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Abstract

Isogeometric analysis has received extensive attention in the last decade, but despite its merits,
many isogeometric models are still produced manually or semi-manually. In this work, we introduce
a new technique using Ricci flow and a carefully constrained minimization to convert trimmed and
faceted open geometries into watertight spline models free of trim and suitable for isogeometric
analysis with potential for automation. This technique is used to rebuild parts of the US Army’s
DEVCOM Generic Hull vehicle and portions of a 1996 Dodge Neon finite element model into trim-
free spline models. Isogeometric modal analysis is performed on each to show the viability of this
reconstruction framework in generating IGA-suitable splines for shell analysis.

Keywords:
Quadrilateral layout, global parameterization, spline reconstruction, trim, shell analysis,
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1. Introduction

Engineering shell structural analysis requires an integrated design-through-analysis framework.
Under the current paradigm, a designer creates computer-aided design (CAD) geometry to define
the intended shape by combining a set of smooth B-spline or NURBS patches into a so-called
“boundary representation” or “B-Rep” (which may simply be a midsurface, or “open” B-Rep); an
analyst then replaces it with a finite element mesh that only approximates the original CAD geom-
etry. Not only is the precise geometry of the model lost in this procedure (which alone may have
significant implications [53]), but underlying physics of the analysis may also be lost. Additionally,
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this process takes a significant amount of time (over 70% of the design-through-analysis process)
[6, 27] and money [11]. Regarding the analysis of these faceted meshes, traditional finite element
techniques for shells struggle with locking (which is alleviated by increasing polynomial degree
[2]) and numerically-induced large spurious eigenvalues (which increase with increased polynomial
degree [40]). For operations such as explicit dynamics, where the maximal time step is inversely
proportional to the square root of the maximum eigenvalue [4, p. 335], increasing polynomial degree
leads to a reduction of time step size and a concomitant increase in computational effort.

Isogeometric analysis (IGA), proposed in [39], aims to address these issues by using the same
smooth basis functions employed in CAD for engineering analysis. Isogeometric techniques can
be used to directly solve (without resorting to mixed methods) high order PDEs like the Kirch-
hoff-Love shell formulation [45, 61] and to represent physics using smooth spline functions [39, 40].
Isogeometric methods are more accurate per degree of freedom than traditional finite element meth-
ods [25, 73, 74] and can operate directly on the B-spline and NURBS geometries created in CAD
without the need for an auxiliary faceted mesh [36, 39]. Furthermore, the smoothness of isogeomet-
ric basis functions alleviate modal “outliers” introduced with traditional finite element techniques
[41, 64, 73], and increasing basis function smoothness and polynomial degree accordingly reduces
locking [3, 62, 92, 93]. Isogeometric shells admit high-accuracy, high-sparsity quadrature routines
unavailable for traditional shells [92]. And finally, isogeometric techniques offer the potential of
a single model suitable for both engineering design and analysis, reducing the time and expense
associated with meshing.

Unfortunately, CAD models are not simply curvilinearly mapped rectangles, as are the B-spline
and NURBS patches from which they emanate. Rather, CAD technologies piece B-spline and
NURBS patches together to define the boundary of an intended object, a computational represen-
tation called a B-Rep. Midsurfaces of these models, called open B-Reps, are created analogously.
For models with complicated geometry or topology, Boolean operations are typically employed to
portray the intended shape by masking unwanted parts of the underlying spline patches [26, p.
304–307], [12, 58]. Aspects of this construction process are displayed in Figure 1. Visually, the
results portray the intended design, but these Boolean (a.k.a. “trimming”) operations hide what
is often a complex computer representation (see Figure 2). Trimming breaks spline function conti-
nuity [26, p. 305], [58], complicates numerical integration [46, 60, 68], and requires weak coupling
of subdomains [34, 71, 72, 75]. Because CAD software cannot exactly represent general trimming
operations [44, 76], approximations are made that lead to tiny gaps and overlaps between surface
edges that should be coincident [58, 77]. This leads to surfaces that are not “watertight.” [58, 77].

In this paper, we propose a new framework for converting open midsurface CAD geometries
into isogeometric analysis-suitable, trim-free B-Reps using discrete surface Ricci flow and metric
optimization. In this framework, a trimmed CAD model is converted into an easy-to-compute,
feature-aware surface triangulation with a topologically-constrained number of cone singularities
(defined in Section 2). From there, the discrete surface Ricci energy is minimized to determine a
flat metric on the surface with cone singularities: this metric can be thought of as an immersion
of a cut version of the surface into the Euclidean plane, or a locally-bijective “parameterization.”
Subsequently, this parameteriztion is transformed into one that induces a quadrilateral layout on
the surface. A quadrilateral layout can be thought of as a coarse quadrilateral partitioning of
the surface that can be refined as much as desired while still guaranteeing a valid quadrilateral
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Figure 1: A typical B-Rep geometry will consist of a topological gluing of multiple B-spline and NURBS
tensor product patches mapped into a spatial configuration. In the presence of complicated topology
or geometry, trimming operations—which mask portions of the tensor product spline—are ubiquitous.
These trimming operations, though useful in rapid design prototyping, impede the use of the B-Rep in
engineering analysis. This particular B-Rep is a sample engine turbine from Rolls Royce.

refinement. Subsequently, the original CAD model is rebuilt using this computed layout as the
skeleton for a set of quadrilateral watertight spline patches. Because this method employs a feature-
aware triangulation for the quadrilateral parameterization computation, it works equally-well in
converting a faceted mesh into a feature-aware smooth spline surface.

1.1. Prior Work

Two approaches have arisen to address the issues related to analysis of trimmed B-Rep models.
The first, primarily driven by the analysis community, aims to address the issues of trimmed B-
Reps by employing various generalizations of the classical cut cell method [46, 68, 75]. Here,
cut elements are addressed using specialized integration techniques (see e.g. [46, 60, 68] and [9,
p. 87-95]), numerical stabilization [19, 20, 57, 59], and weak enforcement of both connectivity and
boundary constraints [34, 71, 72, 75]. This approach has seen significant progress of late [10, 34, 33],
with recent works performing explicit dynamics computations on trimmed industrial B-Reps [51],
but additional efforts are still needed to ensure robustness in the presence of poorly shaped trimmed
parametric spaces.

The other primary approach aiming to address analysis of trimmed CAD models seeks to rebuild
a trimmed B-Rep prior to use in analysis. Many methods have been developed to rebuild a trimmed

3



Figure 2: A trimmed B-Rep engine turbine from Rolls Royce (top-left) portrays an intended geometry, but
the underlying computational representation visualized after removing trimming features reveals that the
model is defined by a complicated data structure bearing very little resemblance to the intended geometry.

spline into a set of trim-free Bézier, B-spline, or NURBS patches by subdividing a trimmed patch’s
parametric domain into more regular shapes [66, 67, 77, 88]. These techniques work well when the
original model already meets high quality criteria, but generally cannot perform well on models for
which the designer prescribed a poor parametric spline definition. Unfortunately, many models of
engineering interest (including that of Figure 2) may not meet the requisite quality criteria, and
reconstruction using these techniques is difficult, and sometimes impossible. Alternatively, recent
works aim to redefine the B-Rep’s underlying parametric domain by computing a global repa-
rameterization using an auxiliary feature-aware surface triangulation [7, 8, 13, 14, 22, 54]. Unlike
typical analysis-suitable meshing methods that are predominantly well-structured quadrilaterals [5]
and are labor-intensive to produce, the triangulations necessary for these reparameterizations can
be unstructured and are easily-defined [81, 82, 83]. After computation of a quadrilateral-layout
inducing reparameterization, splines are then fit to the computed layout. To date, many of these
global reconstruction techniques have required significant user intervention [37, 87], require expen-
sive mixed-integer optimization [7, 8, 14, 54, 56], are limited by the use of templates [1, 55] or certain
types of singularities [30, 48, 49], or suffer from robustness issues [36]. Many are based on the frame
field methods proposed in the computer graphics community [8, 47, 63, 69, 79], which frequently
employ mixed-integer optimization [7, 8, 14, 54] and require heuristics to address errors introduced
by the non-integrability of frame field vectors [24, 54, 79]. These methods generally cannot guar-
antee a locally-injective parameterization, meaning that some elements are either degenerate or
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possess non-positive Jacobian.

1.2. Contributions

In this work, a global reparameterization technique is defined and employed in rebuilding both
trimmed and faceted geometries of industrial relevance. Unlike many other global reparameteriza-
tion methods, however, it does not require the use of mixed-integer optimization, and the resulting
parameterization is guaranteed to have a well-defined inverse locally. Specifically, we make the
following contributions.

• We define a set of generalized criteria on a triangulation that, if satisfied, yield a quadrilateral
layout on the surface (Section 2).

• In Section 3.3, we present a set of partial differential equations that, in combination with
Ricci flow, yield a quadrilateral layout-inducing parameterization on a faceted surface.

• We employ the technique in Section 4 to extract trim-free spline surfaces from the US Army’s
trimmed CAD model of the Unclassified DEVCOM Generic Hull vehicle [23] and from the
National Crash Analysis Center’s (NCAC’s) finite element model of a 1996 Dodge Neon [28].
Extracted spline spaces include ones for which previous methods are known to fail (see [36]
and [35, Appendix B]).

• Additionally, in Section 4 we demonstrate, using the isogeometric analysis capabilities in
the commercial solver LS-DYNA, that the defined spline surfaces are suitable for use in
isogeometric shell analysis.

The first contribution gives a general characterization that, if met, ensures that the computed
parameterization on a triangulation defines a quadrilateral layout. The second provides an alter-
native approach for computing such a parameterization. The third and fourth demonstrate the
potential of the proposed technique in creating isogeometric analysis-suitable shells from trimmed
and faceted models. Finally, conclusions and future work are discussed in Section 5.

2. Definition of a Quadrilateral-Inducing Parameterization

This section is foundational but necessarily mathematical. It utilizes concepts from differential
and algebraic topology and geometry with which many readers may not be familiar. We invite
readers unfamiliar with this material to scrutinize figures in this section to attain at least a visual
comprehension of the ideas.

Because the NURBS-based B-Rep is the predominant computational representation of CAD
geometries, the target object of this work is a non-degenerate set of NURBS splines redefining
the original geometry without any trimming. This could be thought of as a coarse, curvilinear
quadrilateral mesh, called a quadrilateral layout, defined by a set of splines. This characterization
emphasizes that each spline is a curvilinear quadrilateral, but leaves the global objective that the
splines must fit together precisely along boundaries unaddressed. Such a local-to-global character-
ization is not amenable for computation, and so a different representation is necessary.
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Figure 3: A contrived quadrilateral layout on an annulus (left) is induced by a mapping of the cut annulus
into the Euclidean plane (right). Here, the point in blue is a cone singularities of valence five and the point
in red is a cone singularity of valence three. Cuts to cone singularities are given in red, while cuts to make
the bracket a topological disk are in blue. Boundary curves are in dark green, while non-boundary integral
curves are given in black. The coordinate differentials, du and dv, when traced from singular points and
pulled back from the Euclidean plane to the original surface, integrate into curvilinear arcs partitioning
the surface into a set of quadrilaterals. These differentials are depicted as black lines of constant u and v
coordinates in the immersion, and curvilinear black arcs when pulled back to the original surface.

Additionally, the trimmed spline spaces defining a CAD object also are not amenable for com-
putation without weak coupling. As such, these geometries are converted to a feature-aware un-
structured surface triangulation by, for example, triangulating individual parametric domains and
mapping these triangulations using the surface mapping, taking care that nodes on on surface
boundaries align appropriately. Given this triangulation, a global parameterization inducing a
quadrilateral layout on the surface is defined by the following criteria of Definition 2.1. Two sam-
ple parameterizations satisfying all of these criteria are depicted on a contrived example for an
annulus in Figure 3 and for a bracket of the DEVCOM vehicle in Figure 4. These criteria may best
be understood pictorially, and the reader is invited to study Figures 5 through 9, in conjunction
with Figures 3 and 4 for best comprehension.

Definition 2.1 (Quad Layout Immersion). Let S be an oriented,1 triangulated surface with a
prescribed set of singular points, P . Take G as a graph along edges of S making S − G a (set

1Surfaces of engineering interest are oriented. Non-orientable surfaces are objects like the Möbius band.
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Figure 4: A quadrilateral layout on a bracket of the DEVCOM Generic Hull vehicle (left) is induced by
a mapping of the cut bracket into the Euclidean plane (right). Here, points in blue are cone singular-
ities of index −1 (valence five), points in red are boundary cones of index 1, and points in purple are
boundary cones of index −1. Feature points of the model that are not cone singularities in the defined
parameterization are displayed in green. Cuts to cone singularities are given in red, while cuts to make
the bracket a topological disk are in blue. Feature curves to be preserved in the computed layout are in
dashed black. The coordinate differentials, du and dv, when traced from singular points and pulled back
from the Euclidean plane to the original surface, integrate into curvilinear arcs partitioning the surface
into a set of quadrilaterals. These differentials are depicted as black lines of constant u and v coordinates
in the immersion, and curvilinear black arcs when pulled back to the original surface.

of) topological disk(s) such that P ⊂ G ∪ ∂S (hereafter called a cutting graph). With this
representation, we assume that each edge through which G passes is represented as two edges in
S −G, and similarly that vertices of S are split into multiple representations in S −G (see Figure
5). Then a continuous map Ψ : S − G → R2 that generates a quadrilateral layout (called a quad
layout immersion) satisfies the following criteria.

Q1 Local injectivity: all but a discrete set of points (specifically, not singularities) have a neigh-
borhood that is locally invertible (see Figure 6).

Q2 For each vertex v of the triangulation on S, take U(v) to be the one-ring neighborhood (a.k.a.
the closed star [38]) of v, with T a triangle of U(v). For ease of notation, also write U(v)
as the set of triangles in the cut representation S −G, where now v may be cut, and is to be
understood as the vertex incident to T after cutting. Define ∠

(
v,Ψ(T )

)
as the inner angle of
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Figure 5: A bracket with computed singular and feature points is cut into a topological disk. Singular
points are shown in red, purple, and blue, with those in red and purple representing boundary cone
singularities of index 1 and −1, respectively, and blue points representing interior cone singularities of
index −1 (valence five). Points in green are features of the bracket that are not chosen to be cone
singularities in the parameterization. Cuts to singularities are depicted in red, while cuts to make the
bracket a topological disk are in blue. Curves in dark green and dashed black are the surface boundary
and features, respectively. Notice that each singular point is either in the cutting graph or the surface
boundary. Edges in the cutting graph are represented twice in the cut surface, vertices that are cut through
are multiply represented, and vertices at the termination of the cutting graph are singly represented.

Ψ(T ) incident to vertex Ψ(v). Then the following holds:

∑
T∈U(v)

∠
(
v,Ψ(T )

)
=


2π if v 6∈ P and v is in the interior of S

π if v 6∈ P and v is on the boundary of S
kπ
2

for k ∈ Z if v ∈ P
(1)

(See Figure 7 for an example in which k = 5.) Furthermore, a discrete version of the Gauss-
Bonnet theorem holds:∑

v 6∈∂S

(
2π −

∑
T∈U(v)

∠
(
v,Ψ(T )

))
+
∑
v∈∂S

(
π −

∑
T∈U(v)

∠
(
v,Ψ(T )

))
= 2πχ(S), (2)

where χ(S) is the Euler characteristic of the surface.2

2Recall that for a triangulated surface with V vertices, E edges, and F faces, χ(S) = V − E + F , and is a

8



Figure 6: A bracket of the DEVCOM Generic Hull vehicle is triangulated, and the neighborhood of one of
its vertices is shown in green and subsequently mapped via a quad layout immersion map, Ψ. Additionally,
all triangular faces on the sides of a particular homological cut are represented in either red or cyan and
similarly mapped. Under the immersion, the image of the bracket is no longer injective: for example, the
map takes portions of the vertex’s neighborhood to the same coordinate locations that are part of the
cyan side of the cut. However, an inverse is well-defined locally throughout the surface, including for each
of these colored neighborhoods.

Q3 Each connected component of ∂S−G is mapped by Ψ to a line with constant u or v coordinate
(see Figure 8).

Q4 Let each arc of G be written by ωi, be given an orientation, and be parameterized by arc length.
Under S − G,ωi is represented by ω+i and ω−i on the left and right side of ωi, respectively,

with parameterization consistent with ωi. Then Ψ
(
ω−i(t)

)
= T

(
Ψ
(
ω+i(t)

))
for T : R2 → R2

a translation and rotation by kπ
2
, k ∈ Z (see Figure 8).

Q5 Lines emanating from singularities under the immersion with constant u or v coordinate value,
when pulled back to S −G, either

1. Terminate at a (possibly identical) singularity

2. Terminate transversely to the boundary

topological invariant.
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Figure 7: The cutting graph of a surface—shown as a solid line, a dashed line, and a dash-dot line—splits
this singular point into three child vertices. Accordingly, the neighborhood is split into three different
portions, shown in blue, dark green, and dark magenta. Under the immersion mapping, the sum of the
interior angles of this vertex with its incident triangles is 5π

2 , making the point a cone singularity of index
−1 (i.e. valence five).

3. Are transverse to the cutting graph G

In the final case, the line is continued inductively across the cut using the transformation T
prescribed in Item Q4 (see Figure 9). All such sets of lines are finite, i.e. they achieve Item
(1) or (2) twice.3 The set of these curves emanating from singularites are frequently called
separatrices.

Furthermore, if these conditions hold, then any curve generated as in Item Q5 at any point on
the surface will be finite (either periodic, part of the separatrices, or terminating transverse to two
boundaries). These curves are called isocontours or integral curves.

These criteria are presented in the smooth setting in [80]. The prescribed set of vertices P are
called cone singularities. If the set of cone singularities satisfies Equation 2, it is said that the
set is “admissible.” Property Q3 is referred to as the boundary-alignment constraint. For frame
field-based parameterization methods, Property Q1 is referred to as integrability of a frame field

3In the case that S is an annulus with no singularities or a torus with no singularities, the same holds after
artificially calling an arbitrary regular point the surface’s only singularity and proceeding as before.
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Figure 8: A cut version of an annulus with a valence three (red) and a valence five (blue) singularity has
subdomains of its boundary labeled. Because the cut surface is a topological disk, members of the cutting
graph are also included. Under the quadrilateral layout inducing parameterization, Ψ, curves 1 and 3 are
mapped to lines of constant v coordinate and curves 6 and 8 are mapped to lines of constant u coordinate.
After a translation, curve 2 rotated by π

2 radians counter-clockwise (CCW) aligns with curve 7, and curve
4 matches curve 5 after rotation by π

2 radians CCW, and curve 9 matches curve 10 after rotation by 3π
2

radians CCW.

[21]. Properties Q1, Q2, and Q4 together define a so-called “seamless surface parameterization”
[15]. Property Q5 is frequently satisfied by obeying integer-grid constraints [7, 8, 14, 24, 54].
Alternative characterizations of a quadrilateral layout as a special Riemannian metric on a surface
and as a meromorphic quartic differential are given in [17] and [50, 91], respectively.

In a spline parameterization, the aforementioned cone singularities are referred to as “extraordi-
nary points” or “star points,” particularly when located in the interior of the surface. The valence
of a spline node is defined as the number of spline edges emanating from the node. Extraordinary
points correspond to boundary nodes whose valence is not three, or interior nodes with valence not
equal to four. Because extraordinary points are not commonly defined on boundaries and because
these cone singularities live on the surface triangulation, we define the index of a vertex, v, on the
surface triangulation as

I(v) =


2
π

(
2π −

∑
T∈U(v) ∠

(
v,Ψ(T )

))
if v 6∈ ∂S

2
π

(
π −

∑
T∈U(v) ∠

(
v,Ψ(T )

))
if v ∈ ∂S.

(3)

Accompanying the index, the following Gauss-Bonnet condition holds, which is equivalent to that
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(a) (b)

(c) (d)

Figure 9: An integral curve emanating from a singular curve in the −du coordinate direction is extracted
(a line of constant v in the immersion). On the right of each subfigure is the integral curve under the
quad layout immersion, Ψ, while on the left the integral curve of the pullback, Ψ∗, of the coordinate
function differential into the spatial domain is shown. After reaching the cutting graph, the integral curve
is continued in the −dv coordinate direction on the opposite side of the cut: the direction and location for
continued integration is prescribed by Property Q4, and will generate a continuous curve in the spatial
domain. This particular integral curve terminates when it returns to the singular point from which it
began.

in Property Q2: ∑
v∈S

I(v) = 4χ(S). (4)

The index is an integer-valued function defining the discrete contribution of a point to the surface’s
total curvature. Regular points have index zero, while cone singularities will have non-zero values.
A cone singularity v corresponds to a point of valence 4 − I(v) if v is in the interior of S, and a
point of valence 3− I(v) if it is on the boundary.

Definition 2.1, though long and a bit arduous, provides a global, computationally-amenable
framework for defining a quadrilateral surface parameterization. Given this characterization, the
following section defines a set of partial differential equations used to produce such a parameteri-
zation.
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3. Computation

Given the global recharacterization of a quadrilateral layout as a special type of immersion
mapping into the Euclidean plane, as described in Definition 2.1, we proceed to define how to
realize this characterization. Figure 10 walks through this reconstruction process for a contrived
yet instructive example of a plate with a hole and a single feature curve, and will be referred to
throughout this section.

3.1. Selection of Singular Points

After having extracted a feature-aware triangulation of the B-Rep (or having subdivided a
faceted mesh into a triangulation), a set of singular points must be defined that obey the Gauss-
Bonnet condition of Equation 2 (or equivalently Equation 4). For surfaces, this discrete Gauss-
Bonnet condition is analogous to the discrete Poincaré-Hopf theorem for frame fields presented in
[47, 70].

For this work, we employ the frame field method of [36], which combines aspects of [47] and [63],
to automatically place a set of cone singularities. When the prescribed mesh is sufficiently smooth,
the results of [47] guarantee that an admissible set of cones is prescribed. However, if the mesh lacks
smoothness, has a number of features, or requires prescription of extraordinary points not of valence
three or five, manual adjustment may need to be performed. Additionally, the engineer should
check to see if the cones are placed in geometrically meaningful locations; if not, the problematic
cones should be repositioned for a higher-quality spline reconstruction. For instance, Figure 11 (a)
shows cone singularities automatically computed using the frame field method of [36]: while many
singularities are well-placed, some cluster in a way that would benefit from singularity merger,
and additional singularities must be introduced because the mesh lacks smoothness necessary to
guarantee the Gauss-Bonnet condition of [47]. Instead, these automatically computed singularity
positions for a Dodge Neon firewall are manually adjusted to satisfy Gauss-Bonnet, for better
positioning, and to combine clustered low-valence singularities into higher-valence ones. All cones
of the reference example, Figure 10, were placed manually. Better placement of these cones in an
automatic or semi-automatic manner for featured geometries is a topic for future research.

3.2. Discrete Surface Ricci Flow

After selection of an admissible set of cone singularities (obeying the Gauss-Bonnet condition of
Equation 2), a flat metric on the surface with cone singularities is computed using discrete surface
Ricci Flow [18, 29, 31, 42, 90]. A thorough discussion of discrete surface Ricci flow is presented
in [42], with a generalization to less regular meshes given in [90]. Here we briefly review the basic
concepts related to this flow.

3.2.1. Ricci Computation

Every surface, S, embedded in R3 with a triangulation, T, inherits the Riemannian metric of
R3. Here, each face Tijk with vertices vi, vj, vk inherits lengths from Euclidean space and angles
obeying the typical law of cosines:

`2
ij = `2

jk + `2
ki − 2`jk`ki cos

(
∠(vk, Tijk)

)
(5)
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Figure 10: The layout reconstruction process is shown for a contrived, but instructive example. In (a), a
set of cone singularities are prescribed, with two interior cones of index −1 (valence 5), one interior cone
of index −2 (valence 6), and four boundary cones of index 1. Cuts are made to each cone and to make the
surface a topological disk, with edges of the disk labeled in clockwise manner; a feature curve is also shown
as a dashed line and labeled using an “a.” In (b), the surface is immersed into the plane based on the
computation of discrete surface Ricci flow. This immersion does not induce a feature-aligned quadrilateral
layout because the feature curve is not a line of constant u or v coordinate and because the boundary
curves on the reentrant corners of the L-shaped immersion are also not lines of u or v coordinates. This
parameterization is minimized against a quadrilateral layout-inducing energy to yield (c), an immersion
that induces the quadrilateral layout of (d). In addition to the boundary curves and the feature curve “a,”
the black lines of (c) and (d) are integral curves from the singular points yielding the quadrilateral layout.
Regions of magenta hatching are locations in which the immersion maps, though locally invertible, are not
globally invertible.
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(a) Automatically Computed Singularities (b) Manually Adjusted Singularities

Figure 11: On the left, singularities are automatically computed using [36], which combines the theory
from [47] and [63]. Because of the high clustering of cone singularities in this configuration, singularities
were manually modified to combine valence five singularities (blue) into valence six singularities (cyan) in
the regions of high clustering (right). Note that the automatically-computed locations clarify potential
positions for the manually-adjusted configuration.

where `ij is the length of the edge between vi and vj, and ∠(vk, Tijk) is the interior angle of triangle
Tijk at vertex vk. Take V as the set of all vertices in the surface triangulation.

Defining the discrete Gaussian curvature at a vertex on the surface to be

Ki ≡ K(vi) =

{
2π −

∑
T∈T,vi∈T ∠(vi, T ) if vi 6∈ ∂S

π −
∑

T∈T,vi∈T ∠(vi, T ) if vi ∈ ∂S,
(6)

then the following discrete Gauss-Bonnet theorem holds [32, p. 252–253]:∑
vi∈V

Ki = 2πχ(S). (7)

From here, a parameter γi is selected for each vi : this represents the length of the radius of a circle
about vi for a discrete circle-packing metric on the surface [18, 42, 90]. Taking a conformal factor

ui = log (γi) (8)

(with potential choices of ui given in [42, 90]), discrete Euclidean surface Ricci flow is governed by
the following nonlinear, partial differential equation:

∂ui
∂t

= K̄i −Ki, (9)

where K̄i is the input target curvature. Recall that in this instance, K̄i will be zero for all non-
singular points and predefined based on the type of cone singularity for all other points.

Alternatively, discrete surface Ricci flow can be recast as the unique minimizer of the following
convex energy,

E(u) =

∫ u

0

n∑
i=1

(K̄i −Ki), (10)

where n is the number of vertices in V. Newton-like methods can be used to efficiently minimize
this energy [42, 90].
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Figure 12: After minimizing the discrete Ricci flow energy, the cut surface with flat metric can be isomet-
rically immersed into the Euclidean plane using the law of cosines of Equation 11 in conjunction with the
lengths and angles depicted in this figure.

3.2.2. Metric Immersion

Upon solving for each ui by minimizing Equation 10, the surface has a flat metric with cone
singularities. This is converted to an immersion mapping into the two-dimensional Euclidean plane
by transforming the computed conformal factors to circle radii (using Equation 8), and using a
fixed, conformal edge weight cos(φij) in conjunction with the following law of cosines (see Figure
12):

`2
ij = γ2

i + γ2
j + 2γiγj cos (φij). (11)

After one surface triangle, T , has been immersed into the plane with arbitrary rotation, neighboring
triangles are then mapped into the plane and glued to an edge of T in a similar manner. Proceeding
until all surface faces have been visited once will effectively define a map from a cut version of the
surface into the Euclidean plane. For the sake of computational simplicity, it is often preferable
that these cuts go to, but not through singular points (meaning that a small neighborhood of every
singular point is a single connected component under the cutting operation). Recall the set of these
cuts, G, is the cutting graph.

For genus zero surfaces with boundary, the surface can be immersed into the Euclidean plane
using this metric to satisfy Properties Q1, Q2, and Q4 of Definition 2.1 [17], leaving only boundary-
alignment, feature alignment, and finite-length integral curves to be addressed. More general
surfaces will of necessity only satisfy Properties Q1 and Q2. Because we always assume that the
surfaces here are open shells (so genus zero with boundaries), we additionally assume that there is
an edge in the boundary of S that, under this immersion mapping, has constant u or v coordinate;
if not, perform a rotation to make this true.

Figure 10 (b) depicts the immersion of a cut version of a plate with a hole—Subfigure (a)—
into the Euclidean plane based on surface Ricci flow. Here, cuts to cone singularities are shown
in red (edges 4, 5, 7, 8, 15 and 16), while cuts to make the surface a topological disk are given by
edges in blue (edges 2 and 10). This computed map is locally injective, but does not induce a
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feature-aligned quadrilateral layout because the feature curve, curve “a,” is not constant in either
u or v coordinate. Furthermore, the edge boundaries on the reentrant corners of the L-shaped
immersion are not actually constant in u or v, though they are nearly so. This immersion will
be transformed into the quadrilateral layout-inducing parameterization of Figure 10 (c) using the
following techniques.

3.3. Minimization against a Layout-Inducing Energy

Having parameterized the surface by immersing it into the plane, it now remains to trans-
form this parameterization into one that induces a quadrilateral layout, and thus meets all of the
requirements of Definition 2.1.

Because all of Definition 2.1 must be enforced, there will accordingly be a variety of con-
straints on surface subdomains. These subdomains will be written using the following symbols:
Γu,Γv,Γ

feature
u ,Γfeature

v , and ΓHolk , k ∈ {0, 1, 2, 3}. Each of these constrained subdomains is geomet-
ric in nature and can easily be visualized: without this appeal to geometry, however, the notation
can be heavy. To alleviate this issue, we first present these subdomains on our reference example,
Figure 10, prior to defining the minimization problem and the definition of these symbols. It may
be helpful to refer to Figure 10 throughout this section. In this figure, boundary curves curves
1, 3, 9, 11, and 13 comprise the set Γu, boundary curves 6, 12, 14, and 17 comprise Γv, and the fea-
ture curve “a” defines Γfeature

v . The edges of 4 and 5 should be related to one another via ΓHol1 or
ΓHol3 (depending on which side is used as reference). Similarly, edges 7 and 8 should be related to
one another via ΓHol1 or ΓHol3 , edges 2 and 10 should be related using ΓHol2 , and edges 15 and 16
should be related using ΓHol2 . Both Γfeature

u and ΓHol0 are empty.
Additionally, note that the Ricci parameterization (Figure 10 (b)) and the quadrilateral-layout

inducing parameterization (Figure 10 (c)) both have regions that lie on top of one another, shown
with magenta hatching—particularly near the interior cone singularities. Nonetheless, both pa-
rameterizations are locally invertible, non-degenerate, and preserve the surface orientation with
the mapping. As a result, non-singular locations in the domain have a well-defined inverse map-
ping with positive Jacobian.

Having established a point of reference for notation, we now proceed defining the minimization
problem with its relevant subdomains in the general setting. Let Ω be the domain of the cut surface,
S −G, and ψR : Ω→ R2 be the immersion mapping defined by Ricci flow. Take

F = {ϕ : Ω→ R2, ϕ ∈ C0(Ω), ϕ locally invertible}. (12)

This defines the set of continuous maps that have a well-defined inverse map. For functions in this
family, take u : Ω→ R as the parametric u coordinate of the function, v : Ω→ R as the parametric
v coordinate. Call a vertex, edge, or face of Ω the child of some parent vertex, edge, or face in S if
both the child and parent occupy the same space in R3. Notice that for edges in G, there will be
two children edges of Ω corresponding to a single edge of S, as seen in Figure 5.

Take eij as an edge in Ω between vertices vi and vj in which |u(vi) − u(vj)| ≤ |v(vi) − v(vj)|
and eij has a parent in ∂S. Define the set of all such edges as Γu, and take the all edges in Ω
whose parents are also in ∂S but not belonging to Γu as Γv. Let feature curves of S (and thus of
Ω) similarly be classified as members of Γfeature

u or Γfeature
v based on whether the flux across them is

greater in v or in u, respectively.
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Similarly, let β be a continuous path in G ⊂ S with start and end points that are one of the
following

• singular points,
• transverse to a boundary of S, or
• do not have two children in Ω.

Take each interior vertex of the path to have two children in Ω. Thus, each path β will have two
continuous children paths in Ω, and each child path will have exactly one child of edges contained
in β ⊂ G. Define γ as one of these children, ω as the other, and take τ(γ) as the unique translation
taking one child vertex of γ to its corresponding sibling in ω, vω. Define Rk̂, k̂ ∈ {0, 1, 2, 3} as a

rotation by k̂π
2

radians about vω. Take k to be number for which the rotation by Rk minimizes the
deviation between ω and Rk

(
τ(γ)

)
. Set ΓHolk to be the set of all such β paths in which the rotation

Rk is used.
Lastly, assume an input set of path connectivity constraints to be enforced between points p, q

in the parameterization—typically between singular or feature points that should be connected by
an integral curve. These path constraints should be defined in the homotopy class of S − P that
they are intended to follow, though the precise path is not important. The paths may be cut by G,
and the primary direction of each subcurve under the parameterization mapping may differ across
cuts; these subcurves must be consistently oriented to form a continuous, smooth curve on the
branched covering space of the surface [43] defining the quadrilateral layout. Call the set of such
constraints Γtopo. Note that each subcurve γi of the topologically constrained curve γ1 · (. . . ) · γ`
will be bounded by G, p, or q.

Based on this information, the parameterization sought minimizes the following energy.
Find ψ ∈ F such that

ψ = min
ϕ∈F

5∑
j=1

λjEj (13)

with

E1(ϕ) =

∫
Ω

||J ||2F + ||J−1||2FdΩ (14)

E2(ϕ) =

∫
Γu

(∂u
∂s

)2

dΓ +

∫
Γv

(∂v
∂s

)2

dΓ (15)

E3(ϕ) =

∫
Γfeature
u

(∂u
∂s

)2

dΓ +

∫
Γfeature
v

(∂v
∂s

)2

dΓ (16)

E4(ϕ)) =
3∑

k=0

∑
(β∈ΓHolk

)

∫
β

(∂ϕ+

∂s
−R−1

k

(∂ϕ−
∂s

))
·
(∂ϕ+

∂s
−R−1

k

(∂ϕ−
∂s

))
∂Γ (17)

E5(ϕ) =
∑

γ1·(... )·γ`∈Γtopo

(∑̀
j=1

∫
γj

∂ϕjk
ds

dΓ
)2

(18)

=
∑

γ1·(... )·γ`Γtopo

(∑̀
j=1

ϕjk
(
γj(1)

)
− ϕjk

(
γj(0)

))2

. (19)
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Here, J is the Jacobian transformation from Ω to R (local to each triangle), with ||J ||F rep-
resenting the Frobenius norm, and ϕjk is the constrained direction and orientation (k = 0 is +u,
k = 1 is +v, k = 2 is −u and k = 3 is −v) for the subcurve γj. The first energy aims for a smooth
deformation (||J ||2F term) while also ensuring that local injectivity is preserved (||J−1||2F term), and
is called the symmetric Dirichlet energy [85]. It preserves Property Q1 of Definition 2.1. The next
energy ensures boundary-alignment constraints, and helps satisfy Property Q3. Energy E3 gives
control over feature alignment, and ensures that features of the triangulation (preserved from the
B-Rep) are preserved. Next, energy E4 enforces Properties Q2 and Q4. Finally, energy E5 can be
used to satisfy Property Q5.

The above energy is non-linear with penalty terms, and can be minimized using Newton-like
iteration. Note that the initial parameterization guess, ψR, will not exactly satisfy many of the
necessary constraints, so constraints transforming it into a quadrilateral layout must be enforced
weakly. Because a Nitsche formulation will not generally yield the exact satisfaction of these
constraints (which is necessary for the parameterization to yield a layout, as in Definition 2.1), we
instead opt for iteratively solving using a penalty method. Here, as λj → ∞ for j = 2, . . . , 5 the
parameterization converges to enforcing exact constraint satisfaction. For all operations, λ1 = 1 is
selected to preserve local injectivity, while the other penalty terms are gradually increased. This
minimization problem can be solved efficiently using techniques such as [52, 65, 84]. It is often
valuable to switch J between referencing the Euclidean geometry of the surface and the Ricci
metric of the surface to extract the solutions of subsequent minimizations with increased lambda
values from local minima.

4. Results

We demonstrate the efficacy of the proposed framework by reconstructing both trimmed and
faceted models of industrial vehicles into trim-free spline representations suitable for isogeometric
analysis. Here, integral lines emanating from singular points, from feature vertices, and along
boundaries are extracted from the surface triangulation’s parameterization, yielding a feature-aware
quadrilateral partitioning of the surface. From here, cubic spline curves are fit using a least squares
approximation of the integral lines. Lastly, surfaces are extracted using Coons patch interpolation.
As such, all B-Reps have C0 continuity between adjacent patches, and at least C2 continuity in
their interiors.

4.1. DEVCOM Generic Hull

The US Army’s DEVCOM Generic Hull vehicle was created in an initiative to involve academia
and industry in the research of under-vehicle blast phenomena without the challenges posed by
operating on classified material [23]. The entire vehicle is comprised of an outer hull with various
structural beams and pillars composing the structural frame. The midsurfaces of a structural
bracket and two beams were extracted from the frame for reconstruction, shown in reference to the
rest of the vehicle’s primary structural members in Figure 13.

The bracket, which has been reconstructed in [36] using a global frame field-based approach, is
shown in Figure 14. Here, it is shown in its trimmed form, its untrimmed form, and its reconstructed
form using the present method. Additionally, its form after reconstruction using the method of [36]
is presented for reference. While both the layout computed using Ricci flow with metric optimization
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Figure 13: Three reconstructed parts of the DEVCOM Generic Hull vehicle [23]—two support beams and
a bracket of a structural pillar—are shown in the context of the primary support members for the vehicle.
All surfaces in this representation are trimmed.

and the layout of [36] have singular points in the same locations, the frame field layout produces
integral curves that are more geodesic on the original geometry, while the proposed method is more
biased to the geodesic curvature of the nearby boundary. As seen in Figure 15, both methods yield
splines whose Jacobians are comparable.

Both rebuilt beams are also depicted with their trimmed and untrimmed representations (see
Figures 16 and 17). However, the frame field method of [36] failed to produce a valid parame-
terization for these models, so the layouts produced from this work are not compared against an
alternative global reparameterization technique.

For analysis, each bicubic Bézier patch was uniformly refined into a bicubic NURBS patch with
8 × 8 Bézier patches each using single-multiplicity knot insertion. Implicit modal analysis was
performed using LS-DYNA. All parts analyzed are shells of thickness 6.350 mm, and are made of
ASTM A36 Steel, which has the following properties.

• Modulus of Elasticity (E): 2.07 · 105 MPa
• Mass Density (ρ): 7.8 · 103 kg/m3

• Poisson’s Ratio (ν): 0.33

Analyses use the Reissner-Mindlin shell formulation. The bracket is taken with no boundary
conditions (Figure 18), so has six rigid body displacement modes. Both of the other analyses
assume boundary constraints as depicted in their accompanying figures (Figures 19 and 20).
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(a) Trimmed bracket (b) Untrimmed bracket

(c) Reconstructed using [36] (d) Reconstructed using present
method

Figure 14: A bracket of the DEVCOM Generic Hull vehicle is converted into a trim-free watertight spline
representation. Below, the reconstruction technique of [36] is compared against that of this method:
all splines depicted are Bézier patches. Notice that while singularity locations for both are the same, the
integral curves of this approach, being more conformal, are less straight than those of [36], which minimizes
a Dirichlet-type energy.
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Figure 15: Jacobians within patches of the DEVCOM bracket rebuilt using the frame field method of [36]
(left) and the proposed method of this work (right) are shown.

4.2. 1996 Dodge Neon

George Washington University’s National Crash Analysis Center (NCAC) has performed a
variety of finite element crash simulations for evaluation of safety of a number of commercial
vehicles. One such model is the 1996 Dodge Neon [28], which was tested for frontal crash loading.

Though hundreds of parts comprise the actual vehicle, this work focuses on the evaluation
of four: the vehicle firewall, the cabin’s rear deck speaker support, the front-right shock house,
and the outer-right shell member of the vehicle’s chassis. These parts were selected due to their
geometric and topological complexity. For each of these models, the original faceted model and the
reconstructed watertight B-Rep are displayed side-by-side in Subfigures (a) and (b), respectively,
of Figures 21, 22, 23, and 24.

When starting from a finite element mesh, geometric errors that are a by-product of feature
removal, geometry clean-up, and other approximations typically made to facilitate finite element
mesh generation are obviously inherited by the spline model. The sharp crease in Figure 21 and
the sharp reentrant corners in the holes of Figure 24 are manifestations of this. Nevertheless, the
spline models eliminate all triangles in FEM meshes, which are a liability in local nonlinear failure
analysis, and thus are a significant improvement. However, many of these geometric errors can be
fixed by smoothly mapping the spline model to the original CAD geometry. An L2-best fitting
would seem a simple and efficient procedure for this purpose. This is a topic for future research.

Isogeometric modal analyses are performed for refinements of each of the above-listed models.
All analyses use the Reissner-Mindlin shell formulation. Material data for the NCAC finite element
model, which was also used in these isogeometric analyses, was determined from coupon testing
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(a) Trimmed support beam

(b) Untrimmed support beam

(c) Reconstructed support beam

(d) Symmetric portion Bézier patches (e) Symmetric portion with control points and con-
trol mesh

Figure 16: A structural beam of the DEVCOM Generic Hull vehicle is converted into a trim-free watertight
spline representation using bicubic Bézier patches.

[28]: the analyzed parts are all steel. All analyzed models have following mass density, modulus of
elasticity, and Poisson’s ratio:

• Modulus of Elasticity (E): 2.1 · 105 MPa
• Mass Density (ρ): 7.89 · 103 kg/m3

• Poisson’s Ratio (ν): 0.30

Thicknesses of shells are 0.735, 0.829, 0.96, and 0.907 mm, respectively. Representative modes for
the spline models are shown in the latter subfigures of Figures 21, 22, 23, and 24.

5. Conclusions

In this work, we presented a new framework to rebuild trimmed and faceted open midsurface
geometries into isogeometric analysis-suitable spline spaces. First, we defined a generalized set of
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(a) Trimmed rounded support beam

(b) Untrimmed rounded support beam

(c) Reconstructed rounded support beam

(d) Symmetric portion Bézier patches (e) Symmetric portion with control points and
control mesh

Figure 17: A rounded structural support beam of the DEVCOM Generic Hull vehicle is converted into a
trim-free watertight spline representation using bicubic Bézier patches.
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(a) Mode 7: 194 Hz (b) Mode 8: 196 Hz

(c) Mode 9: 401 Hz (d) Mode 10: 412 Hz

Figure 18: Isogeometric modal analyses of the reparameterized bracket of Figure 14 (d) with each Bézier
patch uniformly subdivided to have 8× 8 patches by insertion of knots with single multiplicity.
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(a) Beam with fixed displacements on red portion of boundary

(b) Mode 1: 443 Hz

(c) Mode 2: 753 Hz

Figure 19: Isogeometric modal analysis of the reparameterized structural beam of Figure 16 with pinned
supports (zero displacements) on the red portion of the boundary. The Bézier patches of Figure 16 were
uniformly subdivided into 8× 8 patches by insertion of knots with single multiplicity.

criteria for a surface triangulation that, if satisfied, generate a quadrilateral layout. Based on this
theory, we combined the tools of discrete surface Ricci flow [42, 90] with a constrained minimization
against an inversion-precluding energy [52, 65, 84, 85] with layout-inducing penalty constraints. The
methodology assures that the computed parameterizations are locally injective, a necessary criterion
frequently not satisfied by many current quadrilateral parameterization techniques [7, 8, 24, 36, 54].
The defined framework was used to rebuild topologically and geometrically complicated members of
both the US Army’s DEVCOM Generic Hull vehicle [23] and the National Crash Analysis Center’s
1996 Dodge Neon finite element model [28], including models for which current state-of-the-art
techniques fail [35, Appendix B]. We show the viability of each of the rebuilt models by using them
for isogeometric modal analyses using the commercial solver LS-DYNA.

While the proposed framework offers a feature-aware technique to generate spline surfaces suit-
able for isogeometric analysis, additional work remains. First, the proposed methodology focuses
on reconstruction of open surfaces. While there is no theoretical reason that the technique cannot
extend to closed surfaces other than potential holonomy issues for unusual and pathological singu-
larity configurations [15, 50], the methodology has not yet been explored on these surfaces. Closed
surfaces pose an additional challenge, as well, because they will not typically satisfy Property Q5
of Definition 2.1, as will most open surfaces.
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(a) Beam with fixed displacements on red portion of boundary

(b) Mode 1: 132 Hz

(c) Mode 2: 323 Hz

Figure 20: Isogeometric modal analysis of the reparameterized structural beam of Figure 17 with pinned
supports (zero displacements) on the red portion of the boundary. The Bézier patches of Figure 17 were
uniformly subdivided into 8× 8 patches by insertion of knots with single multiplicity.
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(a) Mixed FEM mesh (b) Spline reconstruction

(c) Mode 7: 32.2 Hz (d) Mode 8: 34.4 Hz

Figure 21: The front right shock house from a finite element mesh of a 1996 Dodge Neon [28] is rebuilt as
a set of bicubic NURBS patches, each with 7 × 7 control points (i.e. 4 × 4 Bézier patches), with at least
C2 continuity on the interior of each patch and C0 continuity between patches. After uniform refinement
to 8× 8 Bézier patches for each patch, modal analysis is performed on the model with free boundaries.
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(a) Mixed FEM mesh (b) Spline reconstruction

(c) Mode 7: 5.4 Hz (d) Mode 8: 5.7 Hz

Figure 22: The cabin firewall from a finite element mesh of a 1996 Dodge Neon [28] is rebuilt as a set
of bicubic NURBS patches, each with 6 × 6 control points (i.e. 3 × 3 Bézier patches), with at least C2

continuity on the interior of each patch and C0 continuity between patches. After uniform refinement to
12× 12 Bézier patches for each patch, modal analysis is performed on the model with free boundaries.

Next, the parameterization framework needs alternative ways to select singularities. The current
framework relies on a Dirichlet-type energy with guarantees for valid singularity positions only if
the input geometry is sufficiently smooth [47]: these smoothness conditions may not hold on highly-
featured structural and mechanical surfaces. Furthermore, automatic placement of singularities is
limited to valence three and five singularities [47], though many geometries of interest may benefit
from higher-valence cones.

Finally, additional research should focus on more advanced spline fitting techniques. The current
technique employs linear interpolation between integral curves defining the boundary of a patch
in the quadrilateral layout. For more nonlinear parameterizations or geometries with significant
curvature in their domains, this technique will be insufficient to capture these nonlinear features
and would require additional layout subdivision at the expense of more degrees of freedom and
reduced continuity. Instead, manifold splines such as unstructured T-splines [16, 78, 89] or U-
splines [86] may be necessary. Additional research will also need to focus on how to fit splines
produced on the triangulation back to the original trimmed CAD domain. Because geometries
used herein are predominantly flat, reconstruction from the triangulation to the original geometry
was fairly straightforward. An ultimate objective is minimizing the need for user intervention in
the process.
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(a) Mixed FEM mesh

(b) Spline reconstruction

(c) Mode 7: 3.4 Hz

Figure 23: The right outer shell of the cabin chassis from a finite element mesh of a 1996 Dodge Neon [28]
is rebuilt as a set of bicubic NURBS patches, each with 7 × 7 control points (i.e. 4 × 4 Bézier patches),
with at least C2 continuity on the interior of each patch and C0 continuity between patches. After uniform
refinement to 8 × 8 Bézier patches for each patch, modal analysis is performed on the model with free
boundaries.
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(a) Mixed FEM mesh

(b) Spline reconstruction

(c) Mode 7: 17.6 Hz

Figure 24: The frame supporting the rear speakers of the cabin from a finite element mesh of a 1996 Dodge
Neon [28] is rebuilt as a set of bicubic NURBS patches, each with 6 × 6 control points (i.e. 3 × 3 Bézier
patches), with at least C2 continuity on the interior of each patch and C0 continuity between patches.
After uniform refinement to 12 × 12 Bézier patches for each patch, modal analysis is performed on the
model with free boundaries.
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[25] J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes. n-widths, sup-infs, and optimality
ratios for the k-version of the isogeometic finite element method. Comput. Methods Appl. Mech.
Engrg., 198(21–26):1726–1741, 2009. https://doi.org/10.1016/j.cma.2009.01.021.

[26] G. Farin. Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann Publish-
ers, San Francisco, CA, 5 edition, 2002, https://doi.org/10.1016/B978-1-55860-737-8.
X5000-5.

[27] R. T. Farouki. Closing the gap between CAD model and downstream application. SIAM News,
32(5):1–3, 1999. https://archive.siam.org/news/news.php?id=743.

[28] George Washington University. Finite element model of dodge neon. Technical report,
George Washington University, Virginia Campus, 2006, http://web.archive.org/web/

20160408180243/http://www.ncac.gwu.edu/vml/models.html.

[29] X. Gu, R. Guo, F. Luo, J. Sun, and T. Wu. A discrete uniformization theorem for polyhe-
dral surfaces II. J. Differ. Geom., 109(3):431–466, 2018. https://doi.org/10.4310/jdg/

1531188190.

[30] X. Gu and S.-T. Yau. Global conformal surface parameterization. In L. Kobbelt, P. Schröeder,
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