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Abstract

In this article, we present a theoretical framework for integrating discontinuous Galerkin
methods in the variational multiscale paradigm. Our starting point is a projector-based mul-
tiscale decomposition of a generic variational formulation that uses broken Sobolev spaces
and Lagrange multipliers to accommodate the non-conforming nature at the boundaries of
discontinuous Galerkin elements. We show that existing discontinuous Galerkin formula-
tions, including their penalty terms, follow immediately from a specific choice of multiscale
projector. We proceed by defining the “fine-scale closure function”, which captures the
closure relation between the remaining fine-scale term in the discontinuous Galerkin formu-
lation and the coarse-scale solution via a single integral expression for each basis function
in the coarse-scale test space. We show that the projectors that correspond to discontinu-
ous Galerkin methods lead to fine-scale closure functions with more compact support and
smaller amplitudes compared to the fine-scale closure function of the classical (conforming)
finite element method. This observation provides a new perspective on the natural stabil-
ity of discontinuous Galerkin methods for hyperbolic problems, and may open the door to
rigorously designed variational multiscale based fine-scale models that are suitable for DG
methods.
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1. Introduction

Discontinuous Galerkin (DG) methods were introduced by Reed and Hill in 1973 [1]. The
first theoretical analysis of their method was performed shortly after by Lesaint and Raviart
in 1974 [2]. Since then, DG methods have evolved considerably and in the last decades they
have challenged the position that finite volume methods have assumed in computational
fluid dynamics [3, 4, 5, 6, 7]. In contrast to finite volume methods, discontinuous Galerkin
methods enable higher-order accuracy on unstructured meshes [8, 9, 10], and allow efficient
parallelization through hybridization [11, 12, 13]. Compared to continuous finite element
methods, they show superior stability and robustness [14, 4, 15, 16, 17]. While continuous fi-
nite element methods exhibit similar conservation properties [17, 18], discontinuous Galerkin
methods enable the simple and explicit derivation and modification of the flux expressions
that govern element-wise conservation [16, 19, 20]. Moreover, it has been shown that DG
concepts, for instance in the form of Nitsche’s method, can improve the performance of con-
tinuous finite element methods. An important example is the treatment of boundary layers,
where the use of Nitsche’s method shows significant accuracy benefits for the imposition of
no-slip boundary conditions when the boundary layer is underresolved [21, 22, 23]. Another
example is the coupling of patches with DG formulations to enable advanced discretization
techniques on unstructured meshes (e.g., isogeometric analysis [24, 25, 26, 27], structure
preserving bases/mimetic methods [28, 29, 30, 31], and reduced basis methods [32, 33]).

In any numerical scheme, a turbulence model is required to accurately approximate
solutions to the Navier-Stokes equations in the sense of large eddy simulation. Turbulence
models represent some form of fine-scale closure, accounting for the effect of the scales that
cannot be resolved by the discrete solution. Many turbulence models that had originally
been designed for finite volume methods have also been adopted in DG research codes
[7, 34, 35, 36, 37, 38, 39, 40]. In contrast to many of the turbulence models adopted from
earlier finite volume methods, the variational multiscale (VMS) method offers a finite element
specific, mathematically rigorous approach to large eddy simulation [41, 42, 43, 44, 45, 46].
The availability of approximation spaces as discrete subspaces of Sobolev spaces permits the
filtering operation in large eddy simulation to be defined as a projection operation. Thereby,
the fine-scale solution and the approximation error become one and the same. This unifies
the design of the closure model and the design of the finite element formulation. The fine-
scale models can be derived from the fine-scale systems of equations, either via analytical
approximation [43, 47, 48, 49] or computational approximation [50, 51, 52], and are free of
phenomenological parameters.

Along the same lines, the VMS paradigm has shed light on the origins of stabilized
methods [53, 54, 55]. Classical residual-based stabilization terms can be interpreted as
homogenized fine-scale effects through averaging of the fine-scale Green’s functions [56, 57],
and new stabilized methods have been designed as approximate fine-scale closures (the
approaches presented in [58, 59, 50] are of particular interest due to their DG related focus).
This illustrates that even for linear systems that arise in fluid mechanics (e.g., the advection-
diffusion equation [60, 54], the Darcy equations [61, 62], the Stokes equations [63, 54], and
the Oseen equations [64, 65, 66]) it is the unresolved fine-scale nature of the true solution
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that is of key importance for the stability of finite element schemes.
Despite the prominent roles that discontinuous Galerkin methods and variational mul-

tiscale analysis have assumed in the design of efficient approximation methods for fluid
mechanics problems, a comprehensive unifying framework is still missing. This can be at-
tributed to a number of apparent conflicts between the DG and VMS concepts:

1. The foremost aspect that disconnects the two concepts is that DG methods are “non-
conforming” with respect to traditional weak formulations. This means that the ap-
proximation spaces are not subspaces of the Sobolev spaces relevant to those weak
formulations. The classical VMS method, however, relies on a decomposition of the
infinite dimensional spaces into a finite dimensional coarse-scale (approximation) space
and a fine-scale complement.

2. The numerical fluxes in discontinuous Galerkin formulations involve operators that are
unbounded in the corresponding Sobolev spaces. Examples are penalties on jumps of
functions in L2 and penalties on jumps of normal gradients of functions in H1. While
these operations are permitted in the finite dimensional DG approximation spaces,
the corresponding trace operators are unbounded in the complete Sobolev spaces. It
is unclear how these operators would occur in the coarse-scale formulation when they
are not permitted in the full-scale weak formulation.

3. Historically, the variational multiscale method is strongly linked to residual based stabi-
lized methods. Any well-developed discontinuous Galerkin method, however, is stable
by design [14], which may seem to eliminate the need for VMS analysis. Still, the
relation between DG methods and residual-based stabilization has been explored from
various angles, see e.g., [67, 14, 4]. We thus argue that the variational multiscale
method could offer a valuable perspective on the stabilization mechanism in DG for-
mulations, and, looking ahead, be further developed into an indispensable framework
for the rigorous design of appropriate turbulence models.

4. Variational multiscale methods rely on a projector that defines the coarse-scale ap-
proximation. Often, the H1

0 -projector is used, as it exhibits favorable properties in
terms of solution behavior and scale interaction [57]. However, since this projection
operator only involves gradients, it is not a well-posed mapping when DG approxima-
tion spaces are involved: any collection of piecewise constants is a zero-energy mode.

5. Classical variational multiscale methods result in residual-based closure models that
hinge on sufficient continuity of the finite element basis [68]. To make the theory ap-
plicable for conventional C0-continuous finite element basis functions, the fine scales
must incorporate inter-element Dirac layers [53, 69] or mimic their effect [70]. To avoid
the associated computational and implementation efforts, the fine scales are typically
assumed to vanish on element boundaries [54, 71, 55, 43]. This assumption cannot
hold in the case of DG approximations, where solutions jump by design [72].
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6. Discontinuous Galerkin methods involve penalty parameters, which, at first sight,
seems in contradiction with variational multiscale methods and their intrinsically de-
fined parameters. In [73, 69, 74, 75], such penalty terms are interpreted from the
perspective of a fine-scale model. The fine-scale model should follow from an underly-
ing scale decomposition. That scale decomposition lies at the core of the variational
multiscale method through the projection operator. This thus implies a more involved
relation between different discontinuous Galerkin methods and projectors.

In this article we pursue two objectives: firstly, we aim to produce a rigorous derivation
of discontinuous Galerkin methods following the variational multiscale principles (tackling
points 1, 2, 4 and 6). Secondly, we develop the “fine-scale closure function”, strongly related
to the “fine-scale Green’s function” from [57], which encodes the exact influence of the
remaining fine-scale terms on the finite element formulation for a given DG formulation
(relating to points 3, 5 and 6). As an illustrative example, we make use of the reduced
order form of the advection–diffusion equation as a model problem and we derive the local
discontinuous Galerkin (LDG) formulation [76] from our VMS perspective.

Our strategy for achieving these two objective is the following. In Section 2, we pose
a domain decomposed form of the partial differential equation. This starting point makes
DG approximation spaces conforming (point 1). The patches (elements) are coupled with
double valued Lagrange multiplier fields. These Lagrange multiplier fields provide access
to trace quantities from either side of an element interface that would otherwise require
unbounded operators (point 2). Next, in Section 3, we perform a direct sum decomposition
of the Cartesian-product space into coarse scales and fine scales. A direct sum decompo-
sition implies a projection operator and vice versa. In Section 4, we propose a carefully
constructed decomposition projector that eliminates the Lagrange multiplier field from the
coarse-scale approximation space, and eliminates the majority of the fine-scale occurrences
from the coarse-scale equations (point 4). By leveraging the Lagrange multiplier field in the
decomposition projector, we are able to introduce penalty terms in the coarse-scale equation
that would be unbounded in the full-scale equation (points 2 and 5). The result is a dis-
continuous Galerkin formulation derived completely from the perspective of the variational
multiscale method. Based on this derivation we know the exact remaining fine-scale terms
in the DG method. We are interested in the magnitude of the fine-scale effects, and the ex-
tent to which the scale interaction localizes. Both these properties can be inferred from the
fine-scale closure function, introduced in Section 5. This function is projector dependent and
thus different for each DG formulation. Understanding the relation between the parameters
in DG formulations and the properties of the scale interaction can guide the design of fine-
scale models that are suitable for DG finite element frameworks (points 3 and 5). Within
the scope of this article, we compute the fine-scale closure function in Section 6 for various
cases to quantify the sensitivity of the fine-scale influence in the LDG method for different
parameter choices, and we compare fine-scale closure functions with those corresponding to
a conforming mixed method.
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2. A well-posed mixed formulation with broken spaces

The variational multiscale paradigm bridges the gap between a mathematical model of
a physical problem set in Sobolev spaces, and the finite element approximation thereof.
To apply this strategy for discontinuous Galerkin methods, we must first determine the
appropriate weak statement as our point of departure. Consider the following reduced order
form of the advection–diffusion problem:

κ−1aφ−∇φ = κ−1σ in Ω , (1a)

∇ · σ = f in Ω , (1b)

φ = φD on ∂ΩD , (1c)

−σ · n = gN = 0 on ∂ΩN ⊂ ∂Ω− , (1d)

a · nφ− σ · n = gR on ∂ΩR ⊂ ∂Ω+ , (1e)

where the auxiliary variable σ is introduced as the total flux. We assume a strictly positive
diffusion coefficient (κ > 0) and a solenoidal advective field (∇ ·a = 0). The superscripts +
and − indicate outflow (a ·n > 0) and inflow (a ·n ≤ 0) parts of the boundary, respectively.
The Dirichlet condition of Eq. (1c) is a natural condition in the mixed formulation that
follows. Equation (1e) is an essential condition and is chosen to be homogeneous for ease of
presentation. Equation (1d) is a mixed (Robin) condition and may only be specified on the
outflow part of the boundary. Regarding the data, we require f ∈ L2(Ω), φD ∈ H1/2(∂ΩD)
and gR ∈ H−1/2(∂ΩR).

An equivalent mixed formulation reads:

Find φ,σ ∈ L2(Ω)×H0(div,Ω) s.t. ∀w, τ ∈ L2(Ω)×H0(div,Ω) :(
κ−1τ ,σ

)
Ω
−
(
κ−1τ ,aφ

)
Ω
−
(
∇ · τ , φ

)
Ω

+ 〈τ · n, (a · n)−1σ · n
〉
∂ΩR

= −
〈
τ · n, φD

〉
∂ΩD
−
〈
τ · n, (a · n)−1gR

〉
∂ΩR

,
(2a)(

w,∇ · σ
)

Ω
=
(
w, f

)
Ω
, (2b)

where (·, ·)Ω = (·, ·)L2(Ω) denotes the L2-inner product on Ω and
〈
·, ·
〉
∂Ω

is the H−1/2(∂Ω)×
H1/2(∂Ω) → R duality pairing. The space H0(div,Ω) is defined as {τ ∈ H(div,Ω) :
τ · n = 0 on ∂ΩN}. This weak formulation is well-posed in the sense that it permits a
unique solution (φ,σ) for all possible right-hand-side data and that this solution depends
continuously on the data [77, 78]. Given these critical properties we can use the variational
multiscale method to derive finite element formulations.

In regards to the saddle-point structure of the formulation, finite element formulations
based on Eq. (2) would either require compatible discretization [79, 80] or addition of sta-
bilization terms [63, 61]. In both cases, conforming finite element approximation spaces
are usually chosen and they thus fall naturally within the variational multiscale school of
thought. This is different for DG methods based on Eq. (2), where the approximation space
for σ is not H(div) conforming. This concerns the first challenge raised in the introduction.
To overcome this challenge, Eq. (2) needs to be modified.
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In order to do so, we decompose the domain Ω into a collection of open subdomains
T = {Ki}ni=1. These will represent the elements of the mesh later on. We define the union
of open subdomains Ω̃ and their interface skeleton Γ:

Ω̃ :=
n⋃
i=1

Ki , (3a)

Γ :=
n⋃
i=1

∂Ki . (3b)

An integral over Ω̃ is defined as the sum of the integrals over the subdomains.
We denote the interior part of the interface skeleton as Γ0, the interior interfaces plus the

Dirichlet boundary as ΓD and the interior interfaces plus the inflow part of the Neumann
boundary as ΓN :

Γ0 := Γ \ ∂Ω , (4a)

ΓD := Γ0 ∪ ∂ΩD , (4b)

ΓN := Γ0 ∪ ∂ΩN , (4c)

If we now define a broken variant of the space H(div,Ω) as:

H(div, Ω̃) := {σ ∈ [L2(Ω)]d : σ
∣∣
K
∈H(div, K) ∀K ∈ T } , (5)

then we can interpret H0(div,Ω) as a constrained subspace of H(div, Ω̃). The constraints
are continuity conditions imposed on the interior interfaces and a homogeneous boundary
condition on ∂ΩN :

H(div,Ω) = {σ ∈H(div, Ω̃) : [[σ]] = 0 on ΓN} , (6)

where, as is customary in the literature on DG methods, the jump is defined as:

[[σ]] :=

{
σ+ · n+ + σ− · n− on Γ0 ,

σ− · n− on ∂Ω .
(7)

In this definition, the superscripts + and − denote arbitrary sides of an interface. Similarly,
we define the jump of a scalar as:

[[φ]] :=

{
φ+n+ + φ−n− on Γ0 ,

φ−n− on ∂Ω .
(8)

and average of either a scalar or a vector as:

{{φ}} :=

{
1
2
(φ+ + φ−) on Γ0 ,

φ− on ∂Ω .
(9)
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The constraints that are enforced strongly in H(div,Ω) according to Eq. (6) may alter-
natively be imposed weakly with Lagrange multipliers [81, 82]. This results in the following
weak form:

Find φ,σ, λ−, λ+ ∈ U s.t. ∀w, τ , q−, q+ ∈ U :(
κ−1τ ,σ

)
Ω̃
−
(
κ−1τ ,aφ

)
Ω̃
−
(
∇ · τ , φ

)
Ω̃

+ 〈τ · n, (a · n)−1σ · n
〉
∂ΩR

+
〈
[[τ ]], {{λ}}

〉
ΓN

= −
〈
τ · n, φD

〉
∂ΩD
−
〈
τ · n, (a · n)−1gR

〉
∂ΩR

,
(10a)(

w,∇ · σ
)

Ω̃
=
(
w, f

)
Ω̃
, (10b)〈

[[σ]], {{q}}
〉

ΓN
= 0 , (10c)(

[[λ]], [[q]]
)
H1/2(ΓD)

=
(
φD, q

−)
H1/2(∂ΩD)

. (10d)

The suitable function spaces may be identified as:

U =W ×Σ×Q×Q0 = L2(Ω)×H(div, Ω̃)×H1/2(Γ \ ∂ΩR)×H1/2(Γ0) . (11a)

The weak formulation of Eq. (10) is well-posed and it is equivalent to the original statement of
Eq. (1). Different from the earlier weak formulation, discontinuous Galerkin approximation
spaces are now conforming subspaces.

Remark 2.1. Equation (10d) immediately implies that [[λ]] = 0 on Γ0, and thus that λ− =
λ+ =: λ. The reason for introducing a double valued Lagrange multiplier will become clear
in Section 4.

Remark 2.2. From Eq. (1) it follows that the solution φ lies in H1(Ω) and the equivalence
of Eq. (10) and Eq. (1) then dictates that the Lagrange multiplier will satisfy λ = φ. The
latter statement hinges on the former as it requires a well-defined and single-valued trace of
φ on ΓN .

3. Scale decomposition

The objective of a variational multiscale formulation is to find the discrete solution that
is the “optimal” approximation of the true solution based on some definition of optimality.
This is defined to be the coarse-scale solution. The choice of optimality condition defines a
mapping from every pair (φ,σ, λ−, λ+) to a coarse-scale solution pair (φh,σh, λ−h, λ+h) in
the finite dimensional coarse-scale space Uh = (W ×Σ×Q×Q0)h:

P : U → Uh := ran(P)

(φ,σ, λ−, λ+) 7→ P(φ,σ, λ−, λ+) .
(12)

Any true solution that lies in the coarse-scale solution space should map to itself, making
P an idempotent mapping and hence a projector:

P(φ,σ, λ−, λ+) = (φ,σ, λ−, λ+) ∀φ,σ, λ−, λ+ ∈ Uh (13)
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The coarse-scale and fine-scale components of φ, σ, λ− and λ+ are then defined as:

(φh,σh, λ−h, λ+h) := P(φ,σ, λ−, λ+) , (14a)

(φ′, σ′, λ−′, λ+′) := (I −P)(φ,σ, λ−, λ+) , (14b)

with I the identity operator I (φ,σ, λ−, λ+) = (φ,σ, λ−, λ+).
If the projector P is linear, then it defines a direct sum decomposition of the original

mixed space:

U =W ×Σ×Q×Q0 = (W ×Σ×Q×Q0)h ⊕ (W ×Σ×Q×Q0)′ = Uh ⊕ U ′ (15)

It follows from Eq. (14b) that the range of I −P, or the kernel of P, is the fine-scale
space:

(φ′,σ′, λ−′, λ+′) ∈ ker P =: (W ×Σ×Q×Q0)′ = U ′ . (16)

We note that the coarse and fine-scale spaces do not necessarily decompose as Cartesian
products of coarse-scale respectively fine-scale spaces. This means that the different sube-
quations in Eq. (10) can no longer be guaranteed to decouple as such. Instead, the general
scale decomposition of the weak formulation reads:

Find φh,σh, λ−h, λ+h ∈ Uh and φ′,σ′, λ−′, λ+′ ∈ U ′

s.t. ∀wh, τ h, q−h, q+h ∈ Uh and ∀w′, τ ′, q−′, q+′ ∈ U ′ :(
κ−1τ h,σh + σ′

)
Ω̃
−
(
κ−1a · τ h, φh + φ′

)
Ω̃

+ 〈τ h · n, (a · n)−1(σh · n+ σ′ · n)
〉
∂ΩR

−
(
∇ · τ h, φh + φ′

)
Ω̃

+
〈
[[τ h]], {{λ′}}+ {{λh}}

〉
ΓN
−
(
wh,∇ · σh +∇ · σ′

)
Ω̃

+
〈
[[σh + σ′]], {{qh}}

〉
ΓN

+
(
[[λh]] + [[λ′]], [[qh]]

)
H1/2(ΓD)

= −
〈
τ h · n, φD

〉
∂ΩD

−
〈
τ h · n, (a · n)−1gR

〉
∂ΩR
−
(
wh, f

)
Ω̃

+
(
φD, q

−h)
H1/2(∂ΩD)

,

(17a)

(
κ−1τ ′,σh + σ′

)
Ω̃
−
(
κ−1a · τ ′, φh + φ′

)
Ω̃

+ 〈τ ′ · n, (a · n)−1(σh · n+ σ′ · n)
〉
∂ΩR

−
(
∇ · τ ′, φh + φ′

)
Ω̃

+
〈
[[τ ′]], {{λ′}}+ {{λh}}

〉
ΓN
−
(
w′,∇ · σh +∇ · σ′

)
Ω̃〈

[[σh + σ′]], {{q′}}
〉

ΓN
+
(
[[λh]] + [[λ′]], [[q′]]

)
H1/2(ΓD)

= −
〈
τ ′ · n, φD

〉
∂ΩD

−
〈
τ ′ · n, (a · n)−1gR

〉
∂ΩR
−
(
w′, f

)
Ω̃

+
(
φD, q

−′)
H1/2(∂ΩD)

,

(17b)

The eventual finite element formulations correspond to the weak formulations with the
coarse-scale test functions (i.e., Eq. (17a)). These equations still involve fine scales, for
which some form of closure needs to be substituted. Different closure models then encompass
turbulence models [43], residual-based stabilized methods [53], residual-free bubble stabilized
methods [56], and, as we intend to show in this article, also discontinuous Galerkin methods.
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4. Discontinuous Galerkin methods as projectors

Discontinuous Galerkin formulations of Eq. (1) compute approximations σh and φh in
the discrete spaces:

Wh = {w ∈ L2(Ω) : w
∣∣
K
∈ Pp(K) ∀K ∈ T } ⊂ W , (18a)

Σh = {σ ∈ [L2(Ω)]d : σ
∣∣
K
∈ [Pq(K)]d ∀K ∈ T } ⊂ Σ , (18b)

The discontinuous Galerkin methods that we focus on in this article do not compute an
approximation to the Lagrange multiplier. The size of our finite element system of equation
thus corresponds to the dimensionality of Wh × Σh. Since the finite element formulation
should follow from the coarse-scale equation the coarse-scale space must satisfy dimUh =
dim(Wh×Σh), which is a condition on the range of the chosen projector. This requirement
is satisfied by projectors of the following form, the motivation for which will follow shortly:

P(φ,σ, λ−, λ+) = (φh,σh, φh−, φh+) . (19)

Only (φh,σh) still needs to be defined. As addressed in point four of the list of challenges
from the introduction, optimality in the standard H1-seminorm no longer induces an appli-
cable projector. Consider instead the following operation:

φh,σh = arg inf
σh∈Σh

arg sup
φh∈Wh

1

2

(
κ−1(σ − σh),σ − σh

)
Ω̃
−
(
∇ · (σ − σh), φ− φh

)
Ω̃

+
1

2

〈
σ · n− σh · n, (a · n)−1(σ · n− σh · n)

〉
∂ΩR

+
〈
[[σ − σh]], {{λ− φh}}

〉
ΓN

+
〈
[[σ − σh]],β · [[λ− φh]]

〉
Γ0

+
1

2

〈
[[σ − σh]], κ−1C[[σ − σh]]

〉
Γ0

+
1

2

〈
κη[[λ− φh]], [[λ− φh]]

〉
ΓD
.

(20)
Well-posedness of this saddle-point problem relies on the appropriate choice of operators η,
β and C [19, 76, 83, 4, 84]. Of course, this choice affects the definition of the coarse-scale
solution for any given true solution. The qualitative impact of these parameters on the
coarse-scale solution has, for instance, been studied in [84].

The first three terms in Eq. (20) relate to the potential for which the saddle point
defines a mixed formulation of a Poisson problem. Their minimization produces optimal
results if one were to use compatible discretization, e.g., with Raviart-Thomas or Brezzi-
Douglas-Marini elements for the auxiliary solution field [79, 78]. The pressure-stabilizing
Petrov-Galerkin (PSPG) and least-squares on incompressibility constraint (LSIC) stabiliza-
tion methods required to stabilize equal order interpolation pairs would follow from the
addition of volumetric weightings [63]. Now that we wish to make use of DG coarse-scale
spaces, we have added weighted interface terms.

Note that the Lagrange multiplier λ± takes the role of φ± in the boundary terms in
Eq. (20). This is a subtle but important detail and relates to the second point raised in the
introduction. The trace operator is unbounded when its domain is all of L2(Ω̃). It can not
be used in the definition of the projector since the direct sum decomposition in Eq. (15)
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requires that the domain of the projector is all of U . While we solve this issue by using
λ± in the definition of (φh,σh), we now appear to loose the idempotency property of the
projector. An idempotent operator is retrieved by our definition of the coarse-scale Lagrange
multipliers as λ±,h = φh,± in Eq. (19). This choice, in turn, is possible due to the use of a
double valued Lagrange multiplier in Eq. (10).

Solution pairs (φh,σh) are equilibrium points of the functional in Eq. (20). They may be
determined by simultaneously equating to zero the first variations with respect to σh and
φh. We thereby obtain the following two optimality conditions which have to be satisfied
for all νh ∈ Σh and all vh ∈ Wh:

−
(
κ−1νh,σ − σh

)
Ω̃

+
(
∇ · νh, φ− φh

)
Ω̃
−
〈
νh · n, (a · n)−1(σ · n− σh · n)

〉
∂ΩR

−
〈
[[νh]], {{λ− φh}}

〉
ΓN
−
〈
[[νh]],β · [[λ− φh]]

〉
Γ0
−
〈
[[νh]], κ−1C[[σ − σh]]

〉
Γ0

= 0 ,
(21a)(

vh,∇ · (σ − σh)
)

Ω̃
−
〈
[[σ − σh]], {{vh}}

〉
ΓN
−
〈
[[σ − σh]],β · [[vh]]

〉
Γ0

−
〈
κη[[vh]], [[λ− φh]]

〉
ΓD

= 0 ,
(21b)

or, by replacing all occurrences of σ − σh, φ − φh, [[λ− φh]] and {{λ− φh}} by σ′, φ′, [[λ′]]
and {{λ′}} respectively:

−
(
κ−1νh,σ′

)
Ω̃

+
(
∇ · νh, φ′

)
Ω̃
−
〈
[[νh]], {{λ′}}

〉
ΓN
−
〈
νh · n, (a · n)−1σ′ · n

〉
∂ΩR

−
〈
[[νh]],β · [[λ′]]

〉
Γ0
−
〈
[[νh]], κ−1C[[σ′]]

〉
Γ0

= 0 ,
(22a)(

vh,∇ · σ′
)

Ω̃
−
〈
[[σ′]], {{vh}}

〉
ΓN
−
〈
[[σ′]],β · [[vh]]

〉
Γ0
−
〈
κη[[vh]], [[λ′]]

〉
ΓD

= 0 . (22b)

which represents the fine-scale constraint that defines all the functions in ker(P).
The properties of the chosen projector, i.e., λ−h = φh−, λ+h = φh+, q+h = wh+ and

q−h = wh− from Eq. (19) and the fine-scale constraints of Eq. (22), may directly be used
as a partial closure in the coarse-scale problem. By substituting all these identities into
Eq. (17a), we obtain:

Find φh,σh ∈ Wh ×Σh s.t. ∀wh, τ h ∈ Wh ×Σh :(
κ−1τ h,σh

)
Ω̃
−
(
κ−1a · τ h, φh + φ′

)
Ω̃

+ 〈τ h · n, (a · n)−1σh · n
〉
∂ΩR

−
(
∇ · τ h, φh

)
Ω̃

+
〈
[[τ h]], {{φh}}

〉
ΓN
−
〈
[[τ h]],β · [[λ′]]

〉
Γ0
−
〈
[[τ h]], κ−1C[[σ′]]

〉
Γ0

= −
〈
τ h · n, φD

〉
∂ΩD
−
〈
τ h · n, (a · n)−1gR

〉
∂ΩR

,

(23a)

−
(
wh,∇ · σh

)
Ω̃

+
〈
[[σh]], {{wh}}

〉
ΓN
−
〈
[[σ′]],β · [[wh]]

〉
Γ0
−
〈
κη[[wh]], [[λ′]]

〉
ΓD

+
(
[[φh]] + [[λ′]], [[wh]]

)
H1/2(ΓD)

= −
(
wh, f

)
Ω̃

+
(
φD, w

h
)
H1/2(∂ΩD)

.
(23b)

Many of the remaining fine scales can still be related to coarse scales by making use
of known solution behavior. From the original problem formulation, Eq. (1), we know
that the true solutions φ and σ will lie in H1(Ω) and H(div,Ω) respectively, and from
Remark 2.2 we know λ = φ. As a result, the true solution satisfies [[λ′]] = −[[φh]] and
[[σ′]] = −[[σh]] on Γ0. Aditionally, from the imposed boundary conditions we know that the
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true solution satisfies λ′ = φD − φh on the Dirichlet boundary and σ′ · n = −σh · n on the
(homogeneous) Neumann boundary. By making use of this known solution behavior, we
arrive at the following weak formulation for the coarse-scale solution:

Find φh,σh ∈ Wh ×Σh s.t. ∀wh, τ h ∈ Wh ×Σh :(
κ−1τ h,σh

)
Ω̃
−
(
κ−1a · τ h, φh + φ′

)
Ω̃

+ 〈τ h · n, (a · n)−1σh · n〉∂ΩR

−
(
∇ · τ h, φh

)
Ω̃

+
〈
[[τ h]], {{φh}}

〉
ΓN

+
〈
[[τ h]],β · [[φh]]

〉
Γ0

+
〈
[[τ h]], κ−1C[[σh]]

〉
Γ0

= −
〈
τ h · n, φD

〉
∂ΩD
−
〈
τ h · n, (a · n)−1gR

〉
∂ΩR

,

(24a)

−
(
wh,∇ · σh

)
Ω̃

+
〈
[[σh]], {{wh}}

〉
ΓN

+
〈
[[σh]],β · [[wh]]

〉
Γ0

+
〈
κη [[wh]], [[φh]]

〉
ΓD

= −
(
wh, f

)
Ω̃

+
〈
κη wh, φD

〉
∂ΩD

.
(24b)

Apart from the one remaining fine-scale term, this is a discontinuous Galerkin method.

Remark 4.1. Despite the mixed origin of the formulation, only the fine scales of the primal
solution show up in Eq. (24). This fine-scale solution occurs in a single term: a weighted vol-
umetric average. In contrast, the original decomposed form of Eq. (17) includes six fine-scale
terms. From the variational multiscale perspective, the additional terms in a DG method are
fine-scale closures. There are two important messages: firstly, this derivation shows that it
is not appropriate to substitute fine-scale models for each of the fine-scale terms in Eq. (17)
and additionally add the terms from the DG formulation. This relates to the sixth point
raised in the introduction. Secondly, our approach illustrates that the decomposition projec-
tor can be designed with the objective of simplifying the remaining scale interaction (atop
the usual objective of yielding suitable coarse-scale solutions). This relates to the third point
in the introduction, and we explore this concept more in Section 6.3.

Remark 4.2. When a = 0, we retrieve the general form of the local discontinuous Galerkin
(LDG) formulation for a Poisson problem [76]. Of course, this is an immediate result of
Eq. (20) as the chosen projector. If (φ,σ, λ−, λ+) solves a Poisson problem, then the Euler-
Lagrange equations of the functional in Eq. (20) are the LDG formulation. We have put this
knowledge in a VMS derivation that applies also when the diffusive term in only part of the
partial differential equation. This is similar to the use of the H1

0 -projector for conforming
finite element methods in a primal formulation: optimality in the H1

0 -norm corresponds to
the solution that satisfies the associated Poisson problem. Finite element methods tend to
be very effective in treating elliptic equations, and this form of VMS formulation aims to
maintain that effectiveness when non-elliptic terms are added.

Remark 4.3. Even though our focus is on LDG-type formulations, other DG methods would
fit in our framework by changing either the weak statement or the projector. For example,
by removing all penalty terms from the projection operator one would obtain the (unstable)
first Bassi-Rebay method [85]. By subsequently adding the term

∑
e∈Γ

∫
Ω

1
2
η re([[λ− φh]])2

(where re : [L2(e)]d → Σh is a so-called lifting operator [19]), one retrieves the second
Bassi-Rebay method [86]. The form of Eq. (24) also encompasses HDG formulations. By
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moving the advective term from Eq. (1a) to Eq. (1b) and by adding a penalty of 1
2
|a · n| to

η in the projector, one would obtain upwind formulations such as the one described in [87].
Lastly, if one uses a primal formulation in place of Eq. (1), then our framework may yield
the symmetric and non-symmetric interior penalty formulations and the Baumann-Oden
method [69].

5. The fine-scale closure function

As a result of the previous formalism, discontinuous Galerkin formulations fall within
the variational multiscale paradigm in the following general sense:

Find uh ∈ Uh and u′ ∈ U ′ s.t. ∀wh ∈ Uh and ∀w′ ∈ U ′ :
BDG

(
uh, wh

)
+ S

(
u′, wh

)
= LDG

(
wh
)
, (25a)

B
(
u′, w′

)
= L(w′)−B

(
uh, w′

)
=: Resuh(w′) , (25b)

where, for the mixed advection–diffusion model problem, the coarse scales are defined as
uh := (φh,σh, φh−, φh+) ∈ Uh, and the fine scales as u′ := (φ′,σ′, λ−′, λ+′) ∈ U ′. The bilinear
form B(·, ·) and linear form L(·) correspond to those of the original variational problem (i.e.,
Eq. (10)). The bilinear form BDG(·, ·) and linear form LDG(·) are different and correspond
to discontinuous Galerkin formulations. Compared to a standard discontinuous Galerkin
formulation, the scale-interaction term S

(
u′, wh

)
appears as a new term. For conforming

finite element formulations, the scale-interaction term S
(
u′, wh

)
would simply be B

(
u′, wh

)
.

However, per the derivation of Sections 2 to 4 many fine-scale terms were eliminated from
the coarse-scale equations, thereby producing the discontinuous Galerkin (bi)linear forms
BDG

(
uh, wh

)
and LDG

(
wh
)

in Eq. (25a). Hence, for discontinuous Galerkin methods the
scale-interaction term is necessarily different from B

(
u′, wh

)
.

It is only through this new scale-interaction term that the fine scales influence the coarse
scales. For linear problems, different approximations to this term lead to different sta-
bilization methods. For the non-linear Navier-Stokes equations, this term represents the
unresolved Reynolds stresses and different approximation approaches (e.g., the Boussinesq’s
approximation) lead to different turbulence models. However, in the variational multiscale
method we can formally and explicitly define a “fine-scale closure function” which encodes
the exact scale interaction. This fine-scale closure function would ideally play a central role
in the design of the fine-scale model. Within the scope of this article, we investigate the fine-
scale closure function to clarify the stable nature of DG methods from a VMS perspective,
thereby addressing the third point raised in the introduction.

Even though the fine-scale solution appears in the scale-interaction term, we need not
know it explicitly to close this term. Rather, it is the action that it has on the coarse-scale
test functions that is of importance. This action on the coarse scales can be incorporated
while at the same time eliminating the fine-scale solution by a Schur complement type
approach. We write Uh = span{whj }Nj=1, and consider the coarse-scale basis function whi .
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Then, we formulate an adjoint problem:

Find g′i ∈ U ′ s.t. ∀ ξ′ ∈ U ′ :
B
(
ξ′, g′i

)
= −S

(
ξ′, whi

)
. (26)

This equation produces one fine-scale function g′i for every coarse-scale basis function whi . If
we now choose ξ′ = u′ in Eq. (26) and w′ = g′i in Eq. (25b), then we obtain the following
identity that relates the fine-scale solution u′ in S

(
u′, whi

)
to the coarse-scale solution uh:

S
(
u′, whi

)
= −B

(
u′, g′i

)
= −Resuh(g′i) = B

(
uh, g′i

)
− L(g′i) . (27)

The right-hand expression of Eq. (27) no longer depends on the fine-scale solution. It is
the exact closure of the fine scales that is relevant to the DG formulation. We thus call the
fine-scale function g′i that solves Eq. (26) the fine-scale closure function corresponding to
basis whi .

Due to the linearity of Eq. (26), the fine-scale closure function for wh =
∑

i ciw
h
i ∈ Uh be-

comes g′
wh

=
∑

i cig
′
i. Then, the closed discontinuous Galerkin formulation that incorporates

the exact scale interaction and produces the coarse-scale solution reads:

Find uh ∈ Uh s.t. ∀wh ∈ Uh :

BDG

(
uh, wh

)
+B

(
uh, g′wh

)
= LDG

(
whi
)

+ L(g′wh) .
(28)

Remark 5.1. The fine-scale closure function defined by Eq. (26) strongly relates to the
“fine-scale Green’s function” introduced in [57]. The fine-scale Green’s function is a two-
point correlation function that follows from the solution of an adjoint problem like Eq. (26),
but where the linear form is induced by a Dirac-delta distribution at a variable location in the
domain Ω. The resulting fine-scale closure in the coarse-scale equations involves an integra-
tion on Ω×Ω. Differently, the fine-scale closure function is a correlation between a location
in the domain Ω and a coarse-scale test function. The complete action of the fine scales
on the coarse scales is given by the single integration shown in Eq. (27). Figures 1 and 2
illustrate the two different approaches for eliminating the fine scales from the coarse-scale
equation.

6. Scale interaction visualized

Since the fine-scale closure function is a member of the fine-scale function space, it
depends on the projection operator. From Section 4, we know that different discontinuous
Galerkin methods correspond to different projectors. As a result, each basis function in a
discontinuous Galerkin method has a natural correspondence to a fine-scale closure function.
In this section, we graph the fine-scale closure functions for different local discontinuous
Galerkin methods and for conforming mixed methods. A large spread in the fine-scale
closure function means a global impact of the fine scales on the coarse-scales, whereas a
small spread means that the fine scales have a localized influence. Large values in the
fine-scale closure function mean that the scale-interaction term has a significant influence,
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Figure 1: Eliminating the fine scales from the coarse-scale equation with the fine-scale
Green’s function.

Figure 2: Eliminating the fine scales from the coarse-scale equation with the fine-scale
closure function.

whereas small values imply that the finite element formulation is less sensitive to the fine-
scale effects. From this perspective, a discontinuous Galerkin formulation that corresponds
to a localized and moderately valued fine-scale closure function is favorable over a method
with a large spread and large peak values.
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We compute the fine-scale closure function by solving the adjoint problem of Eq. (26) on
a heavily refined mesh. Recall that the fine-scale space U ′ is the subspace ofW×Σ×Q×Q0

subjected to the constraints from Eq. (22). To simplify the computational implementation,
we release the constraints from U ′ and enforce them with new Lagrange multiplier terms.
This results in:

Find g′,h′, l−′, l+′ ∈ W ×Σ×Q×Q0 and ζh, ζh ∈ Wh ×Σh

s.t. ∀ ξ′, ξ′, r−′, r+′ ∈ W ×Σ×Q×Q0 and ∀ vh,νh ∈ Wh ×Σh :

B
(
(ξ′, ξ′, r−′, r+′), (g′,h′, l−′, l+′)

)
+ C

(
(ξ′, ξ′, r−′, r+′), (ζh, ζh)

)
=
(
κ−1a · τ h, ξ′)Ω̃ , (29a)

C
(
(g′,h′, l−′, l+′), (vh,νh)

)
= 0 , (29b)

where the bilinear form C
(
(g′,h′, l−′, l+′), (vh,νh)

)
corresponds directly to that from Eq. (22).

The new variables (ζh, ζh) are the Lagrange multipliers associated to those constraints. The
bilinear form B

(
·, ·) is still that of Eq. (10).

6.1. One-dimensional verification

We begin with a verification of the fine-scale elimination procedure of Sections 4 and 5.
For this purpose, we consider a one-dimensional model problem on a domain Ω = [0, 1],
with a positive unit advective speed, a diffusivity κ = 0.01, a constant source function f = 1
and homogeneous Dirichlet conditions at both the inflow and the outflow boundary. The
solution (φ,σ, λ+, λ−) to the mixed formulation of Eq. (10) is:

φ =
f

||a||

(
x− e

||a||
κ
x − 1

e
||a||
κ − 1

)
in Ω̃ (30a)

σ = f
(
x+

1

e
||a||
κ − 1

− κ

||a||

)
in Ω̃ (30b)

λ− = φ on Γ (30c)

λ+ = φ on Γ0 (30d)

Next, we construct coarse-scale spacesWh and Σh from first-order discontinuous basis func-
tions on five uniformly spaced elements. To compute the fine-scale closure function, we
approximate the spaces W and Σ with piece-wise constant discontinuous and first-order
continuous basis functions respectively on a fine-scale mesh with 1024 elements in each
coarse-scale element. The fine-scale closure function corresponding to the sixth basis func-
tion of Σh is shown in Fig. 3. The parameters in the scale-decomposition projector of
Eq. (20) are chosen as η = 0.1, β = −0.5 and C = 0.01. The figure shows an extreme
localization of the scale interaction: the influence of the fine scales is almost contained in a
single element. We explore the footprint of fine-scale closure functions more in Sections 6.2
and 6.3.

After also computing the fine-scale closure functions for the remaining 9 basis functions
that span Σh we can solve the system of equations of Eq. (28). Figure 4 shows the resulting
coarse-scale solution dotted in red. The figure also shows the true solution of Eq. (30) in
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(a) Primal variable g’ and Lagrange multipliers l±′.
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(b) Auxiliary variable h′ and test function τh.

Figure 3: Fine-scale closure function for κ = 0.01 and the LDG-projector with η = 0.1, β = −0.5 and
C = 0.01.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8
True solution
Projection
Coarse-scale solution

(a) Primal variable φ.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 True solution
Projection
Coarse-scale solution

(b) Auxiliary variable σ.

Figure 4: Full-scale and coarse-scale solution for the LDG-projection.

green, and the projection of that true solution onto the coarse-scale space in black. The figure
confirms that the “optimal discontinuous Galerkin formulation” of Eq. (28) indeed yields
the sought-after coarse-scale solution. This corroborates the legitimacy of our procedure for
adopting discontinuous Galerkin formulations in the variational multiscale framework per
Section 4, as well as the procedure for eliminating the remaining fine scales by means of the
fine-scale closure function per Section 5.

6.2. Comparison with a mixed method

To put the impact of a discontinuous Galerkin formulation in perspective, we compare
fine-scale closure functions to those of a conforming method. We repeat the experiment
corresponding to Fig. 3, but we replace the constraint equations by constraints corresponding
to a mixed formulation: the penalty parameters in the projection operator of Eq. (20) are
set to zero and the coarse-scale space is comprised of piece-wise constants and first-order
continuous basis functions for Wh and Σh respectively. Figure 5 shows the resulting fine-
scale closure function for the coarse-scale test function shown in Fig. 5b. When compared to
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(a) Primal variable g’ and Lagrange multipliers l±′.
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(b) Auxiliary variable h′ and test function τh.

Figure 5: Fine-scale closure function for the (conforming) mixed method.

the closure function of the discontinuous Galerkin method from Fig. 3, the closure function
of the conforming mixed formulation shows a much wider support. This is particularly clear
in the primal field, where both g′ and l± are completely global. In the auxiliary field, the
fine-scale closure function is exactly contained within the elements corresponding to the
coarse-scale test function.

For a two-dimensional comparison, we consider the model problem described in [57]. The
physical domain is a unit square and the advective field is a = [1/

√
5, 2/
√

5]T. We use a
16 × 16 mesh of triangles for the construction of all following coarse-scale spaces, and we
approximate the spaces W and Σ by subdividing each coarse-scale element into 1024 piece-
wise constant discontinuous Galerkin and first-order Brezzi-Douglas-Marini (BDM) elements
respectively. Both the coarse-scale mesh and the fine-scale mesh are shown in Fig. 6a. For
the source term in the adjoint formulation we consider the coarse-scale τ h Brezzi-Douglas-
Marini basis function shown in Fig. 6b. In the unconstrained case (i.e., C

(
·, ·
)

= 0) and for
a diffusion coefficient κ = 0.01 this source term in the adjoint problem would produce the
solution φ shown in Fig. 6a.

To compute the fine-scale closure function of the two-dimensional conforming mixed
formulation, we construct Wh and Σh on the coarse-scale mesh with piece-wise constant
DG elements and first-order BDM elements respectively. The fine-scale closure function for
the mixed method follows from adding the constraints of Eq. (22) with the choices η = C = 0
and β = 0. The solution fields g′ and h′ for a diffusion coefficient κ = 0.01 are shown in
Fig. 7. This figure again illustrates that the fine-scale closure function corresponding to a
plain mixed method has a widespread support. Within each individual element the fine-scale
closure function changes sign. The function g′ is almost linear within upwind and downwind
elements, and the gradient in upwind elements points in the opposite direction compared
to the gradient in downwind elements. The same solution behavior can be observed in
the earlier one-dimensional fine-scale closure function of Fig. 5. Just like for that one-
dimensional fine-scale closure function, the auxiliary variable h′ is much more localized
than φ′ and appears smooth. Different from the one-dimensional case, h′ is no longer fully
contained within the elements corresponding to τ h.
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(a) Solution φ in the unconstrained case, κ = 0.01. (b) Coarse-scale BDM basis τh.

Figure 6: Formulation of the adjoint problem and the example solution in the unconstrained case.
Illustration of the coarse-scale mesh (grey) and the fine-scale mesh (blue).

Next, we consider an LDG formulation in the same setting. We use the same mesh for
the construction of the coarse-scale spaces Σh andWh, but now use first-order DG elements
for both spaces. To avoid bias, we make use of the same coarse-scale function τ h from
Fig. 6b in the adjoint problem. The penalty parameters are chosen as η = 20, C = 0 and
β = 1

2
n+, where n+ is the normal vector on Γ for which a · n+ ≥ 0. The corresponding

fine-scale closure function for a diffusivity of κ = 0.01 is shown in Fig. 8.
The change to a DG method results in a drastic decrease in the size of the footprint of

the fine-scale closure function. Recall that the fine-scale closure functions shown in these
graphs capture the fine-scale effects that would need to be incorporated in the finite element
formulation via Eq. (28). The difference between Figs. 7 and 8 can then be interpreted from
two perspectives: producing a fine-scale model that mimics the effects of Fig. 8 appears more
viable than attempting to include the effects of Fig. 7, which suggests that a DG framework
is particularly suitable when the physical problem exhibits severe inherent multiscale effects
(e.g. for large eddy simulation of turbulent flow). On the other hand, if no fine-scale model
is included, then the figures illustrate the fine-scale closure that is neglected. Omitting the
closure of Fig. 7 is a more severe modeling approximation than omitting the closure of Fig. 8.
This provides a new perspective on the natural stability of DG methods when it comes to
hyperbolic terms in partial differential equations: the harmful impact of the missing closure
terms is significantly reduced.
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(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 7: Fine-scale closure functions for the (conforming) mixed method and κ = 0.01.

(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 8: Fine-scale closure functions for the LDG method and κ = 0.01, with η = 20, C = 0 and
β = 1

2n
+.
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(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 9: Fine-scale closure functions for the (conforming) mixed method and κ = 0.002.

(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 10: Fine-scale closure functions for the LDG method and κ = 0.002, with η = 20, C = 0 and
β = 1

2n
+.

21



To further corroborate this point, we reduce the diffusivity by a factor of five to κ = 0.002.
The fine-scale closure functions corresponding to these finite element formulations are shown
in Figs. 9 and 10. Even more so than before do we observe a widespread and high-valued fine-
scale closure function for the mixed method in comparison to the compact moderately valued
function for the DG method. Also note the change in scale of the color bar in this regard.
While the footprint of the auxiliary field h′ for the mixed method was relatively small before,
with the decrease in diffusivity it has grown significantly. In contrast, the auxiliary field h′

for the fine-scale closure function of the discontinuous Galerkin formulation shows roughly
the same spread as the primal variable, just like it did for the larger diffusion coefficient.
In general, the fine-scale closure function corresponding to the DG method appears smooth
and well-behaved, implying that a fine-scale model can potentially be effective.

6.3. Localization of the fine-scale closure function in LDG methods

Next, we explore the effect of the parameters in the LDG method on the fine-scale clo-
sure function. The free parameters are C, η and β. Different choices lead to different LDG
methods with different convergence characteristics [4, 88, 89]. Three example methods are
collected in Table 1, optimal convergence rates of which are proven in [90, 89]. These three
methods illustrate three extrema in terms of parameter dependencies: as the mesh size h
tends to zero, the parameter η shrinks to 0 for the LDG-1 method and grows to ∞ for
the LDG-3 method, whereas the parameter C grows to ∞ and shrinks to zero. From our
variational multiscale viewpoint, these different choices lead to different decomposition pro-
jections (Eq. (20)) and thereby to different closure relations (Eqs. (26) and (28)). From that
perspective, the motivation for choosing one particular parameter set over the other could
be to simplify the remaining closure relationship, or more specifically, to yield a compact
fine-scale closure function.

Table 1: Example parameter choices of local discontinuous Galerkin methods [4, 90]. The domain width
W is introduced for dimensional consistency.

Name η β C

LDG-1 O(h/W 2) S+n+ + S−n− O(W 2/h)

LDG-2 O(1/W ) S+n+ + S−n− O(W )

LDG-3 O(1/h) S+n+ + S−n− O(h)

To exemplify such a VMS-based design driving approach, we compute the support of the
fine-scale closure function for a wide range of parameters in the LDG formulation. We do this
for the one-dimensional model problem, and subsequently verify that the fine-scale closure
function of a two dimensional problem with the same element Péclet number exhibits similar
characteristic behavior. To reduce the size of the search space, we choose β as either 1

2
n+

or 1
2
n−. These are two common choices of the ‘switch’ parameter S± from Table 1 as they
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reduce the bandwidth of the resulting stiffness matrix [91]. For each one-dimensional fine-
scale closure function, we measure the support as the fraction of the degrees of freedom in
the fine-scale space for which the absolute value of g′ or h′ is larger than 1 or 0.1 respectively.
A smaller fraction means a more localized fine-scale closure function. Figure 11 shows the
resulting heatmap when the coarse-scale space is constructed with a mesh of five elements,
which corresponds to the earlier Fig. 3. In the two plots on the left, the parameter β is
chosen as half the inflow normal 1

2
n−, and in the plots on the right as half the outflow

normal 1
2
n+. The top row shows results for a diffusion coefficient κ = 0.01 and the bottom

row for κ = 0.001. Figure 12 shows the same four graphs for a coarse-scale mesh with 16
elements, which relates to the earlier two-dimensional experiments of Figs. 8 and 10. The
different figures thus span a range of coarse-scale element Péclet numbers.

Fig. 3

(a) For κ = 0.01 and β = 1
2n
−. (b) For κ = 0.01 and β = 1

2n
+.

(c) For κ = 0.001 and β = 1
2n
−. (d) For κ = 0.001 and β = 1

2n
+.

Figure 11: Support of the fine-scale closure function as a fraction of the complete domain for different
parameters in the LDG-projector and different diffusion coefficients. The fine-scale closure function is com-
puted for the central basis function in a one-dimensional domain discretized with five coarse-scale elements.
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(a) For κ = 0.01 and β = 1
2n
−. (b) For κ = 0.01 and β = 1

2n
+.

Fig. 15

(c) For κ = 0.001 and β = 1
2n
−.

Fig. 14

Fig. 16
Fig. 17

Fig. 18

(d) For κ = 0.001 and β = 1
2n

+.

Figure 12: Support of the fine-scale closure function as a fraction of the complete domain for different
parameters in the LDG-projector and different diffusion coefficients. The fine-scale closure function is com-
puted for the central basis function in a one-dimensional domain discretized with 16 coarse-scale elements.

All eight graphs show the same three distinct regions: there are bands of combinations
of η and C for which the fine-scale closure function is almost global (indicated in orange
and yellow), in the upper right corner of the graphs the fine-scale closure functions have
a footprint of roughly half the domain (indicated in purple and pink), and the left and
bottom-right sections of the graphs show localized fine-scale closure functions (indicated in
dark blue). Based on these results, favorable parameter choices would be a small η and a
large C or vice versa. When comparing the left and right columns in Figs. 11 and 12, we
observe that the choice β = 1

2
n+ (with n+ the outflow normal) is preferable over β = 1

2
n−.

The right figures consistently show thinner orange-yellow bands and wider dark blue regions,
indicating more localized scale interaction overall. This choice of β is particularly important
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(a) Solution φ in the unconstrained case, κ = 0.001. (b) Coarse-scale basis τh.

Figure 13: Formulation of the adjoint problem and the example solution in the unconstrained case.
Illustration of the coarse-scale mesh (grey) and the fine-scale mesh (blue).

for moderate choices of η and C, as it most significantly reduces the footprint of the fine-scale
closure function for C < 0.01 and around the range 1 < η < 100. Parameter ranges with
more extreme values of η and C produce localized fine-scale closure functions irrespective of
the choice of β.

Next, we compute two-dimensional fine-scale closure functions corresponding to distinc-
tive points in Figs. 12c and 12d. To maintain approximately the same coarse-scale element
Péclet number, we use the same model problem as in Section 6.2 with a reduced diffusion
coefficient of κ = 0.001. The discontinuous Galerkin coarse-scale basis function depicted
in Fig. 13b is used for the computation of all following fine-scale closure functions. In the
unconstrained case, this adjoint problem would yield the primal solution shown in Fig. 13a.
Figure 13a also shows the highly refined fine-scale mesh on which the fine-scale closure
functions are computed.

Figures 14 and 15 show the fine-scale closure functions for η = 100, C = 10−4 and
β = 1

2
n+ and β = 1

2
n− respectively. These parameter points are drawn into Figs. 12c

and 12d. As may be observed from Fig. 12c, the choice β = 1
2
n− falls within the yellow

band and should result in a highly non-local fine-scale closure function, whereas the choice
β = 1

2
n+ should produce a function with a more local support. The simulation results of

Figs. 14 and 15 indeed demonstrate the anticipated behavior. This confirms that choosing β
as half the outflow normal is preferable to half the inflow normal, also for a two-dimensional
case. The result implies that the general characteristics of the fine-scale closure functions are
determined more by the coarse-scale element Péclet number than by the spatial dimension
of the problem.
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(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 14: Fine-scale closure function for κ = 0.001 with parameters η = 100, C = 10−4 and
β = 1

2n
+. Corresponding to the middle point in Fig. 12d.

(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 15: Fine-scale closure function for κ = 0.001 with parameters η = 100, C = 10−4 and
β = 1

2n
−. Corresponding to the middle point in Fig. 12c.
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(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 16: Fine-scale closure function for κ = 0.001 with parameters η = 105, C = 0.1 and β = 1
2n

+.
Corresponding to the upper-right point in Fig. 12d.

Secondly, we choose a parameter point in the upper right corner of Fig. 12d, namely
η = 105, C = 0.1 and β = 1

2
n+. The resulting fine-scale closure function depicted in Fig. 16

again shows a wide-spread support. Different from the earlier function shown in Fig. 15, the
support of the new function is limited to the upwind region of the coarse-scale basis function.
This explains the values of 0.5 on the top-right corners of the graphs in Figs. 11 and 12:
the complete upwind half of the one-dimensional domain affects the central basis function.
The large penalty values on both the primal and auxiliary fields enforces an incompatible
continuity and thereby results in a non-local fine-scale closure function.

Next, we consider the upper-left and lower-right corners of Fig. 12d. Figure 17 shows the
result for η = 1, C = 0.1 and β = 1

2
n+ and Fig. 18 shows the result for η = 105, C = 10−5

and β = 1
2
n+. As anticipated, both parameter choices produce a localized fine-scale closure

function, although quite different in nature. The function in Fig. 17 appears more erratic
compared to the smooth function in Fig. 18. Also note the change in colorbar-range for the
primal field in that regard.

Finally, we investigate the coarse-scale solution corresponding to the parameter choices
of Figs. 17 and 18. Consider the benchmark problem described in Fig. 19, adopted from [57].
The solution exhibits steep internal and boundary layers, making this a challenging function
to approximate well on a coarse mesh. Figure 20 shows the coarse-scale solution (i.e., the
solution to Eq. (28) including the exact scale interaction) for the parameter choices η = 1,
C = 0.1 and β = 1

2
n+, and Fig. 21 shows the coarse-scale solution for η = 105, C = 10−5

and β = 1
2
n+.
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(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 17: Fine-scale closure function for κ = 0.001 with parameters η = 1, C = 0.1 and β = 1
2n

+.
Corresponding to the upper-left point in Fig. 12d.

(a) Primal field, g′. (b) Auxiliary field, h′.

Figure 18: Fine-scale closure function for κ = 0.001 with parameters η = 105, C = 10−5 and
β = 1

2n
+. Corresponding to the lower-right point in Fig. 12d.
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The two different parameter choices produce radically different coarse-scale solutions.
In Fig. 20, η is chosen small. This puts little weight on the continuity of the coarse-scale
solution, permitting large jumps between elements. As a result, the coarse-scale solution is
free to mirror the high gradients of the true solution, while maintaining smoothness where
the true solution is smooth. An immediate consequence of these large (changes in) gradients
is that the solution exhibits significant overshoots and undershoots. These severe overshoots
and undershoots and the surrounding oscillations make the parameter choice η = 1, C = 0.1
and β = 1

2
n+ an unlikely candidate for use in practical computations, despite the favorable

localization of the scale interaction per Fig. 17.
Differently, the case with large η produces a near continuous solution field. The steep

layers in the true solution are smoothed out, and the undershoots and overshoots are minor.
In the “eyeball norm”, the coarse-scale solution of Fig. 21 even outperforms those corre-
sponding to an H1

0 -projector and an L2-projector on a similarly coarse grid (the focus of
study in [57]). The same parameter choice (η = 105, C = 10−5 and β = 1

2
n+) also pro-

duces the most localized fine-scale closure function, see Fig. 18, and this closure function
is more compact than the fine-scale Green’s functions for either the H1

0 -projector or the
L2-projector (also illustrated in [57]). Both these arguments speak in favor of using the
DG-type projector of Eq. (20) with a large value for η and a small value for C in the scale
decomposition in a variational multiscale framework. It might also be worthwhile to explore
modifications to this projector as a starting point for developing new discontinuous Galerkin
methods. For example, one could add a small L2-weighting to the primal field to balance
out the excess smoothing (yielding PSPG-like additional terms in the LDG formulation),
or one could incorporate the additional terms proposed in [92] to introduce shock-capturing
terms.

Figure 19: Solution to the advection-diffusion model problem on a unit-square domain, with κ = 0.001,
a = [1/

√
5, 2/
√

5]T and f = 1 if 2x < y or f = −1 if 2x > y.
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Figure 20: Coarse-scale solution for the problem of Fig. 19, with parameters η = 1, C = 0.1 and β = 1
2n

+.
Corresponding to the fine-scale closure function of Fig. 17.

Figure 21: Coarse-scale solution for the problem of Fig. 19, with parameters η = 105, C = 10−5 and
β = 1

2n
+. Corresponding to the fine-scale closure function of Fig. 18.
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7. Conclusion and outlook

Discontinuous Galerkin methods continue to gain popularity in the field of fluid mechan-
ics. These methods (i) are non-conforming with respect to traditional weak formulations,
(ii) involve operators that are unbounded in the continuous limit, (iii) are stable by careful
design of numerical fluxes, their discontinuous basis functions (iv) render the typical H1

0 -
multiscale projector invalid and (v) conflict with the continuity requirements of classical
residual-based fine-scale models, and (vi) they involve penalty terms. These are six char-
acteristics that obfuscate the connection between discontinuous Galerkin methods and the
variational multiscale paradigm. In this article, we showed that given the right perspective,
discontinuous Galerkin methods fit well within the variational multiscale view on finite ele-
ment formulations. To this end, we presented a new approach that tackles all six points, thus
enabling the derivation of discontinuous Galerkin formulations from a variational multiscale
perspective.

In particular, we tackle point (i) by interpreting the standard Sobolev spaces (H1(Ω),
H(div,Ω), etc.) as constrained spaces, where the constraints are the continuity conditions
across element boundaries. We release these constraints from the space, and reapply them
in the weak formulation with a Lagrange multiplier. Discontinuous Galerkin approxima-
tion spaces are subspaces of these broken Sobolev spaces, and the variational multiscale
decomposition is now applicable. The central role of the Lagrange multiplier field in our
derivation permits us to avoid unbounded trace operations (point (ii)). Points (iv) and (v)
are addressed by augmenting the H1

0 -projector with weighted boundary terms. Discontinu-
ous Galerkin formulations then emerge directly (i.e., without any approximation or fine-scale
modeling) from special choices of projection operators. Understanding this inherent connec-
tion between the finite element formulation and the scale decomposition is of key importance
for handling the remaining fine-scale terms.

When we apply this derivation in the context of an advection-diffusion problem to obtain
a local discontinuous Galerkin formulation, then (only) a single (volumetric) fine-scale term
remains. We use the newly proposed “fine-scale closure function” to compare the influence
of the remaining fine-scale term on the discontinuous Galerkin method with that on a con-
forming mixed finite element method. The results show a localized and moderately valued
fine-scale closure for the discontinuous Galerkin method and a widespread and large fine-
scale closure for the conforming formulation. The stable nature of discontinuous Galerkin
methods stated in point (iii) above can thus be substantiated from the perspective of the
variational multiscale method.

We used our formalism to explore the dependency of the required fine-scale closure on
the parameters in the local discontinuous Galerkin formulation. Our results indicate that
these parameters severely affect the nature of the interaction with the unresolved scales
(relating to points (i) and (vi)). Appropriately chosen parameters may yield highly lo-
calized closure relationships (Fig. 18) and unsuitably chosen parameters may yield closure
relationships that are virtually impossible to model effectively (Figs. 15 and 16). With the
adaptation of discontinuous Galerkin methods in the variational multiscale framework, we
have shown that such considerations may serve as design driving factors. Additionally, it

31



provides the foundation for VMS-based fine-scale modeling appropriate for discontinuous
Galerkin methods, for example via approximation of the fine-scale closure function.
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[31] C. Lehrenfeld and J. Schöberl, “High order exactly divergence-free hybrid discontinuous Galerkin meth-
ods for unsteady incompressible flows,” Computer Methods in Applied Mechanics and Engineering,
vol. 307, pp. 339–361, 2016.

[32] J. Baiges, R. Codina, and S. Idelsohn, “A domain decomposition strategy for reduced order models.
Application to the incompressible Navier-Stokes equations,” Computer Methods in Applied Mechanics
and Engineering, vol. 267, pp. 23–42, 2013.

[33] S. Kaulmann, M. Ohlberger, and B. Haasdonk, “A new local reduced basis discontinuous Galerkin
approach for heterogeneous multiscale problems,” Comptes Rendus Mathematique, vol. 349, no. 23-24,
pp. 1233–1238, 2011.

[34] C. C. de Wiart, K. Hillewaert, L. Bricteux, and G. Winckelmans, “Implicit LES of free and wall-
bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method,”
International Journal for Numerical Methods in Fluids, vol. 78, no. 6, pp. 335–354, 2015.

[35] B. Landmann, M. Kessler, S. Wagner, and E. Krämer, “A parallel, high-order discontinuous Galerkin
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