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Abstract

In this article, we present a three-dimensional anisotropic hp-mesh refinement strategy for ultraweak discon-

tinuous Petrov–Galerkin (DPG) formulations with optimal test functions. The refinement strategy utilizes

the built-in residual-based error estimator accompanying the DPG discretization. The refinement strategy is

a two-step process: (a) use the built-in error estimator to mark and isotropically hp-refine elements of the

(coarse) mesh to generate a finer mesh; (b) use the reference solution on the finer mesh to compute optimal h-

and p-refinements of the selected elements in the coarse mesh. The process is repeated with coarse and fine

mesh being generated in every adaptation cycle, until a prescribed error tolerance is achieved. We demonstrate

the performance of the proposed refinement strategy using several numerical examples on hexahedral meshes.
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1. Introduction

Automatic hp-mesh refinement algorithms are powerful tools that aid finite element discretizations in computing

solutions of partial differential equations (PDEs) in an efficient and accurate manner. They achieve this

efficiency and accuracy by constructing meshes with optimally distributed element size h and polynomial

order of approximation p [2, 3]. Finite element meshes with optimal element size and polynomial distribution10

are critical for resolving solution features such as boundary layers in convection-dominated diffusion problems
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or point and edge singularities in problems with re-entrant corners. In such problems, optimal hp-meshes are

indispensable for achieving exponential convergence [4, 5, 6, 7, 8]. Designing algorithms capable of generating

a sequence of optimal hp-meshes that deliver optimal convergence rates in a problem-agnostic manner has

been a significant challenge in finite element research over the past few decades [6, 9, 10, 11]. Typically,15

automatic mesh refinement strategies are driven by computable error estimates. These error estimates are

computed using the approximate solution delivered by the discretization scheme. Therefore, the accuracy and

stability of the underlying numerical discretization are paramount for the effectiveness of the mesh refinement

strategy.

The DPG methodology with optimal test functions, first introduced by Demkowicz and Gopalakrishnan in20

[12, 13, 14], has emerged as a critical technology in terms of robustness and stability over the past decade.

Given a stable variational formulation of an underlying PDE and a trial approximation space, the DPG

method computes a test space so that the resulting discretization is inf–sup stable. The methodology delivers

an orthogonal projection in the so-called energy norm. Another significant advantage of the DPG methodology

is the presence of a built-in residual-based error estimator, also known as the energy error estimate. This25

makes the DPG method an ideal candidate for automatic mesh optimization algorithms.

In this article, we focus on the ultraweak (UW) discontinuous Petrov–Galerkin (DPG) finite element formulation

with optimal test functions and propose a problem-agnostic anisotropic hp-mesh refinement strategy. It

is critical to mention that, for the UW DPG method, the energy norm is equivalent to the L2-error [15].

Consequently, the method delivers essentially the L2-projection of the unknown solution.30

The proposed refinement strategy consists of the following steps:

• Step 1: Solve the problem on the current coarse mesh.

• Step 2: Utilize the computed DPG residual to mark coarse mesh elements for refinements.

• Step 3: Isotropically hp-refine the marked elements to generate a fine mesh.

• Step 4: Solve the problem on the fine mesh to obtain the fine mesh solution u.35

• Step 5: Use the fine mesh solution u as a reference solution to determine optimal (anisotropic)

hp-refinements of the selected coarse grid elements.

• Step 6: Restore the coarse mesh and execute the optimal hp-refinements.

We essentially use the hp-algorithm from [2, 3]. Optimizing the mesh in the L2-space greatly simplifies

the original procedure. There is no need for mesh optimization on edges and faces; the Projection-Based

Interpolation reduces to the L2-projection performed on elements only. The optimal refinements of a coarse
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element K are determined by maximizing the rate (ehp) with which the projection error decreases,

ehp := ‖u− Pcoarseu‖2 − ‖u− Poptu‖2

Nopt −Ncoarse
.

Here, Pcoarse denotes the L2-projection onto the coarse mesh, Popt is the projection onto the optimal mesh to

be determined, Nopt and Ncoarse denote the number of degrees-of-freedom (dof) of the optimal and coarse grid40

elements, respectively. As the L2-projection onto discontinuous polynomial spaces is a purely local operation,

the mesh optimization can be trivially performed in parallel.

The article is organized as follows. Section 2 briefly introduces the ultraweak DPG finite element discretization

with optimal test functions. Section 3 provides the details of the mesh optimization algorithm. In Section 4,

numerical results demonstrate the efficacy of the proposed refinement strategy. Finally, we conclude with a45

short discussion in Section 5.

2. DPG Methodology

The core idea behind the (ideal) DPG method is to automatically generate a stable discretization for a

given well-posed variational formulation and an approximate trial space. The method achieves stability by

computing an optimal discrete test space [13] corresponding to the approximate trial space in such a way50

that the supremum over the continuous test space in the discrete inf–sup [16] is automatically attained over

the discrete test space. The optimal test space is obtained by inverting the Riesz map corresponding to the

test inner product over a discontinuous or broken1 test space. Unfortunately, inverting the Riesz operator

exactly is impossible due to the infinite-dimensional nature of the continuous test space. Thus, in practical

realizations of DPG methods, we approximate the inverse of the Riesz operator by inverting the Gram matrix55

induced by the test norm on a larger, but finite-dimensional enriched discontinuous test space.2 The use of

broken test spaces enables element-wise inversion of the Gram matrix, but it also introduces trace variables

defined on the mesh skeleton [17].

We consider a model Poisson problem. Let Ω ⊂ R3 be a bounded Lipschitz domain with its boundary, denoted

as Γ, is split into two disjoint parts: Γu and Γσ. The first-order formulation of the Poisson problem is given60

by:



σ −∇u = 0 in Ω,

−∇ · σ = f in Ω,

u = u0 on Γu,

σ · n = σ0 on Γσ,

1Hence the “D” in the DPG method.
2We then refer to it as the practical DPG method.
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where f ∈ L2(Ω) represents the source term and n denotes the outward normal. Before presenting the

ultraweak variational formulation, we briefly introduce the energy spaces used in this article. We define the

standard energy spaces as:

L2(Ω) = {u : Ω→ R : ‖u‖2 <∞} ,

H1(Ω) =
{
v : Ω→ R : v ∈ L2(Ω),∇v ∈

(
L2(Ω)

)3}
, (2.1)

H(div,Ω) =
{
w : Ω→ R3 : w ∈ (L2(Ω))3,∇ ·w ∈ L2(Ω)

}
.

In the DPG method, discontinuous energy spaces are used for the test functions. Thus, we must define broken

equivalents of H1(Ω) and H(div,Ω) spaces for the finite element mesh (Ωh):

H1(Ωh) :=
{
v : Ω→ R : v

∣∣
K
∈ H1(K) ∀K ∈ Ωh

}
,

H(div,Ωh) :=
{
w : Ω→ R3 : w

∣∣
K
∈H(div,K) ∀K ∈ Ωh

}
,

(2.2)

where K ∈ Ωh represents an element of the finite element mesh. Use of the broken test spaces [17] leads to

the introduction of additional trace unknowns on the mesh skeleton. The traces spaces are defined as:

H1/2(Γh) :=
{
û : ∃u ∈ H1(Ω) such that û = γK(u

∣∣
K

) on ∂K ∀K ∈ Ωh
}
,

H−1/2(Γh) :=
{
σ̂n : ∃σ ∈H(div,Ω) such that σ̂n = γKn (σ

∣∣
K

) on ∂K ∀K ∈ Ωh
}
,

(2.3)

where γK and γKn represent continuous and normal trace operators, respectively [18].

Ultraweak formulation. Let (U, Û) be the approximation trial space, V the test space, and V ′ the dual space

of V . Then, the ultraweak DPG formulation of the Poisson problem can be stated as: Given l ∈ V ′ , find

u ∈ U and û ∈ Û satisfying:

b(u, v) + b̂(u, v) = l(v) ∀ v ∈ V, (2.4)

where

u = (u,σ) ∈ L2(Ω)× (L2(Ω))3,

û = (û, σ̂n) ∈ H1/2(Γh)×H−1/2(Γh) : û = u0 onΓu, σ̂n = σ0 onΓσ,

v = (v, τ ) ∈ H1(Ωh)×H(div,Ωh),

b(u, v) = (σ,∇v)Ωh + (σ, τ )Ωh + (u,∇ · τ )Ωh ,

b̂(û, v) = −〈û, τ · n〉Γh − 〈σ̂n, v〉Γh ,

l(v) = (f, v)Ωh + 〈σ0, v〉Γσ + 〈u0, τ · n〉Γu .

(2.5)

In 2.5, 〈·, ·〉Γh represents duality pairings defined over mesh skeleton Γh,

〈û, τ · n〉Γh :=
∑
K∈Ωh

〈û, τ · nK〉∂K ,

〈σ̂h, v〉Γh :=
∑
K∈Ωh

〈σ̂h, v〉∂K ,
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and

(·, ·)Ωh =
∑

K ∈Ωh

(·, ·)L2(K) .

For the boundary integrals to be well defined, we assume u0 ∈ H1/2(Γu) and σ0 ∈ H−1/2(Γσ). The broken

test space is equipped with the adjoint graph norm [19, 20]:

‖v‖2V := ‖A?hv‖
2 + α‖v‖2 (2.6)

where α > 0 is a scaling constant, and A?hv = (∇ · τ ,∇v + τ )Ωh is the (formal) adjoint operator of Ahu =

(σ −∇u,−∇ · σ)Ωh computed element-wise. In this work, all numerical experiments use α = 1. Next, we

briefly discuss the built-in error estimator. Let Vh(K) ⊂ V (K) be the enriched finite-dimensional test space

approximating the element test space V (K), (Uh, Ûh) ⊂ (U, Û) the finite-dimensional approximate trial space.

The basis functions for Vh(K), Uh and Ûh are denoted by ϕi, ψi and ψ̂i respectively. From 2.5, we construct

the following element stiffness matrices for an element K ∈ Ωh,

GK,lj = (ϕl, ϕj)V ,

BK,ij = bK(ϕi, ψj) ,

B̂k,ij = b̂K(ϕi, ψ̂j) ,

lK,i = lK(ϕi),

where GK,lj represents the element Gram matrix corresponding to the test inner product, BK,ij represents

the element stiffness matrix corresponding to the L2 variables, B̂k,ij represents the element stiffness matrix

corresponding to the trace variables, and lK,i is the element load vector. As usual, bK(·, ·), b̂K(·, ·) and65

lK(·) denote element K contributions to bilinear forms b(u, v), b̂(û, v), and linear form l(v), respectively. An

in-depth exposition of the algebraic structure of the linear system induced by DPG formulation for a diffusion

problem can be found in [13, 21].

The built-in energy error estimate for a mesh element K in the finite element mesh (Ωh) is given by:

‖(u, û)− (uh, ûh)‖2E,K := ‖RV −1
(
lK(·)− bK(uh, , ·)− b̂K(ûh, ·)

)
‖

2

V (K)

where

RV : V (K)→ (V (K))′

is the Riesz operator corresponding to the test inner product. With the element test space V (K) approximated

by a finite-dimensional enriched subspace Vh(K), the element error indicators are computed as:

ηK := ‖G−1(lK − BKuh − B̂K ûh)‖
2
V (K) . (2.7)
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3. Determining Optimal hp Refinements

The hp-algorithm described in this section is exactly the algorithm from [2, 3], but specialized to the L2-energy70

space. The corresponding algorithms for the H1, H(curl), and H(div) energy spaces, all based on minimizing

the Projection-Based (PB) interpolation error, are significantly more intricate and consist of several steps

reflecting the nature of the particular energy space. For instance, the algorithms for H1 and H(curl) spaces

consist of three stages involving mesh optimization on (interiors of) edges, faces and, finally, elements. The

optimal mesh determined in each step serves as a starting point for the optimization in the subsequent step.75

In the case of the L2-energy space, there are no global conformity requirements; the PB interpolation reduces

to just the L2-projection, and the mesh optimization takes place over elements only. The implementation of

the algorithm is thus much simpler. The second difference between the presented and the original hp-algorithm

lies in the involved elements. In the original algorithm, the optimization takes place over all elements,

whereas here it only does for elements marked for refinement by the DPG residual. The number of elements80

entering the mesh optimization is thus much smaller.3 The fine mesh providing the reference solution for the

mesh optimization is also much smaller than the globally hp-refined mesh used in [2, 3]. Figure 1 illustrates

a two-dimensional case of mesh elements being marked by the DPG residual, followed by their isotropic

hp-refinement4 to generate the fine mesh.

Coarse Mesh Fine Mesh

Figure 1: Isotropic hp-refinement of the marked elements: the elements marked for refinement are shaded in red on

the coarse mesh.

The hp-algorithm consists of three steps: the first and third step are purely local (can be done trivially in85

parallel) while the second step requires a loop over all elements preselected for refinement by the DPG residual.

Step 1: Staging a competition between p and various anisotropic h-refinements, and computing the guaranteed

error reduction rate. The comparison between the various candidate refinements is based on the error reduction

3Dependent upon the parameter in the Dörfler strategy [22].
4For a three-dimensional hexahedral element, isotropic hp-refinement denotes an isotropic h8-refinement followed by an

isotropic p-refinement of order 1.
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rate (ehp) defined as:

ehp := ‖u− Poldu‖2 − ‖u− Pnewu‖2

Nnew −Nold
, (3.8)

where u represents the reference solution obtained with the hp-refined mesh generated using the DPG residual,90

Pold is the L2-projection onto the original coarse mesh element (space), Pnew is the L2-projection onto a

refined element (space), Nnew and Nold are dimensions of the new and old spaces (number of dof), and ‖ · ‖

denotes the L2-norm over the considered element K.

The optimal element refinement is determined by staging a competition among various candidate refinements.

For a hexahedral element discussed in this paper, there are eight possibilities: no h-refinement (i.e. p-refinement95

only), three possible anisotropic h2-refinements, three possible anisotropic h4-refinements, and the isotropic

h8-refinement. Figure 2 illustrates all possible h-refinement candidates. Each of the eight refinements is

accompanied with the determination of the optimal distribution of polynomial degrees. This leads to a

catastrophically large number of possible cases. With p = 1, . . . , 10, there are only 103 scenarios for the

just p-refined element, but a staggering total of 1024 cases for the h8-refined element. Clearly, a simple100

search through all possible cases is unfeasible. The discrete nature of the optimization also eliminates the

use of gradient-based algorithms. Instead we rely on the classical p-refinement strategy, see e.g. [23], based

on increasing the polynomial order in the subelement with the maximum error. This reduces the discrete

search to the so-called maximum error reduction path through the vast discrete space of potentially possible

refinements.105

Maximum error reduction path for a p-refined element. We begin the discussion with the simplest

case: p-refinement only. Assuming that the polynomial order can only increase, there are only a total of

23 − 1 = 7 possible scenarios. The direct search is then possible but can be replaced with a slightly faster

dynamic search, as illustrated in Figure 3. To choose the optimal p-refinement, we traverse from (px, py, pz)

to (px + 1, py + 1, pz + 1) by increasing the order in directions that maximize ehp. For a hexahedral element,110

the path of traversal has two stages. The first stage has three branches corresponding to px, py, and pz. The

second stage has two branches corresponding to the remaining directions, with the final configuration being

(px + 1, py + 1, pz + 1). In Figure 3, the arrows in red represent the branches corresponding to the highest

values of ehp at each stage, and the polynomial order marked in red indicates the polynomial order increased

after each stage.115

Following the path, we select the p-refinement that delivers the largest error reduction rate. In the case of an

affine element, the element Jacobian (jac) is constant, and the L2-Piola transform (pullback map) reduces to

a scaling with the Jacobian:

φj(x) = 1
jac φ̂j(ξ), jac =

∣∣∣∣∂xi∂ξj

∣∣∣∣ ,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Various possible h-refinements for a hexahedral element: (a),(b) and (c) depict anisotropic h2-refinements.

Anisotropic h4-refinements are illustrated by (d),(e) and (f). Finally, (g) and (h) depict isotropic h8-refinement and

p-only refinement (no h-refinement), respectively.

where φj is an element L2 shape function corresponding to a master element shape function φ̂j . Consequently,

the L2 mass matrix,

Mij :=
∫
K

φiφj dx = 1
jac

∫
K̂

φ̂iφ̂j dξ ,

is diagonal, and the evaluation of the L2 projection of a function u onto a subspace spanned by functions

φ1, . . . , φN , reduces to the evaluation of the load vector:

PNu =
N∑
j=1

ujφj , uj =
∫
K
uφj dx

Mjj
.
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pypx

pz

pypx+1

pz

py+1px

pz

pypx

pz+1

pypx+1

pz+1

py+1px

pz+1

py+1px+1

pz+1

Figure 3: Maximum error reduction path for the p-refined element: traversing from (px, py, pz) to

(px + 1, py + 1, pz + 1) for a hexahedral element.

Raising the polynomial order in one direction amounts to adding extra orthogonal shape functions φN+l with

l = 1, ...., n. Consequently, evaluation of the error reduction rate reduces simply to:

‖u− PNu‖2 − ‖u− PN+1u‖2

n
= ‖PN+1u‖2 − ‖PNu‖2

n

=
∑n
l=1 |uN+l|2MN+l,N+l

n
= 1
n

n∑
l=1

(∫
K
uφN+l dx

MN+l,N+l

)2

MN+l,N+l

=
∑n
l=1M

−1
N+l,N+l

(∫
K
uφN+l dx

)2
n

.

In the case of a general curvilinear element, the L2 mass matrix is not diagonal, and we use the telescopic

solver based on the Cholesky decomposition described in [3], p.140.

Maximum error reduction path for an h-refined element. Contrary to the pure p-refinement, we

always start with a trilinear element where px = py = pz = 1. The reference solution u is projected onto

the subelement mesh and, based on the distribution of the error, subelements are selected for refinement120

using a greedy strategy with a 70% factor. Once the subelements have been identified for p-refinement, the

routine described above is employed to determine the optimal p-refinement for each subelement. The path is

illustrated in Figure 4 and Figure 5 for the simple case of an h-refined 1D element. The maximum degree

ceiling is determined by the polynomial degree of the fine mesh elements. As we proceed along the refinement

path, the corresponding error reduction rate is computed for each subelement mesh.125

Selection of the optimal refinement is carried out by comparing the best error reduction rates delivered

by the eight differently h-refined meshes. We document the best error reduction rate and call it the element

guaranteed error reduction rate.
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(a) p-refinement:

r := ‖uh/2,p+1−uh,p‖2−‖uh/2,p+1−uh,p+1‖2

1

= 0.27609 − 0.25657 = 0.01952
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(b) Winning h-refinement:

r := ‖uh/2,p+1−uh,p‖2−‖uh/2,p+1−uh,p+1‖2

∆N

= 0.27609 − 0.04413 = 0.23196
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(c)
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(d) Error = 0.375048, 2.36e-4

1
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p

(e) Error = 0.224857, 2.36e-4

1
2
3
4
5
6
7
8
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p

(f) Error = 0.123835, 2.36e-4

1
2
3
4
5
6
7
8
9

p

(g) Error = 0.043898, 2.36e-4

1
2
3
4
5
6
7
8
9

p

(h) Error = 0.0, 2.36e-4

Figure 4: Maximum error reduction path: traversing from (p1, p2) = (1, 1) to (p1, p2) = (5, 1). Error denotes the

projection error in each element.
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(a) Error = 0.0, 7.6e-5
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p

(b) Error = 0.0, 2.2e-5

1
2
3
4
5
6
7
8
9

p

(c) Error = 0.0, 4.0e-6

1
2
3
4
5
6
7
8
9

p

(d) Error = 0.0, 0.0

Figure 5: Maximum error reduction path: traversing from (p1, p2) = (5, 2) to (p1, p2) = (5, 5). Error denotes the

projection error in each element.

Step 2: Determining which elements to refine. We loop over all considered coarse mesh elements to determine

the element with the best guaranteed error reduction rate. In principle, one could then refine only this one130

element. However, to accelerate the refinements, the greedy strategy is employed, selecting all elements that

deliver a rate greater than or equal to 25% of the best guaranteed error reduction rate. Thus, in general,

there may be elements selected for refinement by the DPG residual which, after the comparison, will remain

unrefined.

Step 3: Determining the final refinements. We can simply execute the optimal refinements determined in135

Step 1, and this is indeed the case for the purely p-refined elements. However, in general, we invest more

dofs while performing h-refinements. This approach is best understood by drawing a financial analogy with

investments. Suppose we have unlimited funds and are trying to find banks to invest in. The banks offer

different rates with some bank(s) offering, say, 10% and others less. We decide to invest in all banks that

guarantee at least 7% interest for a 1M investment. We invest 1M into each of those banks but we learn that140

the best bank(s) offers a slightly higher rate of 8% if we invest 2M (or more). Well, if we do have unlimited

funds, it does make sense to invest more than 1M in such a bank!

This is exactly what happens in the third step of our algorithm for elements selected for an h-refinement. In

Step 1, we record the error reduction rates for all subelement meshes following the maximum error reduction
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path. Starting with the best refinement (that won the competition), we investigate the following p-refinements145

and select the maximum investment that still delivers the 25% of the best guaranteed error reduction rate. In

the 1D case illustrated in Figure 4, case (g) won the competition with the p-refinement but (dependent upon

the threshold value used in the greedy strategy), we may select case (h) with an additional dof invested in the

first subelement.

Next, we consolidate all the steps (1-3) and present the mesh optimization algorithm. In Algorithm 1, tol150

denotes the user-provided tolerance value for the DPG residual.

Algorithm 1 Mesh Optimization Algorithm
1: Start with an initial trial mesh

2: while ηΩh > tol do

3: Solve the problem on the current mesh.

4: Compute the DPG residual for the current mesh: ηΩh =
(∑

K∈Ωh ηK
)1/2.

5: Use the element residuals (ηk) to mark elements for refinements (Dörfler strategy).

6: Isotropically hp-refine marked elements to generate the fine mesh.

7: Compute the reference solution u using the fine mesh.

8: Step 1: For each refined element K :

9: Determine the best possible p-refinement using the maximum error reduction path.

10: Determine the best possible h-refinement using the maximum error reduction path.

11: Use error reduction rates to decide between p- and h-refinement.

12: Determine the element guaranteed error reduction rate (rg,K).

13: Step 2: Loop over all marked elements to determine the best guaranteed error reduction rate (rm).

14: Unrefine the mesh.

15: Step 3: For each element K marked for refinement:

16: if rg,K ≥ 0.25 rm then

17: perform the optimal hp-refinement.

18: end if

19: endwhile

3.1. Mesh Closure

The hp algorithm has been implemented in hp3D, a general-purpose FE code supporting hybrid meshes

consisting of elements of all shapes (hexas, tets, prisms, pyramids), conforming discretizations of the exact

sequence spaces (H1-, H(curl)-, H(div)-, and L2-conforming elements), solution of coupled multiphysics155

problems, and anisotropic hp-refinements [24, 25]. hp3D is available under BSD-3 license.5 In the code, any

5https://github.com/Oden-EAG/hp3d
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h-refinement is executed in two steps. Given a list of elements to refine (along with the requested, possibly

anisotropic, h-refinement flags), we proceed as follows.

Step 1 (local): Refine the elements from the list in the provided order, enforcing two rules:

• compatibility with existing face refinements: upgrade the requested element refinement flag160

to accommodate existing face refinements.

• one-irregularity rule for faces: employ the standard shelf or queue algorithm ([13], p.71) to

ensure that no face is refined unless the face6 is unconstrained.

If one of the element faces is constrained, the element is placed on the shelf, and a necessary refinement

of the neighbor across the face is executed, to eliminate the constraint. If the one-irregularity rule165

for faces prohibits the refinement, the corresponding neighbor is placed on the shelf and so on. Once

the refinement of the processed element is possible, it is executed and the process resumes with the

last element from the shelf. The algorithm proceeds until the shelf is empty. All mesh manipulations

(refinements) are supported for meshes that satisfy the one-irregularity rule for faces (not necessary for

edges and vertices).170

Step 2 (global): loop through all elements and perform additional necessary refinements to eliminate edges

and vertices with multiple constraints.

We refer to [24] for a more formal exposition of the algorithms. In the end, in both steps, a number of

additional, unwanted refinements are executed. These refinements can be isotropic or anisotropic, reflecting

minimal requirements to eliminate the nodes with multiple constraints. In the ‘global’ hp-refinement driven by175

the DPG residual, all unwanted refinements are chosen to be isotropic. This is motivated by the fact that an

unwillingly refined element (in Step 1) may, in fact, be on the DPG list of wanted refinements. However, once

the optimal hp-refinements are determined, all unwanted refinements are executed in a minimal, anisotropic

way.

All unwillingly h-refined elements inherit their polynomial order from the father element. In principle, one180

could attempt to find the corresponding optimal distribution of polynomial order p, but this has been not

done in our current implementation. Hence, the presented meshes may be slightly overrefined.

6More precisely, the mid-face node.
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4. Numerical Results

4.1. A Boundary Layer Problem

Sharp boundary layers are among the most commonly encountered flow features in computational fluid

dynamics. This numerical experiment demonstrates the proposed algorithm’s efficacy in resolving such

boundary layers. In this test case, we solve a Poisson problem with a manufactured solution containing

boundary layers. The manufactured solution is a three-dimensional extension of the solution of the Egger-

Schöberl problem [26]. In particular, we solve,

−∇2u = f(x, y, z) in Ω := (0, 1)3
,

u = 0 on Γu,

∇u · n = g(x, y, z) on Γσ,

(4.9)

where

Γu = ([0, 1)× [0, 1)× {0}) ∪ ([0, 1)× {0} × [0, 1)) ∪ ({0} × [0, 1)× [0, 1)) and

Γσ = ([0, 1]× [0, 1]× {1}) ∪ ([0, 1]× {1} × [0, 1]) ∪ ({1} × [0, 1]× [0, 1]) .

In 4.9, n is the outward normal, f(x, y, z) and g(x, y, z) are generated using the exact solution. The exact

solution is given by

u(x, y, z) =
(
x+ ex/ε − 1

1− e1/ε

)(
y + ey/ε − 1

1− e1/ε

)(
z + ez/ε − 1

1− e1/ε

)
.

The solution exhibits a boundary layer near x ≈ 1, y ≈ 1 and z ≈ 1. The strength of the boundary layer is185

inversely proportional to ε. In this numerical experiment, ε = 0.005. The hp-adaptation is initialized with a

mesh comprising only eight elements with a constant polynomial order of (2, 2, 2).7

Figure 6a and Figure 6b display the cross-section of an adapted mesh and the corresponding solution contour,

respectively. Figure 7 depicts the polynomial distribution around the boundary layers on an anisotropically

adapted hp-mesh. Figure 8 presents the convergence results, comparing isotropic h-adaptation and the proposed190

hp-refinement strategy. The Dörfler parameter for both isotropic and hp-refinement is 0.75. In Figure 8,

the relative error denotes combined relative error in all L2 variables. Figure 7 clearly illustrates the strong

anisotropy and grading in the element size and the polynomial distribution. The anisotropy and the grading

in element size are paramount for resolving strong boundary layers efficiently. The algorithm also prescribes

an anisotropic polynomial distribution in the boundary layers instead of an isotropic one. This directional195

7In hp3D, we employ exact-sequence spaces [27]. Hence, an order of (px, py , pz) denotes L2 shape functions of order

(px − 1, py − 1, pz − 1).
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(a) Cross-section of the mesh at x = 0.95 (b) Contour plot of the solution at x = 0.95

Figure 6: Boundary layer problem: (a) cross-section of the mesh showing anisotropic elements required to resolve the

boundary layers, and (b) contour plot illustrating the boundary layers on the yz-plane. The boundary layers are along

right and top faces of the cross-section.

preference of prescribing polynomial orders showcases a significant advantage of the proposed hp-refinement

strategy: the ability to complement an anisotropic h-refinement with an anisotropic p-refinement. This

approach makes the refinement strategy highly efficient in terms of allocating dofs when the solution exhibits

strong anisotropic features. The algorithm does not waste any dofs in directions where the solution variables

do not exhibit significant variations.200

From Figure 8, it is evident that anisotropic hp-refinements outperform isotropic h-refinements by orders of

magnitude. The convergence plots shows the error and the residual against 3
√
ndof (where ndof represents the

number of degrees of freedom), verifying exponential convergence. In Figure 8, a reduction in the convergence

rate for the hp-refinement can be observed. The slowdown in convergence occurs due to the limiting of the

highest polynomial order in the numerical experiments to p = 6. The adaptation cycles are initially dominated205

by h-refinements. Once the boundary layers are resolved, the algorithm starts preferring both p-refinements

along with h-refinements. This behavior is expected, since, increasing the polynomial order on coarse meshes

while approximating solutions with high gradients can induce spurious oscillations.

4.2. Fichera Cube Problem

To demonstrate the efficacy of the proposed refinement strategy in the presence of multiple singularities,

we solve the well-known Fichera cube problem and perform hp-adaptations using the proposed refinement
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(a) Polynomial order along x direction: px (b) Polynomial order along y direction: py

(c) Polynomial order along z direction: pz

Figure 7: Boundary layer problem: an adapted mesh with 855 532 dof and the corresponding polynomial distribution.

The algorithm prescribes higher-order polynomials anisotropically corresponding to each boundary layer along x,y,

and z-axis.

strategy. The variant of the Fichera cube problem being solved here is given by:

∇2u = 0 in Ω := (−1, 1)3 \ [0, 1]3,

u = 0 on Γu,

∇u · n = g(x, y, z) on Γσ.

(4.10)

The domain is created by subdividing a large cube (denoted by (−1, 1)3) into eight smaller cubes and then

removing one of the cubes. The Dirichlet data u = 0 is imposed on the three square faces aligned with planes
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Figure 8: Boundary layer problem: convergence of relative L2 error and DPG residual. Even though there is a

marginal decrease in the rate of convergence for the hp-refinements, both the error and the residual are 2-3 orders of

magnitude lower compared to the h-refinements for approximately same number of dof.

of coordinate axes, i.e.

Γu = ([0, 1]× [0, 1]× {0}) ∪ ([0, 1]× {0} × [0, 1]) ∪ ({0} × [0, 1]× [0, 1]) .

The volumetric load for the problem is 0. The problem is driven by the Neumann boundary conditions on Γσ
composed of the remaining faces of the cube. The data g(x, y, z) corresponds to the sum of two-dimensional

exact solutions of the L-shaped domain problem on xy, yz and xz planes. The exact solution of the L-shaped

domain problem is given by:

uη,ξ = r
2
3 cos(θ), r =

√
η2 + ξ2, θ = tan−1

(
ξ

η

)
, (4.11)

where (η, ξ) denote (x, y) or (y, z), or (x, z) axes, respectively. These boundary conditions generate a solution210

with features analogous to an L-shaped domain problem but comprising multiple edge and vertex singularities.

While the exact solution for the problem is unknown, the convergence of the DPG residual is shown in Figure 13.

Figure 9 and Figure 10 depict the solution contour and the corresponding adapted mesh, respectively. Figure 11

and Figure 12 illustrate the polynomial distribution associated with the adapted mesh. Figure 10 shows that

the refinement algorithm performs highly anisotropic h-refinements along the edge singularities to generate215

graded meshes. The anisotropic refinements propagate through the volume to the opposing boundary faces on

Γσ. The propagation of refinements happens in conjunction to the singularities arising from the faces with

Neumann boundary conditions. Figure 11 and Figure 12 clearly indicate that the algorithm chooses lowest

order polynomials around the singularities. Moving away from the singularities, the algorithm prescribes

higher order polynomials underscoring the smoothness of the solution variables. In Figure 13, one can observe220

the exponential convergence of the residual on performing hp-refinements, whereas isotropic h-refinements

suffer from a loss of convergence due to the lack of required grading in size and polynomial distribution.
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(a) Isometric view along (−1, −1, −1) (b) Isometric view along (1, 1, 1)

Figure 9: Fichera cube problem: solution contour. The problem is driven by the Neumann boundary conditions on

the L-shaped faces in (a) and the three visible square faces in (b). The faces aligned along the coordinate planes in (a)

have the Dirichlet boundary conditions.

(a) Isometric view along (−1, −1, −1) (b) Isometric view along (1, 1, 1)

Figure 10: Fichera cube problem: an anisotropically adapted hp-mesh with 1.3M dofs.

4.3. Eriksson–Johnsson Problem

Next, we present our final numerical experiment. We consider a convection-dominated diffusion problem

motivated by the Eriksson–Johnson model problem [28]. Here, we extend the exact solution of the two-

dimensional problem by multiplying it with a sinusoidal term along z. In particular, we solve,

∂u

∂x
− ε∇2u = f(x, y, z) in Ω := (0, 1)3

,

u = 0 on Γua ,

u = sin(πy) sin(πz) on Γub ,

(4.12)
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(a) Polynomial order along x

direction: px

(b) Polynomial order along y

direction: py

(c) Polynomial order along z

direction: pz

Figure 11: Fichera cube problem: polynomial distribution on the adapted hp-mesh. The algorithm prescribes

low-order polynomials anisotropically around each edge singularity along x, y and z-axis. Figure 12 presents a

magnified view of the polynomial distribution and anisotropic mesh elements around the singularities.

(a) Adapted mesh (b) Polynomial order along x direction: px

(c) Polynomial order along y direction: py (d) Polynomial order along z direction: pz

Figure 12: Fichera cube problem: magnified view of the mesh and the polynomial distribution near the edge and

vertex singularities.

where

Γua = ∂Ω \ {0} × [0, 1]× [0, 1] and Γub = {0} × [0, 1]× [0, 1].
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Figure 13: Fichera cube problem: convergence of DPG residual.

The source f(x, y, z) and the boundary conditions are computed using the exact solution. The exact solution

is given by

u(x, y, z) = es1(x−1) − es2(x−1)

es1 − es2
sin(πy) sin(πz), where s1 = 1 +

√
1 + 4π2ε2

2ε and s2 = 1−
√

1 + 4π2ε2

2ε .

In this numerical experiments, ε = 0.01. Figure 14 depicts the cross-section of an adapted mesh and the

corresponding solution contour at z = 0.5. The solution exhibits a boundary layer along the x-axis with225

sinusoidal variations along y and z. The variation in the solution is also reflected in the hp-refinements

executed by the algorithm. In order to capture the boundary layer, the algorithm generates anisotropic

elements parallel to the yz-plane and assigns the highest polynomial order along the x-axis inside the boundary

layer. Since the boundary layer is weighted with sinusoidal variations in y and z, the majority of the h-refined

elements in the boundary layer are positioned near y = 0.5 and z = 0.5. Figure 15 illustrates the adapted230

mesh with polynomial distribution along the x-axis. Finally, Figure 16 presents the convergence plots for the

relative L2 error and the residual, demonstrating the efficacy of the proposed hp-refinement strategy.

5. Conclusion

The anisotropic hp-refinement strategy presented in this article utilizes the built-in DPG error-estimator and

L2 projection-based error estimates for the ultraweak variational formulation. The efficacy of the proposed235

algorithm is demonstrated through numerical experiments containing boundary layers and singularities. The

algorithm is able to generate a sequence of meshes that provide exponential convergence. Since we have

capped the maximum polynomial order in our numerical experiments to p = 6 for practical reasons, we observe

a slight loss of optimal convergence rate. Nonetheless, the accuracy of the solutions on the anisotropically
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(a) Cross-section of an adapted mesh at z = 0.5 (b) Solution contour at z = 0.5

Figure 14: Eriksson–Johnsson problem: an adapted mesh and solution contour.

(a) Isometric view of the mesh. (b) polynomial order along x direction: px

Figure 15: Eriksson–Johnson problem: an adapted mesh with 209 737 dofs and corresponding polynomial

distribution along x-axis.

refined hp-meshes remains orders of magnitude better than that on isotropically refined meshes for nearly same240

number of dof. The proposed hp-refinement strategy complements anisotropic h-refinements with anisotropic

p-refinements, which allows the algorithm to avoid any superfluous investment (in terms of dofs).

Future work: To accelerate the computation of the fine-grid solution and apply the hp-refinement strategy

to large-scale multiphysics problems, we intend to integrate the proposed hp-refinement strategy with the

21



50 100 150 20010−4

10−3

10−2

10−1

100

3
√
ndof

R
el
at
iv
e

L
2
er
ro
r

p = 2
p = 3
p = 4

hp

50 100 150 20010−4

10−3

10−2

10−1

100

3
√
ndof

R
es
id
ua

l

p = 2
p = 3
p = 4

hp

Figure 16: Eriksson–Johnson problem: convergence of relative L2 error and DPG residual.

scalable DPG-MG solver [29]. Additionally, we aim to extend the proposed refinement strategy to other245

element types, such as tets, prisms, and pyramids, in order to leverage hp3D’s capability to handle hybrid

meshes.
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