
A DPG method for planar div-curl problems

Jiaqi Li, Leszek Demkowicz

Oden Institute for Computational Engineering and Sciences

Abstract

The div-curl system arises in many fields including electromagnetism and fluid dynamics. We are

particularly interested in the div-curl problem in 2D multiply-connected domains, as a simplified model

of flow around airfoils. In such domains, well-posedness of the problem depends on the prescription

of additional line integrals (circulation), apart from standard boundary conditions. We apply the DPG

method to the ultraweak formulation of the problem and impose the circulation condition in a constrained

minimization framework, which results in a mixed problem. We prove the discrete stability with Brezzi’s

theory and demonstrate convergence with numerical experiments in a toroidal domain. We also perform

h-adaptive refinements based on the DPG a posteriori error estimator.

1 Introduction

The Discontinuous Petrov-Galerkin (DPG) method is a novel finite element technique and has been devel-

oping rapidly in recent years [15, 16]. It admits the interpretation of a minimum-residual method, where the

residual is measured in a dual norm [29, 27]. In Hilbert spaces, the dual norm can be computed with the

introduction of a Riesz map, and the DPG method reduces to a weighted least-squares finite element method

[26]. Consequently, the DPG method comes with many desirable properties: a symmetric positive-definite

stiffness matrix, discrete stability (inf-sup condition), and a posteriori error estimates [11].

The applications of DPG are diverse. Examples include convection-dominated diffusion [13, 28], Stokes

problem [35], linear elasticity [25], time-harmonic wave propogation [33], incompressible Navier-Stokes equa-

tions [36], and viscous compressible flows [12, 34].

In this paper, we propose a DPG method for planar div-curl problems. The div-curl system arises in

many fields including electromagenetism and fluid dynamics. Moreover, we are particularly interested in

div-curl problems in 2D multiply-connected domains, as a simplified model of flow around airfoils (see Fig.

1). This model neglects viscosity and compressibility; it is relevant when we are concerned with the lift on

slender bodies (e.g., airfoils) with a small angle of attack and a low inflow Mach number [1].

Planar div-curl problem. Consider a domain Ω ⊂ R2 with boundary Γ := ∂Ω, and a vector field

u : Ω → R2 satisfying

divu = f in Ω, (1a)

curlu = g in Ω, (1b)

u · n = µ on Γ, (1c)
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where curlu := u2,1 − u1,2 is the scalar curl of a 2D vector field. Ω is assumed to have piecewise C1,1

boundary so that the normal trace exists everywhere except for corners. We further assume that∫
Ω

f =

∫
Γ

µ.

The unknown vector field u represents fluid velocity for the flow problem in mind.

According to Auchmuty and Alexander [3], this problem is well posed for simply-connected domains;

but in multiply-connected domains, there is a finite-dimensional family of solutions to problem (1). The

dimension of the solution space is the Betti number of the domain, i.e., number of holes. The problem is

well-posed with a unique solution only when certain line integrals are further prescribed. To make things

specific, we focus on a doubly-connected domain, e.g., flow around an airfoil (see Fig. 1). One line integral

has to be specified. In aerodynamics this is known as “circulation condition”—we need to prescribe the

circulation along a closed curve that encloses the airfoil. One possible choice is to prescribe the line integral

around the boundary of the airfoil, i.e., ∫
Γ1

ut ds = κ (2)

for some constant κ. Here Γ1 represents the airfoil boundary, and on Γ1 the velocity satisfies the no-

penetration condition u ·n = 0. Γ0 is the outer boundary, which is sufficiently far from the airfoil such that

we can prescribe the flux condition u ·n = u∞ ·n on Γ0. It is equivalent to set µ = 0 on Γ0 and µ = u∞ ·n
on Γ1 in (1c). In this article, we will mainly focus on the div-curl problem with normal boundary conditions

(1) and the additional circulation condition (2), although we remark that the proposed DPG framework is

fully general and can be applied to div-curl problems with other types of boundary conditions and prescribed

line integrals.

Figure 1: Flow around an airfoil.

Remark. The idea of DPG with constraints can be first found in the work of Ellis et al. [19]. But the reasons

for imposing constraints are different. Ellis et al. impose constraints to ensure mass conservation, while we

have to prescribe circulation (2) to guarantee well-posedness.

Numerical algorithms for div-curl problems abound in literature. Nicolaides [30] proposed a control

volume method for planar div-curl systems based on dual pairs of meshes (Voronoi-Delaunay mesh pairs)
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and later extended it to 3D with Wu [31]. However, this method is in general first order only. Hyman and

Shashkov [24] constructed mimetic finite difference methods for Maxwell equations on 2D rectangular grids.

As for finite element methods, we first note that standard conforming least-squares finite element methods

fail in nonsmooth or nonconvex domains Ω (e.g., the domain shown in Fig. 1) [7]. A finite element subspace

of H(curl,Ω) and H(div,Ω) must be both tangentially and normally continuous across element interfaces.

Hence the basis functions are continuous and in H1(Ω) := [H1(Ω)]N , N = 2, 3. However, as shown by

Costabel [14], unless Ω has a smooth boundary or is a convex polyhedron, H0(div,Ω) ∩H1(Ω) is a closed

proper subspace of H0(div,Ω)∩H(curl,Ω). Thus C0 elements do not have the approximability property; see

Corollary 2.30, p.97 in [20]. To overcome this issue, Bensow and Larson [6] developed a discontinuous least-

squares finite element method for the div-curl problem, where discontinuous elements enables convergence

for less regular data and in nonconvex domains. The tangential and normal continuity, as well as boundary

conditions, are weakly enforced through the least-squares functional. Bochev et al. [7], on the other hand,

employed either H(curl)- or H(div)- conforming spaces, and defined a discrete divergence/curl operator to

complete computation of the residual. In [9], Cao et al. presented a new primal-dual weak Galerkin method

to solve div-curl systems. Their method is based on a weak formulation that relaxes both (1a) and (1b)

and invokes discrete weak gradient and curl operator defined in a similar way as [7]. With discontinuous

elements, they are able to approximate low Hα-regularity (α ≥ 0) solution.

The DPG method we propose shares the same benefit: it is based on the ultraweak formulation, obtained

by relaxing both (1a) and (1b); consequently, the solution is only assumed to be in L2(Ω). With discontinuous

piecewise polynomials to discretize L2(Ω), approximability is not an issue. We demonstrated the ability of

our method to capture solution with low regularity by solving the same problem with singular solutions as [9];

but in contrast, the DPG solution displays stability from day one, and converges not just asymptotically, but

from the beginning (on a very coarse mesh), at the optimal rate. The built-in a posteriori error estimator

in DPG also allows us to perform adaptive refinements, which is particularly important in the case of

singular problems. Another feature of our method is the mathematically rigorous treatment of the circulation

condition, which makes it possible to deal with multiply-connected domains and get convergent solutions in

L2(Ω), not just in the quotient space.

This paper is structured as follows: In Section 2, we describe the ultraweak variational formulation of the

div-curl system with normal boundary conditions (1), as well as the DPG discretization techniques. This is

relevant when the domain is simply-connected and act as a stepping stone to our algorithms for multiply-

connected domains. Then we study the L2 adjoint operator (used in the ultraweak formulation) within a

closed operator framework in Section 3. In Section 4, we present a constrained minimization framework to

impose the circulation constraint (2), and prove the well-posedness of the resulting mixed problem. Section

5 is devoted to numerical experiments. Finally, in Section 6, we summarize our findings and point out future

directions.
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2 Ultraweak variational formulation and DPG discretization

2.1 DPG method in a nutshell

Consider an abstract variational problem {
Find u ∈ U :

Bu = l in V ′,

where U and V are Hilbert spaces, B : U → V ′ is a bounded linear operator, which is dictated by the

problem under consideration, and l ∈ V ′ is the load. Suppose the variational problem specifies a bilinear

form b : U × V → R; then B is defined by

⟨Bw, v⟩ := b(w, v)

where ⟨·, ·⟩ represents the duality pairing between V ′ and V. Henceforth, we use the same bracket symbol to

denote duality pairings, and the underlying spaces should be clear from the context. Given a discrete trial

space Uh ⊂ U , the ideal DPG method solves the minimum-residual problem: Find uh ∈ Uh :

uh = argmin
wh∈Uh

∥l −Bwh∥V′
(3)

By introducing the Riesz map RV : V → V ′, the dual norm of the residual can be expressed as:

∥l −Bwh∥2V′ = ⟨R−1
V (l −Bwh), l −Bwh⟩.

Vanishing of the Gâteaux derivative at the minimzer uh implies:

⟨R−1
V Buh, Bwh⟩ = ⟨R−1

V l, Bwh⟩ ∀wh ∈ Uh. (4)

Or equivalently,

⟨B′R−1
V Buh, wh⟩ = ⟨B′R−1

V l, wh⟩ ∀wh ∈ Uh, (5)

where B′ : V → U ′ is the transpose of B. Equation (5) has the same structure as a standard Galerkin

formulation, and can be incorporated into a standard finite element code.

If we introduce the error representation function ψ := R−1
V (l−Bwh), the residual minimization problem

can be rewritten as a mixed problem:
Find uh ∈ Uh, ψ ∈ V :

(ψ, v)V + b(uh, v) = l(v) ∀v ∈ V,

b(wh, ψ) = 0 ∀wh ∈ Uh

(6)

where (·, ·)V denotes inner product on V. The first equation in (6) follows from the definition of ψ, and the

second equation is the vanishing of the Gâteaux derivative condition.
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Practical DPG method. The only remaining problem with solving (5) or (6) is the inversion of Riesz

operator RV . To perform actual computation, we use a discrete test space Vh ⊂ V instead of V. The fully

discrete mixed problem now reads:
Find uh ∈ Uh, ψh ∈ Vh :

(ψh, vh)V + b(uh, vh) = l(vh) ∀vh ∈ Vh,

b(wh, ψh) = 0 ∀wh ∈ Uh.

(7)

For detailed analysis of the practical DPG method, we refer to [23] and comment that in practice, if we use

elements of order p for Uh, it suffices to use elements of order p + ∆p for Vh to guarantee stability. The

details of discretization are postponed until Section 2.3.

2.2 Ultraweak variational formulation

After outlining the DPG framework, it remains to specify the variational formulation, i.e., b(·, ·). We choose

to work with the ultraweak variational formulation and its broken counterpart, which constitutes the subject

of this and next subsection. As detailed in [18], the relation between a closed operator A and its adjoint A∗,

(Au,v) = (u, A∗v)

allows the introduction of the ultraweak varational formulation. Here (·, ·) denotes L2 inner product. For

the div-curl problem, Au :=

(
divu

curlu

)
. To derive the L2 adjoint, we multiply equation (1a) by v1, (1b) by

v2, integrate by parts, and we get

− (u,∇v1) + ⟨un, v1⟩Γ = (f, v1) ,

(u,∇× v2) + ⟨ut, v2⟩Γ = (g, v2) ,

where ∇×w := w,2e1−w,1e2 is the vector curl of a scalar field, w, (·, ·) is the standard L2 inner product on

Ω, and ⟨·, ·⟩Γ represents the duality pairing between H−1/2(Γ) and H1/2(Γ). The normal boundary condition

(1c) translates into un = µ, and we can get rid of the ut term by testing with v2 ∈ H1
0 (Ω). In the ultraweak

variational formulation, we seek u ∈ L2(Ω) := [L2(Ω)]2 satisfying

− (u,∇v1) = (f, v1)− ⟨µ, v1⟩Γ ∀v1 ∈ H1(Ω), (8a)

(u,∇× v2) = (g, v2) ∀v2 ∈ H1
0 (Ω). (8b)

Therefore, formally A∗v := −∇v1 +∇× v2, and

b(u,v) := (u, A∗v) = (u,−∇v1 +∇× v2).

We equip the test space with quasi-optimal test graph norm [37]:

∥v∥2V := ∥v∥2 + ∥A∗v∥2 = ∥v∥2H1(Ω) (9)

where ∥·∥ denotes standard L2 norm and H1(Ω) := [H1(Ω)]2. Using Closed Range Theorem [18], we can

show that the well-posedness of (8) is equivalent to that of the primal problem (1), whose well-posedness has

in turn been studied in [3, 2]. The full analysis is presented in Section 3 and 4.
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2.3 Broken variational formulation and discretization

Let Ωh be a mesh of the domain Ω, and K ∈ Ωh denote any element in the mesh. As a standard technique

in DPG methods [10], we consider broken test spaces, defined as

H1(Ωh) = {w ∈ L2(Ω) : w|K ∈ H1(K), K ∈ Ωh}.

Similarly, we defineH1(Ωh) = [H1(Ωh)]
2. Then we consider test function v =

(
v1

v2

)
∈H1(Ωh). Integrating

by parts in each element and introducing interface traces as additional unknowns, we obtain the broken

version of the ultraweak formulation:

u ∈ L2(Ω), ûn ∈ trdivH(div,Ω), ût ∈ trcurlH(curl,Ω) :

ûn = µ on Γ,

− (u,∇v1) + ⟨ûn, v1⟩Γh
= (f, v1) ∀v1 ∈ H1(Ωh),

(u,∇× v2) + ⟨ût, v2⟩Γh
= (g, v2) ∀v2 ∈ H1(Ωh).

(10)

A few comments are in order. As detailed in [10], trdivH(div,Ω) is the normal trace of H(div,Ω) onto the

skeleton Γh of mesh Ωh, while trcurlH(curl,Ω) is the tangential trace of H(curl,Ω). Terms:

⟨ûn, v1⟩Γh
:=

∑
K∈Ωh

⟨ûn, v1K⟩∂K , ⟨ût, v2⟩Γh
:=

∑
K∈Ωh

⟨ût, v2K⟩∂K

are the duality pairings on the mesh skeleton. The test norm is defined naturally by a sum:

∥v∥2H1(Ωh)
=
∑

K∈Ωh

∥vK∥2H1(K). (11)

The well-posedness of the broken variational formulation (10) follows from its unbroken counterpart (8).

Finally, we discretize L2(Ω), the trace spaces, and test space H1(Ωh) with exact sequence elements [22].

In particular, since DPG method can be viewed as a weighted least squares method for an overdetermined

system, we use enriched test spaces: if we adopt piecewise polynomials of degree p for trial spaces1, then we

discretize test spaces with piecewise polynomials of degree p+∆p. In the reported numerical experiments,

∆p = 1.

3 The adjoint operator within a closed operator framework

The introduced ultraweak formulation make use of A∗, the L2 adjoint operator of A. In this section, we

analyze A∗ in a closed operator framework, and prove several properties relevant to the Closed Range

Theorem for closed operators. These properties will come in handy as we study the well-posedness of the

mixed problem in Section 4.

1In the exact sequence logic. This amounts to order p for anH1-conforming finite element and order p−1 for an L2-conforming

finite element. H(curl) and H(div) finite element spaces contain all polynomials of order p− 1, and some polynomials of order

p.
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3.1 Closed operator framework

First note that we can replace the inhomogeneous boundary condition (1c) with a homogeneous one, by

introducing a lift u0 satisfying u0 · n = µ on Γ. In particular, we can seek u0 = ∇ϕ, and solve the Laplace

problem with Neumann boundary condition for ϕ:

∆ϕ = 0 in Ω,

∂ϕ

∂n
= µ on Γ.

(12)

It is well known that there exists a unique solution ϕ ∈ H1
m(Ω) := {φ ∈ H1(Ω) :

∫
Ω
φ = 0} to (12), and

∥∇ϕ∥ ≤ C∥µ∥H−1/2(Γ) where C depends on the domain alone. Let u = u0 +w. Then w solves the div-curl

system (1) with homogeneous boundary condition. Now define A : L2(Ω) ⊃ D(A) → L2(Ω) by

Au :=

(
divu

curlu

)
, (13)

with the domain D(A) := H0(div,Ω) ∩ H(curl,Ω), where H0(div,Ω) stands for H(div,Ω) functions with

vanishing normal trace on Γ. As learned above, integration by parts allows us to find the formal L2 adjoint

of A, denoted by A∗ and given by A∗v = −∇v1 +∇× v2. It can be verified that A is a closed operator, and

D(A) is dense in L2(Ω). Hence we can define the real adjoint operator of A, denoted by the same symbol,

A∗ : L2(Ω) ⊃ D(A∗) → L2(Ω), by the relation

(Au,v) = (u, A∗v) ∀u ∈ D(A), (14)

and D(A∗) is the maximal set for which (14) holds, i.e.,

D(A∗) = {v ∈ L2(Ω) : A∗v ∈ L2(Ω), (Au,v) = (u, A∗v) ∀u ∈ D(A)}. (15)

The following proposition characterizes D(A∗).

Proposition 1. Suppose Ω has a piecewise C1,1 boundary. Then D(A∗) = H1(Ω)×H1
0 (Ω).

To prove Proposition 1, we will need the lemma on orthogonal decomposition of L2 vector fields.

Lemma 1. Suppose Ω satisfies the condition above. Then the following orthogonal decomposition holds:

L2(Ω) = G(Ω)⊕ C0(Ω)⊕Hn0(Ω)

where G(Ω) := {∇ϕ : ϕ ∈ H1(Ω)}, C0(Ω) := {∇×ψ : ψ ∈ H1
0 (Ω)}, and Hn0(Ω) represents normal harmonic

vector fields, Hn0(Ω) = {u ∈ L2(Ω) : divu = 0, curlu = 0 in Ω,u · n = 0 on Γ}.

The proof of this lemma can be found as Theorem 3 in [3].

Proof of Proposition 1. First assume that v ∈ H1(Ω) × H1
0 (Ω). By Green’s formula, we have for any u ∈

D(A),

(divu, v1) + (curlu, v2) = (u,−∇v1) + ⟨un, v1⟩Γ + (u,∇× v2) + ⟨ut, v2⟩Γ
= (u,−∇v1 +∇× v2)
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where the last equality follows from the fact that un = 0 and v2 = 0 on Γ. Therefore v ∈ D(A∗), i.e.,

D(A∗) ⊃ H1(Ω)×H1
0 (Ω).

To prove inclusion in the opposite direction, assume that v ∈ D(A∗), and let g := A∗v = −∇v1 +

∇ × v2 ∈ L2(Ω). We first verify that g ⊥ Hn0(Ω) by direct computation: if η ∈ Hn0(Ω) ⊂ D(A), then

(η, g) = (div η, v1) + (curlη, v2) = 0. Then Lemma 1 allows us to find ϕ ∈ H1(Ω), ψ ∈ H1
0 (Ω) such that

g = −∇ϕ + ∇ × ψ. From the first part of the proof, we know that ṽ =

(
ϕ

ψ

)
∈ D(A∗) as well. Then

A∗(ṽ − v) = 0, i.e., ṽ − v ∈ N (A∗).

Now we examine the null space of A∗. For w ∈ N (A∗),

(divu, w1) + (curlu, w2) = 0 ∀u ∈ D(A). (16)

In particular, we can select u ∈ D(A) to solve

divu = w1 − w1,

curlu = w2

(17)

where

w1 =
1

m(Ω)

∫
Ω

w1

is the average of w1. According to [3], such solution exists, and it is unique up to a harmonic vector field.

Plugging (17) into (16), we get

(w1 − w1, w1) + (w2, w2) = 0.

Note that w1 −w1 is L2-orthogonal to any constant function, therefore (w1 −w1, w1) = (w1 −w1, w1 −w1),

and

(w1 − w1, w1 − w1) + (w2, w2) = 0.

This implies that w1 = w1, and hence is constant, and w2 = 0. Thus

N (A∗) = {v ∈ D(A∗) : v1 = c, v2 = 0, c ∈ R}. (18)

With the characterization of N (A∗), we are finally ready to finish the proof. ṽ − v ∈ N (A∗) implies that

v1 = ϕ+ c and v2 = ψ. Consequently, v1 ∈ H1(Ω) and v2 ∈ H1
0 (Ω).

3.2 Closed Range Theorem at work

We apply the Closed Range Theorem for closed operators [32] to the planar div-curl system. A is a densely

defined closed operator, and A is bounded below in the quotient space [2, 3]:

∥Au∥ ≥ α inf
η∈N (A)

∥u+ η∥ ∀u ∈ D(A) (19)

where N (A) = Hn0(Ω) has dimension J equal to the number of holes in the domain. Then R(A) is closed in

L2(Ω), and R(A) = N (A∗)⊥, where N (A∗)⊥ denotes the L2 orthogonal complement of N (A∗). Moreover,

Closed Range Theorem tells us that R(A∗) is closed in L2(Ω), R(A∗) = N (A)⊥, and A∗ is bounded below

with the same constant as A in the quotient space:

∥A∗v∥ ≥ α inf
ζ∈N (A∗)

∥v + ζ∥ ∀v ∈ D(A∗). (20)

The boundedness-below of A∗ can also be analyzed directly.
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4 Imposition of the circulation constraint

4.1 Least squares with linear constraints

The unconstrained residual minimization problem (3) is well posed if B is bounded below. However, for

the div-curl problem in multiply connected domains, B admits a nontrivial kernel, and thus is not bounded

below. We consider the constrained minimization problem instead:

min
u∈U

1

2
∥Bu− l∥2V′ ,

s.t. Cu = g.

(21)

For the ultraweak formulation of div-curl problem, (8), we have U = L2(Ω),V = H1(Ω) × H1
0 (Ω), and

B : U → V is given by

⟨Bu,v⟩ := b(u,v) = (u, A∗v) = (u,−∇v1 +∇× v2).

C : U → Q′ represents a continuous linear constraint, where Q denotes some Hilbert space. In many cases,

Q is finite dimensional. Equivalently, for a continuous bilinear form c : U × Q → R, the constraint may be

written in a variational form:

c(u, q) = ⟨Cu, q⟩ = g(q) ∀q ∈ Q. (22)

Before discretization, when l ∈ R(B), the cost functional achieves a mimimum of 0 at any solution to Bu = l.

Suppose we discretize trial space U with Uh ⊂ U . With ideal DPG, our approximate solution uopt
h ∈ Uh is

defined to solve the constrained minimization problem:

min
uh∈Uh

1

2
∥Buh − l∥2V′ ,

s.t. Cuh = g.

(23)

If B is bounded below, and the constraint set is assumed to satisfy certain conditions, the problem (23)

admits a unique minimizer; see Appendix A in [26]. However, for the div-curl problem in multiply-connected

domains, B has a nontrivial kernel, hence is not bounded below. The uniqueness of the minimizer is restored

by introducing the constraint C. According to [3], the solution to the div-curl problem is unique up to a

harmonic vector field. Thus it suffices to prescribe the L2 projection of u onto the space of harmonic vector

fields, Hn0(Ω). We can take Q = Hn0(Ω) ⊂ L2(Ω), and define the constraint as

c(w, q) :=

∫
Ω

w · q, (24)

Remark. dimHn0(Ω) = J , where J is the Betti number of the domain [3].

To deal with the dual norm in the cost function, we introduce the Riesz operator RV : V → V ′, and note

that

1

2
∥Bu− l∥2V′ =

1

2
∥R−1

V (Bu− l)∥2V =
1

2
(R−1

V Bu, R−1
V Bu)V − (R−1

V Bu, R−1
V l)V +

1

2
∥R−1

V l∥2V

=
1

2
⟨Bu, R−1

V Bu⟩V′,V − l(R−1
V Bu) +

1

2
∥l∥2V′ =

1

2
b(u, R−1

V Bu)−B′R−1
V l(u) +

1

2
∥l∥2V′ (25)

Introduce the trial-to-test operator T = R−1
V B : U → V, and a symmetric bilinear form on U ,

a(u,w) := b(u, Tw) = (Tu, Tw)V . (26)
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Then
1

2
∥Bu− l∥2V′ =

1

2
a(u,u)− f(u) +

1

2
∥l∥2V′ (27)

where f = T ′l = B′R−1
V l.

Minimization of the residual (27) subject to the linear constraint (22) produces the following mixed

system: 
Find u ∈ U ,p ∈ Q :

a(u,w) + c(w,p) = f(w) ∀w ∈ U ,

c(u, q) = g(q) ∀q ∈ Q.

(28)

Remark. With some abuse of symbols, the right hand sides f, g in (28) are not the same as the source term

in div-curl system (1). However, this should not cause confusion since the right hand sides f, g in (28) will

not be needed in later analysis.

Proposition 2. The continuous mixed problem (28) for the div-curl system is well posed.

Proof. We follow the classical Brezzi’s theory [8] to establish the well-posedness of the mixed problem.

(LBB condition.)

sup
w∈U

|c(w, q)|
∥w∥

≥ β∥q∥ (29)

is satisfied with β = 1. Simply take w = q and we achieve the supremum.

(Inf-sup in kernel condition.) First we characterize the kernel

U0 = {w ∈ U : c(w, q) = 0,∀q ∈ Q} = Hn0(Ω)
⊥ = N (A)⊥.

For u ∈ U0, we have

sup
w∈U0

|a(u,w)|
∥w∥

≥ |a(u,u)|
∥u∥

(test with u)

=
|b(u, Tu)|

∥u∥
(definition of a)

=
|b(u, Tu)|
∥Tu∥V

∥Tu∥V
∥u∥

(divide and multiply by ∥Tu∥V)

=

(
sup
v∈V

|b(u,v)|
∥v∥V

)
∥Tu∥V
∥u∥

(Tu achieves the best inf-sup constant)

≥ γ2∥u∥ (B is bounded below on U0)

In the last step, we claim that B is bounded below on U0, i.e.,

sup
v∈V

|b(u,v)|
∥v∥V

= sup
v∈V

|(u, A∗v)|
∥v∥V

≥ γ∥u∥ ∀u ∈ Hn0(Ω)
⊥. (30)

To prove (30), we choose v = z to solve the adjoint problem A∗z = u. This problem is solvable because

u ∈ Hn0(Ω)
⊥ = N (A)⊥ = R(A∗), and by Closed Range Theorem

∥u∥ = ∥A∗z∥ ≥ α∥z∥ (31)

for the particular z with minimum L2 norm. Therefore,

∥z∥2V = ∥z∥2 + ∥A∗z∥2 ≤ (α−2 + 1)∥u∥2, (32)
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and

sup
v∈V

|(u, A∗v)|
∥v∥V

≥ (u, A∗z)

∥z∥V
≥ (α−2 + 1)−

1
2 ∥u∥. (33)

Thus (30) holds with γ = (α−2 + 1)−
1
2 .

(Compatibility condition.)

U00 := {w0 ∈ U0 : a(u0,w0) = 0 ∀u0 ∈ U0}. (34)

Note that a(u0,w0) = (Tu0, Tw0) = 0. Testing with u0 = w0, we get Tw0 = 0, or equivalently, Bw0 = 0

since R−1
V is an isomorphism. This implies

b(w0,v) = (w0, A
∗v) = 0 ∀v ∈ D(A∗).

Therefore, (Aw0,v) = (w0, A
∗v) = 0, i.e., w0 ∈ N (A). Recall that U0 = N (A)⊥. Then w0 ∈ N (A)⊥ ∩

N (A) = {0}. The compatibility condition is always satisfied.

4.2 Circulation constraint

The constraint (24) requires the knowledge of Q = Hn0(Ω). However, in general, we do not have an

analytical expression for the harmonic vector fields Hn0(Ω). So in actual computation, we choose to work

with an equivalent formulation of the constraint, i.e., prescription of the circulation around Γ1 [3]. For the

sake of completeness, we recall some key results from [3].

Consider a general multiply-connected domain Ω, whose boundary is piecewise C1,1 and Betti number is

J . The outer boundary is denoted by Γ0 and inner boundaries are Γ1, · · · ,ΓJ . Then dimHn0(Ω) = J , and

let {k(1), · · · ,k(J)} denote the particular basis of Hn0(Ω) defined by (52) in [3]. When J ≥ 1 and w ∈ L2(Ω),

the projection of w onto Hn0(Ω) is given by

Pw =

J∑
j=1

cjk
(j) (35)

where (c1, · · · , cJ) is the solution of linear system

(Pw,k(l)) =

J∑
j=1

kljcj = (w,k(l)), 1 ≤ l ≤ J. (36)

Here klj = (k(l),k(j)) is the component of a Gram matrix. We invoke (64) in [3] as the following lemma.

Lemma 2. For 1 ≤ j, l ≤ J , ∫
Γj

k(l) · t =
∫
Γl

k(j) · t = −(k(j),k(l)).

If w is irrotational, as in the case of flow around airfoil problem, then∫
Γl

w · t =
∫
Γl

Pw · t =
J∑

j=1

cj

∫
Γl

k(j) · t = −
J∑

j=1

kljcj . (37)

See (70) in [3] for a proof. Plugging (36) into (37), we get∫
Γl

w · t = −(w,k(l)), 1 ≤ l ≤ J (38)

11



whenw is irrotational. Therefore, prescription of the circulation around Γ1, · · · ,ΓJ is equivalent to specifying

the projection of w onto Hn0(Ω). When w is not curl free, as the case in some numerical experiments,

prescribing the circulation still fixes the projection onto Hn0(Ω). The only difference is that (38) now

becomes ∫
Γl

w · t = −(w,k(l)) +

∫
Γl

(∇× ψ) · t (39)

where ψ ∈ H1
0 (Ω), ∇× ψ is the rotational part of w, which is determined uniquely from curlw.

In the case of a doubly-connected domain, J = 1 and we have only one circulation to prescribe. From

now on, we focus on doubly-connected domains for ease of presentation, although the framework is general.

Note that, however, in the ultraweak formulation (8), u is only assumed to be L2(Ω), we cannot talk about

its tangential trace, let alone circulation. We must test with functions outside of D(A∗) = H1(Ω)×H1
0 (Ω),

and introduce ût, the tangential trace of H(curl,Ω) functions onto Γ1 (denoted by trt,Γ1
H(curl,Ω)), as an

additional unknown.

Ultraweak formulation with tangential trace unknown.
u ∈ L2(Ω), ût ∈ trt,Γ1H(curl,Ω) :

− (u,∇v1) = (f, v1)− ⟨µ, v1⟩Γ ∀v1 ∈ H1(Ω),

(u,∇× v2) + ⟨ût, v2⟩Γ1
= (g, v2) ∀v2 ∈ H1

Γ0
(Ω)

(40)

where H1
Γ0
(Ω) := {φ ∈ H1(Ω) : φ|Γ0

= 0}. ût ∈ Û := trt,Γ1
H(curl,Ω)= H−1/2(Γ1) is measured by

the minimum energy extension norm [10], denoted as ∥ût∥Û . The group solution variable (u, ût) can be

measured in any product norm (as they are equivalent), e.g., ∥(u, ût)∥U×Û := ∥u∥+ ∥ût∥Û . We analyze the

problem (40) with the circulation constraint as: ∫
Γ1

ût = κ (41)

where the integral is understood in the sense of duality pairing:∫
Γ1

ût := ⟨ût, 1⟩Γ1
.

We would like to reproduce the argument from Proposition 2, i.e., (40) understood in the sense of minimum

residual with the constraint (41) is a well-posed mixed problem. In this case, Q = R and the Lagrange

multiplier is a scalar.

Proposition 3. The constrained residual minimization problem (21), with B determined from (40) and

constraint C as the circulation (41), is well posed.

Proof. (LBB condition.) Let w ∈ H(curl,Ω) be the minimum energy extension of ŵt = 1 on Γ1. Then

∥ŵt∥Û = ∥w∥H(curl,Ω) > 0, and

sup
ût∈Û

⟨ût, 1⟩Γ1

∥ût∥Û
≥ ⟨ŵt, 1⟩Γ1

∥ŵt∥Û
=

length(Γ1)

∥w∥H(curl,Ω)
> 0. (42)

(Inf-sup in kernel condition.) We follow exactly the same argument as in the proof of Proposition 2. It

remains to prove that the bilinear form satisfies the inf-sup condition:

sup
v∈V

(u, A∗v) + ⟨ût, v2⟩Γ1

∥v∥V
≥ γ′(∥u∥+ ∥ût∥Û ) (43)
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for all u ∈ L2(Ω), ût ∈ Û satisfying ⟨ût, 1⟩Γ1
= 0, with some constant γ′ > 0. Here V := H1(Ω) ×H1

Γ0
(Ω)

and is equipped with the same norm as before; see (9). We define a functional l ∈ V ′ by

l(v) := (u, A∗v) + ⟨ût, v2⟩Γ1
∀v ∈ V. (44)

Then it suffices to show that both ∥u∥ and ∥ût∥Û are bounded above by ∥l∥V′ . Let u = uH + uH⊥ be the

orthogonal decomposition of the L2 vector field u into a harmonic vector field uH ∈ Hn0(Ω), and a part

uH⊥ ∈ Hn0(Ω)
⊥. From the Pythagorean Theorem, we have ∥u∥2 = ∥uH∥2 + ∥uH⊥∥2. Thus we only need

to control ∥uH∥ and ∥uH⊥∥ separately. Testing with v ∈ D(A∗) in (44), we get

l(v) = (u, A∗v) = (uH, A
∗v) + (uH⊥ , A∗v) (45)

since v2 = 0 on Γ for v ∈ D(A∗). Note that uH ∈ Hn0(Ω) = N (A) ⊂ D(A); hence

(uH, A
∗v) = (AuH,v) = 0 ∀v ∈ D(A∗). (46)

Plugging (46) into (45), we get

l(v) = (uH⊥ , A∗v) ∀v ∈ D(A∗). (47)

From (30), we have

∥uH⊥∥ ≤ γ−1 sup
v∈D(A∗)

|(uH⊥ , A∗v)|
∥v∥V

= γ−1 sup
v∈V

|l(v)|
∥v∥V

= γ−1∥l∥V′ . (48)

Now we examine ∥uH∥. To that end, we recall that in a doubly-connected domain, dimHn0(Ω) = 1, and one

basis {k(1)} is given by k(1) = ∇×ψ, where ψ ∈ H1(Ω) solves the Laplace problem with Dirichlet boundary

condition [3]:

∆ψ = 0 in Ω,

ψ = 0 on Γ0,

ψ = 1 on Γ1.

(49)

Assume uH = λk(1) for some λ ∈ R. We test (44) with v1 = 0, v2 = ψ, note that ⟨ût, 1⟩Γ1
= 0, and we

obtain

l(v) = (u, A∗v) = (u,∇× ψ) = (uH + uH⊥ ,∇× ψ) (50)

where v = (0, ψ). The definition of uH⊥ guarantees that (uH⊥ ,∇× ψ) = (uH⊥ ,k(1)) = 0. Thus

l(v) = (uH,∇× ψ) = λ(∇× ψ,∇× ψ) = ∥uH∥∥∇ × ψ∥.

Dividing both sides by ∥∇ × ψ∥, we get

∥uH∥ =
l(v)

∥∇ × ψ∥
= α

l(v)

∥v∥V
≤ α∥l∥V′ (51)

where

α =
∥v∥V

∥∇ × ψ∥
=

(∥ψ∥2 + ∥∇ × ψ∥2)1/2

∥∇ × ψ∥
> 1

is a constant.
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Having controlled both ∥uH∥ and ∥uH⊥∥, in (51) and (48) respectively, we are now in a position to

bound ∥ût∥Û . Here we use the “Brezzi’s trick”.

∥ût∥Û := sup
v2∈H1

Γ0
(Ω)

|⟨ût, v2⟩Γ1
|

∥v2∥H1(Ω)
= sup

v∈V

|l(v)− (u, A∗v)|
∥v∥V

≤ ∥l∥V′+∥u∥∥A
∗v∥

∥v∥V
≤ (1+(γ−2+α2)1/2)∥l∥V′ (52)

where in the last inequality we have used the fact that ∥A∗v∥
∥v∥V

≤ 1 and ∥u∥ = (∥uH⊥∥2 + ∥uH∥2)1/2.
(Compatibility condition.) Similar to the argument for the inf-sup in kernel condition, we decompose w0

into w0H and w0H⊥ , and test

(w0, A
∗v) + ⟨ŵ0t, v2⟩Γ1 = 0

with v ∈ D(A∗) and v1 = 0, v2 = ∇× ψ respectively, to conclude that both w0H and w0H⊥ are 0. Finally

test with general v ∈ V to conclude that the tangential trace ŵ0t = 0. Thus U00 is trivial; compatibility

condition is automatically satisfied.

Remark. The analysis of the mixed problem for the broken ultraweak formulation (10) with circulation

constraint (41) is analogous. We refer readers to [10] for detailed techniques to treat broken formulations.

4.3 Discrete stability

Ideal DPG seeks the minimizer of (23) in the discrete finite element space Uh. This leads to the discrete

mixed problem: 
Find uh ∈ Uh,p ∈ Q :

a(uh,w) + c(w,p) = f(w) ∀w ∈ U ,

c(uh, q) = g(q) ∀q ∈ Q.

(53)

The bilinear form a is determined from the broken ultraweak formulation (10), and constraint is (41). To

establish the convergence of our solution, we have to show that the LBB condition and inf-sup in kernel

condition are satisfied for some bounded-below constants uniformly.

Proposition 4. The discrete mixed problem (53) for the div-curl system satisfies the discrete inf-sup con-

ditions. Therefore, according to Brezzi’s Theorem, the numerical solution uh converges to u at the optimal

rate determined by the interpolation error estimate.

Proof. The discrete LBB condition is satisfied, which can be proved in a way similar to (42). The difference

is that we now lift the trace ŵt = 1 on Γ1 into a discrete subspace, wh ∈ Qh ⊂ H(curl,Ω). As we refine the

mesh, the space Qh becomes bigger, and the minimum energy extension norm ∥wh∥H(curl,Ω) decreases. The

LBB constant only improves as the mesh gets refined.

The discrete inf-sup in kernel condition is not an issue, since ideal DPG only keeps or improves the

continuous inf-sup constant [16].

Remark. The practical DPG method enjoys the same property described in Proposition 4 for ideal DPG, as

we are employing standard exact sequence elements and Fortin operators can be constructed. See [23, 17].
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5 Numerical results

5.1 Smooth solution in a unit square

As verification, we first compute the numerical solution of div-curl system in a unit square, Ω = [0, 1]2. The

manufactured solution u =

(
u1

u2

)
is defined as

u1 = −π sin(πx1) exp(πx2), u2 = π cos(πx1) exp(πx2). (54)

u is solenoidal and irrotational, and can be obtained by solving a Laplace problem. This amounts to setting

f = 0, g = 0 in (1), and the normal trace un = µ is set according to the manufactured solution. No

circulation constraint needs to be imposed, since the domain is simply-connected. We start with a mesh

consisting of one quadrilateral element, and perform uniform h-refinements. Fig. 2 shows L2 relative error

versus degrees of freedom for different polynomial degrees. The observed convergence rates are perfectly

aligned with theory:

∥u− uh∥ ≤ Chr|u|Hr(K) (55)

if p ≥ r. As the solution is smooth, the convergence rate is determined only by the polynomial order.

1 1.5 2 2.5 3 3.5 4 4.5
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 2: Relative error measured in L2 norm versus degrees of freedom. The black line corresponds to

p = 1, blue for p = 2, and red for p = 3. Slopes are computed by linear regression.

Adaptivity. As detailed in [11], DPG comes with a built-in a posteriori error estimator, i.e., ∥ψ∥2V , which
we utilize to perform adaptive refinements. After solving for uh, we compute the error representation function

for each element K during post-processing:

(ψK ,vK)V(K) = l(vK)− b(uh,vK) ∀vK ∈ Vh(K)
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where uh := (uh, ûh) denotes the group variable, b(uh,vK) := (uh, A
∗vK)L2(K) + ⟨ûh,vK⟩∂K , see (10);

V(K) =H1(K), and Vh(K) represents the polynomial space to discretize H1(K). Here ψK =

(
ψ1K

ψ2K

)
has

two components. We compute ∥ψK∥2V(K) and use it as an a posteriori error estimator. For ideal DPG with

unbroken ultraweak formulation,

∥ψ∥2V = ∥l −Buh∥2V′ = ∥B(u− uh)∥2V′ = ∥u− uh∥2E

where the energy norm ∥·∥E is defined as

∥w∥E := sup
v∈V

|b(w,v)|
∥v∥V

= sup
v∈V

|(w, A∗v)|
∥v∥V

and can be shown to be equivalent to the L2 norm; see (9) and (33). In actual computation, we use broken

test spaces and practical DPG (discretize the test space), but we still observe very good agreement between

the residual ∥ψ∥H1(Ωh) and the L2 error. We start with a single element of order p = 2, and perform

h-adaptive refinements with a greedy strategy. Fig. 3(a) plots relative error and residual versus degrees of

freedom, while Fig. 3(b) plots the contours of the numerical solution u1 on the final mesh. To make clear

the efficiency and reliability of our error indicator, in Table 1 we document the ratio of residual ∥ψ∥V to

error ∥u− uh∥. The maximal discrepancy is only 7.3%.

1.5 2 2.5 3 3.5 4 4.5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

error
residual
error with uniform refinements

(a) Relative L2 error and residual versus degrees of free-

dom. The blue solid line represents relative error ∥u −
uh∥/∥u∥, red circles represent scaled residual ∥ψ∥V/∥u∥,
and the black dashed line stands for relative error with uni-

form refinements.

(b) Contour plot of u1 on the final mesh.

Figure 3: Adaptive refinement study.
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dof 40 144 340 1320 3252 5200 9824 17560

residual/error 0.9333 0.9268 0.9876 0.9933 1.0045 0.9965 1.0029 1.0000

Table 1: The ratio of residual to error along refinement.

5.2 Solenoidal and irrotational solution in a toroidal domain

Now we examine a solenoidal and irrotational solution in a toroidal domain, Ω =
(
−1, 12

)2 ∖ [− 1
2 , 0
]2
. The

exact solution is given in polar coordinates by

ur = 0, uθ =
1

2πr

where the origin of the polar coordinates is at (− 1
4 ,−

1
4 ). The relation between Cartesian coordinates (x1, x2)

and polor coordinates (r, θ) is given by

x1 +
1

4
= r cos θ, x2 +

1

4
= r sin θ.

Note that the circulation of this manufactured solution is nonzero, and we impose the correct circulation

as the constraint. We start with 8 square elements of order p = 2, and perform both uniform refinements

and h-adaptive refinements with a greedy strategy. Fig. 4(a) plots relative error and residual versus degrees

of freedom, and Fig. 4(b) plots the contours of the numerical solution u1 on the final adaptive mesh. In

Table 2 we record the ratio of residual to error along adaptive refinement. Similar to the previous case, the

residual ∥ψ∥V is a very good error estimator even in multiply-connected domains: except for the first very

coarse mesh, the discrepancy between residual and error is less than 2%.

2.5 3 3.5 4 4.5
-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

error
residual
error with uniform refinements

(a) Relative L2 error and residual versus degrees of freedom. The

blue solid line represents relative error ∥u−uh∥/∥u∥, red circles

represent scaled residual ∥ψ∥V/∥u∥, and the black dashed line

stands for relative error with uniform refinements.

(b) Contour plot of u1 on the final adaptive

mesh.

Figure 4: Uniform and adaptive refinement study.
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dof 288 672 1840 3760 6880 11456

residual/error 0.8598 0.9908 1.0025 0.9868 1.0005 0.9957

Table 2: The ratio of residual to error along adaptive refinement.

5.3 Solenoidal solution in a toroidal domain

Following [9] (Example 5 therein), we study smooth and singular solutions in a toroidal domain. Ω =(
−1, 12

)2 ∖ [− 1
2 , 0
]2
, and the manufactured solution is given by

u = ∇× rγ sin(αθ) = αrγ−1 cos(αθ) êr − γrγ−1 sin(αθ) êθ (56)

where r, θ are polar coordinates with the same origin as the Cartesian coordinates, and α = 1, 2, 3, · · · , γ > 0.

It can be verified that u ∈ Hγ−ϵ(Ω) for γ ̸= 1, and is singular at the origin if γ < 1. The curl of u can be

computed as

curlu = −∆
(
rγ sin(αθ)

)
= (α2 − γ2)rγ−2 sin(αθ)

curlu /∈ L2(Ω) when γ < 1. We choose α = 2 and experiment with three different values of γ: γ =

1.25, 1, 2/3. We start with a mesh consisting of 8 square elements with order p = 3 and perform uniform

h-refinements. Fig. 5(a–c) illustrates the different convergence rates for solutions with different regularity.

The convergence rates are −1.25,−1,−0.66, respectively, matching the regularity of the solution. In contrast

with the asymptotic optimal rates observed in [9], our method achieves the optimal rate from day one, on a

very coarse mesh. Fig. 5(d) displays one solution obtained for γ = 2/3 and h = 1/8.

5.4 A solution that is neither solenoidal nor irrotational

On the same mesh as in Section 5.3, we consider the manufactured solution

u = ∇× rγ sin(αθ) + β

(
sin(πx1) cos(πx2) + x1

− sin(πx2) cos(πx1) + x2

)
(57)

which corresponds to Example 7 in [9]. We choose α = 2, γ = 2/3, β = 1, and perform the same uniform

h-refinements study as in Section 5.3, as well as h-adaptive refinements with element order p = 3. Fig.

6(a) shows that with uniform refinements, our numerical solution converges at the optimal rate. Note

that the slope is −0.33, where the abscissa represents degrees of freedom, which scales as h−2; in previous

subsection, the abscissa is h−1. Unlike [9], where solution converges up to a harmonic vector field, our

solution converges in L2 norm by virtue of prescribing the circulation. Fig 6(a) also shows the error and

residual for the adaptively refined meshes; the shown slope on that interval is −1.43, which is close to the

theoretical value of −1.5 since we are using elements of order 3 [5]. The solution u1 on the mesh after 4

adaptive refinements is shown in Fig. 6(b). The mesh keeps being refined near the singularity, as expected.

6 Conclusion

In this paper, we present a DPG method for the planar div-curl system. In a multiply-connected domain,

additional circulation constraints must be imposed to guarantee well-posedness of the problem. We propose
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(a) γ = 1.25.
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(b) γ = 1.
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Linear Regression
Slope = -0.66

(c) γ = 2/3. (d) Contour plot of u1 for γ = 2/3 after 2 re-

finements, i.e. h = 1/8.

Figure 5: (a–c): Relative L2 error versus element size under uniform refinements. Blue circles represent

errors in FE solutions, and red line is the linear regression line. (d): Contour plot of u1.
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Slope = -0.33
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(a) Relative L2 error and residual versus degrees of freedom. The

blue solid line represents relative error ∥u−uh∥/∥u∥, red circles

represent scaled residual ∥ψ∥V/∥u∥, and the black dashed line

stands for relative error with uniform refinements.

(b) Contour plot of u1 on the adaptive mesh

after 4 refinements.

Figure 6: Uniform and adaptive refinement study.

to impose the circulation constraint in a constrained minimization framework, and prove the discrete stability

and convergence of our algorithm. Numerical experiments corroborate our analysis. Moreover, the DPG

solution converges in L2 norm at the optimal rate, not just asymptotically in the quotient norm. For singular

problems, the adaptive solution is much better than that obtained on a uniform mesh.

Next step is the determination of the circulation, i.e., realizing Kutta condition in aerodynamics, for the

flow around airfoil. We plan to use the postprocessing technique [4] to determine the circulation. This work

will also lay the foundation for finite element solution of the full-potential equation [21], which can be viewed

as a nonlinear div-curl problem.
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