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Abstract. This paper synergizes the roles of adjoint in various disciplines of mathematics, sciences, and en-
gineering. Though the materials developed and presented are not new—as each or some could be
found in (or inferred from) publications in different fields—we believe this is the first effort to system-
atically unify these materials on the same mathematical footing starting from the basic definitions.
We aim to provide a unified perspective and understanding of adjoint applications. As a result, this
work could give broader views and better insights into the application of adjoint beyond a single
community. By rigorously establishing general results and then developing materials specific to each
application, we bring forth details on how abstract concepts/definitions can be translated into par-
ticular applications and the connections among them. This paper is written as an interdisciplinary
tutorial on adjoint with discussions and with many examples from different fields including linear
algebra (e.g. eigendecomposition and the singular value decomposition), ordinary differential equa-
tions (asymptotic stability of an epidemic model), partial differential equations (well-posedness of
elliptic, hyperbolic, and Friedrichs’ types), neural networks (backpropagation of feed-forward deep
neural networks), least squares and inverse problems (with Tikhonov regularization), and PDE-
constrained optimization. The exposition covers results and applications in both finite-dimensional
and infinite-dimensional Hilbert spaces.

Key words. Adjoint, optimization, backpropagation, eigenvalue problem, singular value decomposition, asymp-
totic stability, wellposedness, least squares, PDE-constrained optimization, reproduction number.

1. Introduction. Adjoint is ubiquitous in mathematics. According to [24], the history of
adjoint can be traced back to as far as Lagrange in 1766 [48], in a memoir extending the letter
that he wrote to D’Alembert in January 1765 discussing his new method of solving nth-order
differential equations. Also according to [24], the term “adjoint equation”, first used to call
the corresponding equation developed from Lagrange memoir [48], is due to Fuchs [34]. The
adjoint operator, as reported in [53], was introduced by Riesz in his seminal paper1 [65] to
study the inverse of linear operators.

Since then adjoint has been pervasive in vast literature across mathematics, engineering,
and sciences disciplines. This is not surprising as the adjoint has many appealing features
including i) the adjoint operator typically possesses nicer properties than the original operator
(e.g. the adjoint of a densely defined linear operator is a closed operator though the original
operator may not), and ii) the adjoint equation is always linear even when the original equation
is not. Though a comprehensive survey on adjoint accounting for its application in many
disciplines/fields (and their sub-disciplines) could be desirable to appreciate the crucial role
that adjoint plays, it is perhaps an impossible task.2

Our objective is to provide a window into the adjoint and its crucial role in certain sub-

˚Department of Aerospace Engineering and Engineering Mechanics, The Oden Institute for Computational Engi-
neering and Sciences, the University of Texas at Austin, Texas (tanbui@oden.utexas.edu, https://users.oden.utexas.
edu/„tanbui/).

1As also argued in [53], in his seminal paper [65] Riesz established functional analysis as a new mathematical
discipline.

2Or more precisely, it is rather the task for a book than for a paper.
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sets of computational science, engineering, and mathematics. The exposition is necessarily
personal and biased based on topics that we are familiar with. The materials developed and
presented are not new, as each or some could be found in (or inferred from) publications in
different fields. Our objective is to systematically unify these materials on the same mathe-
matical footing starting from the basic definitions. This expectantly provides a more unified
perspective on the usefulness of adjoint in variety of applications. As a result, this work could
give broader views and better insights into applications of adjoint beyond one field. By es-
tablishing general results and then developing materials specific to each application, we bring
forth the details on how abstract concepts/definitions can be translated into particular appli-
cations and the connections among them. This paper is written as a tutorial on adjoint with
many examples presented with discussions. Though we strike for a self-contained expository,
it is necessary for us to state a few results without proof to keep the length of the paper
manageable and to focus on the adjoint and its roles.

The paper is structured as follows. In section 2 we introduce various notations, definitions,
and some examples. The paper is then developed into two parts: Part I in finite dimensions
(section 3) and Part II in infinite dimensions (section 4). In order to keep the exposition
succinct, definitions and results that are valid for both cases are presented/proved once and
when that happens we will explicitly state so. Most of our developments start from abstract
operator settings and then reduce to standard finite-dimensional settings in Rn as a special
case. In some cases, such as optimization, the order is reversed as we believe it is more natu-
ral that way. Each section of the paper is equipped with examples on which we show how to
apply the preceding abstract theoretical results. We make an effort to include practical ex-
amples from different fields including linear algebra (e.g. eigendecomposition and the singular
value decomposition), ordinary differential equations (an epidemic model), partial differential
equations (of elliptic, hyperbolic, and Friedrichs’ types), neural networks (feed-forward deep
neural networks), least squares and inverse problems (with Tikhonov regularization), PDE-
constrained optimization, etc. Due to the interdisciplinary nature of the paper, we do not
attempt to provide an exhaustive list of references but a few for each section to keep the
references at a manageable length.

For section 3, we begin with the celebrated Riesz representation theorem that is then used
to prove the existence of the adjoints of continuous linear operators. It is followed by the closed
range theorem that will be useful in many places later. Built upon these basic materials, we
shall develop several applications of adjoint. The first application is in subsection 3.1 in which
we highlight the role of adjoint in assessing the solvability of linear operator equations before
solving them. Perhaps one of the most important applications of adjoint is in the study of
eigenvalue problems and this is the main focus of subsection 3.2. The main result for this
section is the spectral decomposition of self-adjoint operators in finite dimensions. Another
important one is the tight relationship between the orthogonality of a projection and its self-
adjointness, which immediately leads to a generalized Pythagorean theorem. In subsection 3.3,
we start with the classical projection theorem and then deploy it together with the closed range
theorem to find the necessary and sufficient condition for the optimality of an abstract linear
least squares problem. The next important application is the singular value decomposition
(SVD) in subsection 3.4, in which we employ the spectral decomposition in subsection 3.2 to
establish an SVD decomposition for general linear operator in finite dimensions. This SVD
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decomposition is then deployed to provide trivial proofs for the closed range theorem, rank-
nullity theorem, and the fundamental theorem of linear algebra for abstract linear operators.
We then discuss the equivalence of the SVD of an abstract linear operator and the SVD of its
matrix representation.

Our next application of interest for section 3 is optimization with equality constraints.
This is the main topic of subsection 3.5 in which we expose at length the role of adjoint in
optimization theory that is valid for both finite and infinite dimensions. This is accomplished
by working with Fréchet derivative and its Riesz representation counterpart as the gradient.
Though can be further developed (e.g. to second-order optimality conditions) our focus for
this expository is on the first-order optimality condition. We recall an implicit function
theorem and use it to prove an abstract inverse function theorem, which is then deployed
to derive the first-order optimality condition for abstract optimization problems with equality
constraints. The important role of adjoint comes into the picture when we prove an abstract
Lagrangian multiplier theorem using the closed range theorem. The importance of adjoint is
further amplified when we study constrained optimization problems with separable structure.
Here, adjoint facilitates an efficient gradient-based optimization algorithm in unconstrained
reduced subspace while ensuring the feasibility of the contraints at all times. Though discussed
in the separate subsection 3.6, we show that when applying this reduced space approach
for the optimization problem arisen from training deep neural networks (DNNs), we recover
the backpropagation algorithm that has been the workhorse in training DNNs. Viewing
backpropagation from the reduced space approach provides further insights into the algorithm
as we shall argue. The last finite dimensional application that we present in subsection 3.7
is the stability of autonomous ordinary differential equations (ODEs). The main goal of
this section is to exhibit the vital role of adjoint in establishing the necessary and sufficient
conditions for the asymptotic stability (in the sense of Lyapunov) of ODEs’ equilibiria.

For the infinite dimensional settings in section 4, we start with a more general adjoint
definition for densely defined linear operators. This is useful for all subsections except subsec-
tion 4.1. The first application that we study is the illposedness (in Hadamard’s sense) nature
of inverting compact operators in subsection 4.1. To that end, we extend the spectral theorem
in subsection 3.2 and SVD decomposition theorem in subsection 3.4 to the Hilbert-Schmidt
theorem and a general SVD theorem for compact (linear) operators in infinite dimensions.
The main result is a Picard theorem which states the necessary and sufficient conditions un-
der which the task of inverting a compact operator is solvable. This is then employed to show
that inverting a compact operator violates at least the stability condition of well-posedness.
We then deploy the Riesz-Fredholm theory to show how Tikhonov regularization can restore
the well-posedness at the expense of getting a nearby solution. In subsection 4.2, we discuss
the role of adjoint in establishing the well-posedness of abstract linear operator equations
with application to partial differential equations (PDEs). Two main results developed in this
section are the Banach-Nečas-Babuška theorem and the Lax-Milgram lemma. We then switch
to subsection 4.3 to study Sturm-Liouville eigenvalue problem and generalized Fourier series
in L2. Our exposition is for closed linear operators. Using the Hilbert-Schmidt theorem in
subsection 4.1 and the Lax-Milgram lemma in subsection 4.2 we establish a spectral decom-
position theorems for quite general linear operators, and then apply them to Sturm-Liouville
eigenvalue problems to derive Fourier series and its generalization. The last application of
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interest is PDE-constrained optimization and this is the main topic of subsection 4.4. Here we
show how to rigorously translate the abstract Lagrangian multiplier theorem in subsection 3.5
to derive the adjoint equation and the reduced gradient for prototype elliptic and hyperbolic
PDEs. We show that the differential operators of adjoint equations are indeed the adjoint
operators that we derive at the beginning of section 4.

2. Notations. In this paper, boldface lower case letters such as u are reserved for vector-
valued functions in Rn, for some integer n. Calligraphic uppercase letters such asA denote ma-
trices, while script uppercase letters such as A denote operators and superscript T denotes the
transpose of a matrix or a vector. Bold blackboard upper cases, i.e. X and Y, are used for spa-
ces and sets. For exampleHn pΩq :“

␣

u P L2 pΩq : weak derivative up to order n residing in L2 pΩq
(

are standard L2-based Sobolev’s spaces [2, 60]. Lowercase letters are for scalar-valued func-
tions. We also use lowercase letters for results that are valid for both finite and infinite
dimensional settings and boldface uppercase letters are for bases of vector spaces. Unless
otherwise explicitly specified, all spaces are Hilbert spaces endowed with appropriate inner
products and the corresponding induced norms. For example, Hilbert space X is endowed
with the inner product pu, vqX for any u, v P X, and the induced norm }u}X “

a

pu, uqX. All
spaces are either complex or real. For the former, the inner product is conjugate symmetric,
i.e., pu, vqX “ pv, uqX, where the overline denotes the complex conjugate. We use F to denote
either the set of real (R) or complex (C) numbers, and ℜ to denote the operation of taking
the real part of a complex number. We shall frequently identify the dual of any Hilbert space
with itself. We define L pX,Yq as the space of all linear operators from X to Y, B pX,Yq as the
space of all bounded linear operators from X to Y, and C pX,Yq as the space of all continuous
mapping from X into Y. By Cn pXq and C8

0 pXq we mean the space of n-times continuously
differentiable function on X and the space of test functions (infinitely differentiable functions
with compact support). Superscript ˚ denotes either the topological dual spaces or adjoint
operator or the conjugate transpose of a matrix (or a vector). Superscript K stands for the
orthogonal complement, and by “:“”, we mean “is defined as”.

Definition 2.1 (Linear transformation/map/operator). Consider two inner product vector spa-
ces, X, p¨, ¨qX and Y, p¨, ¨qY. Suppose A : X Ñ Y satisfies the following

A pαu` βwq “ αA puq ` βA pwq ,

where α, β P C, and u,w P X. Then, we call3 A a linear transformation or map, or an
operator from X to Y.

Convention 2.2.

1. For linear operator A , we write: A u :“ A puq.
2. The domain of A is defined as

DpA q :“ tu P X : A puq is well-definedu Ă X.

3. The range of A is defined as

RpA q :“ tA puq : u P D pA qu “ ty P Y : Du P D pA q and y “ A puqu Ă Y.
3Though this may not be universal, transformation, map, and operator are used interchangeably in this

paper for simplicity.
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4. The kernel of A (or the null space of A ) is defined as

NpA q :“ tu P X : A puq “ θu ,

where, throughout the paper, θ denotes either “zero” function or “zero” vector in the
appropriate space.

Example 2.3. Let us consider X “ Rn,Y “ Rm, and let A : X ÞÑ Y be an Rmˆn matrix.
For u,v P X, α, β P F, we have

A pαu ` βvq “ αAu ` βAv.

Thus, any matrix is a linear operator.

Example 2.4. Let A : X “ L2 p0, 1q Ñ Y “ R be defined such that for any fptq P L2 p0, 1q

and a given function ωptq P L2 p0, 1q, we have

A f “

ż 1

0
ωptqfptq dt.

Clearly, for α, β P F:

A pαfptq ` βgptqq “

ż 1

0
ωptq rαfptq ` βgptqs dx

“ α

ż 1

0
ωptqfptq dt` β

ż 1

0
ωptqgptq dt

“ αA pfptqq ` βA pgptqq ,

and thus integrals are linear operators.

Example 2.5. Consider X “ Y “ L2 p0, 1q and A : D pA q Ă X Ñ Y such that

A u “
d2

dt2
uptq.

For α, β P F, we have

A pαu` βvq “
d2

dt2
pαuptq ` βvptqq

“ α
d2

dt2
uptq ` β

d2

dt2
vptq

“ αA u` βA v,

thus differentiation is a linear operator.
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3. Part I: Adjoint operators in finite dimensional Hilbert spaces. In this part, un-
less otherwise stated, we assume that X and Y are finite dimensional vector spaces, i.e.
dimX “ n ă 8 and dimY “ m ă 8, where dim denotes the dimension. Recall that if
A P L pX,Yq and dimX ă 8, then A P B pX,Yq. Let E “ te1, . . . , enu and G “ tg1, . . . , gmu

be orthonormal4 bases for X and Y, respectively. For any u P X, we denote by uE the unique
vector of coordinates of u in E, and it is easy to see that

`

uE ,vE
˘

Fn “ pu, vqX. The matrix

representation of A with respect to the bases E and G is denoted as AEG. When there is no
ambiguity on the bases that we refer to, we simply ignore the superscripts for both coordinate
vector and matrix representation. We shall denote the ith element of a vector u as upiq and
the element at the ith row and jth column of a matrix A as Api, jq. We also use ui to denote
u piq and this will be clear from the context. We will use square brackets to express matrices
and vectors with a finite number of components. Unless otherwise stated, vectors with finite
number of components are column vectors.

This section is organized as follows. We begin with the celebrated Riesz representation
theorem and the closed range theorem, upon which we shall develop several applications of
adjoint. The first application is in subsection 3.1 on the solvability of linear operator equations
before solving them. The role of adjoint in the study of eigenvalue problems is given in
subsection 3.2. In subsection 3.3, we employ the classical projection theorem together with
the closed range theorem to find the necessary and sufficient condition for the optimality of
an abstract linear least squares problem. The singular value decomposition (SVD) is the main
subject of subsection 3.4. The SVD decomposition is then deployed to provide trivial proofs
for the closed range theorem, rank-nullity theorem, and the fundamental theorem of linear
algebra for abstract linear operators. Optimization with equality constraints is the main topic
of subsection 3.5 in which we expose at length the role of adjoint in optimization theory that
is valid for both finite and infinite dimensions. This follows by showing that a reduced spaced
approach using adjoint reduces to backpropagation of deep neural networks in subsection 3.6.
The last finite dimensional application that we present in subsection 3.7 is role of adjoint in
establishing the stability of autonomous ordinary differential equations (ODEs).

Theorem 3.1 (Riesz representation theorem). Let L be a bounded linear functional on a
Hilbert space X. There exists a unique u P X such that

L pvq “ pu, vqX , @v P X.

Furthermore, the operator norm of L is given as }L } :“ supvPX
|L pvq|

}v}X
“ }u}X.

Proof. A general proof that works for both finite and infinite dimensional settings is quite
standard and can be found in any functional analysis book (see, e.g., [63, 6, 16, 58, 72]). We
provide a short and intuitive proof for finite dimensions. We prove the result for F “ C as the
case F “ R is analogous. Let E “ te1, . . . , enu be an orthonormal basis for X. Let u be the
representation of u in E. we have

u “

n
ÿ

i“1

u piq ei ùñ L u “

n
ÿ

i“1

u piq L ei
loomoon

“:ℓpiq

“ pu, ℓqFn “ pu, ℓqX , @u P X,

4Orthonormality is simply for convenience, but not essential.
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where we have defined ℓ through its coordinate vector ℓ in the basis E, and thus it is unique.

Definition 3.2 (Adjoint operator). Let A P B pX,Yq. We say that A ˚ : Y Ñ X is the
adjoint of A iff

pA u, vqY “ pu,A ˚vqX , @u P X, v P Y.

Proposition 3.3. Let A P B pX,Yq. Then A ˚ exists and is unique. Furthermore, it is
linear with }A ˚} “ }A }, where the operator norm is defined as usual, e.g.,

}A } :“ sup
uPX

}A u}Y
}u}X

“ sup
}u}X“1

}A u}Y .

Proof. To see the existence and linearity, we note that owing to the continuity of A and
inner product, pA u, vqY is continuous in u. By the Riesz representation Theorem 3.1, there
exists a unique ℓ P X depending on A and v such that

pu, ℓ pA , vqqX “ pA u, vqY , @u P X,

which implies that ℓ pA , vq is linear in v. Defining A ˚v :“ ℓ pA , vq shows the A ˚ exists and
linear. We next show that A ˚ is continuous (bounded) and }A ˚} “ }A }. We have

}A ˚v}
2
X “ pA ˚v,A ˚vqX “ pA A ˚v, vqY ď }A } }A ˚v}X }v}Y ,

which shows that A ˚ is bounded and }A ˚} ď }A }. Since A is the adjoint of A ˚, following
a similar arguement we have }A } ď }A ˚}, and this concludes the proof.

Remark 3.4. Note that Theorem 3.1, Definition 3.2, and Proposition 3.3 are also valid for
infinite-dimensional settings.

Example 3.5. Let U “ Rn and V “ Rn be respectively endowed with the inner products
p., .qRn and anM-weighted inner product p., .qRn,M where pv,wqRn,M :“

ř

i,j vpiqM pi, jqwpjq :“

vTMw,@v,w P V, and M is a symmetric and positive definite matrix. We need to find the
adjoint operator A˚ of a matrix A : U, p., .qRn Ñ V, p., .qRn,M. We have

pAu,vqV “ pAu,vqRn,M “ pAvq
T Mv

“ uTATMv “ uT pATMvq “ pu,ATMvqRn

“ pu,ATMvqU.

By the definition of adjoint operator, we have A˚ “ ATM.

Example 3.6. Now, let us consider A : U “ Spant1, x, x2u Ă X “ L2 p´1, 1q Ñ R2 such
that the map A is defined as

upxq P U ÞÑ A u “

«

ş1
´1 upxq dx

ş1
´1p2x` 1qupxq dx

ff

,
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and the inner product on L2 p´1, 1q, and hence on U, is defined as

pu, vqL2p´1,1q :“

ż 1

´1
upxqvpxq dx.

We have

pA u, vqR2 “ v1

ż 1

´1
upxq dx` v2

ż 1

´1
p2x` 1q upxq dx

“

ż 1

´1
upxq rv1 ` p2x` 1qv2s dx “

ż 1

´1
upxq r1, p2x` 1qsv dx.

Therefore, by definition A ˚ “ r1, p2x` 1qs.

Example 3.7. Let us consider A : U “ Spant1, x, x2u Ă X “ L2 p´1, 1q Ñ R2 such that
the map A is defined as

upxq P U ÞÑ A u “

„

u px1q

u px2q

ȷ

,

where x1, x2 P p´1, 1q and x1 ‰ x2. The inner product on L2 p´1, 1q, and hence on U, is
defined as

pu, vqL2p´1,1q :“

ż 1

´1
upxqvpxq dx.

We have

pA u, vqR2 “ v1upx1q ` v2upx2q “

ż 1

´1
u pxq rδ px´ x1q , δ px´ x2qsvdx.

Therefore, by definition A ˚ “ rδ px´ x1q , δ px´ x2qs. Here, we have defined δ px´ yq P U
via

(3.1)

ż 1

´1
δ px´ yqupxq dx “ upyq, @u P U,

and thus

δ px´ yq “ 15

`

3y2 ´ 1
˘

8
x2 ` 3

y

2
x` 3

`

3 ´ 5y2
˘

8
,

by testing (3.1) with u P
␣

1, x, x2
(

.

Example 3.8. Consider Pn r0, 1s the set of complex-valued polynomial of order at most n
on r0, 1s. We define A : U :“ Pn r0, 1s Ă L2 p0, 1q Ñ U as

A u :“ xu1 :“ x
du

dx
,

and the inner product on L2 p0, 1q, and hence on U, is defined as

pu, vqL2p0,1q :“

ż 1

0
upxqvpxq dx.
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By integration by parts we have

pA u, vqL2p0,1q “

ż 1

0
xu1v dx “ up1qvp1q `

`

u,´ pxvq
1
˘

L2p0,1q
“
`

u, δ px´ 1q vp1q ´ pxvq
1
˘

L2p0,1q
,

which by definition gives

A ˚v “ δ px´ 1q vp1q ´ pxvq
1 ,

where we have defined δ px´ 1q P U via

(3.2)

ż 1

0
upxqδ px´ 1q dx “ up1q, @u P U.

Clearly, we can find δ px´ 1q as the unique polynomial of degree at most n by testing (3.2)
with u P t1, x, . . . , xnu.

Proposition 3.9. Let E and G be orthonormal bases of X and Y, respectively, and dimX “

n and dimY “ m. Let A and B be the matrix representations of A and A ˚ with respect to
the bases E and G. Then

B “ A˚,

where A˚ be the conjugate transpose of A.

Proof. By the definition of adjoint and matrix representation, for any u P X and v P Y we
have

pu,BvqFn “ pu,A ˚vqX “ pA u, vqY “ pAu,vqFm “ pu,A˚vqFn ,

which concludes the proof.

The following Definition 3.10, Definition 3.11, Corollary 3.12, Theorem 3.13, and Corol-
lary 3.14 are valid for both finite and infinite dimensions.

Definition 3.10 (Orthogonal complement). Let S Ă X, the orthogonal complement SK of S
is defined as

SK :“ tu P X : pu,wqX “ 0,@w P Su .

A direct consequence of the definition is that SK is a closed subspace of X and that
S X SK “ tθu.

Definition 3.11 (Closure). Let S P X. The closure S of S is the smallest closed set containing
S.

Note that we use the overline “¨” to denote both complex conjugate and the closure, but it
should be clear from the context.

Corollary 3.12. There holds:
`

SK
˘K

“ S.

Proof. See [58, proposition 1 of chapter 3].

Next is an important theorem (see, e.g., [77, 16, 8]).

Theorem 3.13 (The closed range theorem). Let A : X Ñ Y. The following hold:
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‚ rR pA qs
K

“ N pA ˚q.
‚ R pA q “ rN pA ˚qs

K.
‚ rR pA ˚qs

K
“ N pA q.

‚ R pA ˚q “ rN pA qs
K.5

If R pA q is closed, so is R pA ˚q, and we can replace R pA q and R pA q
˚ by R pA q and R pA ˚q,

respectively, in the above results.

Proof. The second assertion is the direct consequence of the first assertion and Corol-
lary 3.12. The third and fourth assertions follow the first and the second, and the fact that
pA ˚q

˚
“ A . So, we only need to prove the first assertion. Let z P N pA ˚q and y P R pAq.

Then y “ A x for some x P X. We have

pz, yqY “ pz,A xqY “ pA ˚z, xqX “ 0,@y P R pAq ,

which says that N pA ˚q Ă rR pA qs
K. Now take z P rR pA qs

K, we have

pA ˚z, xqX “ pz,A xqY “ 0, @x P X,

which implies that A ˚z “ 0, which in turn shows rR pA qs
K

Ă N pA ˚q.

Corollary 3.14. There hold:
‚ X “ N pA q ‘ R pA ˚q

‚ Y “ N pA ˚q ‘ R pA q

We note that for finite dimensional vector spaces X and Y, R pA q, and hence R pA ˚q, is
obviously closed, and thus Theorem 3.13 and Corollary 3.14 clearly hold. We will see that the
proof of the closed range Theorem 3.13, hence the Corollary 3.14, for finite dimensional cases
is trivial using the SVD decomposition in Theorem 3.33.

3.1. Application of adjoint to the solvability of linear operator equations. In this sec-
tion, we study the existence of a solution of the following linear operator equation

(3.3) A u “ f,

where A : X Ñ Y.

Lemma 3.15.
‚ Existence. The linear equation (3.3) has a solution iff y P N pA ˚q

K.
‚ Uniqueness. The solution of (3.3) is unique iff N pA q “ tθu.
‚ If dimX “ dimY, the uniqueness is equivalent to existence.

Proof. The existence is the direct consequence of Theorem 3.13. The uniqueness is clear.

5Since we consider only Hilbert spaces, which are reflexive, R pA ˚q “ rN pA qs
K holds. In general, R pA ˚q Ă

rN pA qs
K: see [16, Corollary 2.18].
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The proof of the third assertion is as follows. We have

NpA q “ tθu Uniqueness

õ

dimNpA q “ 0

õ dimX “ dimY and dimX “ dimNpA q ` dimRpA q

dimY “ dimX “ dimRpA q

õ RpA q Ď V

RpA q “ Y Existence for any y P Y

Remark 3.16. The existence condition can be simply y P R pA q. However, it is easier to
work with N pA ˚q

K as it gives us equations (see Definition 3.10) to determine/characterize
N pA ˚q

K.

Example 3.17. Consider the operator A defined in Example 3.6, and we are interested in
studying the existence of a solution6 for A u “ f . We start by recalling from Example 3.6
that

A ˚ “ r1, p2x` 1qs .

To compute NpA ˚q, we pick any v P NpA ˚q, i.e. A ˚v “ 0. We have

v1 ` p2x` 1qv2 “ 0 @x,

which implies

v1 “ v2 “ 0.

Thus,

NpA ˚q “ tθu.

Since θ is orthogonal to any f , we conclude that A u “ f always has a solution.

Example 3.18. Let A “

„

1 2
1 2

ȷ

, and f “

„

1
0

ȷ

. The question is if there is a solution to the

equation Au “ f . Consider U “ V “ R2 with the standard Euclidean inner product p¨, ¨qR2 .
We know from Example 3.5 that the adjoint A˚ is given by

A˚ “ AT “

„

1 1
2 2

ȷ

.

Let’s determine the null space of A˚. If z P NpA˚q then

A˚z “ θ ùñ z1 ` z2 “ 0,

6Note that this is an operator setting for the problem of fitting a quadratic polynomial upxq with two pieces
of information about upxq.
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which yields NpA˚q “

"„

α
´α

ȷ

: @α P R
*

. However, for any z P N pA˚q we have

pf , zqR2 “

ˆ„

1
0

ȷ

,

„

α
´α

ȷ˙

R2

“ α @α P R,

that is, f M NpA˚q. Thus, Au “ f does not have a solution.

3.2. Application of adjoint to eigenvalue problems.

Definition 3.19 (Eigenvalue problem). Let A : X Ñ X be a linear operator.

(3.4) A u “ λu @λ P C, u P X

is called an eigenvalue problem if there exists a nontrivial pair pλ, xq (x is not a zero vec-
tor/function but λ could be zero). In particular:

‚ λ is called an eigenvalue.
‚ x is called an eigenfunction, associated with the eigenvalue λ, of A . If X is a finite-dimensional
space, i.e., X “ Rn, x is typically called eigenvector.

Definition 3.20 (Self-adjoint operator). If A ˚ “ A , then A is called self-adjoint.

Lemma 3.21. Let A : X Ñ X be a linear operator and A is self-adjoint. Then:
1. Eigenvalues of A are real.
2. Eigenfunctions corresponding to distinct eigenvalues are orthogonal to each other. That is, if

pλ, uq and pα, vq are two eigen-pairs and λ ‰ α then pu, vqX “ 0.

Proof. For the first assertion, we have λ pu, vqX “ pλu, uqX “ pA u, uqX “ pu,A uqX “

pu, λuqX “ λ pu, λuqX. Thus,
`

λ´ λ
˘

pu, λuqX “ 0, and this implies λ “ λ, or λ is real. For
the second assertion, we observe that λ pu, vqX “ pA u, vqX “ pu,A vqX “ α pu, vqX. Therefore,
pλ´ αq pu, vqX “ 0, and this implies pu, vqX “ 0.

Remark 3.22. Note that Definition 3.19, Definition 3.20, and Lemma 3.21 hold for both
finite and infinite dimensional cases.

Proposition 3.23. Let A : X Ñ X be a linear operator. Then, A has at least one eigen-
value.

Proof. Let n be the dimension of X and E be a basis. Let A and u be the matrix and
vector presentation of A and u in the basis E. The matrix representation of the eigenvalue
problem(3.4) reads

Au “ λu,

that is, λ is an eigenvalue of A iff it is also an eigenvalue of A. Since det pA ´ λIq “ 0 has n
roots for λ (including repeated ones), there is at least one eigenvalue.

Theorem 3.24. Let A : X Ñ X be a self-adjoint linear operator. Then, an orthonormal
basis of X can be constructed from eigenfunctions of A .

Proof. Proposition 3.23 implies that A has at least one eigenfunctions. Let S be the span
of all eigenfunctions of A . Owing to Lemma 3.21, it is sufficient to show that S “ X. If
SK “ tθu, then clearly S “ X. Now suppose SK ‰ tθu. If u P SK and pλ, vq be an eigen-pair
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of A , then pA u, vqX “ pu,A vqX “ λ pu, vqX “ 0 since v P S. Thus A : SK Ñ SK. By
Proposition 3.23, A has an eigenfunction w in SK, which means that w P S X SK, which
in turn implies w “ θ, a contradiction. We conclude that SK “ tθu and this concludes the
proof.

Corollary 3.25 (Spectral decomposition of self-adjoint operators in finite dimensions). Let
dimX “ n and A : X Ñ X be a linear and self-adjoint operator. There exists n real val-
ues, λ1 ě λ2 ě λ3 ¨ ¨ ¨ ě λn and orthonormal vectors u1, u2, . . . un such that:

1. A ui “ λiui.
2. For any x P X we have

A x “

n
ÿ

i“1

λi px, uiqX ui, ùñ A “

n
ÿ

i“1

λi p¨, uiqX ui,

that is, A is completely determined by its eigenpairs.

Proof. The first assertion is clear due to Lemma 3.21, Proposition 3.23, and Theorem 3.24.
The second assertion is also obvious since

(3.5) x “

n
ÿ

i“1

px, uqX ui,

due to Theorem 3.24.

Example 3.26 (Eigen-decomposition of self-adjoint (Hermitian) matrices). Let A : Fn Ñ Fn

be a self-adjoint matrix. Applying Corollary 3.25 we conclude that A has n real eigenvalues
λ1 ě λ2 ě λ3 ¨ ¨ ¨ ě λn and orthonormal eigenvectors u1,u2, . . .un such that Aui “ λiui and

A “

n
ÿ

i“1

λi p¨,uiqFn ui “

n
ÿ

i“1

λiuiu
˚
i “ UΛU˚,

where U P Fnˆn is the eigenmatrix whose columns are eigenvectors of A and Λ is a diag-
onal matrix whose diagonals are the corresponding eigenvalues of A. Thus, the standard
eigendecomposition for self-adjoint matrices is a special case of Corollary 3.25.

We next discuss the relationship between self-adjointness and orthogonal projection.

Definition 3.27 (Orthogonal projection). A linear operator P : X Ñ X is a projection if
P2 :“ PP “ P. If, in addition, R pPq K N pPq, then P is an orthogonal projection.

Proposition 3.28. A projection P : X Ñ X is orthogonal iff P is self-adjoint.

Proof. For any x P N pPq we have

pPy, xqX “ py,P˚xqX “ py,PxqX “ 0, @y P X,

which ends the proof. Another way to see this is to use the result N pPq K R pP˚q from the
closed range Theorem 3.13, but we omit the details for brevity.
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Inspired by the spectral decomposition of a self-adjoint operator, we define

P :“
n
ÿ

i“1

p¨, uiqX ui,

where tu1, ¨ ¨ ¨ , unu is an orthonormal basis of X. It is easy to verify that: i) P2 :“ PP “ P,
and ii) P is self-adjoint. Thus P is an orthogonal projection into X. More generally, we can
verify that

Pr :“
r
ÿ

i“1

p¨, uiqX ui,

where r ď n, is an orthogonal projection into R pPrq spanned by tu1, ¨ ¨ ¨ , uru. Any orthogonal
projection P orthogonally projects X into R pPq while

I ´ P,

where I is the identity operator, is the orthogonal projection into N pPq. Indeed, by the
self-adjointness, we have

pPx, y ´ PyqX “
`

x,Py ´ P2y
˘

X “ 0.

We thus have the following generalized Pythagorean theorem for any x P X and an orthogonal
projection P:

(3.6) }x}
2
X “ }pI ´ Pqx}

2
X ` }Px}

2
X .

3.3. Application of adjoint to linear least squares problems. We start with the classical
projection theorem that holds for both finite and infinite dimensional settings.

Theorem 3.29 (Projection theorem). Let S be a subspace of a pre-Hilbert7 space Y. Let
y P Y. Then, u P S is the unique minimizer of infwPS }w ´ y}Y iff py ´ uq K S. The existence
of the minimizer u is guaranteed if Y is Hilbert and S is closed.

Proof. We follow closely the proof by contradiction in [58, Theorem 2]. Suppose there
exists v P S that is not orthogonal to py ´ uq. We can assume that py ´ u, vqX “ ε ‰ 0 and
}v}X “ 1. We have

}y ´ u´ εv}
2
Y “ }y ´ u}

2
Y ` |ε|2 ´ 2εε “ }y ´ u}

2
Y ´ |ε|2 ă }y ´ u}

2
Y ,

contradicting the fact that u is a minimizer. Conversely, let py ´ uq K S, by the Pythagorean
identity (3.6), for any v P S we have

}y ´ v}
2
Y “ }y ´ u` u´ v}

2
Y “ }y ´ u}

2
Y ` }u´ v}

2
Y ě }y ´ u}

2
Y ,

which shows that u is the unique minimizer. The existence proof is lengthy and hence is
omitted.

7A pre-Hilbert space is an incomplete metric space with an inner product.
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The following corollary is also valid for both finite and infinite dimensions.

Corollary 3.30 (Linear least squares). Let X,Y be pre-Hilbert and A : X Ñ Y be linear.
Then, for any y P Y, x̃ P X is a minimizer of infxPX }A x´ y}Y iff

(3.7) A ˚A x̃ “ A ˚y.

Furthermore, if A is injective then the minimizer x̃ is unique.

Proof. Note that infxPX }A x´ y}Y is equivalent to infwPRpA q }w ´ y}Y. Applying Theo-
rem 3.29 we know that u P R pA q is a minimizer of infwPRpA q }w ´ y}Y iff py ´ uq K R pA q,
that is, by the Closed Range Theorem 3.13,

py ´ uq P N pA ˚q ô A ˚ py ´ uq “ θ.

Since u P R pA q, there exists x̃ P X such that

A ˚ py ´ A x̃q “ θ,

which concludes the first assertion.
For the second assertion, the uniqueness in Theorem 3.29 leads to the uniqueness of x̃

when A is injective. Another way to see this is to note that N pA ˚A q “ N pA q and thus the
injectivity of A is equivalent to the injectivity of A ˚A . The least square solution in (3.7) is
therefore unique.

The beauty here is that (3.7) is exactly the first order optimality condition that is typically
obtained by requiring the derivative of }A x´ y}Y, with respective to x, to vanish (see the same
result via derivative for linear least squares problem in Example 3.47). When dim pXq ă 8,
then R pA q is finite dimension and hence closed in Y. If, additionally, Y is Hilbert then the
existence of x̃ is guaranteed by Theorem 3.29.

Example 3.31 (linear least squares in finite dimensions). Consider the operator A defined
in Example 3.18 and we are interested in minimizing }A x´ y}R2 for some given y P R2. By
Corollary 3.30, a minimizer x̃ must satisfy

A ˚A x̃ “ A ˚y.

Since A is not injective, there are multiple minimizers for this problem. This is consis-
tent with the non-uniqueness in Example 3.18. Note that we can reformulate the operator
form }A x´ y}R2 by an equivalent matrix representation form. Indeed, let A be the matrix
representation of A with respect to an orthonormal basis in U “ Spant1, x, x2u and the
canonical basis of R2. Let x be the coordinate vector of x in the same orthonormal basis of
U “ Spant1, x, x2u, we have }A x´ y}R2 = }Ax ´ y}R2 . Again, A is not injective and a
solution is not unique.

Example 3.32 (linear least squares with matrices). Consider A : Fn Ñ Fm and y P Fm.
Applying Corollary 3.30 we have that there exists x̃ P Fn minimizing }Ax ´ y}Fm and

A˚Ax̃ “ A˚y.

When A is injective or equivalently full column rank, we have the uniqueness of x̃ again by
Corollary 3.30. Another way to see this is that in this case A˚A is an invertible matrix which
implies the uniqueness of the minimizer x̃.
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3.4. Application to the singular value decomposition (SVD). Consider A : X Ñ Y
with dimpXq “ n and dimpYq “ m. It is clear that the operators A ˚A : X Ñ X and
A A ˚ : Y Ñ Y are linear and self-adjoint. The spectral decomposition of self-adjoint operator
in Corollary 3.25 states that Dλ1 ě λ2 ě . . . ě λn and an orthonormal basis u1, u2, . . . , un of
X such that

A ˚A ui “ λiui,

which implies, after taking the inner product both sides with ui,

}A ui}
2
Y “ λi }ui}

2
Y ,

and thus λi ě 0. We define σ2i “ λi and have

(3.8) A ˚A ui “ σ2i ui.

Theorem 3.33 (Singular Value Decomposition (SVD)). Let A : X Ñ Y with dimpXq “ n
and dimpYq “ m. Then, there exist tσi, ui, viu (the singular triplets of A ) with σ1 ě . . . ě

σi ě ¨ ¨ ¨ ě σk ě 0 and k “ mintn, mu, an orthonormal basis tu1, u2, . . . , unu of X, and an
orthonormal basis tv1, v2, . . . , vmu of Y such that:

1. A ui “ σivi for i “ 1, . . . , r and A ui “ θ for i “ r ` 1, . . . , n,
2. A ˚vj “ σjuj for j “ 1, . . . , r and and A ˚vj “ θ for j “ r ` 1, . . . ,m,
3. A is completely determined by its singular triplets in the following sense: for any x P X, we

have

A x “

r
ÿ

i“1

σi px, uiqX vi, ùñ A “

r
ÿ

i“1

σi p¨, uiqX vi,

where r is the maximum index for which σr ą 0.

Proof. Starting from (3.8), let r be the maximum index for which σr ą 0 and define
vi “ 1

σi
A ui for i ď r, so that

(3.9) A ui “ σivi.

Substituting (3.9) into (3.8) gives

(3.10) A ˚vi “ σiui.

We claim that
␣

σ2i , vi
(

for i ď r are the eigenpairs of the self-adjoint operator A A ˚. To see
this, applying A to both sides of (3.10) to arrive at

(3.11) A A ˚vi “ σiA ui “ σ2i vi.

That is, for every eigenpair of A ˚A corresponding to a non-zero eigenvalue we have an
eigenpair of A A ˚ with the same eigenvalue. By the same token, we can show that for every
eigenpair of A A ˚ corresponding to a non-zero eigenvalue we have an eigenpair of A ˚A with
the same eigenvalue. As a result, the rest of eigenvalues of A ˚A and A A ˚ with indices
larger than r must be 0. The orthonormality of tu1, u2, . . . , unu and tv1, v2, . . . , vmu is the
direct consequence of the spectral decomposition of self-adjoint operators in Corollary 3.25.
The third assertion is clear owing to the first assertion and (3.5).
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Example 3.34 (SVD for the closed range theorem, the rank-nullity theorem, and the fun-
damental theorem of linear algebra). The SVD decomposition in Theorem 3.33 allows us to
provide trivial proofs of various important results in finite dimensions including the closed
range Theorem 3.13, the rank-nullity theorem and the fundamental theorem of linear alge-
bra. While these results are typically presented for matrices, it is not more difficult to do
so for generic linear operators using our general setting as we shall show. To begin, we note
that ur`1, . . . , un are orthonormal eigenfunctions corresponding to 0 eigenvalues of A˚A. We
conclude that

spantur`1, . . . , unu “ N pA ˚A q “ N pA q ,

which, together with the fact that spantu1, . . . , unu “ X implies

spantA u1, . . . ,A uru “ RpA q,

which in turn yield
spantv1, . . . , vru “ RpA q,

since A ui “ σivi, i “ 1, . . . , r.
Similarly, we have

spantvr`1, . . . , vmu “ N pA A ˚q “ N pA ˚q ,

and
spantu1, . . . , uru “ RpA ˚q.

With these conclusions in hand, the assertions in the closed range Theorem 3.13 and Corol-
lary 3.14 are now trivial.

The SVD also provides an obvious proof for the rank-nullity theorem [7] as

dimpXq
loomoon

“n

“ dimpNpA qq
looooomooooon

“n´r

`dimpRpA qq
looooomooooon

“r

,(3.12a)

and

dimpYq
loomoon

“m

“ dimpNpA ˚qq
loooooomoooooon

“m´r

`dimpRpA ˚qq
loooooomoooooon

“r

,(3.12b)

which, together with the closed range Theorem 3.13, is the basis for the fundamental theorem
of linear algebra [73]. This is demonstrated in Figure 1 which shows the important role of
the four fundamental subspaces R pA q ,N pA q ,R pA ˚q, and N pA ˚q on the operation of A
and its adjoint A ˚. In particular, A only acts on the range space of A ˚, and the results of
its action, the range space of A , coincides with the orthogonal complement of the nullspace
of A ˚. Conversely, A ˚ only acts on the range space of A and the results of its action, the
range space of A ˚, coincides with the orthogonal complement of the nullspace of A . In other
words, the characterization of A ˚ completely determines the action of A and vice versa. We
emphasize that if we remove the dimensions and assume that R pA q is closed, then the two
diagrams in Figure 1 also hold for infinite dimensional Hilbert spaces.
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θ

A u

v

u

x “ u` vX, dimX “ n

dimR pA ˚q “ r

dimN pA q “ n´ r

Y, dimY “ m

dimR pA q “ r

dimN pA ˚q “ m´ r

R pA ˚q

N pA q
N pA ˚q

R pA q

A

A

A

(a) Operation of A : X Ñ Y.

θ

A ˚u

v

u

x “ u` vX, dimX “ n

dimR pA ˚q “ r

dimN pA q “ n´ r

Y, dimY “ m

dimR pA q “ r

dimN pA ˚q “ m´ r

R pA ˚q

N pA q
N pA ˚q

R pA q

A ˚

A ˚

A ˚

(b) Operation of A ˚ : Y Ñ X.

Figure 1: The fundamental theorem of algebra: four fundamental subspaces
R pA q ,N pA q ,R pA ˚q ,N pA ˚q, and the operation of A and A ˚ viewed from these subspaces.
If we remove the dimensions and assume that R pA q is closed, then the two diagrams also
hold for infinite dimensional Hilbert spaces.

Clearly, at the heart of the SVD is the eigenvalue decomposition (3.11), which could be
challenging if it is analytically not tractable on the original operators. In that case, one has
to resort to numerical methods. For finite-dimensional settings, an easier path is to explore
the matrix representation of the linear operator.

Corollary 3.35 (SVD through matrix representation). Consider A : X Ñ Y with dimpXq “

n and dimpYq “ m, and E and G be orthonormal bases of X and Y, respectively. Let
tσi, ui, viu be the singular triplets of A with 1 ď i ď k “ mintn, mu where tu1, u2, . . . , unu

and tv1, v2, . . . , vmu be orthonormal bases of X and Y, respectively, given in Theorem 3.33.
Denote u and v as the coordinate vectors of u and v in the bases E and G, respectively, and
A as the matrix representation of A with respect to the bases E and G. Then tσi,ui,viu be
the singular triplets of A with

1. Aui “ σivi for i “ 1, . . . , r and Aui “ θ for i “ r ` 1, . . . , n,
2. A˚vj “ σjuj for j “ 1, . . . , r and and A˚vj “ θ for j “ r ` 1, . . . ,m, where A˚ is the

conjugate tranpose of A.
3. A is completely determined by its singular triplets in the following sense: for any x P Fn, we

have

Ax “

r
ÿ

i“1

σiu
˚
i xvi, ùñ A “

r
ÿ

i“1

σiviu
˚
i ,

where r is the maximum index for which σr ą 0.
Conversely, if tσi,ui,viu, with 1 ď i ď k “ mintn, mu, are the singular triplets of A,

then pσi, ui, viq are the singular triplets of A .

Proof. The result is obvious owing to the matrix representation of linear operator and the
coordinate vector of a vector in the corresponding bases, Proposition 3.9, and the fact that two
vectors are orthonormal iff their coordinate vectors in an orthogonal basis are orthonormal
(as, e.g., pui,ujqFn “ pui, vjqX).
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Example 3.36 (SVD of matrices). For a matrix A : X “ Rn Ñ Y “ Rm and if we choose
E and G as the canonical bases for Rn and Rm with the standard Euclidean inner products,
respectively, then the matrix representation of A is itself and thus the SVD of A is given by
Corollary 3.35. In this case, A˚ “ AT . Furthermore: i) tu1,u2, . . . ,unu are orthonormal
eigenvectors of ATA; ii) tv1,v2, . . . ,vmu are orthonormal eigenvectors of AAT ; iii) σ2i , i “

1, . . . r, are nonzero eigenvalues of ATA or AAT ; and iv) from A “
řr

i“1 σiviu
˚
i we can write

the full SVD form

A “

»

– v1 v2 . . . vr . . . vm

fi

fl

loooooooooooooooooooomoooooooooooooooooooon

V

»

—

—

—

—

—

—

—

—

–

σ1
σ2

. . .

σr
0

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

looooooooooooooooomooooooooooooooooon

Σ

»

– u1 u2 . . . ur . . . un

fi

fl

T

looooooooooooooooooooomooooooooooooooooooooon

UT

,

that is,
A “ VΣUT ,

or the reduced SVD form

A “

»

– v1 v2 . . . vr

fi

fl

looooooooooooomooooooooooooon

Vr

»

—

—

—

–

σ1
σ2

. . .

σr

fi

ffi

ffi

ffi

fl

looooooooooomooooooooooon

Σr

»

– u1 u2 . . . ur

fi

fl

T

loooooooooooooomoooooooooooooon

UT
r

,

that is,
A “ VrΣrUT

r .

Example 3.37. Now consider the operator A : U “ Spant1, x, x2u Ă X “ L2 p´1, 1q Ñ R2

defined in Example 3.6. We are going to find the singular value decomposition of A indirectly
via its matrix representation using Corollary 3.35. Clearly, two orthonormal bases for U and

R2 are E “
␣

1, x, 12
`

3x2 ´ 1
˘(

, G “

!

r1, 0s
T , r0, 1s

T
)

, respectively. It is a simple exercise to

show that the matrix representation A of A in these two bases is given by

A “

„

2 0 1
2 4{3 1{3

ȷ

and from Proposition 3.9 we know that the matrix presentation A˚ of the adjoint A ˚ is
A˚ “ AT . From the proof of Theorem 3.33, by computing the eigendecomposition of AAT

and ATA, we can find the full SVD of A as

A “

„

´0.6701 0.7423
0.7423 ´0.6701

ȷ

loooooooooooomoooooooooooon

V

„

3.1306 0 0
0 1.0433 0

ȷ

loooooooooooomoooooooooooon

Σ

»

–

´0.9023 0.1385 ´0.4082
´0.3162 ´0.8564 0.4082
´0.2931 0.4974 0.8165

fi

fl

T

looooooooooooooooooooomooooooooooooooooooooon

UT

.
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Now, Corollary 3.35 shows that the singular values of A are t3.1306, 1.0433u together with

the left and right singular functions ui “ uip1q ` uip2qx`
uip3q

2

`

3x2 ´ 1
˘

, i “ 1, 2, 3, and vj ,
j “ 1, 2, respectively.

3.5. Application of adjoint to optimization with equality constraints. The field of opti-
mization is vast (see, e.g., [58, 10, 62, 9] and the references therein) and we restrict ourselves
to unconstrained optimization problems and constrained optimization problems with equality
constraints. We begin our development with unconstrained optimization in finite-dimensional
spaces. Let f : Rn Q x ÞÑ f pxq P R and we are interested in studying the optimization
problem minxPRN f pxq. It is sufficient to consider the case n “ 1 as results for optimization
problems in higher dimensions (including infinite dimensions, at least the first order optimality
conditions) follow as corollaries. We focus on local optimization problems.

Definition 3.38. y is a (local) minimizer of f pxq if there exists a open neighborhood, i.e.
Bδ pyq :“ tx : |x´ y| ă δu (ball with radius δ in R), for some δ ą 0, such that

f pxq ě f pyq , @x P Bδ pyq .

We are interested in finding the necessary and sufficient conditions for y to be a minimizer.
To that end, we consider the Taylor remainder theorem [5, 47] which states that for twice-
differentiable function f pxq and for any ε P R, there exists 0 ă θ ă 1 such that

(3.13) f py ` εq “ f pyq ` ε f 1 pyq
loomoon

gradient gpyq

`
1

2
ε2 f2 py ` θεq

looooomooooon

Hessian hpy`θεq

.

If y is a minimizer, what can we say about the gradient g p¨q and the Hessian h p¨q at y?
We are interested in only necessary conditions. Here is an answer.

Lemma 3.39 (First and second order necessary conditions for optimality in R). Suppose
f pxq : R Ñ R is twice continuously differentiable in a neighborhood of a minimizer y. It is
necessary that

i) the gradient vanishes, i.e., g pyq “ 0, and
ii) the Hessian is non-negative, i.e., h pyq ě 0.

Proof. We carry out the proof by contradiction. For the first assertion, we suppose that
f 1pyq ă 0 and note that we can pick8 ε ą 0 such that

εf 1pyq `
ε2

2
f2py ` θεq ă 0,

and together with (3.13) we conclude that f py ` εq ă f pyq: a contradiction. A similar
contradiction argument can be carry out if f 1 pyq ą 0. Thus f 1 pyq “ 0.

8Due to the continuity of f2
pxq, we can define M :“ maxxPry´L,y`Ls

ˇ

ˇf2
pxq

ˇ

ˇ, for some sufficiently large

L ą 0, and then simply pick some 0 ă ε ă ´2 f 1pyq

M
.
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For the second assertion, suppose h pyq “ f2 pyq ă 0. By continuity of f2 pxq we can
choose sufficiently small |ε| such that f2 py ` θεq ă 0. Then (3.13) reduces to

f py ` εq “ f pyq `
1

2
ε2f2 py ` θεq ă f pyq ,

which is a contradiction, and this concludes the proof.

Corollary 3.40. Suppose f pxq : Rn Ñ R is twice continuously differentiable in a neighbor-
hood of a minimizer y, where Rn is equipped with the standard Euclidean inner product. It is
necessary that

i) the gradient vanishes, i.e., Bf
Bxi

pyq “ 0, i “ 1, . . . , n and
ii) the Hessian matrix is semi-positive definite, i.e., H pyq ě 0.

Proof. We prove the first assertion (the first order optimality condition) as the second one
follows similarly. Note that argument is general and will be used again in Lemma 3.45 to
derive the first order optimality condition in general vector spaces.

y is a minimizer of f pxq

ó by definition
f pxq ě f pyq , @x P Bδ pyq :“ tx P Rn : }x ´ y}Rn ă δu

ó pick an arbitrary v
F pεq :“ f py ` εvq ě f pyq , @ε P Bδ{}v}Rn

p0q :“ tε : |ε| ă δ{ }v}Rnu

ó by definition
0 is a minimizer of F pεq

ó by Lemma 3.39
dF
dε

∣∣
ε“0

“ 0

ó by chain rule
řn

i“1
Bf
Bxi

pyqvi “ 0

ó v is arbitrary
Bf
Bxi

pyq “ 0, i “ 1, . . . , n.

Since our goal is to establish the necessary conditions for optimality that is valid for both
finite and infinite dimensional settings, we present a systematic approach on abstract vector
space to accomplish this. To the end of this section, unless otherwise stated, the
results are valid for both finite and infinite dimensional settings. We begin with the
notion of the dual space X˚ consisting of linear and bounded functionals on X. For ℓ P X˚

and u P X, we use the standard duality pairing

⟨ℓ, u⟩X˚ˆX ” ℓ puq

to denote the action of ℓ on u (or the evaluation of ℓ at u). For simplicity in writing, we
shall conventionally use ⟨ℓ, u⟩X to denote a duality pairing instead of ⟨ℓ, u⟩X˚ˆX. The object
of interest is nonlinear function on a vector space X, i.e. functional :

f : X Q u ÞÑ f puq P R.



22 TAN BUI-THANH

The classical derivatives are not well-defined in this case, and this asks for an extension of
derivatives in vector spaces. Though there are other extensions in the literature (such as
Gâteaux derivative), let us focus on the Fréchet derivative extension (see, e.g., [58, 6]).

Definition 3.41. Suppose that there is a linear and bounded map Df pu, ¨q : X Ñ R such
that

(3.14) f pu` vq “ f puq ` Df pu, vq ` o p}v}Xq ,

where the little-oh notation means

lim
}v}XÑ0

o p}v}Xq

}v}X
“ 0.

Then Df pu; ¨q is called the Fréchet derivative of the functional f p¨q at u, and we say f p¨q is
Fréchet differentiable at u.

When the Fréchet derivative exists, we can compute it conveniently as

Df pu; vq “
df

dt
pu` tvq

∣∣∣∣
t“0

“ lim
tÑ0

f pu` tvq ´ f puq

t

For convenience, we use Df puq to denote the Fréchet derivative Df pu; ¨q when the argu-
ment is irrelevant. It is important to note that by definition the Fréchet derivative Df puq

resides in X˚ and thus we interchangeably write it in the duality pairing form

Df pu; vq “ ⟨Df puq , v⟩X .

Due to the linear nature of Df puq, we also write

Df puq v :“ ⟨Df puq , v⟩X .

Definition 3.42 (Fréchet gradient). Let f : X Ñ R. The gradient of f p¨q at u, denoted as
∇f puq P X, is defined as a function on X such that

p∇f puq , vqX “ Df pu; vq “ ⟨Df puq , v⟩X “ Df puq v, @v P X.

That is, we define the gradient ∇f puq P X as the Riesz representation of the Fréchet derivative
Df puq P X˚.

With Definition 3.42 at hand, we can identify the gradient of the Fréchet derivative and we
will explore this fact in many results below.

Example 3.43. Consider f : X Ñ R where X ” Rn and Rn is endowed with a weighted
inner product px,yqRn,M “ xTMy with M being a symmetric positive definite matrix.

Suppose that the (classical) partial derivatives Bf
Bxi

, i “ 1, . . . , n, of the f are continuous.
From (3.14), it is easy to see that the Fréchet derivative can be written as

Df px,hq “

N
ÿ

i“1

Bf

Bxi
hi “

„

Bf

Bx1
, . . . ,

Bf

Bxn

ȷT

h,
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which, together with Definition 3.42, gives

∇f pxq “ M´1

„

Bf

Bx1
, . . . ,

Bf

Bxn

ȷT

.

We observe that the Fréchet derivative is a special case of the directional derivative, and

when M is the identity matrix usual gradient vector
”

Bf
Bx1

, . . . , Bf
Bxn

ıT
is in fact the Riesz

representation of the Fréchet derivative in the standard Euclidean inner product.

Of course, the Fréchet derivative can be directly generalized to mappings between two
different vector spaces. For example, if c : X Q u ÞÑ c puq P Y, then the Fréchet derivative
Dc puq, when exists, can be computed as

Dc puq v :“ Dc pu; vq :“ lim
tÑ0

c pu` tvq ´ c puq

t
.

The difference is now that Dc puq is a linear and bounded map from X to Y, that is, Dc puq P

B pX,Yq.

Example 3.44. Consider a vector-valued function c pxq : Rn Ñ Rm where both Rn and Rm

are endowed with the standard Euclidean inner products. Applying Example 3.43 for each
component of ci, i “ 1, . . . ,m we have

Dc pxqv “

»

—

—

—

–

Bc1
Bx1

Bc1
Bx2

. . . Bc1
Bxn

Bc2
Bx1

Bc2
Bx2

. . . Bc2
Bxn

...
... . . .

...
Bcm
Bx1

Bcm
Bx2

. . . Bcm
Bxn

fi

ffi

ffi

ffi

fl

v,

which, together with Definition 3.42, we can define

∇c pxq :“

»

—

—

—

–

Bc1
Bx1

Bc1
Bx2

. . . Bc1
Bxn

Bc2
Bx1

Bc2
Bx2

. . . Bc2
Bxn

...
... . . .

...
Bcm
Bx1

Bcm
Bx2

. . . Bcm
Bxn

fi

ffi

ffi

ffi

fl

,

which is the Riesz representation of Dc pxq.

Lemma 3.45 (First order optimality condition for unconstrained optimization). Suppose that
f : X Ñ R attains its extremum at u. Then it is necessary that

(3.15) Df puq v “ 0, @v P X,

that is, the (first) variation of f at u in any “direction” v vanishes. In other words, it is
necessary that Df puq “ 0 or equivalently

∇f puq “ 0,

by the Riesz representation Theorem 3.1.
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Proof. It is sufficient to assume that f is minimized at u, i.e.,

f pvq ě f puq , @v P Bδ puq :“ tw P X : }w ´ u}X ă δu ,

which implies that for any v such that ε }v}X ă δ, we have

(3.16) f pu` εvq ě f puq , @ε P Bδ{}v}X
p0q .

If we define F pεq :“f pu` εvq, then F p¨q is a function in ε, namely, F : R Q ε ÞÑ F pεq P R.
By Definition 3.38, inequality (3.16) is equivalent to saying that F p¨q attains its minimum at
ε “ 0. Thus, from the first result of Lemma 3.39, we have

dF

dε

∣∣∣∣
ε“0

“ 0,

but this is equivalent to Df pu, vq “ 0 by Definition 3.41 of Fréchet derivative.

Example 3.46 (First order optimality condition for unconstrained optimization in Rn). Back
to Example 3.43. Suppose that f attains its minimum at x. Combining (3.15), the gradient
found in Example 3.43, and Definition 3.42 yields

∇f pxq “ 0,

and thus the first-order necessary condition for optimality is given by

„

Bf

Bx1
, . . . ,

Bf

Bxn

ȷT

“ 0.

Example 3.47. We now revisit the least squares problem in Corollary 3.30 in the equivalent
form: infxPX

1
2 pA x´ y,A x´ yqY. Using Definition 3.41, the first order optimality condition

(3.15) reads

2 pA v,A x´ yqY “ 0, @v P X,

that is,

A ˚A x “ A ˚y,

which is consistent with the least squares solution in (3.7).

Up to this point, we have looked at unconstrained optimization problems and derived
the (first order) necessary condition for optimality. We next discuss optimality conditions for
constrained optimization. Let us consider the following constrained optimization problem

min
uPX

f puq , subject to c puq “ θ, where c p¨q : X Ñ Y.

If there were no constraint c puq “ θ, then from Lemma 3.45 the optimality condition would
be

Df puq v “ 0, @v P X,
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That is, the variation of f at u in any “direction” v vanishes. However, v can be no longer
arbitrary since the constraint must be satisfied at u` tv for any small t. In other words, u` tv
needs to be feasible, i.e.,

c pu` tvq “ 0, for any feasible u` tv.

Suppose c is Fréchet differentiable, it is therefore necessary that

Dc puq v “ 0, for any feasible u` tv.

To rigorously establish this result, we need the inverse function theorem [58], which in turn is
a direct consequence of the implicit function theorem [49, 28].

Theorem 3.48 (Implicit function theorem). Let c : X ˆ Z Ñ Y be continuously Fréchet
differentiable and Duc pu, zq : X Ñ Y, is invertible at a point ru0, z0s

T , at which c pu0, z0q “ 0.
Then, there exist a neighborhood Bδ pz0q and a continuously Fréchet differential function g :
Bδ pz0q Ñ X such that c pg pzq , zq “ 0 for all z P Bδ pz0q.

Theorem 3.49 (Inverse function theorem). Let f : X Ñ Z. Assume that Df pu0q is con-
tinuous and maps X onto Z. Then, there is a neighborhood Bδ pf pu0qq of f pu0q such that
f puq “ z has a unique continuously differentiable solution upzq for every z P Bδ pf pu0qq.

Proof. The result is clear if we define c pu, zq “ z ´ f puq and set z0 “ f pu0q. Then by
the implicit function Theorem 3.48, there exists g : Bδ pz0q Ñ X such that 0 “ c pg pzq , zq “

z ´ f pg pzqq “ 0 for all z P Bδ pz0q. Setting u “ g pzq concludes the proof.

Lemma 3.50 (First order optimality condition for equality constraints). Suppose f : X Ñ R
attains its extremum at u0 subject to the constraint c puq “ 0, where c : X Ñ Y. Assume that
both f and c are continuously Fréchet differentiable in an open set containing u0, and Dc puoq

maps X onto Y. Then, it is necessary that

Df pu0q v “ 0, @v P X such that Dc pu0q v “ θ,

or equivalently
p∇f pu0q , vqX “ 0, @v P X such that Dc pu0q v “ θ.

Proof. We follow closely the proof by contradiction in [58, Lemma 1 of Chapter 9].
Without lost of generality, asssume u0 is a minimizer. Let us consider the transformation
g puq “ pf puq , c puqq : X Ñ R ˆ Y. Assume that there exists h such that Dc pu0;hq “ 0 but
Df pu0;hq ‰ 0. Then the function pDf pu0q ,Dc pu0qq maps X onto RˆY since Dc pu0q maps
X onto Y. By the inverse function Theorem 3.49 there exists ε and u with }u´ u0}X ă ε
such that g puq “ pf pu0q ´ δ, 0q for some small δ ą 0. Thus, f puq “ f pu0q ´ δ ă f pu0q: a
contradiction.

Example 3.51. Let f : Rn Ñ R be continuously differentiable and A P Rmˆn, where Rn

and Rm are endowed with the standard Euclidean inner products. We consider the following
problem

min
xPRn

f pxq , subject to Ax “ b.
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From Lemma 3.50, Example 3.43, and Example 3.44 we can write the the first order optimality
condition as

∇fT pxqv “ 0, @v P Rn such that Av “ 0,

or equivalently
∇fT pxqv “ 0, @v P N pAq ,

i.e., due to the constraint, the gradient of f at an optimum x does not vanish but is orthogonal
to the nullspace of the gradient A of the constraint. In other words, for constrained optimiza-
tion problems, at an optimum the projection of the gradient of the objective function in the
nullspace of the gradient of the constraints vanishes. If we define Z with columns comprising
a basis of the nullspace of A, then v “ Zr for some vector r whose dimension is the dimen-
sion of the nullspace. As a result, the constraint is completely eliminated and the first order
optimality condition now reads

∇fT pxqZ “ 0.

Note that gr pxq :“∇fT pxqZ—the coordinates of the gradient in the nullspace of the con-
straint gradient—is known as the reduced gradient [32, 44]. The reduced gradient is nothing
more than the total gradient of the objective function with respect to the reduced variable r
as we show below. The proof for an important class of constrained optimization is presented
in Remark 3.58. One of the reasons for its name is that its dimension is smaller than the di-
mension n of the original gradient vector ∇f pxq. Another important point one can draw from
the optimality condition for the reduced gradient is that in the reduced optimization variables
r, the optimization problem becomes implicitly unconstrained (see the explicit transformation
to the reduced space at the end of the example). Now from Corollary 3.40 we know that
the derivative of the reduced gradient gr, namely the reduced Hessian Hr, is necessary to be
semi-positive definite in any direction in the reduced space. By the chain rule we have

rTHr pxq r “
dgr px ` tZrq

dt

∣∣∣∣
t“0

“ rTZT∇f2 pxqZr, @r,

from which it follows that
Hr pxq “ ZT∇f2 pxqZ.

Note that if QR factorization of A is feasible, then Z can be easily found. Z can also be
explicitly identified for the case when m ď n and A has linearly independent rows. Indeed,
up to a permutation of columns, we can rewrite A as

A “ rU ,Vs ,

where U P Rmˆm is a nonsingular matrix. Then Z can be written as

Z “

„

´U´1V
I

ȷ

,

where I is the pn´mqˆpn´mq identity matrix. In this case, we can write x “ rxU ,xV s
T and

we can eliminate xU from the constraint as xU “ U´1b´U´1VxV . The reduced optimization
variable is thus xV and the original constraint optimization problem is now unconstrained
with respect to xV .
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In order to provide further insights and make the optimality condition practical for large-
scale computation we need a Lagrangian formalism, and this is where the adjoint plays the
key role. Thanks to the closed range Theorem 3.13, the Lagrangian multiplier theorem [58,
10, 62, 9] is a straightforward equivalence to Lemma 3.50.

Theorem 3.52 (Lagrangian multiplier theorem). Assume that f : X Ñ R is continuously
Fréchet differentiable and it attains the extremum at u0 subject to the constraint c puq “ 0,
where c : X Ñ Y is continuously Fréchet differentiable. Suppose that Dc pu0q maps X onto
Y. Then, there exists an element y P Y such that the following Lagrangian functional

L puq :“f puq ` py, c puqqY

is stationary at u0, i.e.,

(3.17) DL pu0qh “ Df pu0qh` py,Dc pu0qhqY “ 0, @h P X,

or equivalently

(3.18) ∇L pu0q “ ∇f pu0q ` rDc pu0qs
˚ y “ 0.

Proof. From Lemma 3.50 we see that ∇f pu0q is orthogonal to the nullspace of Dc pu0q.
Since Dc pu0q maps X onto Y, the range of Dc pu0q closed and the closed range Theorem 3.13
gives

∇f pu0q P R
`

rDc pu0qs
˚
˘

,

which implies that there exists y P Y such that

∇f pu0q “ ´ rDc pu0qs
˚ y,

and this ends the proof.

Remark 3.53. The appealing feature of the Lagrangian approach in Theorem 3.52 is that
the first order optimality condition (3.18) is the standard optimality condition for uncon-
strained problem in Lemma 3.45, but for the Lagrangian instead of the original objective
function f . The key implication in the Langrangian formalism is thus the optimization prob-
lem is unconstrained in the original optimization variable u plus the Lagrange multiplier y,
as far as the first order optimality condition is concerned. The Lagrangian approach is also
known as the adjoint approach as it involves the adjoint of the gradient of the constraint in
the first order optimality condition (3.18). If further structures of the constraints and/or op-
timization variables are given, the Lagrangian approach can lead to an efficient reduced space
approach as we will discuss in the below examples, including the derivation and insights into
backpropagation of neural network in subsection 3.6.

Example 3.54. Back to Example 3.51. Applying the Lagrangian multiplier Theorem 3.52
together with the Riesz representation Theorem 3.1, the equivalent first order optimality
condition (3.18) reduces to

∇f pxq ` ATy “ 0,
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which says that at an optimum of a constrained optimization problem, the gradient of the
objective function f pxq does not vanish but is a linear combination of the gradient of the
constraints. Again, this is the same as saying that the gradient of the objective function f pxq

at an optimum is orthogonal to the nullspace of the gradient of the constraints.

Example 3.55. Let f : Rn Ñ R and c pxq : Rn Ñ Rm, where Rn and Rm are endowed with
the standard Euclidean inner products. We consider the following optimization problem

min
xPRn

f pxq , subject to c pxq “ b.

From Lemma 3.50, Example 3.43, Example 3.44, and the Lagrangian multiplier Theorem 3.52
we can write the first order optimality condition either as

(3.19) ∇f pxq ` ∇cT pxqy “ 0,

or as

g pxq :“∇fT pxqv pxq “ 0, @v pxq P Rn such that ∇c pxqv pxq “ 0.

Note that unlike the linear problem, v is a function of x since the nullspace of ∇c pxq depends
on x. As a result, the reduced Hessian is different from that of the linear constraint counterpart
in Example 3.51 as we now show. To that end, we compute the Fréchet derivative of g in any
direction p in the reduced space N p∇c pxqq:

(3.20) pTHh “ pT∇f2v ` ∇fTDv px,pq .

To compute Dv px,pq we take the Fréchet derivative both sides of ∇c pxqv pxq “ 0, row by
row, in direction p to arrive at

(3.21) pT∇2civ ` ∇cTi Dv px,pq “ 0.

Combining (3.19)–(3.21) gives

pTHh “ pT

˜

∇f2 ´

m
ÿ

i“1

∇2ciyi

¸

v.

Since both p and v belong to the nullspace Z pxq of ∇c pxq, the reduced Hessian Hr is then
given by

Hr “ ZT

˜

∇f2 ´

m
ÿ

i“1

∇2ciyi

¸

Z.

As can be seen, the Hessians of the constraints (which is zero for linear constraint case in
Example 3.51) contribute to the reduced Hessian. Unlike Example 3.51 in which the reduced
space, and hence the reduced optimization variables, is fixed if an iterative gradient-based
algorithm is employed, the reduced space for this example changes at each optimization step
due the nonlinear nature of the constraint c pxq “ b.
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To the end of this section, we consider an important class of constrained optimization
problems in which the constraints are equalities and the optimization variables are separable
in the sense that from the constraint one can solve for one sub-variable as a function of the
other. As we shall see in subsection 3.6, training deep neural network with backpropagation
is a special case of this class. PDE-constrained optimization problem is another special case
as shown in subsection 4.4.

Corollary 3.56 (Optimization with special equality constraint). Consider optimization prob-
lems that can be expressed in the following form

min
uPX,zPZ

f pu, zq , subject to c pu, zq “ 0, where c p¨, ¨q : X ˆ Z Ñ Y,

where the Fréchet derivative of the constraint with respect to u, i.e. Duc pu, zq : X Ñ Y, is
invertible at an optimum ru0, z0s

T . The first order optimality condition (3.18), together with
the constraint, can be written as

c pu0, z0q “ 0, Forward equation,(3.22a)

∇uf pu0, z0q ` rDuc pu0, z0qs
˚ y “ 0, Adjoint equation,(3.22b)

∇zf pu0, z0q ` rDzc pu0, z0qs
˚ y “ 0, Control equation,(3.22c)

where ∇u and ∇z denote the Fréchet derivative with respect to u and z, respectively.

Proof. The proof is a straightforward application of (3.18) to the group optimization
variable ru, zs

T , and thus ∇f “ r∇uf,∇zf s
T and Dc “ rDuc,Dzcs

T .

Note that the left-hand side (LHS) of the forward problem (3.22a) is simply the derivative of
the Lagrangian with respect to the adjoint variable y. The LHS of the adjoint equation (3.22b)
is nothing more than the derivative of the Lagrangian with respect to u, and the LHS of the
control equation (3.22c) is the derivative of the Lagrangian with respect to z. For this class of
optimization problems, we can eliminate both the “state” variable u and adjoint variable y so
that the optimization problem is genuinely unconstrained in only the control variable z around
a neighborhood of the optimum ru0, z0s

T . Indeed, from the implicit function Theorem 3.48
there exists Bδ pz0q and a continuously differentiable function g : Bδ pz0q Ñ X such that
u “ g pzq solve the constraint c pu, zq “ 0 for any z P Bδ pz0q. The objective function becomes
f pg pzq , zq, and thus a function of only z, for all z P Bδ pz0q. The optimization variable
is reduced to only z and this is known as the reduced space approach [32, 44]. Clearly, we
do not know u “ g pzq explicitly, and the question is how to compute the reduced gradient
∇f pg pzq , zq, which is needed for any gradient-based approach? Note that by ∇f pg pzq , zq

we mean the total derivative with respect to z.

Lemma 3.57 (Reduced gradient in constrained optimization with equality constraints). With
the same setting as in Corollary 3.56, there exists a neighborhood Bδ pz0q such that the reduced
gradient at any z P Bδ pz0q is given by

(3.23) ∇f pg pzq , zq “ ∇zf pu, zq ` rDzc pu, zqs
˚ y,
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where u “ g pzq and y satisfy the following forward and adjoint equations:

c pu, zq “ 0, Forward equation,(3.24a)

∇uf pu, zq ` rDuc pu, zqs
˚ y “ 0, Adjoint equation.(3.24b)

Proof. Note that the invertibility of a linear operator A implies the invertibility9 of its
adjoint A ˚ with pA ˚q

´1
“

`

A ´1
˘˚
. For simplicity, we use pA q

´˚ to denote
`

A ´1
˘˚
. We

have

p∇f pg pzq , zq , hqZ

ùù Gradient Definition 3.42
⟨Df pg pzq , zq , h⟩Z

ùù Chain rule
⟨Dzf pu, zq , h⟩Z ` ⟨Duf pu, zq ,Dzg pzqh⟩X

ùù Gradient Definition 3.42
p∇zf pu, zq , hqZ ` p∇uf pu, zq ,Dzg pzqhqX

ùù Derivative of the constraint

p∇zf pu, zq , hqZ ´

´

∇uf pu, zq , rDuc pu, zqs
´1 Dzc pu, zqh

¯

X

ùù Adjoint Definition 3.2

p∇zf pu, zq , hqZ ´
`

rDzc pu, zqs
˚

rDuc pu, zqs
´˚ ∇uf pu, zq , h

˘

Z

ùù rDuc pu, zqs
˚ y :“ ´∇uf pu, zq

p∇zf pu, zq , hqZ `
`

rDzc pu, zqs
˚ y, h

˘

Z

where, as in the first equality, the derivative of the constraint in the third equality is given by
the chain rule10:

Dzc pu, zq ` Duc pu, zq Dzg pzq “ θ,

which, due to the invertibility of Duc pu, zq, allows us to solve for Dzg pzq.

Remark 3.58. Note that in practice, approximating the minimum u0 is typically done
using a gradient descent algorithm and Lemma 3.57 shows that the reduced gradient can
be computed in each iteration for a given z via three steps: 1) solve the forward equation
(3.24a) for u pzq, 2) solve the adjoint equation (3.24b) for y pupzq, zq, and 3) substitute upzq

and ypu pzq , zq into (3.23) to obtain the reduced gradient. Moreover, the adjoint equation is
always linear in the adjoint variable y regardless the linear or nonlinear nature of the forward
equation. Note that full space iteration based on the first order optimality condition (3.22) is
also possible and can be consulted from [62] and the references therein.

9Indeed, suppose A : X Ñ Y is invertible, then
〈
u,A ˚

`

A ´1
˘˚

w
〉
X

“

〈
A u,

`

A ´1
˘˚

w
〉
Y

“〈
A ´1A u,w

〉
X “ ⟨u,w⟩X for any u,w P X. Thus,

`

A ˚
˘´1

“
`

A ´1
˘˚

.
10The chain rule for Fréchet deriviation can be derived from (3.14). Let f : X Q u ÞÑ f puq P

Y and g : Z Q z ÞÑ g pzq P X. We have f pg pz ` εhqq “ f pg pzq ` εDg pzqh ` o pεqq “

f pg pzqq ` εDuf pg pzqq
`

Dg pzqh ` ε´1o pεq
˘

` o pεq. Thus, Dzf pg pzqqh “ limεÑ0
fpgpz`εhqq´fpgpzqq

ε
“

Duf pg pzqq Dg pzqh “ ⟨Duf pg pzqq ,Dg pzqh⟩X
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Example 3.59. To appreciate the adjoint approach, let us apply Lemma 3.57 to identify
the forward equation, the adjoint equation, and the reduced gradient of the following finite
dimensional optimization problem

min
uPRn,zPRp

f pu, zq , subject to c pu, zq “ 0,

where f : Rn ˆ Rp Ñ R and c pu, zq : Rn ˆ Rp Ñ Rn, and all spaces are equipped with the
standard Euclidean inner products. We assume that det p∇ucq ‰ 0,@u, z so that the implicit
function theorem allows us to compute u as a function of z from the constraint. Applying
Lemma 3.57 the reduced gradient reads

(3.25) ∇f “ ∇zf pu0, z0q ` r∇zc pu0, z0qs
T y,

where u and y are computed from

c pu0, z0q “ 0, Forward equation,(3.26a)

∇uf pu0, z0q ` r∇uc pu0, z0qs
T y “ 0, Adjoint equation.(3.26b)

3.6. Application of adjoint to backpropagation in deep learning. In this section, we
consider standard fully connected deep neural network and use the adjoint method in Exam-
ple 3.59 to derive the backpropagation method for computing the gradient of the loss function
with respect to the weights and biases of a general fully-connected deep neural work (DNN).
Excellent review papers on deep learning can be found in [50, 69], and the history of back-
propagation can be traced back to [54, 55]. The gradient is needed for gradient-based methods
(see, e.g., [62] and the references therein) such as stochastic gradient descent [46, 66, 70]. The
extension of the adjoint method for other type of neural networks such as ResNet [38] and
CNN [35, 42] are straightforward. We are going to show that the backpropagation is nothing
more than a reduced space approach to compute the gradient using adjoint method.

Definition 3.60 (L-layer Neural network). Given nℓ, s0, s1, . . . , snℓ
P N, an nℓ-layer neural

network is defined as the following series of composition

(3.27)
Input layer : a0 ´ x “ 0,

The ith layer : ai ´ σ
`

W iai´1 ` bi
˘

“ 0, i “ 1, . . . , nℓ,

where x P Rs0; W i P Rsi ˆRsi´1 and bi P Rsi, i “ 1, . . . , nℓ, are weight matrix and bias vector
of the ith layer; ai P Rsi is the output of the ith layer; and the activation function, σ, acts
component-wise when its argument is a vector.

Let us define u :“
“

a0, . . . ,anℓ
‰T

, z :“
“

W1, b1, . . . ,Wnℓ , bnℓ
‰T

, and c pu, zq “ 0 as the
concatenation of all the sub-equations in (3.27). For concreteness, let us consider the loss
(objective) function to be:

f pu, zq “
1

2

›

›

›
aobs ´ anℓ

›

›

›

2
,

where aobs is a given data (label). The neural network training problem is exactly the con-
strained optimization problem in Example 3.59. Thus



32 TAN BUI-THANH

‚ The forward equation (3.26a), by definition, are nothing more than the neural network
description in (3.27). For example, the ith block of forward sub-equations (the ith layer
equation) are

ci pu, zq “ ai ´ σ
`

W iai´1 ` bi
˘

“ 0,

the corresponding ith block of forward solution is ui “ ai, and the ith block of

parameter is zi “
“

ziW , z
i
b

‰T
:“

“

W i, bi
‰T

. Clearly, the Jacobian ∇uc is a lower block
bi-diagonal matrix with identity blocks on the diagonal, and is thus invertible for all
u and z. Consequently, all results in Example 3.59 hold.

‚ To unfold the adjoint equation (3.26b), we note that the whole adjoint vector y is the
concatenation of the adjoint sub-vector yi corresponding to the ith layer equation in
(3.27), for i “ 0, . . . , nℓ. Thus, the ith adjoint equation corresponds to the derivative
with respect to ui “ ai in (3.26b), and it reads

(3.28)
ynℓ “ aobs ´ anℓ ,

yi “
`

W i`1
˘T “

σ1
`

W i`1ai ` bi`1
˘

˝ yi`1
‰

, i “ nℓ ´ 1, . . . , 0

where σ1 is the derivative of σ, and ˝ denotes the component-wise multiplication of
two vectors. Note that since σ acts componentwise (when its input is a vector), so is
its derivative σ1: in particular σ1

`

W i`1ai ` bi`1
˘

is a vector in (3.28). Thus, (3.28)
provides explicit expressions for the adjoint equations for a general fully connected
DNN. Again, note that the adjoint equations are linear in terms of adjoint variables
yi, i “ 0, . . . , nℓ.

‚ To unfold the control equation (3.25) to explicitly see the derivative of the objective
function with respect to the weights and biases, we take a block of control equations

corresponding to sub-blocks of zi “
“

ziW , z
i
b

‰T
in z. For DNN, these derivatives are

given as: for i “ 1, . . . , nℓ,

(3.29)

Bf

BW i
“ ´

”

yi ˝ σ1
`

W iai´1 ` bi
˘

ı

`

ai´1
˘T
,

Bf

Bbi
“ ´yi ˝ σ1

`

W iai´1 ` bi
˘

.

The backpropagation nature of the network gradient is now clearly seen from the
gradient expressions in (3.29) and the adjoint equations (3.28). Indeed, in (3.29) we
need the ith adjoint state yi in order to compute the gradients with respect to the
weights and biases in the ith layer. The ith adjoint state yi in turn depends on the
pi ` 1qth adjoint state yi`1, which depends on the pi ` 2qth adjoint state yi`2, etc,
all the way to the last adjoint state ynℓ corresponding to the network output layer.
In other words, using the adjoint equations (3.28) we backpropagate to compute the
adjoint solution from the output layer to the ith layer, and then compute the gradients
using (3.29). From the backpropagation point of view, yi, i “ 1, . . . , nℓ are simply
the temporary variables to help compute/write the chain rule in a succinct manner.
The adjoint approach, however, reveals their precise role as the adjoint solutions—also
known as the Lagrangian multipliers—of the adjoint equations steming from the first
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order optimality condition using the reduced space approach in Remark 3.58. Another
important view point that we have exploited here is that the DNN training problem,
from the adjoint point of view, is a constrained optimization problem with the forward
pass as the forward equations. The backpropagation is thus nothing more than a
reduced space approach to compute the gradient using adjoint method.

3.7. Application of adjoint to the stability of ordinary differential equations. In this
section, we provide a brief view on the role of adjoint in the study of stability of the equilibria
of ordinary differential equations (ODEs). Most of our mathematical exposition follows [56],
and we limit ourselves to autonomous systems of the form

(3.30) 9x :“
dx

dt
“ f pxq ,

where x P Rn and f : G Ă Rn Ñ Rn is assumed to be continuous and locally Lipschitz. The
domain G of f is assumed to be a nonempty open subset of Rn. Due to the translational
invariance of autonomous system, without loss of generality, we can assume that 0 P G is an
equilibrium point, i.e. f p0q “ 0. We use x0 to denote the initial condition and I to denote
the maximal interval of existence for a solution of (3.30). All the norms }¨} and inner products
p¨, ¨q in this section are the standard Euclidean ones, and in this case Example 3.5 shows that
the adjoint of a real matrix is simply its transpose. For matrices, the norm is the induced
operator norm.

Definition 3.61 (Lyapunov stability). The equilibrium point 0 is stable (in the sense of Lya-
punov) if for any ε ą 0, Dδ ą 0 such that for every (maximal) solution x : I Ñ G such that
x p0q ď δ, we have x ptq ď ε for all t P I X p0,8q.

Theorem 3.62 (Lyapunov direct method). If there exists an open neighborhood U of 0 and
a continuous differentiable function V such that

1. V p0q “ 0 and V pzq ą 0 for all z P Uz t0u, and
2. Vf pzq :“ p∇V pzq ,f pzqq :“

řn
i“1

BV
Bzi

f i pzq ď 0 for all z P U.
Then 0 is a stable equilibrium point of (3.30).

Proof. See [56, Theorem 5.2].

Definition 3.63 (Asymptotic stability). The equilibrium 0 is attractive if there exists δ ą 0
such that for every x0 P G such that }x0} ď δ, then the solution x ptq Ñ 0 as t Ñ 8. We say
0 asymptotically stable (in the sense of Lyapunov) if it is both stable and attractive.

Theorem 3.64 (A sufficient condition for asymptotic stability). Assume that there exists a
neighborhood U of x0 and a continuously differentiable function V such that

i V p0q “ 0 and V pzq ą 0 for all z P Uz t0u, and Vf pzq ď 0 for all z P U, and
ii 0 is the inverse image of Vf pzq “ 0, i.e., V ´1

f p0q “ 0.
Then 0 is asymptotically stable.

Proof. See [56, Theorem 5.15].

We next study the stability of systems of linear ODEs, and this is where the adjoint comes
into the picture. We then infer the stability of nonlinear systems using the stability of their
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linearizations. To that end, we consider linear systems with G “ Rn, A P Rnˆn, and

(3.31) 9x “ f pxq “ Ax.

Clearly, the solution of the (3.31) can be written as matrix exponential [37, 61, 41]

x ptq “ exp pAtqx0.

Definition 3.65 (Exponential stability). The equilibrium 0 is called exponentially stable if
there exist M ě 1 and α ą 0 such as

}exp pAtqx0} ď M exp p´αtq }x0} , @t ě 0 and @x0 P Rn.

Definition 3.66 (Hurwitz matrices). Let σ pAq denote the spectrum (the collection of all
eigenvalues) of A. A is Hurwitz if σ pAq Ă tλ P C : ℜ pλq ă 0u.

Proposition 3.67. Let A P Rnˆn. The following statements are equivalent:
i) A is Hurwitz.
ii) 0 is an exponentially stable equilibrium of (3.31).
iii) 0 is an asymptotically stable equilibrium of (3.31).

Proof. See [56, Proposition 5.25].

We are in the position to discuss one of the main results of this section.

Theorem 3.68 (Necessary and sufficient conditions for exponential stability). A P Rnˆn is
Hurwitz iff for each symmetric positive definite (SPD) matrix Q P Rnˆn, the matrix equation

PA ` A˚P ` Q “ 0

has a SPD solution P P Rnˆn.

Proof. For the necessity, suppose A is Hurwitz. It follows from Proposition 3.67 that 0 is
an exponentially stable equilibrium, that is, there exists M ą 0 and α ą 0 such that

}exp pAtq} “ sup
x0PRn

}exp pAtqx0}

}x0}
ď M exp p´αtq , t ě 0.

Now for any SPD matrix Q, let us define

P :“

ż 8

0
exp pA˚qQ exp pAtq dt,

which is a well-defined matrix since

}P} ď

ż 8

0
}exp pA˚tq} }Q} }exp pAtq} dt ď M }Q}

ż 8

0
exp p´2αtq dt ă 8,

where in the second inequality we have used the fact from Proposition 3.3 that the norm of a
linear continuous operator is equal to the norm of its adjoint. P is SPD as

px,Pxq “

ż 8

0
px, exp pA˚tqQ exp pAtqxq dt “

ż 8

0
pexp pAtqx,Q exp pAtqxq dt,
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and the fact that Q is SPD. Furthermore,

PA ` A˚P “

ż 8

0

d pexp pA˚tqQ exp pAtqq

dt
dt “ ´Q,

where we have used the fact that exp pAtq, and hence exp pA˚tq, decays exponentially to 0.
For the sufficiency, Proposition 3.67 says that we only need to show that 0 is an asymp-

totically stable equilibrium. To that end, let us construct the following function

V pzq :“ pz,Pzq .

Clearly V pzq ě 0 for all z P Rn, and V pzq “ 0 iff z “ 0 as P is SPD. Furthermore

Vf pzq “ 2 pPz,Azq “ pz, pPA ` A˚Pq zq “ ´ pz,Qzq ď 0.

Thus, by Theorem 3.64, 0 is asymptotically stable, and this ends the proof.

Let us now use Theorem 3.68 to study the stability of the equilibrium 0 of the general
nonlinear system (3.30).

Hypothesis 3.69 (Nonlinearly purturbed linear ODE systems). We assume that f pxq “ Ax`

h pxq where A P Rnˆn and h : G Ñ Rn is continuous with

(3.32) lim
zÑ0

}h pzq}

}z}
“ 0,

that is, h pzq “ o pzq. In other words, h approaches 0 faster than z.

Theorem 3.70 (Linear stability implies nonlinear stability). Assume Hypothesis 3.69 holds. If
0 is an asymptotically stable equilibrium of (3.31), it is also an asymptotically stable equilib-
rium of (3.30).

Proof. Suppose 0 is an asymptotically stable equilibrium of (3.31). Using Theorem 3.68
we can pick Q “ I, and form V pzq :“ pz,Pzq. It follows that V p0q “ 0 and V pzq ą 0 for all
z ‰ 0 owing to the SPD property of P. In order to use Theorem 3.64 to conclude the proof,
we just need to show that Vf pzq ă 0. We have

Vf pzq “ 2 pPz,Az ` h pzqq “ ´ }z}
2

` 2 pPz,h pzqq ď ´ }z}
2

` 2 }P} }z} }h pzq} ,

where we have used PA ` A˚P “ ´I in the second equality. Next, using (3.32) we can pick

a sufficient small neighborhood U “ Bε p0q such that }h pzq} ď
}z}

4}P}
. Thus Vf pzq ă 0 for all

z P U, and this ends the proof.

Theorem 3.70 reduces the stability analysis of an equilibrium of a nonlinear ODE system
to an appropriate linear ODE counterpart, which is much simpler as linear algebra is then all
we need for studying the stability. We have also seen in Theorem 3.68 and Theorem 3.70 that
adjoint plays the key role in establishing a necessary and sufficient condition for the stability
of an equilibrium of an ODE system.
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Example 3.71 (Linearization of nonlinear ODE systems). We assume f : G Ñ Rn is differ-
entiable at 0, and 0 P G is an equilibrium. Let us set

A :“ ∇f p0q ,

where the gradient is defined in Definition 3.42 and Example 3.44. The definition of Fréchet
derivative in (3.14) implies (3.32) with h pxq :“ f pxq ´ Ax. Then by Theorem 3.70, the
asymptotic stability of 0 for the linearized system implies the asymptotic stability of 0 for the
original nonlinear system.

Example 3.72 (The asymptotic stability meaning of the basic reproduction in epidemic mod-
eling). With the ever-increasing human population on every part of the earth, the shrinkage
in the natural habitat for plants and animals, and the shortage of natural resources such
as water and food, the emergence of new and re-emergence of old infectious diseases are in-
evitable. Epidemic modeling plays a key role in forecasting how an infectious disease (such as
SARS and COVID-19) spreads. This in turn facilitates informative decision-making to pre-
vent a disease outbreak. The reproduction number R0 provides epidemiologically meaningful
criteria to predict an outbreak [64, 39, 14, 59, 27, 51, 23, 15, 40, 76]. Its popular definition is
“the number of secondary cases one infected individual produces in a population consisting
of only susceptibles”. As a result, if R0 ă 1 the disease dies out but persists as an endemic
(or goes on extinction) if R0 ą 1.

One of the most popular approaches to model disease dynamics is to use ODEs [14, 59,
27, 51, 23, 15, 40] in which, for example in an Susceptible-Exposed-Infectious-Recovered-
Susceptible (SEIRS) model, the components of x in (3.30) are typically the fraction of sus-
ceptible, exposed, infected, and recovered within the population under consideration. The
dying out of a disease corresponds to an outbreak returning to a disease-free state, while
persistence to an endemic corresponds to a disease that remains in the population. Clearly,
the disease-free state is an equilibrium of the ODE system if it is a meaningful representation
of the disease dynamics. The dying out of a disease, therefore, corresponds to a perturbation
from and then a return to disease-free equilibrium (DFE). This in turn should correspond
to the asymptotic stability of the DFE. This is exactly a mathematical justification of the
reproduction number. Figure 2 is our effort11 in sketching the association, via the next gener-
ation matrix approach [43, 76, 25], of the reproduction number being less than unity and the
asymptotic stability of 0 as a DFE of an abstract epidemic ODE model 9x “ f pxq. Note that
the top arrow is the implication (due to Theorem 3.70) and the rest are equivalences. (See our
work [3], and the references therein, for a detailed exposition of this correspondent for a new
SEIRS epidemic model.) As can be seen, when the number of secondary cases one infected
individual produces is less than one, the DFE is asymptotically stable and the solution of
the epidemic ODE model approaches the DFE as time goes on. Epidemically speaking, the
disease dies out.

4. Part II: Adjoint operators in Infinite dimensional Hilbert spaces. In this second
part, we shall consider linear mappings between infinite dimensionsal Hilbert spaces. Of our

11Unpublished notes.
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Asymptotic stability of the equilibrium 0 of 9x “ fpxq

Asymptotic stability of the equilibrium 0 of 9x “ fpxq “ Ax ` hpxq

Asymptotic stability of the equilibrium 0 of 9x “ Ax

A is Hurwitz

ρpAq ă 0

R0 :“ ρ
`

FV´1
˘

ă 1

Theorem 3.70 A :“ ∇fp0q

hpxq “ fpxq´Ax

limxÑ0
}hpxq}

}x}
“ 0

Proposition 3.67

ρpAq :“ maxtℜpλq : λ P σpAqu

decompose A “ F ´ V, where F
and V satisfy certain conditions
[43, 76, 25]

Figure 2: A sketch of the association, via the next generation matrix approach, of the re-
production number being less than unity and the asymptotic stability of the disease-free
equilibrium 0 of an abstract epidemic ODE model 9x “ f pxq. Note that the top arrow is the
implication (due to Theorem 3.70) and the rest are equivalences.

particular interest are densely defined differential operators. A sufficient general definition of
adjoint operator that could embrace a variety of problems is the following (see, e.g., [71]).

Definition 4.1 (Adjoint operators). A ˚ is called the adjoint of A P L pU,Vq iff

(4.1) pA u, vqV “ pu,A ˚vqU @u P D pA q and @v P D pA ˚q ,

where

D pA ˚q :“ tv : the map u ÞÑ pA u, vqV is continuous on Uu .

Clearly, Definition 4.1 reduces to Definition 3.2 when A is continuous and is defined on
the whole space U.
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Example 4.2. We consider an elliptic differential operator in n dimensions over an open
and bounded domain Ω Ă Rn. In this case, we define L2´inner product of two functions
upxq, vpxq in L2pΩq over R as

(4.2) pu, vqL2pΩq “

ż

Ω
upxqvpxqdΩ.

Consider the following parametrized linear operator A : D pA q Ă L2 pΩq Ñ L2 pΩq as

A u “

#

´∇ ¨ pez∇uq in Ω,

u “ 0 on BΩ,

where z P C1 pΩq Ă L2 pΩq is a distributed parameter over Ω with sufficiently smooth boundary
BΩ. We define the graph space HA as

HA :“
␣

u P H1 pΩq : A u P L2 pΩq
(

“
␣

u P H1 pΩq : ´∇ ¨ pez∇uq P L2 pΩq
(

.

The domain of A is chosen to be a subset of its graph space:

D pA q :“ tw P HA : u “ 0 on BΩu

equipped with the graph norm }u}G :“
b

}u}
2
H1 ` }A u}

2
L2 “

b

}u}
2
H1 ` }∇ ¨ pez∇uq}

2
L2 . Clearly,

D pA q is dense in L2 pΩq and A is continuous on D pA q. The proof of the self-adjointness
of A is straightforward using basic facts from weak/distributional derivative and a standard
distributional arugment and it is provided in Proof 41 of Appendix A.

Example 4.3. We now consider a weak formulation for the elliptic differential operator
in Example 4.2. This will be important for studying the well-posedness of the associated
partial differential equations in Example 4.31. Multiplying ´∇ ¨ pez∇uq by a test function and
integrating by parts allow us to define the following bilinear form a p¨, ¨q : H1

0 pΩqˆH1
0 pΩq Ñ R

a pu, vq :“ pez∇u,∇vqL2pΩq .

By the Cauchy-Schwarz inequality we have

|a pu, vq| ď }ez}L8pΩq }∇u}L2pΩq }∇v}L2pΩq ď }ez}L8pΩq }u}H1pΩq }v}H1pΩq ,

and thus a p¨, ¨q is continuous on H1
0 pΩq ˆ H1

0 pΩq. Here, L8 pΩq is the space of essentially
bounded functions on Ω. As a result, it implicitly defines a unique linear and continuous
operator12 A : H1

0pΩq Ñ H1
0pΩq as

pA u, vqH1
0pΩq :“ a pu, vq .

12Note that for every continuous sequilinear form a : XˆY Ñ F, there exists a unique linear and continuous
operator A : X Ñ Y such that pA u, vqY :“ a pu, vq for all u P X and v P Y. Indeed, by the linearity and
continuity of a p¨, ¨q with respect to its first argument, the Riesz representation Theorem 3.1 ensures that there
exists a unique A u P Y such that pA u, vqY “ a pu, vq. The continuity of A is from the continuity of a pu, vq:

}A u} “ supvPY
pAu,vq

}v}Y
“ supvPY

apu,vq

}v}Y
ď β }u}X. The uniqueness of A is straightforward due to its definition,

as if there were another linear and continuous operator B, then we would have

}B ´ A } “ sup
uPX

}Bu ´ A u}Y
}u}X

“ sup
uPX

sup
vPY

pBu ´ A u, vqY
}u}X }v}Y

“ sup
uPX

sup
vPY

a pu, vq ´ a pu, vq

}u}X }v}Y
“ 0,

and thus B “ A .
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Due to the symmetry of the bilinear form, we have A ˚ “ A .

Example 4.4. Consider an open and bounded domain Ω Ă Rn and the L2´inner product of
two functions upxq, vpxq is given in (4.2). Consider the following parametrized linear operator

A u “

#

β ¨ ∇u` λu in Ω,

β ¨ nu “ 0 in BΩin,

where β P
“

C1 pΩ,Rq
‰n

and ∇ ¨ β “ 0, λ ą 0, n is the unit outward normal vector of the
boundary BΩ, and BΩin :“ tx P BΩ : β ¨ n ă 0u is the inflow boundary. We consider the
graph space HA :“ H1

β pΩq :“
␣

u : u P L2 pΩq and β ¨ ∇u P L2 pΩq
(

which is dense in L2 pΩq

under sufficient regularity13 of the domain Ω [30]. The domain of A is defined as a subset

of the graph space, namely, D pA q :“
!

u P H1
β pΩq : β ¨ nu “ 0 in BΩin

)

. It is clear that

A : D pA q Ñ L2 pΩq is linear and continuous owing to the definition ofH1
β pΩq and the intrinsic

graph norm }u}H1
βpΩq :“

b

}u}
2
L2 ` }β ¨ ∇u}

2. Using the definition of weak/distributional

derivative and integration by parts once, we can show (see Example 4.5 for a more general
differential operator) that

A ˚v “

#

´β ¨ ∇v ` λv in Ω,

β ¨ nv “ 0 in BΩout,

where BΩout :“ tx P BΩ : β ¨ n ą 0u is the outflow boundary and

D pA ˚q “
␣

v P H1
β pΩq : β ¨ nu “ 0 in BΩout

(

.

Example 4.5 (Friedrichs’ systems). We are interested in Friedrichs’ system that embraces
a large class of elliptic, parabolic, hyperbolic, and mixed-type PDEs operators [33]:

(4.3) A u :“
n
ÿ

k“1

AkBku` Cu in P Ω,

where d is the spatial dimension, u the unknown solution with values in Rm, f the forcing term,
and Ω is an open and bounded subset of Rn with sufficient regular boundary BΩ. The matrices
Ak and C are assumed to be constant and continuous across Ω. Here, Bk is understood as the
kth partial derivative. We start with the standard assumptions (see, e.g., [33, 30, 45, 31]):

C P rL8 pΩqs
m,m ,(4.4a)

Ak P rL8 pΩqs
m,m , k “ 1, . . . , n, and

n
ÿ

k“1

BkAk P rL8 pΩqs
m,m ,(4.4b)

Ak “ pAkq
T in Ω, k “ 1, . . . , n, ,(4.4c)

C ` CT `

n
ÿ

k“1

BkAk ě 2α0I in Ω,(4.4d)

13Assume Ω has segment property [4].
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where α0 ą 0 is some coercivity constant. In this paper, we consider the following abstract
boundary condition for A [30]: let D :“

řn
k“1Aknk, where nk is the kth component of the

unit outward normal vector n on BΩ, and assume there exists M P rL8 pBΩqs
m,m such that

M ` MT ě 0 on BΩ,(4.5a)

pD ´ Mqu “ 0 on BΩ,(4.5b)

N pD ´ Mq ` N pD ` Mq “ Rm, on BΩ.(4.5c)

Following [29], we define14 the graph space of A using its differential part B :“ A ´ C:

HA :“
␣

u P
“

L2 pΩq
‰m

: Bu P
“

L2 pΩq
‰m(

,

which is dense [31] in
“

L2 pΩq
‰m

when Ω is sufficiently regular (see Example 4.4 for an ex-
ample). Furthermore, from the definition, it is easy to see that A is linear and continuous
on D pA q :“ tx P HA : pD ´ Mqx “ 0 on BΩu equipped with intrinsic graph norm. Using the
definition of weak/distributional derivative and integration by parts we can show that its
adjoint is found to be (see Proof 42 in Appendix A):

A ˚v “ ´

n
ÿ

k“1

Bk pAkvq ` CT v P L2 pΩq ,

for any v P D pA ˚q, where

D pA ˚q “

!

v P HA : Dv P rN pD ´ Mqs
K
)

.

Remark 4.6. Note that we have considered Friedrichs systems with full coercivity in Ex-
ample 4.5. Applying such a general setting to various concrete PDEs [29, 30] will reveal
concrete adjoints and their domains, but we omit the details here. The elliptic operator in
Example 4.2, when written in the first order form, is a particular two-field Friedrichs system
[29, 30], whose adjoint can be derived similarly.

4.1. Application of adjoint to ill-posed problems. In this section, we consider continuous
linear operator defined on the whole space and we shall extend the spectral decomposition
in Corollary 3.25 and SVD decomposition in Theorem 3.33 to compact (linear) operators
in infinite dimensions. This allows us to show that inverting a compact operator is an ill-
posed problem. We then explain rigorously how the standard Tikhonov regularization could
overcome the ill-posedness. We begin by recalling the definition of compact linear operators
and some of its consequences.

Definition 4.7 (Compact operator). Let A : X Ñ Y be linear. We say that A is a com-
pact operator if for every bounded sequence tuiu

8
i“1 Ă X, the sequence tA uiu

8
i“1 Ă Y has a

convergent subsequence.

14Note that we pick the L2-setting here for concreteness, but all the results for Friedrichs’ system/operator
in this paper hold for the general Hilbert space setting in [29, 30].
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A direct consequence of Definition 4.7 is that any compact operator is a linear and continuous
map.

Corollary 4.8. If A : X Ñ Y is compact, then A P B pX,Yq.

Self-adjoint compact operators in Hilbert spaces possesses many desirable properties among
which are countable real spectrum, finite dimensional eigenspaces for non-zero eigenvalues,
and the convergence to zero of eigenvalues when the number of them are infinite (see, e.g.,
[6, 16, 63, 67]). One of the important consequences is the Hilbert-Schmidt theorem (see, e.g.,
[6, 16, 63, 67, 72]), which is a generalization of Corollary 3.25.

Theorem 4.9 (Hilbert-Schmidt theorem for self-adjoint compact operators). Let B : X Ñ X
be a self-adjoint compact operator. Then there exists an orthonormal set of eigen-functions
φi corresponding to non-zero eigenvalues λi of B such that for any x P X we have a unique
expansion of the form

(4.6) x “
ÿ

i

pφi, xqX φi ` Px,

where P is an orthogonal projection from X to the nullspace N pBq.
Furthermore, we have

Bx “
ÿ

i

λi pφi, xqX φi,

that is, the set of all eigenfunctions tφiu forms a basis for R pBq.

Remark 4.10. The fact that B is compact when X is a finite dimensional space implies
that Theorem 4.9 is a generalization of Corollary 3.25. Indeed, let dim pXq “ n. In this
case, the eigenspace corresponding to the zero eigenvalue is spanned by finite number of

(say d) orthonormal eigenfunctions
!

φ0
j

)d

j“1
and thus Px “

řd
j“1

´

φ0
j , x

¯

X
φ0
j , which can be

absorbed into the first sum on the right side of (4.6) so that we can write

x “

n
ÿ

i“1

pφi, xqX φi,

after renaming the eigenfunctions corresponding to zero eigenvalues. This is exactly Corol-
lary 3.25.

We now follow the exposition in subsection 3.4 to construct the SVD for compact operators.
Let A : X Ñ Y be a compact operator, then it can be shown that that B :“ A ˚A : X Ñ X
is a self-adjoint compact operator [63, 6]. The Hilbert-Schmidt Theorem 4.9 says that there
exists orthonormal eigenfunctions φi corresponding to nonzero eigenvalues λi of B such that

Bφi “ A ˚A φi “ λiφi,

which implies
pA ˚A φi, φiqX “ λi pφi, φiqX ,

which, by definition of A ˚, in turn can be written as

}A φi}
2
X “ λi }φi}

2
X ,
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which shows that λi ě 0. Let us define the singular value σi of A as

(4.7) σi :“
a

λi.

We are now in the position to study the singular value decomposition for compact operators
(see, e.g.,[22]) that is a direct extension of Theorem 3.33.

Theorem 4.11 (Singular value decomposition for compact operators). Let tσiu be the sequence
of non-zero singular values (defined in (4.7)) of a compact operator A : X Ñ Y and be ordered
as

σ1 ě σ2 ě . . . ,

then there exist two orthonormal sequences tφiu and tϕiu such that
1. A φi “ σiϕi and A ˚ϕi “ σiφi.
2. @x P X, we have

x “
ÿ

i

px, φiqX φi ` Pφ,

P : X Ñ N pA q is an orthogonal projection.
3. There holds

A x “
ÿ

i

σi px, φiqX ϕi.

We call tσi, φi, ϕiu, i “ 1, 2, . . ., the singular system of A .

Proof. The proof of this theorem is similar to its finite dimensional counterpart Theo-
rem 3.33. The key that we exploit is the Hilbert-Schmidt theorem Theorem 4.9.

1. By Theorem 4.9 we have

A ˚A φi “ σ2i φi,

where tφiu is an orthonormal set in X. Let us define

σiϕi :“ A φi,

then

pϕi, ϕjqY “
1

σiσj
pA φi,A φjqY “

1

σiσj
pA ˚A φi, φjqX “

σi
σj

pφi, φjqX “ δij .

That is, tϕiu is an orthonormal set in Y. By definition we have

A ˚ϕi “
1

σi
A ˚A φi “ σiφi.

2. Again, by Hilbert-Schmidt Theorem 4.9 we have

@x P X : x “
ÿ

px, φiqX φi ` Pφ,

where P is an orthonormal projection from X to N pA ˚A q. The second assertion is now clear
owing to the fact that N pA q “ N pA ˚A q.
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3. We start with the partial sum

sN :“
N
ÿ

i“1

px, φiqX φi,

and thus

A sN “

N
ÿ

i“1

σi px, φiqX ϕi.

Now passing to the limit we obtain

lim
NÑ8

A sN “ A px´ Pxq “ A x.

Consequently,

A x “
ÿ

i

µi px, φiqX ϕi.

The next result [22], due to Picard, tells us the conditions under which inverting a compact
operator is well-defined. As we will see, the adjoint plays a key role.

Theorem 4.12 (Picard). Suppose A : X Ñ Y is a compact operator. The equation

A x “ y

is solvable iff
i) y P N pA ˚q

K, and
ii)

ř 1
σ2
i

|py, ϕiqY|
2

ă 8,

where tσi, φi, ϕiu is the singular system of A . In this case the solution is given by

x “
ÿ

i

1

σi
py, ϕiqY φi.

Proof. The SVD Theorem 4.11 provides a simple proof for this theorem.
ñ Solvability implies that y belongs to the range of A , i.e. y P R pA q. From the closed range

Theorem 3.13 15 we know that R pA q Ă R pA q “ N pA ˚q
K, and hence i) holds. On the other

hand, by Theorem 4.9 we can express a solution x as

x “
ÿ

i

px, φiqX φi ` Px,

which, together with the Parseval identity, implies

}x}
2
X “

ÿ

i

|px, φiqX|
2

` }Px}
2
X ,

15Note that R pA q cannot be closed since A is compact. Assume, on the contrary, it is, then by the bounded
inverse theorem [68] we know that A ´1 is continuous and hence I “ A ´1A is also a compact operator.
But, this is a contradiction since identity operator in infinite dimensional space cannot be a compact operator
[63, 6]. If R pA q were closed, then i) would be both necessary and sufficient. Since this is not true for compact
operators, we have to replace the closedness by the smooth property ii) of the right hand side.
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which in turns implies
ÿ

i

|px, φiqX|
2

ď }x}
2
X ă 8.

Since

px, φiqX “
1

σi
px,A ˚ϕiqX “

1

σi
pA x, ϕiqY “

1

σi
py, ϕiqY ,

the assertion ii) holds.
ð Since y P N pA ˚q

K, Hilbert-Schmidt Theorem 4.9 gives

y “
ÿ

i

py, ϕiqY ϕi.

Now, from ii) the following definition

x :“
ÿ

i

1

σi
py, ϕiqY φi

is meaningful. Together with Corollary 4.8, we have

A x “
ÿ

i

1

σi
py, ϕiqY A φi “

ÿ

i

py, ϕiqY ϕi “ y,

where we have used in the last equality the Hilbert-Schmidt Theorem 4.9 for B “ A A ˚, the
fact that ϕi are eigenfunctions of B, and y P N pA ˚q

K. This concludes the proof.

We now discuss the important consequence of the Picard Theorem 4.12, that is, inverting
a compact operator is an ill-posed problem. We observe that

y “ A x “
ÿ

i

σi px, ϕiqX ϕi,

where we have used the second assertion of Theorem 4.11. Since A is compact, and hence
σi Ñ 0 as i Ñ 8, A smoothes out the contribution from the “high frequency” mode: i.e.
φi for large i. In other words, the output y is insensitive to high frequency modes φi when
i Ñ 8.

Conversely, let us perturb the right hand side y as

ỹ “ y ` δϕN ,

where δ P R and N P N, then the corresponding solution reads

x̃ “
ÿ

i

1

µi
pỹ, ϕiqY φi “ x`

δ

µN
φN .

Thus,
}x̃´ x}X
}ỹ ´ y}Y

“
1

µN
Ñ 8, as N Ñ 8,

which is exactly the subtle instability problem of inverting a compact operator, namely, small
changes in the input can lead to very large change in the solution. Most of linear inverse prob-
lems (such as deconvolution) fall into this category, and practical nonlinear inverse problems
do too (see, e.g., [20, 19, 18] and the references therein).
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Definition 4.13 (Well-posedness). In Hadamard’s sense [36], the problem A x “ g is well-
posed if

1. A is surjective ( there exists a solution: existence),
2. A is injective ( there is at most one solution: uniqueness), and
3. A ´1 is continuous ( the solution depends continuously on the data: stability).

Example 4.14 (Inverse of the fundamental theorem of calculus). Let A : X Ñ Y and consider
the fundamental theorem of calculus in the following form

y ptq “ A x :“

ż t

0
x psq ds, 0 ď t ď 1,

and the inverse problem is to find x given its anti-derivative y. We are going to show that,
depending on X,Y, this inverse problem can be ill-posed or well-posed.

‚ First let us consider X “ C pr0, 1sq ,Y “ C pr0, 1sq. Let A x “ y and consider

ỹ :“ y ´
α

N
`

δ

N
cos pNtq .

Then, by the fundamental theorem of calculus, the corresponding solution is given by

x̃ “ x` δ sin pNtq .

Clearly
}ỹ ´ y}Cpr0,1sq :“ sup

tPr0,1s

|ỹptq ´ yptq| Ñ 0, as N Ñ 8,

but
}x̃´ x}Cpr0,1sq “ α @N.

We conclude that A does not distinguish x and x̃, and as the result the inverse problem does
not have a unique solution. In fact, A is a compact operator16 and, as we have discussed
above, it “smoonthes” out the difference in x and x̃ so that the observation y is the same.
Intuitively, a compact operator “squeezes” its domain into “smaller” range: for the above
example A , as an integral operator, maps C pr0, 1sq into C1 pr0, 1sq Ă C pr0, 1sq. Since the
inverse of a compact operator is unbounded, inverting the fundamental theorem of calculus is
unstable by the Picard Theorem 4.12. The setting X “ C pr0, 1sq ,Y “ C pr0, 1sq thus leads to
an ill-posed problem.

‚ Now let us consider X “ C pr0, 1sq ,Y “ C1 pr0, 1sq. In this case we have

}ỹ ´ y}C1pr0,1sq :“ }ỹ ´ y}Cpr0,1sq `
›

›ỹ1 ´ y1
›

›

Cpr0,1sq
“ α, @N,

and since
}x̃´ x}Cpr0,1sq “ α @N.

we conclude that a small change in y leads to a small (in fact the same) change in x. The
inverse problem is thus stable. The uniqueness is also trivial due to the fact that dy

dt “ x. The

16By the Ascoli-Arzela theorem [63, 6].
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surjectivity is also clear. Consequently, the inverse problem is well-posed in the Hadamard’s
sense.17

Remark 4.15. In practice, we do not solve A x “ y directly on the infinite dimensional
setting but via some discretization approach to obtain a finite dimensional problem to solve
(on computer). This does not go around the ill-posedness issue. Indeed, in this case, the
compactess of A is manifest in the ill-conditioning of its discrete counterpart whose smallest
singular value could be very small. Inverting the discrete system is thus an ill-conditioned
problem—a discrete way of saying ill-posedness.

We have seen that there could be multiple (or there is no) solutions to the linear problem
of interest A x “ y. The main reason is that the nullspace of A is non-trivial or y is not in
the range of A . The question is if we can find a “useful solution” in this case? One way to
address this question is to look for the solution that minimizes the residual, such as the least
squares problem in Corollary 3.30:

(4.8) min
x

1

2
}A x´ y}

2
Y .

However, when A : X Ñ Y is compact, the ill-posedness nature of our inverse problem does not
go away as the normal equation (3.7) is still ill-posed due to the fact that A ˚A is compact.
In other words, we still have problem with the uniqueness if N pA q is not trivial, and the
(bigger) problem with instability due to inverting the compact operator A ˚A . However, the
optimization idea paves the way for using optimization technique to overcome the ill-posedness
problem, as we now discuss. Note that the objective function in (4.8) is quadratic in x, and
hence a “parabola”. Clearly, if it is a well-behaved parabola, then the minimizer is unique.
This immediately suggests that we should add a quadratic term to the objective function to
improve its behavior, and hence removing the uniqueness issue: as will be shown, this also
addresses the stability. This is essentially the idea behind the Tikhonov regularization [74, 75],
which proposes to solve the following nearby problem

(4.9) min
xPX

1

2
}A x´ y}

2
Y `

κ

2
}x´ x0}

2
X ,

where x0 is some “prior” reference function and κ is known as the regularization parameter.
To show that the regularized optimization problem (4.9) is well-posed, we need the projection
theorem Theorem 3.29 and the following key result from the Riesz-Fredholm theory [21].

Lemma 4.16. Let A be a compact operator from X to X. If pI ` A q is injective, then
pI ` A q is continuously invertible.

Theorem 4.17. For any κ ą 0, the regularized optimization problem (4.9) is well-posed.

Proof. Without loss of generality, assume κ “ 1. We begin by rewrite the optimization
(4.9) into the following equivalent form

(4.10) min
z

1

2
}Bz ´ w}

2
YˆX ,

17Note that this is an instance of the Tikhonov theorem [26] since C1
pr0, 1sq is compactly embedded in

C pr0, 1sq.
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where we have defined B : X Q z ÞÑ rA ,I s z :“ rA z, zs P YˆX, and w :“ rw1, w2s :“ ry, z0s.
The inner product of z, w P Y ˆ X is defined as pz, wqYˆX :“ pz1, w1qY ` pz2, w2qX, and the

induced norm for any z “ rz1, z2s P Y ˆ X is given by }z}
2
YˆX :“ }z1}

2
Y ` }z2}

2
X. From the

definition of the inner product in YˆX, the definition of adjoint, and the fact that the identity
operator I is self-adjoint, we have B˚z “ A ˚z1 ` z2. Next, from Corollary 3.30 we know
that the minimizer satisfies

B˚Bz “ B˚w,

which is equivalent to

pA ˚A ` Iq z “ A ˚y ` z0.

Since pA ˚A ` Iq is injective18, Lemma 4.16 shows that it is continuously invertible, i.e.
›

›

›
pA ˚A ` Iq

´1
›

›

›
ă 8. Hence,

}z}X “

›

›

›
pA ˚A ` Iq

´1
pA ˚y ` z0q

›

›

›
ď

›

›

›
pA ˚A ` Iq

´1
›

›

›
p}A ˚} }y}X ` β }z0}Xq ,

that is, the solution x of the Tikhonov regularization (4.9) is not only unique but also depends
continuously on the data y, and this concludes the proof.

4.2. Application of adjoint in the wellposedness of linear operator equation. In this
section we are interested in the well-posedness (in the sense of Hadamard in Definition 4.13)
of operator equation A x “ y, where A : X Ñ Y is linear and continuous. Our exposition
follows [29] closely. We begin with a key result [6, 1, 29].

Lemma 4.18. Let A : X Ñ Y be linear and continuous. Then

A is bounded below ô Dα ą 0 : }A u}Y ě α }u}X ô

#

A is injective,

R pA q is closed.

Proof. We provide a proof in Proof 43.

The following result highlights the role of the adjoint operator A ˚ on the injectivity and
the closedness of R pA q, and hence the boundedness below of A .

Theorem 4.19. Let A : X Ñ Y be linear and continuous. The following are equivalent:
1) A ˚ : Y Ñ X is surjective.
2) A is injective and R pA q is closed.
3) There exists α ą 0 such that

}A u}Y ě α }u}X , @u P X.

4) There exists α ą 0 such that

inf
uPX

sup
vPY

pA u, vqY
}u}X }v}Y

ě α.

18From
`

A ˚A ` I
˘

z “ 0 we have 0 “
`

x,
`

A ˚A ` I
˘

z
˘

X “ }A x}
2
Y ` }x}

2
X and thus x “ θ.
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Proof. We only need to show 1q ô 2q as the equivalence between 2q and 3q is due to
Lemma 4.18, and 4q is simply a restatement of 3q. We have

A ˚ is surjective
õ

R pA ˚q “ X and thus R pA ˚q closed
õ The closed range Theorem 3.13

N pA q “ R pA ˚q
K

“ tθu and R pA q closed
õ

A is injective and R pA q closed.

The following twin counterpart of Theorem 4.19 characterizes the surjectivity of A via the
adjoint A ˚.

Theorem 4.20. Let A : X Ñ Y be linear and continuous. The following are equivalent:
1) A : Y Ñ X is surjective.
2) A ˚ is injective and R pA ˚q is closed.
3) There exists α ą 0 such that

}A ˚v}X ě α }v}Y , @v P Y.

4) There exists α ą 0 such that

inf
vPY

sup
uPX

pu,A ˚vqX
}u}X }v}Y

ě α.

Combining Theorem 4.19 and Theorem 4.20 we see that A is bijective iff A ˚ is bijec-
tive. The more popular statement that leads to the Banach-Nečas-Babuška theorem for the
variational equation is the following

Lemma 4.21. Let A : X Ñ Y be linear and continuous. The following are equivalent:
1) A is bijective

2) ‚ Dα ą 0 such that infuPX supvPY
pA u,vqY
}u}X}v}Y

ě α, and

‚ If pA u, vqY “ 0,@u P X, then v “ θ.

Proof. The proof is straightforward. Indeed, the first statement of 2q is the injectivity of
A plus the closedness of R pA q due to Theorem 4.19, and the second statement of 2q can be
written equivalently in terms of A ˚ as: “if pu,A ˚vqY “ 0,@u P X, then v “ θ”, which is
equivalent to “if A ˚v “ θ then v “ θ”, which in turn simply means N pA ˚q “ tθu, which then
means A is surjective owing to Theorem 4.20.

Example 4.22. Consider A : Rn ÞÑ Rm. We are interested in applying Lemma 4.21 to find
conditions for the linear system of equations Au “ y to have a unique solution. To that end,
we suppose A is bijective. Thus, both A and A˚ are injective. By the rank-nullity theorem
(3.12) we have

n “ dimpNpAqq ` dimpRpAqq.

Since A is injective, we have dimpNpAqq “ 0, and hence

n “ dimpRpAqq ď m.
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Following similar arguments for the injectivity of A˚, we have:

m “ dimpRpA˚qq ď n.

Therefore, it is necessary that n “ m for the bijectivity of A. Further, the inf-sup condition
in Lemma 4.21 says:

0 ă α ď inf
uPRn

sup
vPRn

pAu,vq

}u}Rn }v}Rn

ď inf
uPRn

}Au}Rn

}u}Rn

“ σminpAq.

ùñ 0 ă α ď σminpAq,

where σminpAq denotes the smallest singular value of A. We conclude the necessary and
sufficient for a linear system of equations Au “ y to have a unique solution is that the matrix
A is square and invertible. This is consistent with what we know from linear algebra.

Theorem 4.23 (Banach-Nečas-Babuška). Let A : X Ñ Y be the unique linear and continu-
ous operator (see Footnote 12) associated with a continuous sequilinear form a : X ˆ Y Ñ F
such that

pA u, vqY :“ a pu, vq , @u P X and v P Y,

where |a pu, vq| ď β }u}X }v}Y and 0 ă β ă 8. The following are equivalent:
1) For all y P Y, there exists a unique solution u P X such that

a pu, vq “ py, vqY , @v P Y.

2) There exists α ą 0 such that

C1) Dα ą 0 such that infuPX supvPY
apu,vq

}u}X}v}Y
ě α, and

C2) If a pu, vq “ 0,@u P X, then v “ θ.
Furthermore, when either of the statements holds then the unique solution is stable in the
following sense:

}u}Y ď
1

α
}y}Y .

Proof. The proof is obvious due to the definition pA u, vqY :“ a pu, vq, and thus the
equivalent of the variational equation a pu, vq “ py, vqY and A u “ y. Specifically, owing to
Lemma 4.21, statement 2q is equivalent to the bijectivity of A . The stability of the solution
u is the direction consequence of the boundedness from below of A :

α }u}X ď }A u}Y “ sup
vPY

pA u, vqY
}v}Y

“ sup
vPY

a pu, vqY
}v}Y

“ sup
vPY

py, vqY
}v}Y

“ }y}Y .

Remark 4.24. The condition infuPX supvPY
apu,vq

}u}X}v}Y
ě α, is known as the inf-sup condition,

and, as we have shown, it is nothing more than the restatement of the boundedness from
below of the associated linear operator A or equivalently the injectivity of A plus its closed
range.
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Example 4.25. Consider solving the diferential equation u1 :“ du
dx “ f in p0, 1q with up0q “

0 and f P L2p0, 1q. The corresponding weak form of the problem is formulated as: seek
u P H1

0p0, 1q :“ tu P L2p0, 1q, u1 P L2p0, 1q, up0q “ 0u such that:
`

u1, v
˘

L2 “ pf, vqL2 , @v P L2p0, 1q.

We choose X “ H1
0p0, 1q, Y “ L2p0, 1q and F “ R, and are going to use Theorem 4.23 to show

that the differential equation is well-posed.
The continuity of the bilinear form apu, vq is clear as

|apu, vq| “
ˇ

ˇpu1, vq
ˇ

ˇ ď
›

›u1
›

›

L2 }v}L2 ď }u}H1 }v}L2 .

We next verify the inf-sup condition Item C1). By a simple integration and the Cauchy-
Schwarz inequality (see also Example 4.35) we obtain the following the Poincaré-Friedrichs
inequality

›

›u1
›

›

L2 ě }u}L2 ,

and thus the inf-sup condition holds since

inf
uPH1

sup
vPL2

apu, vq

}u}H1 }v}L2

“ inf
uPH1

}u1}L2

}u}H1

ě
1

?
2
.

Now we verify the injectivity of the adjoint, i.e Item C2). We start from

(4.11)
`

u1, v
˘

L2 “ 0, @u P H1
0 p0, 1q .

Since C8
0 p0, 1q Ă H1

0p0, 1q, we have:
`

ψ1, v
˘

L2 “ 0, @ψ P C8
0 p0, 1q.

By definition of the distributional derivative we arrive at〈
ψ, v1

〉
L2 “ 0, @ψ P C8

0 p0, 1q,

which implies that v is a constant function. Now in (4.11) taking u “ x we have

ż 1

0
vdx “ 0,

which means v “ 0. Thus, the differential equation is well-posed with the setting X “ H1
0p0, 1q,

Y “ L2p0, 1q.

Example 4.26 (Friedrichs’ system). We consider the abstract problem A u “ y where A is
the Friedrichs’ operator defined in Example 4.5. We choose Y “ L2 pΩq and

X “ tx P HA : pD ´ Mqx “ 0 on BΩu ,

with the inner product pu,wqX :“ pu,wqY ` pBu,BwqY, and hence the induced graph norm

}u}X “

b

}u}
2
Y ` }Bu}

2
Y. We can show that A : X Ñ Y is bijective (see [29, Theorem 5.7]),

and thus applying Theorem 4.23 shows that A u “ y is well-posed for any y P Y. The beauty
here is that this single proof is applicable for a large class of PDEs [33, 30, 45, 31].
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When Y “ X and the sequilinear form is symmetric, the inf-sup condition is both necessary
and sufficient for bijectivity.

Lemma 4.27. Consider the variational equation a pu, vq “ py, vqX , @v P X, with a contin-

uous sequilinear form a : X ˆ X Ñ F. Suppose a p¨, ¨q is symmetric, i.e., a pw, vq “ a pv, wq.
Then, there exists a unique solution u iff

Dα ą 0 such that inf
uPX

sup
vPY

a pu, vq

}u}X }v}Y
ě α.

Proof. We need to prove only the second condition in the second statement of Theo-
rem 4.23, namely the injectivity of the adjoint in Item C2). But this is obvious due to
symmetry:

0 “ a pw, vq “ a pv, wq , @w P X ùñ 0 “ sup
wPX

a pv, wq

}w}X
ě α }v}X ùñ v “ θ.

Remark 4.28. Note that the symmetry of a pw, vq is equivalent to the self-adjointness
of its associate linear and continuous operator A defined in Theorem 4.23. Indeed, since
a : X ˆ X Ñ F, we have

pA w, vqX “ a pw, vq “ a pv, wq “ pA v, wqX “ pw,A vqX ,

which means A ˚ “ A .

On the other hand, when Y “ X and the sequilinear form is coercive, the condition for
bijectivity is simpler.

Lemma 4.29 (The Lax-Milgram lemma). Consider the variational equation a pu, vq “ py, vqX ,
@v P X, with a continuous sequilinear form a : X ˆ X Ñ F. If

(Coercivity) a pv, vq ě α }v}
2
X , @v P X,

then there exists a unique solution u and }u} ď 1
α }y}X.

Proof. We need to verify the two conditions in the second statement of Theorem 4.23.
The inf-sup condition in Item C1) is clear from (Coercivity) as

α }v}X ď
a pv, vq

}v}X
ď sup

wPX

a pv, wq

}w}X
.

For the injectivity of the adjoint in Item C2), we note that

a pw, vq “ 0, @w P X ùñ 0 “ sup
wPX

a pw, vq ě a pv, vq ě α }v}
2
X ùñ v “ θ.

When the sequilinear form is symmetric and positive, it turns out that (Coercivity) is
both sufficient and necessary.
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Corollary 4.30. Consider the variational equation a pu, vq “ py, vqX , @v P X, with a contin-
uous sequilinear form a : XˆX Ñ F, with continuity constant β. Suppose a p¨, ¨q is symmetric,
i.e., a pw, vq “ a pv, wq and positive, i.e., a pv, vq ą 0,@v ‰ θ. Then, there exists a unique
solution u iff the coercivity condition (Coercivity) holds.

Proof. Lemma 4.29 proves the sufficiency, and we need to show the necessity. Since the
sequilinear form a p¨, ¨q is symmetric and positive, it defines an inner product in X and the
induced norm is

}v}a :“
a

a pv, vq.

Thus, by the inf-sup condition, the Cauchy-Schwarz inequality, and the continuity of a p¨, ¨q,
we have

α }v}X ď sup
wPX

a pw, vq

}w}X
ď sup

wPX

a

a pv, vq
a

a pw,wq

}w}X
ď
a

β
a

a pv, vq,

and this ends the proof.

Example 4.31. We now consider the variational equation a pu, vq “ py, vqY where the bi-
linear form a pu, vq, the spaces X and Y, and other specifications are described in Example 4.3.
We have shown that a pu, vq is symmetric and continuous on H1

0 pΩq. It is clearly positive if
we assume that z is bounded away from ´8. What remains is to show that a pu, vq is coer-
cive. Recall the Poincaré-Friedrichs inequality (see, e.g., [29, 6, 16]) for H1

0 pΩq: there exists a
constant c depending on only Ω such that

c }u}L2 ď }∇u}L2 , @u P H1
0 pΩq .

It follows that for any v P H1
0 pΩq we have

a pv, vq “ pez∇v,∇vq
2
L2 ě einf z }∇v}

2
L2 ě min t1, cu

1

2
einf z }v}

2
H1 ,

and this ends the proof.

4.3. Application of adjoint to the Sturm-Liouville problem and generalized Fourier
series. In this section, we are interested in self-adjoint operator A in infinite dimensions.
Our exposition mostly follows [71]. To the end of this section, for any A P L pX,Yq we
assume that its domain D pA q Ď U is dense in X.

Definition 4.32 (Closed linear operators). A linear operator A P L pX,Yq is called closed iff
its graph

GA :“ tru,A us : u P D pA qu

is closed.

Clearly, any continuous linear operator is necessarily closed. The following are standard results
for closed operators [71].

Lemma 4.33. The following hold:
‚ If A is closed, so is A ˚.
‚ A is closed and D pA q “ U iff A P B pU,Vq.
‚ If D pA q “ U, then A ˚ is continuous, and hence D pA ˚q is closed.
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‚ If A is closed, then D pA ˚q is dense in V.

We consider operators with X “ Y in this section. Suppose V is dense in X and the

injection V Ñ X is compact, and for simplicity in writing we denote V compact
ãÝÝÝÝÝÑ

dense
X. Let A be

a linear operator A : D pA q Ă V compact
ãÝÝÝÝÝÑ

dense
X Ñ X with the domain defined as

D pA q :“ tx P V : A x P Xu .

We also assume that the associate sequilinear form a pu, vq :“ pA u, vqX is defined for u P D pA q

and v P V, and is continuous on V. Furthermore, we assume that the a pu, vq is V-elliptic in
the following sense: there exists c ą 0 such that

a pv, vq ` a pv, vq ě 2c }v}
2
V .

Finally, we assume that a p¨, ¨q is symmetric, i.e.,

a pu, vq “ a pv, uq, @u, v P V,

which is, again, equivalent to the self-adjointness of A on V. Recall that Lemma 3.21 holds
in this case: in particular, eigenvalues of A are real and its eigenfunctions corresponding
to distinct eigenvalues are orthogonal to each other. The following theorem provides further
characteristics of eigenpairs of A .

Theorem 4.34. Suppose all the aforementioned assumptions hold for A . Then, there is a
countable sequence of eigenpairs tλn, vnu

8
n“1 such that

‚ A vn “ λnvn, where }v}X “ 1,
‚ pvn, vmqX “ 0 for all n ‰ m,
‚ 0 ă λ1 ď λ2 ď . . . ď λn Ñ 8 when n Ñ 8, and
‚ tvnu

8
n“1 is a basis of X.

Proof. We sketch the proof and more details can be found in [72]. The keys are: i) the
V-elliptic condition implies coercivity of A on V. By Lax-Milgram Lemma 4.29, A : V Ñ

V1 ” V is a continuous bijection. The restriction of A on D pA q is thus surjective on X, and
A ´1 : X Ñ D pA q Ă V exists and is continuous by the coercivity; ii) the compact injection
of V in X then implies that A ´1 : X Ñ X is compact. Hilbert-Schmidt Theorem 4.9 then
ensures the existence of the eigenpairs µn, vn of A ´1, where tvnun is a basis of D pA q, and
hence the eigenpairs λi, vn of A where λn “ 1{µn; and iii) the V-elliptic condition also implies
A is closed operator and this leads to the conclusion that tvnu

8
n“1 is a also basis of X.

Theorem 4.34 provides a generalized Fourier series in X. In particular, for any function f P X,
we have

f “

8
ÿ

n“1

pf, vnqX vn,

where equality means convergence in the topology generated by the X-norm. Below are a few
special cases that lead to the standard Fourier series and a general Sturm-Liouville problem.
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Example 4.35. Consider the following Sturm-Liouville problem: seek λ and v such that

(4.12)

#

´ d2v
dx2 “ λv in Ω “ p0, 1q ,

v “ 0 on BΩ “ t0, 1u ,

where the derivative is understood in the classical sense sense. We solve this problem using
Theorem 4.34. To that end, we define the symmetric sequilinear form as

a pu, vq :“

ˆ

du

dx
,
dv

dx

˙

L2pΩq

“

ż 1

0

du

dx

dv

dx
dx,

for all u, v P V with V :“ H1
0 p0, 1q and thus the derivatives in a p¨, ¨q are understood in the

weak sense. Note that V compact
ãÝÝÝÝÝÑ

dense
X :“ L2 p0, 1q [71], and the continuity on V of a p¨, ¨q is

straightforward. By the fundamental theorem of calculus and Cauchy-Schwarz inquality we
can easily arrive at a Poincaré-Friedrichs inequality: @v P C1

0 r0, 1s

›

›

›

›

dv

dx

›

›

›

›

L2p0,1q

ě }v}L2p0,1q ,

which also holds for any v P H1
0 p0, 1q due to the density of C1

0 p0, 1q in V. This leads to the
V-ellipticity of a pu, vq as

a pv, vq ` a pv, vq ě }v}
2
H1

0p0,1q .

Thus, Theorem 4.34 ensures that there is a complete orthonormal eigenfunctions of A :
D pA q Ñ L2 p0, 1q in L2 p0, 1q, where D pA q :“

␣

w P H1
0 p0, 1q : A w P L2 p0, 1q

(

and pA u, vqL2p0,1q :“

a pu, vq for all u P D pA q and v P H1
0 p0, 1q. Let us determine what D pA q is. We have, by

definition of a p¨, ¨q,

pA w, vqL2p0,1q “
ş1
0

dw
dx

dv
dx dx @v P H1

0 p0, 1q

õ density of C8
0 p0, 1q in H1

0 p0, 1q

pA w,φqL2p0,1q “
ş1
0

dw
dx

dφ
dx dx @φ P C8

0 p0, 1q

õ definition of distributional derivative

pA w,φqL2p0,1q “

〈
´d2w

dx2 , φ
〉

@φ P C8
0 p0, 1q

õ

A w “ ´d2w
dx2 in L2 p0, 1q

As a result, D pA q “ H2
0 p0, 1q.

Each eigenpair λn and vn P D pA q satisfies

A vn “ λnvn in L2 p0, 1q ,

i.e,

(4.13) ´
d2vn
dx2

“ λnvn, in L2 p0, 1q ,
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which is equivalent to

vn “ ´

ż ż

λnvn dx dy,

Owing vn P D pA q, and the embedding of H1
0 p0, 1q in C0 p0, 1q (see, e.g., [16, Theorem 8.2])

the eigenvalue problem (4.13) holds in the classical sense, which is exactly the Sturm-Liouville
problem (4.12). Thus, eigenfunctions of the Sturm-Liouville problem (4.12) forms a complete
basis for L2 p0, 1q. By a simple integrations, we have vn “

?
2 sin pnπxq, n “ 1, 2, . . ., which is

exactly a Fourier basis (sine series) for L2 p0, 1q.

Corollary 4.36. Let V and X be given in Theorem 4.34. Suppose the sequilinear form a p¨, ¨q
is symmetric and continuous on V. Assume that there exists c ą 0 such that for some λ P R

a pv, vq ` a pv, vq ` 2λ }v}
2
X ě 2c }v}

2
V , @v P V.

Then, there exists an orthonormal sequence of eigenfunctions of A , which is a basis for X
and the corresponding eigenvalues satisfies ´λ ă λ1 ď λ2 ď . . . ď λn Ñ 8 when n Ñ 8.

Proof. Let us define the sequilinear b pu, vq :“ a pu, vq ` λ pu, vqX. The continuity and
symmetry of b p¨, ¨q are clear. The linear operator B associated with b pu, vq is given by
Bu “ A u ` λu for any u P D pBq ” D pA q, and b pu, vq “ pBu, vqX for all u P D pBq and
v P V. Furthermore, we have

b pv, vq ` b pv, vq ě 2c }v}
2
V , @v P V,

i.e., b pu, vq is V-elliptic. Theorem 4.34 thus applies to b p¨, ¨q. In particular, there exist
eigenpairs tγn, vnu

8
n“1 of B such that A vn ` λvn “ Bvn “ γnvn and 0 ă γ1 ď γ2 ď . . . ď

γn Ñ 8 when n Ñ 8. As a result, tλn, vnu
8
n“1 with λn :“ γn ´ λ, and thus ´λ ă λ1 ď λ2 ď

. . . ď λn Ñ 8 when n Ñ 8, and tvnu
8
n“1 being a basis of X, and this concludes the proof.

Remark 4.37. We can use Corollary 4.36 for Example 4.35 as well. In particular, we can
choose V “ H1 p0, 1q, and b pu, vq :“ a pu, vq ` λ pu, vqL2p0,1q is coercive on V for any λ ą 0
with c “ min t1, λu. The rest of the arguments are similar and the same results are obtained.

Example 4.38. Consider the following Sturm-Liouville problem: seek κ and v such that

(4.14)

#

´ d2v
dx2 “ κv in Ω “ p0, 1q ,

dv
dx “ 0 on BΩ “ t0, 1u ,

where the derivative is understood in the classical sense. The sequilinear a p¨, ¨q is defined the

same as in Example 4.35 with V :“ H1 p0, 1q and X :“ L2 p0, 1q. We still have V compact
ãÝÝÝÝÝÑ

dense
X :“

L2 p0, 1q [71]. The linear operator A associated with a p¨, ¨q defined via the identity pA u, vqX “

a pu, vq for all u P D pA q :“
␣

w P V : A w P X and dw
dx “ 0 on BΩ “ t0, 1u

(

, and v P V. Note
that unlike Example 4.35 in which the boundary conditions are naturally incorporated in V, we
have to build the boundary conditions in the definition of the domain of A in order to associate
a p¨, ¨q with the eigenvalue problem (4.14). The continuity and symmetry of a p¨, ¨q on V are
clear. Furthermore, a p¨, ¨q satisfies Corollary 4.36 for any λ ą 0 and c “ min t1, λu. Using a
similar argument as in Example 4.35, the eigenpairs λn, vn of A are exactly the solutions of
(4.14), and in particular vn “

?
2 cos pnπxq for n ě 1 and v0 “ 1. By Corollary 4.36, tvnu

8
n“0

is another Fourier basis (cosine series) for L2 p0, 1q.
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Example 4.39 (A more general Sturm-Liouville problem). We now generalize Example 4.35
and Example 4.38: seek κ and v such that

(4.15)

#

1
ρ

“

d
dx

`

p dv
dx

˘

` qv
‰

“ κv in Ω “ p0, 1q ,

αv p0q ` β dv
dx p0q “ 0, γv p1q ` δ dvdx p1q “ 0,

where ρ P C r0, 1s and ρ ą 0, p P C1 r0, 1s and p ă 0, and q P C r0, 1s. Here, the constants
α, β, γ, and δ satisfy α2 `β2 ‰ 0, and γ2 `δ2 ‰ 0. We take X :“ L2

ρ p0, 1q is the L2 p0, 1q space
with the weighted inner product: pu, vqL2p0,1q,ρ :“ pρu, vqL2p0,1q. We choose the sequilinear
form a p¨, ¨q as

a pu, vq :“

ˆ

p
du

dx
,
dv

dx

˙

L2p0,1q

` pqu, vqL2p0,1q ,

with the derivative understood in the weak sense. By taking V “ H1
ρ p0, 1q, where H1

ρ p0, 1q

is H1 p0, 1q based on L2
ρ p0, 1q, it is clear that a p¨, ¨q is continuous and symmetric on V. The

linear operator A associated with a p¨, ¨q is defined via the identity pA u, vqX “ a pu, vq for all
u P D pA q :“

␣

w P H1
ρ p0, 1q : A w P X, αw p0q ` β dw

dx p0q “ 0 and γw p1q ` δ dwdx p1q “ 0
(

, and
v P V. By a similar distributional argument as in Example 4.35, one can show that A w “
1
ρ

“

d
dx

`

pdwdx
˘

` qw
‰

in L2 p0, 1q. Furthermore, it is clear that a p¨, ¨q satisfies Corollary 4.36 for

any λ ą ´q and c “ min

"

›

›

›

ρ
p

›

›

›

´1

8
,
›

›

›

ρ
λ`q

›

›

›

´1

8

*

. We thus conclude that the eigenpairs λn and

vn P D pA q satisfy

(4.16)
1

ρ

„

d

dx

ˆ

p
dvn
dx

˙

` qvn

ȷ

“ λnvn,

which is equivalent to

vn “

ż

1

p

ż

ρ pλn ´ qq vn dx dy,

which, together with the embedding result in [16, Theorem 8.2], shows that the eigenvalue
problem (4.16) holds in the classical sense, which is exactly the Sturm-Liouville problem
(4.15). Thus, eigenfunctions of the Sturm-Liouville problem (4.15) forms a complete basis for
L2 p0, 1q. However, it is not so clear how to calculate the eigenpairs analytically as we have
done for the previous examples.

Example 4.40. Next, we consider the following Sturm-Liouville problem that is not covered
by Example 4.39: seek κ and v such that

(4.17)

#

´ d2v
dx2 “ κv in Ω “ p0, 1q ,

vp0q “ vp1q and dv
dx p0q “ dv

dx p1q ,

where the derivative is understood in the classical sense. The sequilinear a p¨, ¨q is defined
the same as in Example 4.35 with V :“ H1 p0, 1q and X :“ L2 p0, 1q. The linear operator
A associated with a p¨, ¨q defined via the identity pA u, vqX “ a pu, vq for all u P D pA q :“
␣

w P V : A w P X, vp0q “ vp1q and dv
dx p0q “ dv

dx p1q
(

, and v P V. Similar to Example 4.38,
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a p¨, ¨q is obviously symmetric and continuous on V. Furthermore, a p¨, ¨q satisfies Corollary 4.36
for any λ ą 0 and c “ min t1, λu. Using a similar distributional argument as in Example 4.35,
the eigenpairs λn, vn of A are exactly the solutions of (4.17), and in particular v0 “ 1 and
vn P

␣?
2 cos p2nπxq ,

?
2 sin p2nπxq

(

for n ě 1, which is the usual Fourier basis for L2 p0, 1q.

From the above examples, a few observations are in order. First, the view of (generalized)
Fourier series from self-adjoint Sturm-Liouville operators immediately provides a rigorous
convergence guarantee for the (generalized) Fourier series in the L2-sense. This view also
shows that there are other orthogonal bases for L2pa, bq and we can in principle find them
by solving the corresponding Sturm-Liouville eigenvalue problems. Second, the results also
show that L2pa, bq is a separable Hilbert space. Third, the results are not restricted to L2

spaces over compact subsets in R but are also valid for any compact subsets in Rn using tensor
product, dilation, and translation (see, e.g., [6]).

4.4. Application of adjoint in PDE-constrained optimization. We have seen the im-
portant role of adjoint in constrained optimization in subsection 3.5, especially constrained
optimization with equality constraints that have separable structure (see Corollary 3.56 and
Lemma 3.57). We have also seen how the adjoint looks like and how it helps compute the
gradient of deep neural networks (DNN) efficiently as backpropagation in subsection 3.6.
In this section, we shall work out the details of adjoint equation and the reduced gradient
for optimization problems constrained by partial differential equations (PDE-constrained op-
timization). We consider prototype steady state (time-independent) PDEs of elliptic and
hyperbolic types. The goal is to show we translate the abstract results in Lemma 3.57 to
concrete problems. This can serve as the baseline for carrying out the same task for different
PDE-constrained optimization problems. Other topics on PDE-constrained optimization can
be found in [57, 12, 11, 13, 52].

Example 4.41 (Advection-PDE-constrained optimization problem). Consider the following
PDE-constrained optimization problem

min
z,u

1

2

ż

Ω
u2 dΩ

subject to

β ¨ ∇u “ 0, in Ω,(4.18a)

β ¨ nu “ z, in BΩin,(4.18b)

where u P H1
β pΩq :“

␣

u : u P L2 pΩq and β ¨ ∇u P L2 pΩq
(

. See Example 4.4 for the definition
of other quantities in the constraint and the associated differential operator together with
its adjoint. This optimization problem is a special case of the abstract problem discussed in
Lemma 3.57. Note that for u P H1

β pΩq, its trace (in fact weighted trace with weight |β ¨ n|)

on BΩin belongs to L2 pBΩinq. The correct space for z is thus L2 pBΩinq with a weighted
norm (see Footnote 20). Since the constraints map ru, zs P X ˆ Z :“ H1

β pΩq ˆ L2 pBΩinq to

Y:“L2 pΩq ˆL2 pBΩinq, the Lagrange multiplier y “ rv, ws has two components v P L2 pΩq and
w P L2 pBΩinq, respectively. Our task is to find the explicit form of the first order optimality
condition (3.22) which, we recall, is a special case of the first order optimality condition via
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the Lagrangian multiplier Theorem 3.52. For practical PDE-constrained problem, the adjoint
operators rDuc pu0, z0qs

˚ y and rDzc pu0, z0qs
˚ y are subtlely coupled and we have to go back to

the Lagrangian functional in Theorem 3.52 to derive the optimality condition. To that end,
let us form the Lagrangian functional

L pz, uq “
1

2

ż

Ω
u2 dΩ `

ż

Ω
pβ ¨ ∇uq v dΩ `

ż

BΩin

pβ ¨ nu´ zq w ds,

and note that our optimization variable has two components ru, zs P H1
β pΩq ˆL2 pBΩinq. Take

an arbitrary direction rh, rs P H1
β pΩq ˆ L2 pBΩinq, the first order optimality condition (3.17),

with ru, zs in place of u0 and rh, rs in place of h, reads

⟨rv, ws ,Dc pru, zs , rh, rsq⟩Y “

ż

Ω
pβ ¨ ∇hq v dΩ `

ż

BΩin

pβ ¨ nh´ rq w ds,

which after integration by parts becomes

⟨rv, ws ,Dc pru, zs , rh, rsq⟩Y “ ´

ż

Ω
pβ ¨ ∇vqh dΩ `

ż

BΩin

β ¨ n pw ` vqh ds`

ż

BΩout

β ¨ nv h ds´

ż

BΩin

r w ds.

Here, we have restricted v in H1
β pΩq for the differential and integral operators to make sense.

The first order optimality condition (3.17) in this case reads: @ rh, rs P H1
β pΩq ˆ L2 pBΩinq,

ż

Ω
uh dΩ ´

ż

Ω
pβ ¨ ∇vqh dΩ `

ż

BΩin

β ¨ n pw ` vqh ds`

ż

BΩout

β ¨ nv h ds´

ż

BΩin

r w ds “ 0,

which, after taking r “ 0 and any h P H1
β,0 pΩq :“

!

u P H1
β pΩq : u|BΩ “ 0

)

, becomes

ż

Ω
uh dΩ ´

ż

Ω
pβ ¨ ∇vqh dΩ “ 0, @h P H1

β,0 pΩq ,

which implies19

´β ¨ ∇v ` u “ 0.

Consequently, the first order optimality condition reduces to: @ rh, rs P H1
β pΩq ˆ L2 pBΩinq ,

(4.19)

ż

BΩin

β ¨ n pw ` vqh ds`

ż

BΩout

β ¨ nv h ds´

ż

BΩin

r w ds “ 0,

which, by taking h “ 0 on BΩout and r “ 0, becomes

ż

BΩin

β ¨ n pw ` vqh ds “ 0,

19It is due to the fact that H1
β,0 pΩq is dense in L2

pΩq assuming Ω has segment property [4].
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which in turn gives20

w “ ´v on BΩin,

that is, the adjoint variables are not independent. This can be then substituted into (4.19) to
further reduce the first order optimality condition to

ż

BΩout

β ¨ nv h ds`

ż

BΩin

r v ds “ 0, @ rh, rs P H1
β pΩq ˆ L2 pBΩinq .

It follows that, by taking r “ 0 and using the surjectivity in Footnote 20, we conclude

β ¨ nv “ 0 on BΩout,

and thus
v “ 0 on BΩin.

In summary, the control equation (3.22c) becomes

(4.20) v “ 0 on BΩin,

and the adjoint equation (3.22b) reads

´β ¨ ∇v “ ´u in Ω,(4.21a)

β ¨ nv “ 0 on BΩout,(4.21b)

Note that the differential operator on the left side of the adjoint equation (together with the
homogeneous boundary condition) is exactly the adjoint operator we found in Example 4.4,
which is not a surprise. As can be seen, the adjoint equation describes a reverse flow with
´β velocity (compared to β in the forward equation) with (the derivative of) the objective
function, particularly the forward solution u, as the forcing. The control equation says that
at the optimal the forcing of the adjoint equation is such that the adjoint solution v on BΩin

must vanish. Clearly, one admissible solution is that the adjoint is identically zero and the
forcing u is identically zero. It then follows from the forward equation that z “ 0. This is not
surprising since, by inspection, the quadratic optimization under consideration has a solution
u “ 0 and z “ 0. The reduced gradient can be now computed for a given z via three steps: 1)
solve the forward equation (4.18) for u pzq, 2) solve the adjoint equation (4.21) for v pupzq, zq,
and 3) substitute vpu pzq , zq into the left hand side of (4.20) to obtain the reduced gradient.

Example 4.42 (Elliptic-PDE-constrained optimization problem).

min
z,u

J puq :“
1

2

ż

Ω

´

u´ uobs
¯2

dΩ

subject to

´∇ ¨ pez∇uq “ 0, in Ω,(4.22a)

u “ g, in BΩ,(4.22b)

20Note that this is true due to the fact that the trace operator γ : H1
β,0 pΩq Ñ L2

β¨n pBΩq is a continu-
ous surjection (see, e.g., [17]), where L2

β¨n pBΩq is L2
pBΩq with the weighted inner product pu, vqL2

β¨n
pBΩq

:“
ş

BΩ
|β ¨ n|uv ds.
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where uobs pxq is some reference/observational data, and the definition of the operator associ-
ated with the constraint and its adjoint are given in Example 4.2: in particular, z P C1 pΩq Ă

L2 pΩq. Here, g is the Dirichlet boundary data. This optimization is a special case of the
abstract one in Lemma 3.57. Thus, the constraint maps ru, zs P X ˆ Z :“ HA ˆ C1 pΩq to
L2 pΩq ˆ L2 pBΩq, and the Lagrange multiplier y “ rv, ws has two components v P L2 pΩq

and w P L2 pBΩq, respectively. Similar to Example 4.41, we go back to Lagrangian multiplier
Theorem 3.52 to derive the explicit form of the first order optimality condition. In this case,
the Lagrangian reads

L pz, uq “ J puq `

ż

Ω
r´∇ ¨ pez∇uqs v dΩ `

ż

BΩ
pu´ gq w ds,

and note that our optimization variable has two components ru, zs P HA ˆ C1 pΩq. Take an
arbitrary direction rh, rs P HA ˆC1 pΩq, the first order optimality condition (3.17), with ru, zs

in place of u0 and rh, rs in place of h, reads

ż

Ω

´

u´ uobs
¯

h dΩ `

ż

Ω
r´∇ ¨ pez∇hqs v dΩ `

ż

BΩ
hw ds

`

ż

Ω
r´∇ ¨ pezr∇uqs v dΩ “ 0.

We next restrict v P HA and integrate the second term by parts two times we arrive at:

(4.23)

ż

Ω

´

u´ uobs
¯

h dΩ `

ż

Ω
r´∇ ¨ pez∇vqsh dΩ `

ż

BΩ
hw ds´

ż

BΩ
ez∇h ¨ n v ds

`

ż

BΩ
ez∇v ¨ nh ds`

ż

Ω
r´∇ ¨ pezr∇uqs v dΩ “ 0, @ rh, rs P HA ˆ C1 pΩq .

Following a similar strategy21 as in Example 4.41 for (4.23) gives the adjoint equation

´∇ ¨ pez∇vq “ ´

´

u´ uobs
¯

, in Ω,(4.24a)

v “ 0, in BΩ.(4.24b)

Note that the differential operator on the left side of the adjoint equation (together with the
homogeneous boundary condition) is exactly the adjoint operator we found in Example 4.2,
which is not a surprise. The first order optimality condition is thus reduced to: @ rh, rs P

HA ˆ C1 pΩq ,

(4.25)

ż

BΩ
hw ds`

ż

BΩ
ez∇v ¨ nh ds`

ż

Ω
r´∇ ¨ pezr∇uqs v dΩ “ 0,

which, by taking r “ 0, gives,
w “ ´ez∇v ¨ n.

21Here we take h P C8
0 pΩq and r “ 0 to obtain the equation (4.24a) for v. To get the boundary condition

(4.24b), we then take h P C1
0 pΩq so that the normal trace ∇h ¨ n is surjective on L2

pBΩq.
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Similar to Example 4.41, we see that the second component of the adjoint variable y depends
on the first, hence v is in fact the only adjoint variable. The first order optimality condition
is further reduced to

ż

Ω
r´∇ ¨ pezr∇uqs v dΩ “ 0, @r P C1 pΩq ,

which—after integrating by parts, using the fact that v “ 0 on BΩ, and using the fact that
C1 pΩq is dense in L2 pΩq—gives the control equation

(4.26) ez∇u ¨ ∇v “ 0.

The reduced gradient can be now computed for a given z via three steps: 1) solve the
forward equation (4.22) for u pzq, 2) solve the adjoint equation (4.24) for v pupzq, zq, and 3)
substitute upzq and vpu pzq , zq into the left hand side of (4.26) to obtain the reduced gradient.

5. Conclusions. This paper has put together in one place the roles of adjoint in vari-
ous disciplines of mathematics, sciences, and engineering. The objective is to systematically
compile these materials on the same mathematical footing starting from the basic defini-
tions. We aim to provide a unified perspective and understanding of adjoint. This work
could give broader views and better insights into the application of adjoint beyond a single
community. We have established general results and then specified them to each application
with sufficient details including the connections among them. This paper is written as an
interdisciplinary tutorial on adjoint with results and applications in both finite-dimensional
and infinite-dimensional Hilbert spaces. We have shown how adjoint can solve problems and
facilitate progress in various fields through specific examples including linear algebra (e.g.
eigendecomposition and the singular value decomposition), ordinary differential equations (an
epidemic model), partial differential equations (of elliptic, hyperbolic, and Friedrichs’ types),
neural networks (feed-forward deep neural networks), least squares and inverse problems (with
Tikhonov regularization), and PDE-constrained optimization.
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Appendix A. Proofs of some results in the paper.

Proof for Example 4.2. We next find A ˚ and D pA ˚q. Take any v P D pA ˚q, by Defini-

https://phoices.netlify.app/
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tion 4.1 we have

pA u, vqL2pΩq “ pu,A ˚vqL2pΩq , @u P D pA q

õ @φ P C8
0 pΩq dense in D pA q

pA φ, vqL2pΩq “ pφ,A ˚vqL2pΩq

õ definition of distributional derivative

⟨φ,´∇ ¨ pez∇vq⟩ “ pφ,A ˚vqL2pΩq

õ

´∇ ¨ pez∇vq “ A ˚v P L2 pΩq

which shows that A ˚ “ A on D pA ˚q. Next, from

pA u, vqL2pΩq “ pu,A ˚vqL2pΩq “ pu,A vqL2pΩq , @u P D pA q and v P D pA ˚q ,

and integration by parts we conclude

´ pez∇u ¨ n, vqL2pBΩq ` pu, ez∇v ¨ nqL2pBΩq “ 0, @u P D pA q and v P D pA ˚q ,

with the assumption that the boundary integrals make sense. As a result, in addition to
∇ ¨ pez∇vq P L2 we need v P H1 pΩq and v “ 0 on BΩ. We conclude that D pA ˚q “ D pA q,
and A is self-adjoint.

Proof for Example 4.5. We now derive the adjoint A ˚ (and its domain) of the Friedrichs’
operator in Example 4.5. Proceed as in Proof 41, we can easily see that

A ˚v “ ´

n
ÿ

k“1

Bk pAkvq ` CT v P L2 pΩq ,

for any v P D pA ˚q. Thus D pA ˚q Ď HA . Next from

pA u, vqL2pΩq “ pu,A ˚vqL2pΩq , @u P D pA q and v P D pA ˚q ,

and integrating by parts, we obtain

pu,DvqL2pBΩq “ 0, @u P D pA q and v P D pA ˚q ,

which in turns yields Dv P N pD ´ Mq
K since u P N pD ´ Mq. We thus conclude

D pA ˚q “

!

v P HA : Dv P rN pD ´ Mqs
K
)

.

Proof of Lemma 4.18. For the necessary, the injectivity is clear. Now, let tyiu
8
i“1 Ă R pA q

and yi
Y
ÝÑ y and we need to show that y P R pA q. There exists txiu

8
i“1 Ă X : yi “ A xi. For
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any ε ą 0, there exists an integer n “ n pεq such that for all i, j ą n we have

α }xi ´ xj}X ď }A xi ´ A xj}Y }yi ´ yj}Y ă ε
ó

txiu
8
i“1 is Cauchy ùñ xi

X
ÝÑ x

ó continuity of A

y
Y

ÐÝ yi “ A xi
Y
ÝÑ A x,

and thus R pA q is closed.
For the sufficiency, R pA q is a Banach space due to its closedness. A : X Ñ R pA q is thus

bijective, which in turn implies A ´1 is linear and continuous owing to the Open Mapping
Theorem [16, 63, 6, 68]. Thus, let y “ A x, there exists β ą 0 such that

›

›A ´1y
›

›

X ď

β }y}Y ùñ }x}X ď β }A x}Y, and hence A is bounded below.
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