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Abstract

We present an extensive numerical investigation on the optimal choice of parameters defining the

double adaptivity algorithm presented by Demkowicz et al. [10]. In the original work 1D problems were

studied and preliminary 2D results were presented for the lowest order elements only. The present work

focuses on two 2D implementations: the first with a conforming test space, and the second one with a

weakly conforming test space for arbitrary order elements. The double adaptivity method is set within

the Petrov-Galerkin method with optimal test functions and key parameters (e.g. error tolerances, norm

weights, refinement factors and enrichment strategies) greatly impact its numerical performance. We

present an a-priori error estimate for the weakly conforming method, and compare its performance with

the conforming one showing a very similar behavior.

1 Introduction

Consider any well-posed variational problem, possibly in a non-symmetric functional setting:{
u ∈ U
b(u, v) = l(v) v ∈ V

(1.1)

where U, V are trial and test real Hilbert spaces, b : U ×V → R is a bounded bilinear functional, and l ∈ V ′.

We are interested in approximating a solution to this problem using finite-dimensional spaces Uh ⊂ U

and Vh ⊂ V of the same dimension, by solving the discrete problem:{
uh ∈ Uh
b(uh, vh) = l(vh) vh ∈ Vh.

(1.2)

The ideal Petrov-Galerkin Method (PGM) with Optimal Test Functions (OTF) [12] guarantees the

discrete stability of problem (1.2), the solution uh is the projection of the exact solution u into Uh in the

energy norm [20]:

‖u− uh‖E = inf
wh∈Uh

‖u− wh‖E, (1.3)
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where the energy norm is implied by the bilinear form b and test norm V as follows

‖u‖E = sup
v∈V

|b(u, v)|
‖v‖V

. (1.4)

The Optimal Test Function vh ∈ Vh corresponding to uh ∈ Uh solves the problem:{
vh ∈ Vh
(vh, δv)V = b(uh, δv) δv ∈ V

(1.5)

with (·, ·)V being the test inner product. Note that the OTF problem is dependent on the choice of test

norm and involves the inversion of the Riesz map of V .

Optimal test norm. Ideally we would like the norm we converge in to be the trial norm ‖ · ‖U . However

as noted in (1.4) the energy norm is not necessarily the same as the trial norm. For this to be satisfied we

need to make use of the so called optimal test norm :

‖v‖V,opt := sup
u∈U

|b(u, v)|
‖u‖U

. (1.6)

In some cases, one can analytically determine the optimal test norm. Amongst those cases we find the

ultraweak (UW) variational formulation for any system of linear partial diferential equations (PDEs) (in any

space dimension); and the primal formulation for the diffusion-convection-reaction equation with constant

coefficients (in 1D).

A noticeable disadvantage of using the optimal test norm, in the context of singular perturbation prob-

lems, is the development of boundary layers in the OTF that may be difficult to resolve. This limitation is

exacerbated in the practical discontinuous Petrov-Galerkin (DPG), resulting from replacing the whole space

V in problem (1.5) with a discrete subspace usually called the enriched test space. The resolution of such

functions, becomes problematic for small perturbation parameters [6].

There are two philosophies to avoid this problem:

1. Relinquish the optimality of the test norm and design problem-specific test norms in such a way that

the modified OTF do not develop boundary layers; this was the idea behind the robust test norms

studied by Chan, Heuer, Bui-Thanh and Demkowicz [6] .

2. Rely on adaptivity to improve the resolution of the OTF (or equivalently, the Riesz representation of

the residual when casting the PGM with OTF as a mixed problem). This idea originated from the

adaptivity and variational stabilization methods introduced by Cohen, Dahmen and Welper [7] and

led to the concept of the Double Adaptivity Method (DAM) presented by Demkowicz, Führer, Heuer

and Tian [10].

The DAM makes use of two (an inner and an outer) loops, which adaptively refine the meshes corre-

sponding to the trial and test spaces. Critical to the success of the double adaptivity is the existence of

a reliable a-posteriori error estimate for the inner adaptivity loop. Such an estimate, based on the duality

theory, has been developed in [10].

The Double Adaptivity Method. Problem (1.1) is cast into a mixed problem by introducing the Riesz

representation of the residual ψ (which is zero in the continuous level), and including the corresponding two

more terms:
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ψ ∈ V, u ∈ U
(ψ, v)V + b(u, v) = l(v) v ∈ V
b(δu, ψ) = 0 δu ∈ U.

(1.7)

It can be shown that, upon discretizing the trial space in (1.7), we get a semi-discrete mixed problem:
ψh ∈ V, ũh ∈ Uh
(ψh, v)V + b(ũh, v) = l(v) v ∈ V
b(δuh, ψ

h) = 0 δuh ∈ Uh ,
(1.8)

equivalent to the ideal PGM with OTF (1.2). Problem (1.8) seeks an approximate solution ũh ∈ Uh along

with the corresponding exact Riesz representation of the residual ψh ∈ V .

Eventually we discretize the test space as well, with Vh ⊂ V , arriving at the practical PGM with OTF:


ψh ∈ Vh, uh ∈ Uh
(ψh, v)V + b(uh, v) = l(v) v ∈ Vh
b(δuh, ψh) = 0 δuh ∈ Uh .

(1.9)

Function ψh provides an a-posteriori error estimate for the ideal PGM with OTF which can drive the

adaptive refinements of the trial space. However, what the practical method delivers is its approximation

ψh
1, which fails to serve as error estimator for the solution ũh if it is not close to the exact ψh.

In order to obtain a good approximation to ψh, the DAM proposes to determine an optimal discrete

test space Vh starting with an initial test mesh and then adaptively refining it. The adaptive process is

guided by an estimate of the difference ψh−ψh, constructed as the difference between the energy functionals

corresponding to the primal (original) problem and a dual problem (introduced in the following section).

Related work. Another strategy aiming to improve the resolution of OTF is to use splines along with

a Shishkin intra-element submesh for the test pace discretization [19]. This strategy, as well as the use of

Robust Test Norms, have been able to resolve convection-dominated diffusion problems with values of ε as

small as 10−5 but not smaller (in 2 space dimensions) [6] ; while the range of parameters we need to be able

to solve, in order to tackle compressible flow problems is of the order of 10−7.

Other methods similar to the PGM with OTF focused on convection-dominated diffusion problem are

1) the non-linear Petro-Galerkin Method developed by Houston, Roggendorf and van der Zee [16] based

on minimizing the residual in a dual Lp-norm, which generalizes the Petrov Galerkin framework to Banach

spaces, and demonstrate a complete elimination of the Gibbs phenomenon for convection-dominated diffusion

problems, and a class of meshes. 2) a similar LP -DPG method of Li and Demkowicz [18], which generalizes

the standard DPG based on Hilbert spaces to Banach which results in solutions less susceptible to Gibbs

phenomenon; 3) the Automatic Variationally Stable (AVS) method of Calo, Romkes and Valseth [5] which

uses C0 spaces for all the trial field variables and eliminates the use of independent trial trace variables.

1Notice that ψh in (1.8) and ψh in (1.9) are two different objects, identified by means of a superscript h and an underscript

h, respectively.
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Goal and scope of this work. This paper, as well as [10], focuses on convection-dominated diffusion

as a motivating and non-trivial example of a singular perturbation problem. But the methodology herein

presented applies to any well posed system of linear PDEs, including other singular perturbation problems.

An efficient implementation of the method results in a general code with broad applications able to solve

challenging problems.

In [10], numerical results in 1D and preliminary results in 2D with lowest order polynomials were pre-

sented. In this work we tackle hp meshes of arbitrary order, and we take on comparing the conforming PGM

with OTF against the weakly conforming PGM with OTF. The concept of weakly conforming test functions

will be introduced and elaborated in Section 4.1.

Outline. Section 2 presents the main ideas of the DAM and the corresponding practical algorithm. The

main focus is on the error estimator errV defined in (2.12), and the double adaptivity algorithm (1). Having

presented the general idea behind the DAM, we proceed with a discussion of the conforming discretization in

Section 3, the implementation within pre-existing high-order DPG focused software, and numerical studies

on the main parameters defining the algorithm. Then in Section 4 we present the weakly conforming

discretization. We present its a-priori error estimate and contrast it with the conforming estimate. Finally

we present numerical investigations aimed at comparing the two methodologies numerically.

2 The Double Adaptivity Method

Cohen, Dahmen and Welper [7] originaly proposed the idea of determining an optimal discrete test space

Vh using adaptivity, and Demkowicz et al. [10] developed an estimator for ψh − ψh (the difference in the

solution to the Riesz representation of the residual for the semi-discrete problem (1.8) and the solution the

fully discrete problem (1.2), to drive the adaptive process. For readers’ convenience, we summarize here the

derivation of the estimator and the double adaptivity strategy.

Consider the problem (strong formulation):{
u ∈ D(A)

Au = f
(2.1)

where:

A : L2(Ω) ⊃ D(A)→ L2(Ω), (2.2)

is a closed operator representing a system of first order PDEs with BCs reflected in the definition of D(A), Ω is

a bounded Lipschitz domain, and A∗ is the L2-adjoint of A. The corresponding ultraweak (UW) formulation

is obtained by multipliying (2.1) with a test function v ∈ D(A∗) and integrating by parts:{
u ∈ L2(Ω)

(u,A∗v) = (f, v) v ∈ D(A∗).
(2.3)

The quasi-optimal norm. The optimal test norm in the UW variational formulation according to (1.6)

is given by:

‖v‖Vopt
= ‖A∗v‖L2 , (2.4)
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Figure 2.1

frequently called the adjoint norm. An equivalent norm is additionally introduced, known as the adjoint

graph norm:

‖v‖2Vq−opt
= ‖A∗v‖2L2 + α‖v‖2L2 (2.5)

where α > 0; its corresponding energy norm no longer coincides with the L2 trial norm but remains equivalent.

For this reason, the adjoint graph norm has also been named the quasi-optimal test norm.

The addition of the L2 term makes the test norm localizable [20]; therefore, the norm (2.5) is suitable for

the PGM with broken test spaces, known as the Discontinuous Petrov Galerkin (DPG) method [13].

The semi-discrete mixed problem (in which (2.3) is embedded, as illustrated in (1.8)) corresponding to

the ultraweak formulation with the quasi-optimal test norm (the adjoint graph norm) results in :


ψh ∈ D(A∗), ũh ∈ Uh
(A∗ψh, A∗v) + α(ψh, v) + (ũh, A

∗v) = (f, v) v ∈ D(A∗)

(A∗ψh, δuh) = 0 δuh ∈ Uh.
(2.6)

The mixed problem (2.6) is equivalent to the constrained minimization of the (primal) functional J :

inf
ψ∈D(A∗)
A∗ψ∈U⊥h

1

2
‖A∗ψ‖2 + α

1

2
‖ψ‖2 − (f, ψ)︸ ︷︷ ︸

=:J(ψ)

= inf
ψ∈D(A∗)
A∗ψ∈U⊥h

J(ψ) (2.7)

where U⊥h is the L2 orthogonal complement of Uh.

Then the following dual problem is derived (see details in [10]) involving the dual functional J∗:

− inf
φ∈D(A)

1

2
‖φ⊥‖2 +

1

2α
‖f −Aφ‖2︸ ︷︷ ︸

=:−J∗(φ)

= sup
φ∈D(A)

J∗(φ) (2.8)

where φ⊥ is the L2-projection of φ onto the L2-orthogonal complement of Uh. This dual problem is equivalent

to another ’mixed-like’ problem:
φh ∈ D(A), w̃h ∈ Uh
(Aφh, Aδφ) + α(φh, δφ) −α(w̃h, δφ) = (f,Aδφ) δφ ∈ D(A)

−α(φh, δwh) +α(w̃h, δwh) = 0 δwh ∈ Uh .
(2.9)

Notice that while mixed problem (2.6) corresponds to a saddle problem, (2.9) corresponds to a double

minimization problem [10].
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Strict convexity of J and strict concavity of J∗ imply that its corresponding minimizer and maximizer

exist. Minimization of the primal functional yields a discrete minimum J(ψh) above the exact one J(ψh).

Maximization of the dual functional results in a discrete maximizer φh with corresponding discrete maximum

smaller than the continuous one J∗(φh) ≤ J∗(φh), see Fig. 2.1. Consequently, the following bounds hold:

J(ψh)− J(ψh)

J∗(φh)− J∗(φh)

}
≤ J(ψh)− J∗(φh). (2.10)

For a quadratic minimization problem

inf
u∈V

1

2
b(u, u)− l(u)︸ ︷︷ ︸

J(u)

where form b is symmetric and positive definite, the difference between the minimizer u ∈ V , and an arbitrary

element uh ∈ V , measured in the induced energy norm ( ‖ · ‖E := b(·, ·)1/2 ) is related to the energy J by:

‖u− uh‖2E = 2(J(uh)− J(u)) . (2.11)

Both, our primal (2.7) and dual (2.8) energies satisfy the conditions for (2.11), hence it follows:

‖ψh − ψh‖2E1
= 2J(ψh)− 2J(ψh)

‖φh − φh‖2E2
= 2J∗(φh)− 2J∗(φh)

}
≤ 2J(ψh)− 2J∗(φh) =: errV . (2.12)

Notice, however, that the energy norms (‖ · ‖E1
and ‖ · ‖E2

)for the primal and dual problems are different.

Finally, the right hand side of (2.12) can be expressed as the integral of non-negative terms:

2(J(ψh)− J∗(φh)) =
1

α

∫
Ω

{α(A∗ψh − φ⊥h )2 + (αψh − (f −Aφh))2}. (2.13)

The non-negativeness of the terms makes the local element contributions to the estimate (2.13) good can-

didates for element error indicators. Finally, note that the coefficient α weighting the L2 term of the test

norm is necessary to derive the dual problem and apply the duality gap estimate, which makes the adjoint

graph norm (instead of the optimal adjoint test norm) the default norm for the DAM. Using small values of

α gets us closer to the optimal test norm [10], but the duality gap error estimate deteriorates (as observed

in the numerical results to follow).
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With this, we arrive at the double adaptivity algorithm:

Algorithm 1: Double Adaptivity

Input: Initial trial mesh Uh

Output: Solution uh

Outer loop for i = 1to max iterU do

(Re)set the test mesh Vh to coincide with a globally enriched version of the trial mesh Uh

Inner loop for j = 1to max iterV do

Solve the primal and dual problems on the current meshes

Compute ‖ψh‖V and error estimate errV :=
√

2(J(ψh)− J∗(φh)) ≥ ‖ψh − ψh‖V
if errV /‖ψh‖V < tolV then

Exit inner loop

Adapt the test mesh Vh using test element contributions of err2
V

Compute norm of the solution ‖uh‖U and error estimate errU = ‖ψh‖V
if errU/‖uh‖ < tolU then

Exit outer loop

Adapt the trial mesh Uh using trial element contributions of err2
U

The trial error estimate errU refers to the ψh that has satisfied the inner loop convergence tolerance.

In the first instruction of the outer loop, “(re)setting the test mesh Vh to coincide with a globally enriched

version of the trial mesh Uh” means: first, copying the trial mesh Uh and corresponding data structure into

the test mesh Vh while maintaining the appropriate trial energy space (which in this formulation is different

from the test one); and then perform a global enrichment to ensure the satisfaction of dimVh > dimUh, see

Remark 2 in [10]. Fig. 2.2 illustrates the double adaptivity algorithm refining the trial mesh in the outer

loop and the test mesh in the inner loop (for each outer loop step, during the second task, a whole inner

loop is run until tolV is met).
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Figure 2.2: This diagram displays the first step of the outer loop and the first two tasks of the second step. It also

illustrates the first inner loop, displaying 3 steps (assuming, for illustrative purposes, that 3 were required to satisfy

the tolerance). There are 4 main tasks for each step of the outer loop, during the second task (resolve ‖ψh‖) a whole

inner loop is required. Each inner loop step contains 4 main tasks as well.

3 Conforming Discretization: Formulation and Numerical Results

As mentioned in the Introduction, the convection-dominated diffusion problem is used to illustrate the

methodology. {
u = 0 on Γ

−ε∆u+ β · ∇u = f in Ω .
(3.1)

The original problem is rewritten as a system of first order equations, introducing a new variable σ using

the formulation advocated by Broersen and Stevenson [4]:


u = 0 on Γ

σ − ε 1
2∇u = 0 in Ω

−ε 1
2 divσ + β · ∇u = f in Ω .

(3.2)

Introducing the first order operator A and the corresponding energy spaces, Equation (3.2) is cast in the

general strong formulation (2.1) : {
u ∈ D(A)

Au = f
(3.3)
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with f = (0, f) and:

u := (σ, u) ∈ D(A) := H(div,Ω)×H1
0 (Ω) ⊂ (L2(Ω))N × L2(Ω)

A : D(A)→ (L2(Ω))N × L2(Ω)

Au = A(σ, u) := (σ − ε 1
2∇u,−ε 1

2 divσ + β · ∇u)

D(A) = {u = (σ, u) ∈ (L2(Ω))N × L2(Ω) : Au ∈ (L2(Ω))N × L2(Ω), u = 0 on Γ .

(3.4)

The UW formulation corresponding to (2.3) results in: u ∈ (L2(Ω))N × L2(Ω)

(u, A∗v) = (f, v) v ∈ D(A∗) ,
(3.5)

with:
D(A∗) := D(A)

v := (τ, v) ∈ D(A∗) ⊂ (L2(Ω))N × L2(Ω)

A∗ : D(A∗)→ (L2(Ω))n × L2(Ω)

A∗v = A∗(τ, v) = (τ + ε
1
2∇v, ε 1

2 divτ − div(βv))

(3.6)

As mentioned in the previous section, the DAM requires the use of the adjoint graph norm (2.5) for the test

space.

Case study. The domain for the case study is the unit square, Ω = (0, 1)2, and a constant advection vector

β = (1, 0), homogeneous boundary conditions, and a right-hand side corresponding to the exact solution

u(x, y) =
− 1
επ2 (1− e−r2)

e−r1x − er1(1−x)−r2
cosπy ; r1,2 =

−1±
√

1 + 4ε2π2

−2ε
(3.7)

The problem is solved using high order polynomial spaces defined on rectangular elements, corresponding

to the exact sequence of tensor product polynomials of degree p.

3.1 Implementation

We use two different meshes defined on the same domain, the ‘trial mesh’ supporting the variables uh and wh,

and the test mesh for the variables vh, ψh and φh, each capable of independent adaptive refinements. Starting

from two topologically identical meshes, each of them is independently refined in an adaptive fashion, driven

either by errU (trial mesh) or errV (test mesh), as described by the pseudocode earlier.

A new implementation different from the one used for preliminary results in [10] was developed, by mod-

ifying the hp2D Fortran90 code developed by Demkowicz and collaborators [8] to support two independent

adaptive meshes. hp2D is a flexible, modular FE code that provides a globally conforming discretization of

all the usual energy spaces (in the present case, H1(Ω), H(div,Ω), L2(Ω)). Among other features, it supports

the following:

1. The Nédélec exact sequence of polynomial spaces of the first type for quadrilaterals and triangles.

2. Hierarchical shape functions that allow for the use of high order polynomial discretizations and local

p-refinements.

3. 1-irregular meshes (hanging or constrained nodes) and thus local h-adaptive refinements are possible.
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4. Coupled multiphysics problems.

5. Projection-based interpolation for geometry and BC data.

6. Static condensation for local element matrices.

7. Adaptive numerical integration, particularly important for problems with boundary layers or singular-

ities.

8. Orientation-embedded shape functions [15].

Two data structure arrays: ELEMS and NODES, contain all the geometrical and functional setting

information necessary to assemble and solve a multi-physics hp-adaptive finite element problem. ELEMS

contains the initial mesh topological data, information on locally supported physics variables, boundary

conditions and element-to-nodes connectivities for each element. NODES includes, for each mesh node, the

node type (vertex, edge or middle node), its corresponding DOF, geometric data, geneological information

for h-refinements (nodal father and sons) and polynomial order.

The double-data-structure technology is used, which consists of two sets of data structures: {ELEMS U,

NODES U} for the trial mesh and corresponding variables; and {ELEMS V, NODES V} for the test mesh

and corresponding variables. While the original hp2d supports adaptive mesh refinements, it does so for only

one mesh (the one determined by the information in ELEMS and NODES) and these data structures are

deeply engrained and utilized across the whole code, many times within routines with multiple nesting levels.

Modification of all involved routines to handle multiple meshes would entail extensive modification of the

whole complex codebase (element stiffness matrix computation, element residual computation, visualization

and solver interfaces, to name a few). Instead of such a major endeavour, the pair {ELEMS, NODES}
is defined as pointers, which allows defining two (or more) independent meshes’ variables ({ELEMS U,

NODES U}, {ELEMS V, NODES V}) as targets, while maintaining the same variable name being called

by all routines (the pointers themselves). As a results, there is less modification of fundamental routines

in exchange for strategical switching of the now pointer-type variables. New subroutines perform the mesh

switching and are called accordingly across the whole software.

Among the many processes that are favored by the double-data-structure technology, adaptivity is a key

one. Adaptive refinements of either mesh can be performed by using the same pre-existing local refinement

subroutines in both cases: using {ELEMS V, NODES V} as targets in the inner loop and {ELEMS U,

NODES U} in the outer loop.

Remark 3.1. The original aim was to use meshes that could be refined fully independently. However during

the development of this work, we converged to the strategy where, at the beginning of each inner loop, the

test mesh is reset to the current trial mesh (as described in the previous section). This results in an ultimate

test mesh being always a submesh of the trial mesh. For this reason the developed double-data-structure

technology is perhaps more general than needed. The possible simplifications are taken advantage of in the

implementation with weakly conforming spaces (see subsection 4.2).

Remark 3.2. Two solver interfaces were implemented, one for a Frontal solver [17] without pivoting and

one for MUMPS [2]. While the MUMPS solver presented no complications, the the Frontal encountered zero

value pivots which prevented it from delivering a solution for some polynomial degrees and some meshes.

We attribute this to the problem structure where element matrices (particularly for the primal problem)

include blocks of zeros which are not filled in before the front tries to reduce the corresponding equations.
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3.2 Numerical results

Given the multiple stages it involves (solution of primal and dual problems, estimation of errV = ||ψh−ψh||,
refinement of the test mesh and refinement of the trial mesh), there are a few different strategies and

parameters to be selected from that impact the overall performance. The most important ones are explored

and the corresponding strategies and values to be used are proposed below:

• Enrichment strategy for the initial test space of the inner loop.

• Inner loop refinement tolerance tolV ( in the resolution of ψh).

• Test mesh refinement strategy.

• Refinement factor for the test mesh.

• Refinement factor for the trial mesh.

• L2 weight α, in the test norm.

These experiments intend to provide a complete set of parameters defining the DOM for 2 dimensional

problems.

The following figures illustrate the DAM with a problem using ε = 10−2. Fig. 3.1 shows the first outer

loop step, and the resolution of its corresponding ψh via adaptive refinements of the test mesh. Once the

tolV is reached, the final ψh is used to drive the trial mesh adaptivity. The resulting mesh is displayed in

the first image (left column) of the Fig. 3.2; in the same figure, the right column displays its corresponding

inner loop. Fig. 3.3 shows the first 7 trial mesh adaptive refinements where the resolution of the boundary

layer is verified.

3.2.1 Solution convergence

Initially, the convergence of the method is confirmed and the agreement between the numerical residual

‖ψh‖V and the numerical error ‖u− uh‖U –which must be equivalent measures of the error according to the

theory [11]– is verified. These results make use of the strategies and parameters selected after the numerical

experiments detailed in the following sections, which are:

• h-enrichment strategy for the initial test space of the inner loop.

• Inner loop refinement tolerance tolV = 0.75

• Doerfler refinement strategy (test and trial mesh).

• Refinement factor for the test mesh FactD = 0.7 .

• Refinement factor for the trial mesh FactD = 0.7 .

• L2 weight in the test norm α = 1 .

In the present notation, pU and pV define the nominal polynomial degree of the exact sequence of finite

elements used to discretize the trial and test spaces correspondingly. Therefore the solution u, which lives

in L2, is approximated with polynomials of degree pU − 1. Fig. 3.4 shows the solution for ε = 10−2 using

different polynomial orders. These results numerically verify the agreement between our error estimate

errU = ‖ψh‖V and the error measured in the trial norm ‖u−uh‖U . The plots herein presented use total trial

DOF on the x-axis, so a slope of pU/2 is expected for optimal convergence in 2 space dimensions. Clearly,

better than optimal convergence rates are observed.
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Initial trial mesh Reset test mesh

Final test mesh (first outer loop step).

Figure 3.1: This figure illustrates the first outer loop step and the corresponding inner loop which takes 4 steps to

reach the tolerance tolV . For the first row, the colors indicate the polynomial degree of the elements, p = 2 for the

trial elements and p = 3 for the test. The following rows display the adaptive refinement of the test mesh, along with

the H1-component of ψh using a numerical scale from 0 to 0.1. In this problem, ε = 10−2.
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Refined trial mesh Reset test mesh

Final test mesh (second outer loop step)

Figure 3.2: This figure illustrates the second outer loop step and its corresponding inner loop which takes 3 steps to

reach the tolerance tolV . In the first row, the trial mesh displays the adaptive refinement along with the component

uh of the solution; and the test mesh displays the resetting (notice that the test mesh retains the its polynomial

degree, p = 3 in this example). The following rows display the adaptive refinement of the test mesh, along with the

H1-component of ψh using anumerical scale from 0 to 1. In this problem ε = 10−2.
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Figure 3.3: The first image (top left) displays the trial mesh and polynomial degree for its elements p = 2. The

following images (down, and right) display the adaptive refinements along with the uh component of the solution in

a scale from 0 to 1. In this problem ε = 10−2.
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(a) ε = 10−2, pU = 2, pV = 3 (b) ε = 10−2, pU = 3, pV = 4

(c) ε = 10−2, pU = 4, pV = 5 (d) ε = 10−2, pU = 5, pV = 6

Figure 3.4: Outer loop convergence of the Riesz representation of the residual ψ in the test norm (normalized) and

the L2 error of the solution u (normalized).
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3.2.2 Enrichment strategy

The PGM with OTF methodology requires an enriched test space to facilitate the satisfaction of the discrete

Ladyzhenskaya–Babuška–Brezzi (LBB) condition. The DAM requires such an enrichment strategy to be

effective at the beginning of the inner loop; later on, the h-refinement of the test mesh will naturally

keep increasing its dimension (so preserving the satisfaction of the LBB condition). The initial enrichment

can be performed by means of increasing the degree of the polynomial space used to discretize the test

space (a common strategy in DPG); or, alternatively, with uniform h-refinements of the test mesh –unlike

implementations of DPG with OTF with a single mesh, where enrichment by h-refinements is not possible.

Figure 3.5: Comparison of enrichment strategies, global h-refinement and increasing pV : ε = 10−2, pU = 2, pV

variable. This plot displays the evolution of (normalized) errU = ||ψh||V as the outer loop adaptively refines the trial

mesh, increasing the number of (trial) DOF.

Figures 3.5 and 3.7 present the convergence of errU = ψh (normalized by the L2 norm of our solution u).

The series dp1 and dp2 represent the use of an initial test mesh equal to the trial one and polynomials of

order pV = pU + dp1 and pV = pU + dp2 with dp1 = 1 and dp2 = 2; where pU is the polynomial order used

to discretize the trial space. The series hE1 and hE2 represent the use of a test mesh resulting from 1 and

2 global h-refinements of the trial mesh, respectively and pV = pU = 2.

It is clear that for ε = 10−2 the results are almost exactly the same, and for ε = 10−3 only hE2 shows

significantly poorer convergence. However, to better appreciate their differences, the impact in computational

cost is illustrated in Figures 3.6 and 3.8. In order to illustrate how computationally expensive inner loops

are for each enrichment strategies, we display one data point for each outer loop step. Each data point

relates the solution error estimate and the number of test DOF, that the inner loop required to achieve the

tolerance tolV . For a given value of errU , a smaller number of test DOF implies that the inner loop is less

expensive. All series start at about 100% with very similar number of test DOF, and evolve to improve the

resolution of errU by refining the trial and test meshes, thus moving to the left and up). This shows how

for a given abscissa, dp1 enrichment presents the smaller number of test DOF, making it a better strategy

(less expensive inner loops). This result may falsely be a-priori assumed since global h-refinements ‘waste’

16



Figure 3.6: Comparison of global enrichment strategies, global h-refinement and increasing pV : ε = 10−2, pU = 2,

pV variable. This plot displays the number of DOF in the test mesh which achieved the desired test tolerance tolV

(last inner loop step) and the value of errU for each outer loop step.

the extra DOF created where no improved resolution is required. However, we emphasize that the test mesh

does not intent to cater to the resolution of u but to the resolution of ψh, which may need a quite different

mesh to capture its behavior.
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Figure 3.7: Comparison of enrichment strategies, global h-refinement and increasing pV : ε = 10−3, pU = 2, pV

variable. This plot displays the evolution of (normalized) errU = ||ψh||V as the outer loop adaptively refines the trial

mesh, increasing the number of (trial) DOF.

Figure 3.8: Comparison of global enrichment strategies, global h-refinement and increasing pV : ε = 10−3, pU = 2,

pV variable. This plot displays the number of DOF in the test mesh which achieved the desired test tolerance tolV

(last inner loop step) and the value of errU for each outer loop step.
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3.2.3 Inner loop stopping condition.

Next, the impact of tolV is studied. It is used in the stopping condition of the inner loop:

if errV /‖ψh‖V < tolV then
Exit inner loop

In principle, it is desirable to get an approximation ψh as close to ψh as possible; meaning a small value of

our error estimate errV . However, a better approximation implies a greater computational cost during each

inner loop. In order to asses the quality in the resolution of ψh with respect to the inner loop cost, values

of tolV ranging from 5% to 100% are studied. The case without adaptive h-refinements for the test mesh is

included with label ‘none’. In it, a single inner loop step is performed and do not seek for any improvement

on the resolution of ψh, that is, it coincides with the traditional PGM with OTF. Fig. 3.9 shows the (outer

loop) convergence of ψh for ε = 10−2, where only very small differences are observed. Notice that the case

‘none’ displays a small increase at the second refinement step before joining the rest of the series’ behavior.

The differences are slightly more visible using ε = 10−3, shown in Figures 3.10 and 3.11 where only a few

selected values are displayed. Without improving the resolution of ψh the monotone reduction of the error

estimate errU is lost. In practice, this indicates that without the inner loop (i.e., without taking advantage

of the errV estimate) ψh is a ‘bad’ approximation to ψh, especially during the first (trial) refinement steps.

The largest value which still provides slightly better convergence behavior is tolV =0.75, so we choose it as

the most adequate value to be used. This value is further verified as a good choice in section 3.2.6 where

parameter α is studied.

Figure 3.9: Convergence of ‖ψh‖V /‖u‖ with respect to total trial DOF, for different values of tolV , with ε = 10−2,

pU = 2, pV = 3.

Additionally, Fig. 3.12 compares the convergence of ‖ψh‖V and ‖u−uh‖ for the different tolV values. For

tolV ≤ 75% both curves become almost indistinguishable right after reaching the ordinate 100%, whereas
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Figure 3.10: Convergence of ‖ψh‖V /‖u‖ with respect to total trial DOF, for different values of tolV , with ε = 10−3,

pU = 2, pV = 3.

for tolV > 75% both curves are congruent after reaching the ordinate 10%, reinforcing the notion of ψh not

being sufficiently well resolved before exiting the inner loop.
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Figure 3.11: Convergence of ‖ψh‖V /‖u‖ with respect to total trial DOF, for different values of tolV , with ε = 10−3,

pU = 2, pV = 3 (selected values).
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(a) ε = 10−3, pU = 2, pV = 3, tolV = 5% (b) ε = 10−3, pU = 2, pV = 3, tolV = 25%

(c) ε = 10−3, pU = 2, pV = 3, tolV = 50% (d) ε = 10−3, pU = 2, pV = 3, tolV = 75%

(e) ε = 10−3, pU = 2, pV = 3, tolV = 100% (f) ε = 10−3, pU = 2, pV = 3, tolV = None

Figure 3.12: Outer loop convergence of the Riesz representation of the residual ψh in the test norm (normalized) and

the L2 error of the solution uh (normalized), for different values of tolV .
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3.2.4 Test space: refinement strategies and refinement factor

The general idea of a refinement strategy is to refine elements with large contributions to the error estimate

err2
V . Two strategies are explored: the first one called the “greedy strategy”, is based on the “poor man

greedy hp algorithm” presented in [13] without p-refinement (it refines elements with large error contribu-

tions); the second one is the Doerfler strategy presented in [14] (it refines elements that account for a fraction

of the total error). Pseudocodes for both strategies are presented next, where coefficients FactG and FactD

are the so called refinement factors.

Algorithm 2: Greedy strategy

Input: Mesh Vh, element’s error contributions to err2
v

Output: Refined test mesh Vh

Find the element with greatest error contribution maxerr

for i = 1 to num. elems in Vh do

if element i contribution to err2
V > FactG ∗maxerr then

Mark element i

Refine marked elements

Algorithm 3: Doerfler strategy

Input: Mesh Vh, element’s error contributions to err2
v

Output: Refined test mesh Vh

Compute the total error totalerr

while referror < FactD ∗ totalerr do
From unmarked elements, find and mark element with greatest error contribution maxerr

Compute referror =
∑

marked elements

element error contribution

Refine marked elements

Results for the greedy strategy are presented in Fig. 3.13 displaying the convergence of the error estimate

errV for the first inner loop, with respect to the total number of test DOF for multiple values of FactG.

While the total number of DOF required to achieve a particular value of errV is very similar, they do not

represent similar performance. The whole inner loop for a FactG value of 0.3 requires only 9 steps, while

the 0.9 value requires more than 20; implying a much greater computational cost (recall that both primal

and dual problems are resolved at each inner loop step).

Similarly, results for the Doerfler strategy are shown in Fig. 3.14. Here, a smaller value of FactD presents

a slightly better convergence in errV than FactV = 0.7, 0.9, however it also implies a greater number of

steps to complete the inner loop. Since FactV = 0.7 presents only a slightly worse convergence with much

fewer steps, this value is favored.

Finally, in Fig. 3.15, both strategies with the best refinement factors are compared. The results are similar

with fewer number of steps required by the Doerfler strategy. For this reason, Doerfler with FactD=0.7 is

used in the subsequent experiments.
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Figure 3.13: Convergence of the gap in energies estimate for the first inner loop cycle using the greedy refinement

strategy, pU = 2, pV = 3, ε = 10−3.

Figure 3.14: Convergence of the gap in energies estimate for the first inner loop cycle using the Doerfler refinement

strategy, pU = 2, pV = 3, ε = 10−3.

24



Figure 3.15: Convergence of the Riesz representation of the residual (outer loop) using the greedy and Doerfler

refinement strategies, pU = 2, pV = 3, ε = 10−3.

3.2.5 Epsilon continuation and trial space refinement factor

Following the results from Section 3.2.4 (focused on the the inner loop), the Doerfler refinement strategy

is employed for the outer loop as well, and the effect of the refinement factor FactD is studied. Given the

fact that we are interested in small values of ε, results of using a continuation strategy on ε are herein

shown. Figures 3.16, 3.17 and 3.18 show the convergence results for a refinement factor FactD=0.7, 0.5,

0.3, respectively, with trial and test spaces of polynomial order pU = 2 and pV = 3. All values start with

ε = 10−2 and this value is cut in half once a errU/‖u‖ value of 1% is reached. To reach this error level when

ε = 10−4 all three plots show that a similar number of trial DOF are required. However, a greater value of

FactD implies much fewer outer loop steps for the same error reduction. For FactD = 0.7 (Fig. 3.16), three

steps are needed for each value of ε to reach 1% (other than ε = 10−2, clearly) whereas for FactD = 0.5

(Fig. 3.17) four steps are needed and for FactD = 0.3 (Fig. 3.18) 7 steps are needed, resulting in a much

greater computational cost without improved convergence.

Similar results are obtained with higher polynomial orders pU = 3 and pV = 4 as shown in Figures 3.19,

3.20 and 3.20, where using FactD = 0.7 requires only three or four outer loop steps and FactD = 0.3 requires

seven steps for most ε. For this reason, the value of 0.7 for FactD is chosen in the outer loop refinement

strategy.

Finally, in Fig. 3.22 the results are shown for high polynomial orders pU = 6, pV = 7, which display a

slightly better performance in terms of DOF.

25



Figure 3.16: Convergence using the continuation technique on ε, with a refinement factor of 0.7 for the trial mesh,

pU = 2, pV = 3.

Figure 3.17: Convergence using the continuation technique on ε, with a refinement factor of 0.5 for the trial mesh,

pU = 2, pV = 3.
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Figure 3.18: Convergence using the continuation technique on ε, with a refinement factor of 0.3 for the trial mesh,

pU = 2, pV = 3.

Figure 3.19: Convergence using the continuation technique on ε, with a refinement factor of 0.7 for the trial mesh,

pU = 3, pV = 4.
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Figure 3.20: Convergence using the continuation technique on ε, with a refinement factor of 0.5 for the trial mesh,

pU = 3, pV = 4.

Figure 3.21: Convergence using the continuation technique on ε, with a refinement factor of 0.3 for the trial mesh,

pU = 3, pV = 4.
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Figure 3.22: Convergence using the continuation technique on ε, with a refinement factor of 0.7 for the trial mesh,

pU = 6, pV = 7.

3.2.6 Role of parameter α in the energy functionals and the error estimator

In the definition of the test norm required by the DAM, the parameter α is required in order to formulate

the dual problem and ultimately obtain the estimator errV . To determine a good value for α, values of

different orders of magnitude are investigated. Clearly, α significantly impacts the value of both energy

functionals ((2.7) and (2.8)) and thus our error estimator errV . Fig. 3.23 presents the primal and dual

energies throughout the first inner loop for multiple values of α ranging from 10−2 to 103. Solid lines

correspond to the primal energies J , and dashed lines correspond to dual energies J∗. The plots allow to

observe the expected primal and dual energies convergence to a same value (for each pair), which should

correspond to J(ψh) = J∗(φh), so the series’ final value is taken as a good approximation to the exact energy.

Fig. 3.24 presents the energy curves normalized with the exact energy.

It is known that two major properties necessary for successful error estimators are efficiency and reliability

[1]. They are, respectively :

η ≤ C1‖e‖E , ‖e‖E ≤ C2η ,

where η is the error estimator, and ‖e‖E is the error in (its corresponding) energy norm, and constants C1 and

C2 are independent of the mesh. In the context of our estimate η = errV (for both problems), for the primal

problem ‖e‖2E = 2J(ψh) − 2J(ψh) and for the dual problem ‖e‖2E = 2J∗(φh) − 2J∗(φh). The inequalities

in (2.12) show that errV is a reliable error estimate for either problem with constant C2 = 1. Regarding

efficiency, there is no theoretical guarantee (see [10, Remark 7]), so we intend to assess that property with

numerical experiments. For that purpose, the so called effectivity index θ = η/‖e‖E is herein computed.

Having a bounded θ is an indication of efficiency of the estimator η (the bound being a candidate for the

above constant C1). Fig. 3.25 displays the behavior of θ as the test mesh is refined, for multiple values of

α. For α = 10−1, 10−2 the effectivity index is large, and thus such α values are not favored. Fig. 3.26 more

clearly illustrates that for α = 102 the index θ slightly degrades as the mesh is refined; the curve for α = 10

remains somewhat bounded below 1.5, while for α = 1 the effectivity index remains bounded below 2 with

slight improvements as the mesh is refined. Based on the effectivity index, either values of 1 or 10 could be

chosen, then for simplicity α = 1 is taken.
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Figure 3.23: Negative of primal and dual energies, ε = 10−2, pU = 2, pV = 3

Figures 3.27 (for ε = 10−2) and 3.28 (for ε = 10−3) show the evolution of our error estimator errV

normalized with ‖ψh‖ , which is the quantity employed for the inner loop stopping condition. Notice that

while the ideal normalization for errV would be ψh, at any point during the inner loop only ‖ψh‖ is known

and therefore the latter is used. Here it is observed that high values of α start with smaller errV but have

slower convergence rates, and small values of α have higher convergence rates but starting at larger errV

values. The convergence curves seem to meet close to 100%, and therefore tolV values close to this are less

sensitive to α and thus desirable in terms of our inner loop stopping condition. A tolV value of 75% satisfies

this criterion, and has been favored in the above studies as well.

Finally, in Fig. 3.29, it is verified that smaller values of α are favored as they retain the agreement

between errU (solid line) and the error in the L2-norm (dashed line); for α = 102 both curves do not mach

as quickly with adaptive refinements. This is coherent with the fact that small α values result in a test norm

closer to the ‘ideal’ one.
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Figure 3.24: Primal and dual energies normalized by the final value of energy, ε = 10−2, pU = 2, pV = 3.

Figure 3.25: Effectivity index for the first inner loop, ε = 10−2, pU = 2, pV = 3.
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Figure 3.26: Effectivity index for the first inner loop, ε = 10−2, pU = 2, pV = 3 (selected values).

Figure 3.27: Error estimator evolution, normalized by ||ψh||V ε = 10−2, pU = 2, pV = 3.
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Figure 3.28: Gap between the primal and dual energies, normalized by ‖ψh‖V ε = 10−3, pU = 2, pV = 3.

Figure 3.29: Energy norm of the Riesz representation of the residual and L2 error of the solution u. ε = 10−2, pU = 2,

pV = 3.
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4 Weakly conforming discretization

4.1 Weakly conforming vs. conforming methods

For a ultra-weak variational problem,{
u ∈ L2(Ω)

(u,A∗v) = (f, v) v ∈ D(A∗) ,
(4.1)

with

A : L2(Ω) ⊃ D(A)→ L2(Ω)

a closed operator representing a system of first order PDEs with BCs reflected in the definition of D(A),

and A∗ its L2-adjoint, the test space is equiped with the adjoint graph norm,

‖v‖2V = (v, v)V , (v, δv)V := (A∗v,A∗δv) + (v, δv) .

The graph spaces HA(Ω) and HA∗(Ω) are defined as:

HA(Ω) := {w ∈ L2(Ω) : Aw ∈ L2(Ω)}, HA∗(Ω) := {w ∈ L2(Ω) : A∗w ∈ L2(Ω)}.

Recall D(A) and D(A∗) are the corresponding subspaces of HA(Ω) and HA∗(Ω), respectively, which satisfy

the appropriate homogeneous boundary conditions.

Conforming discretization. Problem (3.2) can be discretized with the practical PGM with OTF as

follows. We select conforming subspaces Uh ⊂ L2(Ω), Vh ⊂ V := D(A∗), dimVh > dimUh, and introduce

the subspace V opt
h ⊂ Vh of discretely optimal test functions vh corresponding to wh ∈ Uh, given by:{

vh ∈ Vh

(vh, δvh)V = (wh, A
∗δvh) δvh ∈ Vh

The discrete problem looks as follows.{
uh ∈ Uh

(uh, A
∗vh) = (f, vh) vh ∈ V opt

h .
(4.2)

The Galerkin orthogonality property holds:

(u− uh, A∗vh) = 0 vh ∈ V opt
h .

We assume the satisfaction of the discrete inf-sup condition,

βh‖uh‖ ≤ sup
vh∈Vh

|(uh, A∗vh)|
‖vh‖V

= sup
vh∈V

opt
h

|(uh, A∗vh)|
‖vh‖V

(4.3)

Babuška’s argument [3] ,

‖u− uh‖ ≤ ‖u− wh‖+ ‖uh − wh‖ (triangle inequality with arbitrary wh ∈ Uh)

≤ ‖u− wh‖+ β−1
h sup

vh∈V
opt
h

|(uh − wh, A∗vh)|
‖vh‖V

(inf-sup condition ((4.3)))

= ‖u− wh‖+ β−1
h sup

vh∈V
opt
h

|(u− wh, A∗vh)|
‖vh‖V

(Galerkin orthogonality)

≤ (1 + β−1
h )‖u− wh‖ ,

34



leads then to the error estimate:

‖u− uh‖ ≤ (1 + β−1
h ) inf

wh∈Uh

‖u− wh‖ . (4.4)

In fact, a more sophisticated argument (for Hilbert spaces) gives a sharper estimate, [9, Lemma 4.1.1] ,

‖u− uh‖ ≤ β−1
h inf

wh∈Uh

‖u− wh‖ . (4.5)

Weakly conforming discretization. Let the mesh Th be a non-overlapping partition of Ω into open

elements with Lipschitz boundary, so that

Ω̄ = ∪{K̄;K ∈ Th}

and

Γh = ∪{∂K;K ∈ Th}

denotes the mesh skeleton. The resulting broken UW variational formulation is:{
u ∈ L2(Ω), û ∈ Û ,

(u,A∗hv) + 〈û, v〉Γh
= (f, v) v ∈ Vbr;

(4.6)

where Û is the appropriate space of traces defined on Γh, A∗h is the elementwise adjoint operator (i.e.,

(A∗hv)|K = A∗(v|K) ∈ L2(K) for every element K ∈ Th), Vbr := HA∗(Th) is the broken test space equipped

with the broken adjoint graph norm

HA∗(Th) := {w ∈ L2(Ω) : w|K ∈ HA∗(K) ∀K ∈ Th},

‖w‖2Vbr
:= ‖w‖2 +

∑
K∈Th

‖A∗(w|K)‖2︸ ︷︷ ︸
‖A∗

h
w‖2

in the understanding that A∗ is overloaded to be defined on each element, and 〈·, ·〉Γh
is the duality pairing

between space Û and the traces of HA∗(Th),

〈û, v〉Γh
:=

∑
K∈Th

〈û, tr vK〉∂K ,

where tr is an appropriate local trace operator on HA∗(K). An important detail when introducing broken

test spaces is that these contain the conforming test spaces, i.e., V ⊂ Vbr, and that the norm ‖·‖Vbr
restricted

to V is equivalent to ‖ · ‖V . From this point on, the broken norm is used for the conforming test spaces as

well.

By introducing a finite-dimensional approximation space for traces Ûh ⊂ Û and broken test functions

Vbr,h ⊂ Vbr, the discretization of the broken problem (4.6) with the PGM scheme with optimal broken test

functions results in: {
uh ∈ Uh, ûh ∈ Ûh

(uh, A
∗
hvh) + 〈ûh, vh〉Γh

= (f, vh) vh ∈ V opt
br,h

(4.7)
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where the space of optimal test functions V opt
br,h is the span of test functions vh defined by the variational

problem: {
vh ∈ Vbr,h

(vh, δvh)Vbr
= (wh, A

∗
hδvh) + 〈ŵh, δvh〉Γh

δvh ∈ Vbr,h
(4.8)

corresponding to (wh, ŵh) ∈ Uh × Ûh.

Introducing the subspace of weakly conforming test functions,

Vwc,h = {vh ∈ Vbr,h : 〈ŵh, vh〉Γh
= 0 ∀ ŵh ∈ Ûh} ⊂ Vbr , (4.9)

the formulation (4.7) can be seen as a non-conforming discretization of the original problem (3.2), namely,{
uh ∈ Uh

(uh, A
∗
hvh) = (f, vh) vh ∈ V opt

wc,h

(4.10)

where, analogously, the space of optimal weakly conforming test functions V opt
wc,h is the span of the functions

vh associated to each wh ∈ Uh that solve the problem{
vh ∈ Vwc,h

(vh, δvh)Vbr
= (wh, A

∗
hδvh) δvh ∈ Vwc,h

. (4.11)

Remark 4.1. Note that solution to (4.10) coincides with the standard DPG solution of (4.7). To see this,

it is convenient to recast both problems as mixed problems. The broken UW problem (4.7) is equivalent to:

ψh ∈ Vh, uh ∈ Uh, ûh ∈ Ûh

(ψh, vh) + b(uh, vh) + 〈ûh, vh〉 = (f, vh) vh ∈ Vh (a)

b(δuh, ψh) = 0 δuh ∈ Uh (b)

〈δûh, ψh〉 = 0 δûh ∈ Ûh (c)

(4.12)

where b(u, v) = (uh, A
∗
hvh). This problem has a unique solution assuming that the following inf-sup condition

is satisfied:

sup
vh∈Vh

|b(uh, vh) + 〈ûh, vh〉|
‖vh‖Vbr

≥ γ1‖(uh, ûh)‖ . (4.13)

The weakly conforming problem (4.10) is equivalent to:
ψ ∈ Vwc,h, uh ∈ Uh

(ψh, vh) + b(uh, vh) = (f, vh) v ∈ Vwc,h (a)

b(δuh, ψh) = 0 δu ∈ U (b)

(4.14)

and similarly has unique solution given that the inf-sup condition is satisfied:

sup
vh∈Vwc,h

|b(uh, vh)|
‖vh‖Vbr

≥ γ2‖uh‖ . (4.15)

Let (brψh,
bruh,

brûh) be the solution to (4.12); from (4.12)(b) and (c) brψ ∈ Vwc,h and (4.14)(b) is satisfied.

From (4.12)(a) (brψ, bru, brû) satisfy (4.14) (a) since 〈brûh, vh〉 = 0 for vh ∈ Vwc,h by definition of Vwc,h.

We have shown that both formulations are equivalent, but the advantage of using the whole broken space

Vbr,h (i.e., the DPG method) is that it enables testing with OTF without ever solving the global weakly

conforming OTF problem (4.11).
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How to estimate the error for this non-conforming discretization? One obvious answer is simply to

invoke the error estimate for the DPG method. Then an error estimate for the group variable uh := (uh, ûh)

can be obtained. But a more direct argument can also be used, aiming at the error estimation of uh only.

We unpack the argument behind the stability of broken formulation, and follow directly with Babuška’s

argument for error estimation.

To start, the inf-sup constant corresponding to the weakly-conforming test space is introduced:

β̃h‖uh‖ ≤ sup
vh∈Vwc,h

|(uh, A∗hvh)|
‖vh‖V

= sup
vh∈V

opt
wc,h

|(uh, A∗hvh)|
‖vh‖V

. (4.16)

Note that, due to the fact that the supremum is taken over a larger space, the new constant β̃h ≥ βh.

By Babuška’s argument, the derivation follows:

‖u− uh‖ ≤ ‖u− wh‖+ ‖uh − wh‖ (triangle inequality)

≤ ‖u− wh‖+ β̃−1
h sup

vh∈V
opt
wc,h

|(uh − wh, A∗vh)|
‖vh‖V

(inf-sup condition ((4.16)))

≤ ‖u− wh‖+ β̃−1
h sup

vh∈V
opt
wc,h

|(uh − wh, A∗vh) + 〈ûh − ŵh, vh〉Γh
|

‖vh‖V
(a zero term added)

≤ ‖u− wh‖+ β̃−1
h sup

vh∈V
opt
wc,h

|(u− wh, A∗vh) + 〈û− ŵh, vh〉Γh
|

‖vh‖V
(Galerkin orthogonality)

≤ (1 + β̃−1
h )‖u− wh‖+ β̃−1

h sup
vh∈V

opt
wc,h

|〈û− ŵh, vh〉Γh
|

‖vh‖V
.

The second term corresponds precisely to the consistency term in the classical Strang’s lemma. It can be

bounded with the best approximation error for trace û measured in the minimum energy extension norm,

sup
vh∈V

opt
wc,h

|〈û− ŵh, vh〉Γh
|

‖vh‖V
≤ sup

vh∈Vh(Th)

|〈û− ŵh, vh〉Γh
|

‖vh‖V
≤ ‖û− ŵh‖E

where
‖û‖2E =

∑
K∈Th

‖û‖2K,E

‖û‖2K,E = inf
U∈HA(K), U|∂K=û

‖U‖2HA(K)

‖U‖2HA(K) := ‖AU‖2L2(K) + ‖U‖2L2(K) .

Remark 4.2. The a-priori error estimates do not tell us which of the two discretizations versions: conforming

or weakly conforming, should deliver a smaller error. It is a ‘toss-up’. The weakly conforming version enjoys

a better (larger) inf-sup constant but the estimate includes now an additional consistency (trace) term.

A note of caution must be introduced here regarding the error estimates. The duality-based error esti-

mates provides a provable error estimate for ψh −ψh in the conforming discretization, but we also intend to

use it for the weakly conforming one without developing at this time the underlying theory, being aware of

the “crime” resulting from the failure of integration-by-parts formula for weakly conforming functions.
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Figure 4.1: Use of a single data structure for both meshes. The elements and nodes corresponding to each are

differentiated through flags. This is possible as the test mesh is always a sub-mesh of the trial one.

4.2 Implementation

Given that the weakly conforming discretization is equivalent to that corresponding to broken test spaces,

the implementation commonly used for the DPG method is used, with required modifications to incorporate

a sub-mesh for the test space. Unlike the implementation for the conforming discretization, the present case

uses a single data structure, having an extra flag to identify the trial elements and nodes belonging to the

trial mesh as well. Fig. 4.1 displays the conceptually overlapping elements, but using only one data structure.

This simplifies the programming implementation since the routines only actually operate on a single data

structure (although careful modifications are required for flagging the trial elements). Mesh refinements are

performed seamlessly, note that the test mesh is adaptively refined only within the inner loop, for which the

trial mesh remains fixed. Then after the trial elements’ contributions to err2
U are computed the test mesh

is no longer needed, the test elements (which are not flagged as trial) can be discarded and the trial mesh

is refined. Additionally, while the conforming method is based on monolythic construction of the mixed

method matrices, for the weakly conforming method the localization of the test norm is exploited in order

to perform static condensation of element test DOF.
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Figure 4.2: Convergence of the Riesz representation of the residual ψh for the conforming and weakly-conforming

discretizations, pU = 3, pV = 4, ε = 10−2.

4.3 Numerical results, comparison with conforming discretization

Since the a-priori error estimation cannot decide which of the two methodologies is superior, we proceed

with numerical experiments to compare the conforming and weakly conforming versions of the DAM. For

this purpose, values of ε = 10−2, 10−3 are used, and multiple polynomial degrees. Figures 4.2, 4.3 and 4.4

(with pU = 3, 4, 5, respectively and all with ε = 10−2) show the convergence of the Riesz representation of

the residual for the outer loop, where both discretizations (conforming and weakly conforming) present the

very same convergence since the pre-asymptotic regime. With smaller ε = 10−3 (Figures 4.5 and 4.6) only

small differences between conforming and weakly convergence are observed in the pre-asymptotic regime and

at very small error values. Overall, there is no significant difference between both methods’ convergence.

39



Figure 4.3: Convergence of the Riesz representation of the residual ψh for the conforming and weakly-conforming

discretizations, pU = 4, pV = 5, ε = 10−2.

Figure 4.4: Convergence of the Riesz representation of the residual ψh for the conforming and weakly-conforming

discretizations, pU = 5, pV = 6, ε = 10−2.
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Figure 4.5: Convergence of the Riesz representation of the residual ψh for the conforming and weakly-conforming

discretizations, pU = 2, pV = 3, ε = 10−3.

Figure 4.6: Convergence of the Riesz representation of the residual ψh for the conforming and weakly-conforming

discretizations, pU = 5, pV = 6, ε = 10−3.
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5 Conclusions

We have presented two implementations of the DAM along with extensive numerical investigations of the

parameters that define it. The key idea behind the method is to adaptively refine the test mesh and control

the error in the approximation of the Riesz representation of the residual ψh, with respect to the ideal one

ψh, i.e. ψh − ψh. The importance of closely approximating ψh relies on its use as error indicator in the

PGM with OTF, driving the adaptive refinements of the trial mesh. Before the DAM it was not possible

to asses the error incurred by this approximation (although Cohen et al. [7] proposed an a-posteriori error

estimation of a different Riesz representation of the residual, see Remark 3 in [10]). We propose values

for the key parameters of the method, using the convection-dominated diffusion problem as an illustrating

example.

We provide an a-priori error analysis for the weakly-conforming discretization (which is equivalent to the

broken spaces discretization) without asserting optimality of one methodology over the other. The broken

discretizations are frequently used within the PGM with OTF community (partly due to its advantageous

element-wise computation of OTF) with the expectation of convergence behavior similar to that of the

conforming discretizations. The numerical examples presented verify almost identical convergence curves,

which have not been reported before.

Before concluding, we mention notable limitations of our analysis. The DAM was used for the weakly

conforming discretization whereas the theory currently only covers conforming ones. Analysis for broken

(weakly conforming) discretizations as well as accounting for non-homogeneous boundary conditions remain

pending tasks.
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