipschitz continuity,
Theorem 2 is also valid for ph,1, and thus∥∥Fh (m1

h,1

)
−Fh

(
m2
h,1

)∥∥ ≤ C
∥∥m1

h,1 −m2
h,1

∥∥
∞ ≤ C

∥∥m1 −m2
∥∥
∞ .

Now, owing to the fact that µpr = µhpr
⊗

µ⊥pr, µ
h,1
post is absolutely continuous

with respect to µpr, and the right hand side of (30) is a function of only mh,1,

we deduce that µh,1post = µhpost

⊗
µ⊥pr, where

dµhpost

dµhpr

∝ exp

(
−1

2
‖Fh(mh,1)− yd‖2

Γ−1
noise

)
(31)

is a well-defined finite dimensional approximation of the infinite dimensional
Bayes’ formula (24). This expression can then be employed in the computa-
tions, including the Laplace approximation presented in the next section.

Remark 1. It should be emphasized that µh,1post is the FEM approximation of

the posterior measure µpost while µhpost is the computable part of µh,1post. Thus,
unlike the forward error analysis presented in sections 3.1–3.2 for which we
can verify the convergence rates numerically, it is not trivial how to verify the
theoretical convergence result via Hellinger distance in Theorem 5 as µ⊥pr—a
measure on infinite dimensional space—is not known.

4.3. MAP computation and Laplace approximation

The Maximum a posteriori (MAP) point of µpost is a solution of

argmin
m∈M

1

2

(
‖F(m)− yd‖2

Γ−1
noise

+ ‖m−mpr‖2
M

)
. (32)

The existence of such a MAP point is a direct consequence of the compactness
of the Cameron-Martin space M and the continuity of F(m).

Therefore the MAP computation can be considered as solving a deter-
ministic inverse problem in which the regularization naturally comes from
the prior distribution. When dµpr is Gaussian and the PDE model and F
are linear, then the posterior distribution is Gaussian with mean mpost and
covariance Cpost of the form

mpost = mMAP, Cpost = (F∗Γ−1
noiseF + C−1

pr )−1 = H(mMAP)−1.

19



If the linearity assumptions on the PDE model and F are not true, then the
posterior distribution is not Gaussian. Nonetheless it is reasonable to expect
in many applications that the Laplace approximation N (mMAP,H(mMAP)−1)
is still a good approximation of µpost. An approach to compute the MAP
point mMAP efficiently using an inexact Newton method is discussed in Ap-
pendix Appendix A.

For the Laplace approximation we need to compute H(mMAP)−1 but it
is prohibitively costly for infinite dimensional parameter spaces because the
Hessian is a full matrix. For efficient approximation of H(mMAP)−1, we,
similar to [23], use the relation

H(mMAP)−1 = (Hmisfit(mMAP) + C−1
pr )−1,

where Hmisfit(mMAP) is the Hessian of the misfit 1
2
‖F(m)−yd‖2

Γ−1
noise

at mMAP.

The dominant information gain from the data in H(mMAP)−1 compared to

C−1
pr can be estimated by finding the dominant eigen-pairs of C−1/2

pr Hmisfit(mMAP)C−1/2
pr .

This allows us to replace Hmisfit(mMAP) by a low-rank approximation with
sufficient accuracy. The computation of low-rank approximation can be done
independent of the parameter space dimension by randomized singular value
decomposition algorithms [24, 25]. Then an approximation of H(mMAP)−1

can be computed efficiently using the Sherman–Morrison–Woodbury formula
(see, e.g., [23, 14] for details).

5. Numerical results

In our numerical experiments we use hIPPYlib [13, 14] and FEniCS
2019.1.0 [12].

5.1. Forward problems

In this subsection we numerically assess the convergence rate of the FEM
approximation of the subsurface flow model in faulted domains (forward
model). In all numerical experiments below we use the lowest order Raviart–
Thomas element and piecewise constant element for u and p, so the expected
optimal convergence rates are 1 for u and p if they are in H1(Ω;Rs) and
H1(Ω). In the first numerical experiment we manufacture a solution that
has enough regularity to achieve the expected rate of convergence. In the
second numerical experiment we consider a fault geometry of practical inter-
est and a manifactured solution u with the Sobolev regularity only Hs for
some s < 1.
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In the first numerical experiment of forward problems we consider a spe-
cial manufactured solution with smooth functions on Ω̊ := Ω\Γ. Specifically,
on the unit square domain Ω = [0, 1]×[0, 1] with fault Γ = {(x, y) : x = 1/2},
let p, u be

p(x, y) =

{
x3 if x < 1

2

x3 + 1 if x > 1
2

, u(x, y) = (3x2, 0). (33)

Note that u can be extended to Γ as a smooth function on Ω, and one can
check that (2c) is satisfied with tf = 4

3
. Let ΓL, ΓR, ΓT , ΓB be the left,

right, top, and bottom boundary parts of Ω. We impose Dirichlet boundary
conditions on ΓL ∪ ΓR and Neumann boundary conditions on ΓT ∪ ΓB with
the manufactured solution. For f = divu convergence rates of numerical
solutions are obtained in Table 1. Note that tf satisfies the assumption in
Theorem 4, so the results in Table 1 show the expected convergence rates in
our error analysis.

‖u− uh‖ ‖p− ph‖
hmax error rate error rate

0.3750 2.25e-01 – 7.88e-02 –
0.1875 1.13e-01 0.99 3.93e-02 1.00
0.0938 5.67e-02 1.00 1.96e-02 1.00
0.0469 2.84e-02 1.00 9.80e-03 1.00
0.0234 1.42e-02 1.00 4.90e-03 1.00
0.0117 7.10e-03 1.00 2.45e-03 1.00

Table 1: Convergence rates for the example with the manufactured solution (34).

In the second numerical experiment we consider a domain Ω = [0, 1]×[0, 1]
with fault Γ = {1/2} × [1/4, 3/4] ⊂ Ω (see the left panel of Figure 2). The
manufactured solution (see the middle and right panels of Figure 2 for its
graph) for this test case is given by

p(x, y) =


0 if y < 1

4
or y > 3

4

sin 3πx
2

cos2
(
2π
(
y − 1

2

))
if x < 1

2
and 1

4
≥ y ≤ 3

4

− sin 3π(1−x)
2

cos2
(
2π
(
y − 1

2

))
if x > 1

2
and 1

4
≥ y ≤ 3

4
.

(34)
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Setting κ = 1 we can compute u = −∇p and f = divu on Ω̊. It can be
verified by direct computation that limits of the normal component of u on
Γ is continuous across Γ and the condition tfu · n − [[p]] = 0 holds with
tf = 4/(3π). However, by computing ∂p/∂y of p in (34) and taking limits as

x → 1
2

+
and x → 1

2

−
, one can check that the tangential component of u is

not continuous on Γ. Therefore, the regularity of u is lower than H1(Ω;R2).
By using ΓL, ΓR, ΓT , ΓB to denote the boundary parts as before, we impose
boundary conditions

p = 0 on ΓL ∪ ΓR, u · n = 0 on ΓT ∪ ΓB.

-

Figure 2: The domain with a vertical fault in numerical experiments (left figure) and the
graphs of the pressure field in (34) (middle and right figures).

‖u− uh‖ ‖p− ph‖
hmax error rate error rate

0.3750 1.79e+00 – 1.53e-01 –
0.1875 1.06e+00 0.77 9.86e-02 0.64
0.0938 5.51e-01 0.94 4.67e-02 1.08
0.0469 2.96e-01 0.90 2.34e-02 1.00
0.0234 1.64e-01 0.86 1.19e-02 0.97
0.0117 9.50e-02 0.78 5.84e-03 1.03
0.0059 5.85e-02 0.70 2.98e-03 0.97

Table 2: Convergence rates for the example with the manufactured solution (34).

For error computation we take element-wise L2 projection of the manufac-
tured solutions to element-wise polynomial spaces of degree 4, and compute
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the L2 norms of the difference of these projected functions and numerical
solutions. The errors and convergence rates due to mesh refinements are
presented in Table 2. In the result the asymptotic convergence rates are not
clear because we reach the limit of our computational resources due to the
mesh refinements. However, it is clear that the convergence rates of u is lower
than 1. This low convergence rates are expected because u ∈ Hs(Ω;R2) for
some s < 1. We also observe that the pressure errors seem to have higher
convergence rates although this is not explained by our error analysis.

5.2. MAP computation as deterministic inverse problem

In our numerical tests for deterministic inverse problems we find the MAP
point of the problem (32) using the inexact Newton-CG algorithm in Ap-
pendix A. The domain and fault are Ω = [0, 1]×[0, 1], Γ = {1/2}×[1/4, 3/4],
and boundary conditions are

p = 0 on ΓL, p = 1 on ΓR, u · n = 0 on ΓT ∪ ΓB.

We set κ = 1 on Ω and assume that the true transmissibility field on Γ is
tf = em with

m(y) = 2 sin

(
8π

(
y − 1

2

))
,

1

4
≤ y ≤ 3

4
. (35)

For the prior we use Cpr = (δ− γ∆)−1 with δ = 0.4, γ = 0.004, and mpr = 0.
For the likelihood term, pointwise observation of pressure are measured at
k×k (k = 4, 6, 8) uniform lattice points on the observation domain [0.2, 0.8]×
[0.1, 0.9] as shown in Figure 3 for the case of 4×4 and 8×8 observation points.
We corrupt the observed data vector d ∈ RN , N = 16, 36, 64, by adding a
Gaussian noise vector ζ ∈ RN . Entries of ζ are independent identically
distributed and follow a normal distribution N (0, σ2) with σ = 0.01‖d‖l∞ .
Then, transmissibility inversion by constrained minimization is done with
the noisy data d + ζ.

The approximate MAP points2 by deterministic inversion for 4×4, 6×6,
and 8× 8 observation points are shown in Figure 4. Since 4× 4 observations
do not provide sufficient information to inform the inverse parameter, the

2Note that our optimization method is local in nature and thus approximate MAP
points can be a local maximum of the posterior.
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Figure 3: The pressure and velocity fields with fault parameter tf = em for m = mtrue in
(35), and 4× 4 and 8× 8 observation points for fault parameter inversion.

approximate MAP point is not much different from the prior mean m ≡ 0
(also used as the initial guess in our algorithm). Nevertheless, the approx-
imate MAP points with 6 × 6 and 8 × 8 observation points capture major
feature of the true parameter field: clearly it is impossible to capture the true
parameter field exactly due to limited and noisy data, the ill-posed nature of
the inverse problem, and the smoothing effects of the prior.

5.3. Bayesian inverse problem

We limit ourselves to the Laplace approximation N (mMAP,H(mMAP)−1)
as numerical results for Bayesian inversion. A more complete exploration of
the Bayesian posterior can be done by standard sampling methods such as
Markov chain Monte Carlo methods [26, 27, 28, 29]. While such sampling
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Figure 4: The log(tf ) fields of true parameter and approximate MAP points for 4 × 4,
6× 6, and 8× 8 observation points.
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Figure 5: Eigenvalues corresponding to different sets of observation.

methods provide a full characterization of the discrete finite dimensional
posterior (31), they do not provide additional insights or novelties to our
work, and thus are not considered.

In the first experiment we consider a simple model with one vertical
fault shown in Figure 3. We first present the dominant eigenvalues of prior-
preconditioned Hessian of data misfit C−1/2

pr Hmisfit(mMAP)C−1/2
pr in Figure 5.

In all cases, at most four eigenvalues are greater than 1 indicating that only
a handful of directions in parameter space can be inferred from the data
with high confidence. This allows us to compute the Laplace approximation
N (mMAP,H(mMAP)−1) efficiently with low rank approximation (see, e.g., [30]
for more details).

In Figure 6, we compare the credibility intervals of

N (0, Cpr) and N (mMAP,H(mMAP)−1)

for 4 × 4 observation points. The shaded (yellow) regions denote the union
of pointwise credibility intervals with the length 2σstd where σstd are the
empirical pointwise variances. We draw 5 random samples from N (0, Cpr)
and N (mMAP,H(mMAP)−1) and plot them in the corresponding subfigures.
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Similarly, in Figures 7 and 8 are the credibility regions of N (0, Cpr) and
N (mMAP,H(mMAP)−1) for the cases with 6× 6 and 8× 8 observation points,
respectively. It is clear that N (mMAP,H(mMAP)−1) gives a much narrower
credibility region than the one given by N (0, Cpr). This is expected as there
are more observational data. This in turns significantly reduces the uncer-
tainty in the posterior distribution compared to the prior distribution. We
also present 5 samples drawn from N (0, Cpr) and N (mMAP,H(mMAP)−1):
again those drawn from the Laplace approximation of the posterior are closer
to the true parameter field.

In the second numerical experiment we present inverse results for a prob-
lem with 3 faults with 6 × 6 observations in the rectangle [0.15, 0.85] ×
[0.15, 0.85] as in Figure 9. The prior Cpr = (δ−γ∆)−1 with δ = 0.4, γ = 0.004,
and mpr = 0 is used for all faults. Observational data are synthetically gener-
ated using the same procedure as above, and the Laplace approximations on
each fault are computed using low rank approximations. The credibility re-
gions and 5 randomly drawn samples ofN (0, Cpr) andN (mMAP,H(mMAP)−1)
are shown in Figure 10. This problem is more challenging compared to the
one-fault case. As can be seen, the prior mean and samples are very different
from the ground truth parameter. With the help of observational data, the
posterior results using the Laplace approximation are closer to the ground
truth parameter field for each fault. As can be seen, the inversion result for
the second fault is better than the others. This is not surprising as the second
fault is the longest and is surrounded by the largest number of observation
points. In order to obtain better inverse results for faults 1 and 3, more
observations are needed. Indeed, Figure 11 shows that the inverse results,
both the MAP and uncertainty estimation, are more accurate with 12 × 12
observation points.

6. Conclusions

This paper concerns the forward and inverse modeling of subsurface flow
in domains with faults. In particular, inversion of the fault transmissibility
for subsurface flow models under appropriate assumptions on fault structures
is considered. Unlike most of the existing works, we address many challenges
associated with transmissibility inversion problems simultaneously including
fault modeling, well-posedness of the forward PDE, FEM discretizations of
the forward PDE and their rigorous analysis, well-posedness of the Bayesian
inverse formulation, discretizations of Bayesian inverse formulation and their
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Figure 6: The comparison of pointwise credibility interval, mean, and samples with
N (0, Cpr) and the Laplace approximation N (mMAP,H(mMAP)−1) with 4× 4 observation
points. Left is for the prior and right for the Laplace approximation.

rigorous analysis, and numerical illustrations. We also presented transmissi-
bility inversion problems by a PDE-constrained optimization approach and
developed an efficient numerical optimization method utilizing the efficient
computation of Hessian action via Lagrangian approach. The results show
that our approach can provide reasonable inverse solutions together with their
associated uncertainty estimation. Ongoing work is to extend our framework
to problem with more realistic networks of faults and three dimensional prob-
lems.

Appendix A. MAP computation with an inexact Newton method

Below we present an inexact Newton-Conjugate Gradient (Newton-CG)
approach to compute the map point. For concreteness, we consider n = 2,
and it is sufficient to take σ = 1 for the Gaussian prior to be well-defined. In
this case the Cameron-Martin space is M = H1 (Γ) (in fact an equivalence
of H1 (Γ) with δ and γ as weights: see the definition J below). Then the
MAP problem becomes the following: solve

argmin
m∈M

J (m)

with

J (m) :=
1

2

(
‖Bp− yd‖2

Γ−1
noise

+ (〈δ(m− m̄), (m− m̄)〉Γ)
)

+
1

2
〈γ∇(m− m̄),∇(m− m̄)〉Γ
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Figure 7: The comparison of pointwise credibility interval, mean, and samples with
N (0, Cpr) and the Laplace approximation N (mMAP,H(mMAP)−1) with 6× 6 observation
points. Left is for the prior and right for the Laplace approximation.

where (u, p) is the solution of forward equation(
κ−1u,v

)
+ 〈emu · n,v · n〉 − (p, div v) = 0, v ∈ V , (A.1a)

(divu, q) = (f, q) q ∈ Q. (A.1b)

We solve this problem using inexact Newton-type methods with the gra-
dient and Hessian-vector project as in [30, 31]. To compute the gradient of
J (m) we use the Lagrangian functional

LG((u, p),m, (v, q))
= J (m) +

(
κ−1u,v

)
+ 〈emu · n,v · n〉Γ − (p, div v) + (divu, q)− (f, q) .

with (u, p), (v, q) ∈ V ×Q. The Lagrangian approach for the gradient com-
putation at m = m0 leads to the forward equation (A.1) and the adjoint
problem: finding (v0, q0) ∈ V ×Q such that for all (ũ, p̃) ∈ V ×Q

〈Bp̃,Bp0 − yd〉Γ−1
noise

+
(
κ−1ũ,v0

)
+ 〈emũ · n,v0 · n〉Γ − (p̃, div v0)

+ (div ũ, q0) = 0, (A.2)

where (u0, p0) is the forwar solution obtained from (A.1) for m = m0. Then
the gradient of J (m) at m = m0 in the weak form is: for any m̃ ∈M

(G(m0), m̃) =
1

2
(〈δ(m0 − m̄), m̃〉Γ + 〈γ∇m0,∇m̃〉Γ) + 〈m̃em0u0 · n,v0 · n〉Γ .

(A.3)
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Figure 8: The comparison of pointwise credibility interval, mean, and samples with
N (0, Cpr) and the Laplace approximation N (mMAP,H(mMAP)−1) with 8× 8 observation
points. Left is for the prior and right for the Laplace approximation.

For the Hessian-vector product we define LH as

LH ((u, p),m, (v, q); (û, p̂), m̂, (v̂, q̂))

= (G(m), m̂) +
(
κ−1u, v̂

)
+ 〈emu · n, v̂ · n〉 − (p, div v̂) + (divu, q̂)− (f, q̂)

+ 〈Bp̂,Bp− yd〉Γ−1
noise

+
(
κ−1û,v

)
+ 〈emû · n,v · n〉Γ − (p̂, div v) + (div û, q)

The variational forms of the incremental forward and incremental adjoint
equations are

(κ−1û, ṽ) + 〈emû · n, ṽ · n〉Γ

Thus, for the Hessian of J evaluated at m = m0, the action of H(m0) to
m̂ ∈M can be written in the weak form as

(m̃,H(m0)m̂) = 〈δm̂, m̃〉Γ + 〈γ∇m̂,∇m̃〉Γ + 〈m̃m̂em0u0 · n,v0 · n〉Γ
+
(
κ−1u0, v̂

)
+ 〈m̃em0u0 · n, v̂ · n〉Γ

− (p0, div v̂) + (divu0, q̂)− (f, q̂)

+ 〈m̃em0û · n,v0 · n〉Γ

Based on the gradient and the Hessian action computation algorithms,
the maximum a posteriori (MAP) point can be found by a standard Newton
method. For efficient performance of Newton methods an inexact Newton-
CG algorithm can be used. In the inexact Newton-CG algorithm the system
H(mk)δk = −G(mk) for Newton method is solved by a preconditioned CG
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Figure 9: A domain with three faults and observation points.

method with early termination of CG iteration using Eisenstat–Walker cri-
terion (to prevent oversolving) and backtracking algorithm using Steihaug
criterion (to avoid negative curvature) (see, e.g.,[32, 14] and the references
therein). The full algorithm is presented in Algorithm Appendix A.

i← 0
while i < max iter do

Given mi solve (A.1) to obtain (ui, pi)
Compute Ji := J (mi) using m0 and (ui, pi)
Given mi and (ui, pi) solve (A.2) and obtain (vi, qi)
Evaluate gi, the gradient of J at mi, using (A.3)
if ‖gi‖ ≤ tolg then

break
end if
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Find a search direction m̂i such that

‖Him̂i + gi‖ ≤ ηi‖gi‖, ηi := (‖gi‖/‖g0‖)
1/2

j ← 0, α(0) ← 1
while j < max backtracking iter do

Set m(j) = mi + α(j)m̂i

Given m(j) solve (A.1) to obtain (u(j), p(j))
Compute J (j) using m(j) and (u(j), p(j))
if J (j) < J j + α(j)carmijog

T
i m̂i then

mi+1 ← m(j),Ji+1 ← J (j)

break
end if
α(j+1) ← α(j)/2, j ← j + 1

end while
i← i+ 1

end while
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[6] V. Martin, J. Jaffré, J. E. Roberts, Modeling fractures and barriers as
interfaces for flow in porous media, SIAM J. Sci. Comput. 26 (5) (2005)
1667–1691. doi:10.1137/S1064827503429363.
URL https://doi.org/10.1137/S1064827503429363

[7] P. Angot, F. Boyer, F. Hubert, Asymptotic and numerical modelling
of flows in fractured porous media, M2AN Math. Model. Numer. Anal.
43 (2) (2009) 239–275. doi:10.1051/m2an/2008052.
URL https://doi.org/10.1051/m2an/2008052
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Figure 10: The comparison of pointwise credibility interval, mean, and samples with
N (0, Cpr) and the Laplace approximation N (mMAP,H(mMAP)−1) with 6× 6 observation
points for the problem with three faults. The top row is for the prior and the bottom one
is for the posterior using the Laplace approximation.
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Figure 11: The credibility interval, mean, and samples with the Laplace approximation
N (mMAP,H(mMAP)−1) obtained with 12 × 12 observation points for the problem with
three faults.
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