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Abstract

This article summarizes the Lp-DPG method presented in [16], where only 1D convection-diffusion
problems are solved. We apply the same computational techniques to 2D convection-diffusion prob-
lems and report additional numerical results herein. Furthermore, we propose an Lp-DPG method with
variable p, and illustrate it with numerical experiments.
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1 Introduction

The Discontinuous Petrov-Galerkin (DPG) method developed by Demkowicz, Gopalakrishnan, and Car-
stensen [8, 9, 4] has many attractive features: guaranteed stability provided the problem is well posed,
built-in a posteriori error estimator, as well as the ability to control the norm in which the convergence
occurs. The DPG method admits the interpretation of a minimum residual method, where the residual is
measured in a dual space to the space of test functions. Consider the abstract problem: Find u ∈ U :

Bu = l in V ′
(1.1)

where U ,V are trial and test spaces (Banach spaces in general), B : U → V ′ is a bounded linear operator
dictated by the problem and the variational formulation we choose. For a well-posed variational problem,
B is bounded below as well.

Given a discrete trial space Uh ⊂ U , the ideal DPG method (by ideal we mean test space is not yet
discretized) solves the minimum residual problem: Find uh ∈ Uh :

‖Buh − l‖V′ is minimized.
(1.2)

Originally, the DPG method has dealt with Hilbert test and trial spaces only. Following Houston, Muga, et
al. [13, 15, 17], we have investigated the DPG method in Banach spaces [16], focusing on Sobolev spaces
W 1,p(Ω) andW p(div,Ω) (p ≥ 2) as test spaces, in particular. The trial spaces are chosen accordingly so as
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to ensure that the bilinear form 〈Bu, v〉 is bounded. In Banach spaces, the minimum residual problem (1.2)
is shown to be equivalent to a convex minimization problem with linear constraints [17]. We solve the latter
minimization problem using Newton’s method, which will be detailed later. Our experience indicates that
when the residual is small, we may have trouble with Newton’s method, because the Hessian can become
ill-conditioned. We propose an effective solution to the ill-conditioning problem based on a formulation
with a variable exponent p.

This article first summarizes the results of our previous work [16]; for convenience, the details of
discretization and Newton’s method are described in a separate section. Then we proceed by solving
various 2D convection-diffusion problems, and present the numerical results. Finally we conclude with a
section on the Lp-DPG method with variable p.

2 Theory: Lp-DPG method for the convection-diffusion problem

We summarize the main theoretical result of [16] in this section. Consider problem (1.2), and assume that
B is both bounded and bounded-below. Moreover, Uh is finite dimensional.

Theorem 1 (Existence and uniqueness of solution). When V ′ is strictly convex, there exists a unique
solution uh to problem (1.2). In particular, the dual space to V = W 1,p(Ω) is strictly convex for p ≥ 2.

From now on we shall concern ourselves with test spaces like W 1,p(Ω). Under such circumstances, it
is proven in [17, 16] that the residual minimization problem (1.2) is equivalent to the convex optimization
problem:

ψ = arg min
ϕ∈(BUh)⊥

1

p
‖ϕ‖pV − l(ϕ) (2.3)

where
(BUh)⊥ := {v ∈ V : 〈Bδuh, v〉 = 0 ∀δuh ∈ Uh}. (2.4)

Through the classical optimization theory, one can show that problem (2.3) admits a unique solution, which
is characterized by the mixed system:

Find ψ ∈ V, uh ∈ Uh :

〈RV(ψ), v〉+ 〈Buh, v〉 = l(v) ∀v ∈ V

〈Bδuh, ψ〉 = 0 ∀δuh ∈ Uh

(2.5)

whereRV : V → V ′ is the Gâteaux derivative of the functional J(ϕ) := 1
p‖ϕ‖

p
V . Note thatRV is nonlinear

for p > 2. When p = 2, RV reduces to the familiar Riesz operator. We refer the readers to [17, 16] for
details involving properties and formulae for RV .

The meaning of “equivalence” between the residual minimization problem (1.2) and convex optimiza-
tion problem (2.3) is clarified by the following theorem.

Theorem 2 (Characterization of solution). The unique solution uh of problem (1.2) and the unique solution
ψ of problem (2.3) satisfy the mixed system (2.5). Conversely, any solution (ψ, uh) to the mixed system
(2.5) consists of the minimizers of problem (1.2) and (2.3).

In summary, our Lp-DPG method is motivated by the minimum residual problem (1.2). However, in
practice, we solve the constrained convex optimization problem (2.3) instead, for which the techniques
from the convex optimization can be applied.
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Convection-diffusion problem. To stay focused, we will consider a model convection-diffusion prob-
lem. Given a domain Ω ⊂ RN , we want to solve

−∇ · (ε∇u− βu) = f in Ω (2.6)

where ε is the diffusion coefficient, β denotes an incompressible advection field, and f is a source term.
We assume a non-homogeneous Dirichlet boundary condition

u = u0 on Γ = ∂Ω. (2.7)

Classical variational formulation. The standard variational formulation [7] is:
Find u ∈ ũ0 + U :∫

Ω

ε∇u · ∇v − uβ · ∇v =

∫
Ω

fv ∀v ∈ V
(2.8)

where ũ0 is a finite energy lift of u0 into W 1,p′(Ω), i.e. ũ0 ∈W 1,p′(Ω), ũ0|∂Ω = u0, and

U = W 1,p′

0 (Ω) := {u ∈W 1,p′(Ω) : u = 0 on ∂Ω}

V = W 1,p
0 (Ω)

(2.9)

where p ≥ 2, 1/p+ 1/p′ = 1. For the proof of well-posedness of problem (2.8) and (2.9), we refer readers
to the work of Houston et al. [13].

Ultraweak variational formulation. To derive the ultraweak formulation, we introduce the total flux
σ = ε∇u− βu and rewrite the convection-diffusion problem as a first-order system. Then we multiply the
system by test functions and integrate by parts. The final result is:

Find σ ∈ (Lp
′
(Ω))N , u ∈ Lp′(Ω) :(

σ, ε−1τ
)

+
(
u,div τ + ε−1β · τ

)
= 〈u0, τ · n〉 ∀τ ∈W p(div,Ω)

(σ,∇v) = (f, v) ∀v ∈W 1,p
0 (Ω)

(2.10)

where p ≥ 2, 1/p+ 1/p′ = 1, and

W p(div,Ω) := {τ ∈ (Lp(Ω))N : div τ ∈ Lp(Ω)}.

As usual, we use the notation:

(u, v) = (u, v)Ω :=

∫
Ω

uv 〈u, v〉 = 〈u, v〉∂Ω :=

∫
∂Ω

uv .

For details on the derivation and the definition of involved Sobolev spaces, we refer readers to [16].

3 Discretization and linearization

3.1 Discretizing V with broken test spaces

The test space V is discretized using the broken space technology [4]. Given a mesh Ωh, we consider
broken test spaces W p(div,Ωh),W 1,p(Ωh), defined as:

W p(div,Ωh) :=
{
σ ∈ (Lp(Ω))N : σ|K ∈W p(div,K),K ∈ Ωh

}
=
∏
K∈Ωh

W p(div,K)

W 1,p(Ωh) :=
{
w ∈ Lp(Ω) : w|K ∈W 1,p(K),K ∈ Ωh

}
=
∏
K∈Ωh

W 1,p(K)
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Since new test functions are no longer conforming, we must introduce interface fluxes as additional un-
knowns. The ultraweak formulation with broken test spaces is given by:

Find σ ∈ (Lp
′
(Ω))N , u ∈ Lp′(Ω), σ̂n ∈W−

1
p′ ,p

′
(Γh), û ∈W 1− 1

p′ ,p
′
(Γh) :

û = u0 on Γ

(σ, ε−1τ) + (u,divh τ + ε−1β · τ)− 〈û, τ · n〉Γh
= 0 ∀ τ ∈W p(div,Ωh)

(σ,∇hv)− 〈σ̂n, v〉Γh
= (f, v) ∀ v ∈W 1,p(Ωh)

(3.11)

where
〈σ̂n, v〉Γh

:=
∑
K∈Ωh

〈σK,n, γ∂KvK〉∂K

〈û, τ · n〉Γh
:=

∑
K∈Ωh

〈uK , γn,∂KτK〉∂K .

are the duality pairings on the mesh skeleton. For details on the trace spaces and well-posedness of the
“broken” formulation, the readers are referred to Appendix B in [16]. We emphasize that broken spaces
are easier to discretize than globally conforming ones; moreover, they lead to block diagonal Gram matrix,
which can be inverted element-wise.

The last step of discretization is to replace W p(div,Ωh),W 1,p(Ωh) by piecewise polynomial spaces.
If the trial space U is discretized with polynomials of degree r1, then we discretize the test space V with
piecewise polynomials of degree r + ∆r on the same mesh with ∆r ≥ 1. As shown in [5, 15], ∆r =

1 should suffice for the convection-diffusion problems, and this is the value we adopt in the reported
numerical experiments.

3.2 Newton’s method for the minimization problem

Remark. In the following discussion, solution u represents a group variable. For the ultraweak formulation
with broken test spaces, u = (σ, u, σ̂n, û). Thus, in particular, orthogonality condition b(δuh, ϕh) = 0

stands for four orthogonal conditions obtained by testing with the four components of δuh. Similarly,
ϕh = (τ, v) represents also a group variable. In what follows we drop the special font for u.

Let Vr denote the fully discrete test space. We seek to solve the discretized version of (2.3), a convex
minimization problem with linear constraints:

minϕh∈Vr f(ϕh)

subject to b(δuh, ϕh) = 0 ∀δuh ∈ Uh
(3.12)

where f(ϕh) = 1
p‖ϕh‖

p
V − l(ϕh).

Following standard practice in the numerical optimization, we use Newton’s method to solve this prob-
lem (cf., Section 10.2 in [1]). Define the stiffness matrix Bij := b(ej , gi), where ej is the j-th basis
function for Uh, and gi is the i-th basis function for Vr. Then the linear constraint can be written as

BTϕh = 0 (3.13)

where ϕh is the coefficient vector of ϕh under the basis {g1, g2, . . . , gn}, n = dimVr. For the Newton
iteration, we can always start with a feasible ϕh (by feasible we mean it satisfies the constraint). In practice,

1In the exact sequence logic. This amounts to order r for W 1,p′ -conforming element and order r−1 for Lp′ -conforming element.
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we start with ϕh = 0. The Newton step ∆ϕnt at feasible ϕh is characterized by[
∇2f̃(ϕh) B

BT 0

][
∆ϕnt
uh

]
=

[
−∇f̃(ϕh)

0

]
. (3.14)

Note that f̃ : Rn → R is the discretized version of f : V → R. It is defined as

f̃(ϕh) := f(

n∑
i=1

ϕ
(i)
h gi). (3.15)

With broken test spaces, the Newton step ∆ϕnt can be condensed out element-wise. We assemble and solve
the linear system for uh; then we compute ∆ϕnt locally. After obtaining ∆ϕnt, we do a backtracking line
search to ensure the Armijo sufficient decrease condition (See Section 9.2 in [1]):

f(ϕh + t∆ϕnt) ≤ f(ϕh) + αt∇f(ϕh)T∆ϕnt (3.16)

where α is some constant in (0, 1). In our computations, we choose α = 10−4.
The Newton decrement is defined as:

λ(ϕh) = (∆ϕTnt∇2f̃(ϕh)∆ϕnt)
1/2 (3.17)

and serves as an error indicator for Newton’s method. We stop the Newton iteration when λ is small
enough. The tolerance is set to 10−5 in our numerical experiments.

For p > 2, say p = 4, we combine the Newton iteration with a continuation strategy. We start with
p = 2, and solve for the minimizer ψh. Then we use this ψh as the initial point for p = 3. Next the
minimizer is again used to initialize the Newton’s method for p = 4.

Computing the Hessian. Note that we need to invert ∇2f̃(ϕh) in each Newton step. We provide the
formula for the Hessian because of its great importance and influence on the numerical behavior of the
algorithm. As an example, consider the ultraweak formulation (2.10) and mathematician’s test norm:

‖(τ, v)‖pV := ‖τ‖p + ‖div τ‖p + ‖v‖p + ‖∇v‖p

where ‖·‖ denotes standard Lp(Ω)-norm. The Hessian of f in the functional form is

〈
∇2f(τ, v); (δτ, δv), (∆τ,∆v)

〉
= (p− 1)

[ N∑
i=1

∫
Ω

|τi|p−2∆τiδτi +

∫
Ω

|div τ |p−2 div ∆τ div δτ

+
∑
|α|≤1

∫
Ω

|Dαv|p−2Dα∆vDαδv
]
. (3.18)

This looks like a weighted “inner product”, with |τi|p−2, |div τ |p−2, |Dαv|p−2 being the weight. It is
evident that when the error representation function is small (τi, v and their derivatives have small absolute
values), the Hessian is nearly singular. In particular, when the solution is exact, ψ = (τ, v) ≡ 0, the
Hessian is singular. A new method using variable p is proposed to circumvent this issue, which is the topic
of Section 5.
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4 Numerical results

4.1 Eriksson-Johnson problem

We consider the Eriksson-Johnson model problem:
∂u

∂x
− ε
(
∂2u

∂x2
+
∂2u

∂y2

)
= 0 in (0, 1)× (0, 1)

u = 0 if x = 1, y = 0, 1

u = sin(πy) if x = 0.

(4.19)

This is a 2D convection-diffusion problem with advection field β = (1, 0) and a zero source term. The
solution is driven by the inflow boundary condition. We can derive the exact solution using separation of
variables,

u(x, y) =
exp(s1(x− 1))− exp(s2(x− 1))

exp(−s1)− exp(−s2)
sin(πy) (4.20)

where s1 = 1+
√

1+4π2ε2

2ε , s2 = 1−
√

1+4π2ε2

2ε . In our numerical experiments, we set ε = 0.01, and we use
the ultraweak formulation (which defines the operator B).

Choice of test norm. In our residual-minimization framework (2.3), test norm enters the algorithm di-
rectly through the expression of cost function. In DPG, the choices of test norm can sometimes pose a
challenge (see [10]). However, in this paper we do not concern ourselves with small ε, and it suffices to
work with mathematician’s test norm and adjoint graph norm, which will be introduced now.

Mathematician’s test norm. The mathematician’s test norm is defined as

‖(τ, v)‖pM := ‖τ‖p + ‖div τ‖p + ‖v‖p + ‖∇v‖p (4.21)

where ‖·‖ denotes standard Lp(Ω)-norm.

Adjoint graph norm. The definition of adjoint graph norm makes use of the adjoint operator A∗. In the
convection-diffusion problem as we consider,

A∗(τ, v) = (ε−1τ +∇v,div τ + ε−1β · τ) (4.22)

The adjoint graph norm is defined to be

‖(τ, v)‖pAG := ‖(τ, v)‖p + ‖A∗(τ, v)‖p (4.23)

where ‖(τ, v)‖p := ‖τ‖p + ‖v‖p.
We divide the domain into 4 × 4 square elements. The polynomial order (in the exact sequence logic)

is set to be (3, 3). Figure 1 presents the numerical solution obtained with p = 2 and p = 4 alongside the
exact solution. As the red color means greater values of u, we can see that the Banach solution (p = 4) is
closer to the exact solution (redder) than the Hilbert one (p = 2). We plot the same figure for adjoint graph
norm in Figure 2, and the same trend can be observed.
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(a) Exact solution (b) p = 2 (c) p = 4

Figure 1: Solution of Eriksson-Johnson problem using mathematician’s test norm. The field u is plotted
using the same color scheme across three subfigures.

(a) Exact solution (b) p = 2 (c) p = 4

Figure 2: Solution of Eriksson-Johnson problem using adjoint graph norm. The field u is plotted using the
same color scheme across three subfigures.

In order to better compare the solutions, we draw a profile of u along the line y = 0.5. In Figure 3, we
can see that both the Hilbert and Banach solution underestimate u; however, the value obtained with p = 4

is closer to the correct value than with p = 2. At the same time, we also observe that use of adjoint graph
norm produces a better solution than mathematician’s test norm.

(a) Mathematician’s test norm (b) Adjoint graph norm

Figure 3: Profile of u along y = 0.5. Black line represents exact solution, blue line denotes Hilbert solution,
and red line stands for Banach solution.

Adaptivity. The DPG method has one key advantage when it comes to adaptivity — ‖ψ‖ as a built-in a
posteriori error estimator [3]. In practice, we use η = 1

p‖ψ‖
p
V as the error estimator. We use the greedy
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strategy, marking for h-refinement those elements where η > factor∗ηmax. In our numerical experiments,
we choose factor = 0.25. The initial mesh is chosen to be the same 4 × 4 mesh as before. Moreover,
we work with the adjoint graph norm only as it has already been demonstrated to perform better than
mathematician’s test norm.

(a) Solution after 2 refinements, p = 4 (b) Profile along y = 0.5

Figure 4: Solution of Eriksson-Johnson problem using adjoint graph norm. (a) numerical solution of u
after 2 refinements obtained for p = 4. (b) the profile of u along y = 0.5, for both p = 2 and p = 4. Black
line represents exact solution, blue line denotes Hilbert solution, and red line stands for Banach solution.

Figure 4(a) shows the solution u alongside the mesh after 2 refinements, where the same color scheme
as in Figure 1 and 2 is used. As expected, mesh refinement occurs where the boundary layer resides. Figure
4(b) displays the profile of u along y = 0.5. It can be seen that numerical solution obtained with p = 4

almost coincides with the exact solution. As the refinements proceed, the difference between the Hilbert
and Banach versions becomes less significant.

4.2 Egger-Schöberl problem

We also study the Egger-Schöberl problem: −ε∆u+ β · ∇u = f in Ω := (0, 1)× (0, 1)

u = 0 on ∂Ω
(4.24)

where f is chosen such that the exact solution is given by

u(x, y) = [x+ (eβ1x/ε − 1)/(1− eβ1/ε)][y + (eβ2y/ε − 1)/(1− eβ2/ε)] . (4.25)

In our numerical experiments, we set β to be (1, 1), and ε to be 0.01. The same 4×4 mesh and polynomial
order of (3, 3) as for the Eriksson-Johnson are used.
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(a) Exact solution (b) p = 2 (c) p = 4

Figure 5: Solution of Egger-Schöberl problem using mathematician’s test norm. The field u is plotted
using the same color scheme across three subfigures.

(a) Exact solution (b) p = 2 (c) p = 4

Figure 6: Solution of Egger-Schöberl problem using adjoint graph norm. The field u is plotted using the
same color scheme across three subfigures.

(a) Mathematician’s test norm (b) Adjoint graph norm

Figure 7: Profile of u along y = 0.5. Black line represents exact solution, blue line denotes Hilbert solution,
and red line stands for Banach solution.

Figure 5 and Figure 6 show the exact solution and numerical solution obtained with mathematician’s
test norm and adjoint graph norm, respectively. Figure 7 displays the profile of u along the line y = 0.5.
We have the same findings as for the Eriksson-Johnson problem: Banach solution is closer to the exact
solution than Hilbert one; the solution obtained with adjoint graph norm is overall better than that obtained
with mathematician’s test norm.
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(a) Solution after 3 refinements, p = 4 (b) Profile along y = 0.5

Figure 8: Solution of Egger-Schöberl problem using adjoint graph norm. (a) numerical solution of u after
3 refinements obtained for p = 4. (b) the profile of u along y = 0.5. Black line represents exact solution,
and red line stands for Banach solution.

Adaptivity. Figure 8(a) depicts the solution after 3 refinements, for p = 4 and adjoint graph norm, and
Figure 8(b) draws the profile of u along y = 0.5. The refinement occurs both near the top and the right
side, in accordance with the location of boundary layer. After 3 refinements, again we observe that the
numerical solution agrees reasonably well with the exact one.

4.3 A posteriori error analysis

In which norm should we measure the error? As proposed in [20], we can introduce the optimal test
norm when V is reflexive and B is bijective. For our ultraweak formulation,

‖v‖opt = ‖A∗v‖Lp (4.26)

where v denotes the group test variable. From (1.2), the minimum residual formulation of DPG, we know
that DPG is a projection in the energy norm, i.e.

‖u− uh‖E := ‖B(u− uh)‖V′ = min
wh∈Uh

‖u− wh‖E . (4.27)

When we work with the optimal test norm, the energy norm reduces to the trial norm:

‖w‖E = sup
v∈V

〈Bw, v〉
‖v‖opt

= sup
v∈V

(w,A∗v)

‖A∗v‖Lp

= ‖w‖Lp′ (4.28)

where p′ is the conjugate exponent to p. Thus the solution uh would be the best approximation of u in Uh
measured in Lp

′
norm, provided we use optimal test norm and ideal DPG. In practice, we use the adjoint

graph norm, also known as “quasi optimal test norm”, which is equivalent to the optimal test norm: Let γA
be the boundedness below constant for A and A∗, i.e., ‖v‖ ≤ γ−1

A ‖A∗v‖. We have

‖A∗v‖p ≤ ‖v‖p + ‖A∗v‖p ≤ (γ−pA + 1)‖A∗v‖p,

or equivalently,
‖A∗v‖ ≤ ‖v‖AG ≤ (γ−pA + 1)1/p‖A∗v‖ . (4.29)
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In this case, the energy norm satisfies

(γ−pA + 1)−1/p‖w‖Lp′ ≤ ‖w‖E = sup
v∈V

(w,A∗v)

‖v‖AG
≤ ‖w‖Lp′ . (4.30)

Hence the equivalence between energy norm and Lp
′

norm. Moreover, we have to discretize the test space
to solve the problem (practical DPG instead of ideal). Still we expect to see near best approximation in
Lp
′

norm. Therefore we measure the error in our solution with Lp
′

norm.

How do we compute the residual? In our program, the error representation function ψ is calculated
element-wise after the solution of uh. For simplicity, we use uh to denote both the field and trace variables.
ψ ∈ Vr satisfies the equation

〈RVr (ψ), vr〉 = l(vr)− 〈Buh, vr〉 ∀vr ∈ Vr (4.31)

where Vr is the (discretized) enriched test space. As proven in [16] (Theorem 3),

‖RVr (ψ)‖V′r = ‖ψ‖p−1
Vr =

(∑
K

‖ψK‖pV(K)

) p−1
p

(4.32)

where K is the element index and V(K) is Sobolev space over the element. Specifically, V(K) =

W p(div,K) × W 1,p(K) for convection-diffusion problem with ultraweak formulation. This provides
a formula for the residual ‖l −Buh‖V′r = ‖RVr (ψ)‖V′r .

What is the relation between error and residual? This question in Hilbert space is answered in [3]. In
general Banach space setting, Muga and van der Zee have proven the following a posteriori error estimate
(For details, see Theorem 4.7 in [17]):

‖u− uh‖U ≤
1

γB
osc(l) +

CΠ

γB
‖l −Buh‖V′r (4.33)

where γB is the boundedness below constant for B, CΠ is the continuity constant for a Fortin operator
Π : V → Vr, and

osc(l) := sup
v∈V

〈l, v −Πv〉
‖v‖V

is the data oscillation term. In essence, this theorem tells us that the residual ‖l − Buh‖V′r is a good
estimator of the error ‖u− uh‖U .

In Figure 9, we plot ‖u−uh‖Lp′ and ‖l−Buh‖V′r against number of degrees of freedom, for h-adaptive
solution of our model problems using adjoint graph norm and p = 4. It can be seen that as we refine the
mesh, both error and residual decrease monotonically, and they follow approximately the same trend.
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(a) Eriksson-Johnson problem (b) Egger-Schöberl problem

Figure 9: Error and residual in adaptive solution. p = 4 and adjoint graph norm is used. Red line indicates
error, and blue line stands for residual. This is a log-log plot, where x-axis represents number of dofs.

(a) Eriksson-Johnson problem (b) Egger-Schöberl problem

Figure 10: Relative error versus number of dofs. Blue line represents Hilbert solution (p = 2), while red
line stands for Banach solution (p = 4); dashed line corresponds to 1% relative error.

Figure 10 illustrates the behavior of relative error as we refine the mesh, for both Hilbert and Banach
solution. It is evident that for the same number of dofs, Banach solution comes with a significantly smaller
relative error. For Egger-Schöberl problem, it is even impossible to reach the 1% tolerance in relative error
when p = 2, for the number of dofs we have calculated with (which can be finished on a laptop in several
minutes). The improvement in accuracy has its price, naturally, in that we have to deal with a nonlinear
problem in the Banach setting (p = 4). In our problem setting, solution of the nonlinear system requires
less than ten steps of Newton iteration, i.e. ten times the cost of the Hilbert version. However, the number
of dofs necessary for the relative error to reach a particular tolerance is much less in the Banach setting.
As the time required to solve the linear system scales quadratically or even cubically as the number of dofs
grows, we contend that the additional effort involved with the Banach version pays off. Another advantage
of the Banach version is the elimination of Gibbs phenomena, which is detailed in the paper by Houston et
al. [15].
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Fortin operators. Our a posteriori error analysis is based on the existence of a Fortin operator. Construc-
tion of Fortin operators in [12, 11] generalizes immediately to the Lp spaces for p ≥ 2. Recall the overall
strategy:

Step 1: Establish L2-continuity of the operators on the master element K̂.

Step 2: Use (standard) scaling arguments to obtain the continuity of the operators on a physical element
K (with h-independent continuity constant).

Step 3: Use the commutativity of operators to conclude continuity in the energy norms.

It is now sufficient simply to notice that the L2-continuity on the master element implies immediately the
continuity in the Lp-norm. Consider, e.g., the H(div) Fortin operator Πdiv. First, the Lp spaces on a
bounded domain form a scale (see e.g. [18], Proposition 3.9.3). In other words, for p ≥ 2,

‖σ‖H(div,K̂) ≤ C1‖σ‖Wp(div,K̂) σ ∈W p(div, K̂) ,

with a C1 > 0. Additionally, by the finite dimensionality argument, there exists a constant C2 > 0 such
that,

‖Πdivσ‖Lp(K̂) ≤ C2‖Πdivσ‖L2(K̂) .

Consequently,

‖Πdivσ‖Lp(K̂) ≤ C2‖Πdivσ‖L2(K̂) ≤ C2C‖σ‖H(div,K̂) ≤ C2CC1‖σ‖Wp(div,K̂)

where C is the L2-continuity constant.
Steps 2 and 3 remain unchanged.

5 Lp-DPG method with variable p

As discussed in Section 3.2, when we try to solve problems for simple manufactured exact solutions like
linear or quadratic function, we encounter trouble with a singular Hessian. This motivates us to propose
the Lp-DPG method with a variable exponent p, in the spirit of the p(·)-Laplacian problem [2]. We assume
that the exponent p can vary element-wise. It is unnecessary to compute with p > 2 when the solution is
simple and can be captured by a Hilbert method. We use p > 2 where the residual is large and stay with
p = 2 elsewhere. This section describes our modification of the Lp-DPG method with variable p.

In the convex optimization formulation of Lp-DPG (2.3), we can multiply the cost function by constant
p:

ψ = arg min
ϕ∈(BUh)⊥

‖ϕ‖pV − pl(ϕ). (5.34)

This has no effect on the minimizer ψ, but the Lagrange multiplier uh as the solution to the mixed system
(2.5) will be affected. If we further multiply the constraint by p, then the solution ψ, uh of the modified
problem will coincide with the original one. The constrained optimization problem now reads:

minimize
ϕ

‖ϕ‖pV − pl(ϕ)

subject to pb(δuh, ϕ) = 0 ∀δuh ∈ Uh
(5.35)

where b is the bilinear form dictated by the problem we consider and the formulation we choose. The
relation between b and B is 〈Bu, v〉 = b(u, v).
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Such reformulation of the constrained optimization problem allows for an easy generalization of theLp-
DPG method to the Lp-DPG with a variable exponent. The latter approach, in particular, has the advantage
of reduced condition number and better robustness. After discretization of test space using broken space
technology [4], the Lp-DPG method with variable p is defined by

minimize
ϕ

∑
K

‖ϕK‖pKV(K) − pK lK(ϕK)

subject to
∑
K

pKbK(δuh, ϕK) = 0 ∀δuh ∈ Uh
(5.36)

where pK is the constant exponent for element K, and lK , bK are restrictions of the linear and bilinear
form on element K. Problems of this type are known as p(·)-Laplacian [2]. Rather than venturing into
theoretical analysis of the newly proposed method, which can be a future endeavor, we report results of
some numerical experiments with the variable exponent.

How do we determine pK? This is the foremost question when we are concerned with the variable
exponent. With the mesh given, we first set pK = 2 in all elements; in this way we recover the Hilbert
solution. Next we evaluate the residual in each element, and wherever the residual is small (less than 1%

of the maximum value, for results to be reported), we retain the exponent; elsewhere we raise pK . As a
remark, this strategy for determining the variable p matches naturally the continuation in p used by the
nonlinear solver — we proceed with local steps of ∆p instead of a global step of ∆p = 1.

(a) Eriksson-Johnson problem (b) Egger-Schöberl problem

Figure 11: Solution obtained with adjoint graph norm and variable exponent. pK = 4 for all elements
adjacent to the boundary; pK = 2 in the four central elements.

Figure 11 displays numerical solution of both Eriksson-Johnson problem and Egger-Schöberl problem,
using adjoint graph norm and variable exponent. The local exponent, as determined by our rule, is pK = 2

in the four central elements, and pK = 4 elsewhere. Figure 12 shows the profile of u along y = 0.5. We
observe that the solution obtained with variable p lies approximately between the p = 2 and p = 4 solution,
as one would expect.

6 Conclusion

In this paper, we apply the Lp-DPG method to 2D convection-diffusion problems. More specifically,
Eriksson-Johnson problem and Egger-Schöberl problem are studied, with either mathematician’s test norm
or adjoint graph norm employed. Banach solution (p = 4) is compared with Hilbert one (p = 2), and the
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(a) Eriksson-Johnson problem (b) Egger-Schöberl problem

Figure 12: Profile of u along y = 0.5. Blue line denotes Hilbert solution, red line stands for Banach
solution (p = 4), and black line represents variable exponent solution. Exact solution is denoted by dashed
line.

former is demonstrated to be generally better. We present h-adaptivity result with Lp-DPG method, where
the refinement occurs at the right place, i.e., near the boundary layer.

We comment shortly on connections between the reported results and the work of Sarah Roggendorf
et al. [19, 13, 14, 15]. It has been shown in [15] that, for general unstructured meshes, convergence in
Lp
′

norm does not eliminate the Gibbs oscillations as p′ → 12. However, this does not seem to be the
case for standard structured rectangular meshes designed to capture the boundary layers. This is also in
agreement with the practice of the computational fluid dynamics community, where hybrid (prismatic-
tetrahedral) grids are employed to solve Navier-Stokes equation. In [6], Chen and Kallinderis suggest that
the structured prisms permit the use of sufficient grid clustering near the body in the normal direction,
while unstructured tetrahedra can cover remaining complicated topologies. Our numerical experience cor-
roborates these observations. If we start with a uniform mesh and proceed with h-refinements driven by
the method, the Lp version of the DPG method delivers significantly better results than the Hilbert version.
The oscillations are smaller and more localized to the elements near the boundary. The overall global sta-
bility seems also to be better for the higher p — the global shift between the exact and the underresolved
numerical solutions on coarse meshes, is consistently smaller.

To solve the ill-conditioning problem associated with small residuals, we propose an Lp-DPG method
with a variable exponent p. The numerical solution looks reasonable, and approximately lies between the
p = 2 and p = 4 solution. This method has the potential of reducing condition number and speeding the
algorithm, while retaining the benefits of Banach solution.

Acknowledgments. J. Li and L. Demkowicz were partially supported with NSF grant No. 1819101.

2The oscillations do not disappear even for certain (crisscross) structured meshes!
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ICES Report 2015/20.

[10] L. DEMKOWICZ AND N. HEUER, Robust DPG method for convection-dominated diffusion problems,
SIAM Journal on Numerical Analysis, 51 (2013), pp. 2514–2537.

[11] L. DEMKOWICZ AND P. ZANOTTI, Construction of DPG Fortin operators revisited, Computers &
Mathematics with Applications, 80 (2020), pp. 2261–2271.

[12] J. GOPALAKRISHNAN AND W. QIU, An analysis of the practical DPG method, Mathematics of
Computation, 83 (2013), pp. 537–552.

[13] P. HOUSTON, I. MUGA, S. ROGGENDORF, AND K. G. VAN DER ZEE, The Convection-Diffusion-
Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and
Stability of Galerkin’s Method, Computational Methods in Applied Mathematics, 19 (2019), pp. 503–
522.

[14] P. HOUSTON, S. ROGGENDORF, AND K. G. VAN DER ZEE, Gibbs Phenomena for $Lˆq$-Best Ap-
proximation in Finite Element Spaces – Some Examples, arXiv:1909.00658 [cs, math], (2019). arXiv:
1909.00658.

[15] , Eliminating Gibbs phenomena: A non-linear Petrov–Galerkin method for the convec-
tion–diffusion–reaction equation, Computers & Mathematics with Applications, 80 (2020), pp. 851–
873.

16



[16] J. LI AND L. DEMKOWICZ, An Lp-DPG method for the convection–diffusion problem, Computers &
Mathematics with Applications, (2020).

[17] I. MUGA AND K. G. VAN DER ZEE, Discretization of Linear Problems in Banach Spaces: Residual
Minimization, Nonlinear Petrov–Galerkin, and Monotone Mixed Methods, SIAM Journal on Numer-
ical Analysis, 58 (2020), pp. 3406–3426.

[18] J. T. ODEN AND L. DEMKOWICZ, Applied functional analysis, CRC Press/Taylor & Franics Group,
Boca Raton, third edition ed., 2018.

[19] S. ROGGENDORF, Eliminating the Gibbs Phenomenon: The Non-linear Petrov-Galerkin Method for
the Convection-Diffusion-Reaction Equation, PhD thesis, School of Mathematical Sciences, Univer-
sity of Nottingham, Nov. 2019.

[20] J. ZITELLI, I. MUGA, L. DEMKOWICZ, J. GOPALAKRISHNAN, D. PARDO, AND V. CALO, A class
of discontinuous Petrov–Galerkin methods. Part IV: The optimal test norm and time-harmonic wave
propagation in 1D, Journal of Computational Physics, 230 (2011), pp. 2406–2432.

17




