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Abstract

Current clinical decision-making in oncology relies on averages of large patient populations to both as-
sess tumor status and treatment outcomes. However, cancers exhibit an inherent evolving heterogeneity
that requires an individual approach based on rigorous and precise predictions of cancer growth and
treatment response. To this end, we advocate the use of quantitative in vivo imaging data to calibrate
mathematical models for the personalized forecasting of tumor development. In this chapter, we summa-
rize the main data types available from both common and emerging in vivo medical imaging technologies,
and how these data can be used to obtain patient-specific parameters for common mathematical models
of cancer. We then outline computational methods designed to solve these models, thereby enabling
their use for producing personalized tumor forecasts in silico, which, ultimately, can be used to not only
predict response, but also optimize treatment. Finally, we discuss the main barriers to making the above
paradigm a clinical reality.

Keywords: cancer, computational oncology, magnetic resonance imaging, finite element analysis, isogeometric
analysis, finite differences, model selection, sensitivity analysis, inverse problems, patient-specific models, optimal
control theory.

1 Introduction to tumor forecasting

Cancers are highly heterogeneous diseases supported by diverse biological mechanisms occurring, in-
teracting, and evolving at multiple spatial and temporal scales [74]. These phenomena span from the
phenotypic and genotypic cellular diversity within the tumor to the regional variations of the tumor mi-
croenvironment (e.g., vasculature and extracellular matrix), which can result in epigenetic changes in
cancer cells or gradients in nutrient availability. Hence, the heterogeneous nature of cancer makes each
patient’s case unique. However, established, standard-of-care methods determine diagnosis, stage, treat-
ment regimen, and response to treatment according to historical population averages. This paradigm
only enables the observation of cancer evolution and the outcome of treatment at fixed time points, of-
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fers a limited individualization of disease management, and largely ignores the intrinsic heterogeneity of
cancers, which may result in treatment failure [47, 117]. Thus, a new clinical paradigm that effectively
integrates the spatiotemporal dynamics of tumor growth and treatment response to identify effective clin-
ical strategies for each patient is desperately needed. We posit that mathematical modeling informed by
clinically-relevant data can provide the framework to address this challenge [89, 121, 123].

Computational oncology is a rapidly growing field that attempts to leverage mathematical models
of the key biological mechanisms that characterize cancer to predict how a patient’s tumor will grow
and respond to treatment [89, 121, 123]. Computer simulations of these models provide personalized tu-
mor forecasts, designed to ultimately assist oncologists in clinical decision-making. For example, tumor
forecasts may predict disease progression, thereby providing much needed guidance on the optimal in-
tervention strategy early in the course of therapy. Indeed, we hypothesize that treatment optimization can
be achieved through the development and rigorous validation of practical mathematical models and effi-
cient computational methods that can provide accurate personalized predictions of cancer development
and treatment response.

A fundamental challenge in computational oncology is accomplishing the patient-specific parame-
terization of the biological mechanisms involved in cancer models (e.g., tumor cell mobility, proliferation
and death rates, or therapy efficacy). In general, these parameters are extremely difficult to measure in
vivo in human tumors. However, medical imaging may provide a viable source of data for this purpose.
Clinical oncology currently focuses on anatomical imaging for the diagnosis, treatment, monitoring, and
assessment of therapeutic response of solid tumors [111] (e.g., measuring tumor size, identifying inva-
sion into adjacent structures, and detecting metastasis). Unfortunately, anatomical imaging frequently
fails to capture the heterogeneous underlying biology within tumors. Alternatively, quantitative imaging
techniques enable the measurement of clinically-relevant biological features of tumors, such as tumor
cell density, blood volume fraction, and perfusion [40]. Thus, these quantitative imaging techniques
can be used to assess the spatiotemporal evolution of a cancer’s heterogeneous architecture, morphol-
ogy, growth dynamics, and response to therapy, thereby providing the necessary data to parameterize
predictive models of tumor growth and treatment [39, 121].

In this chapter, we will discuss how quantitative imaging can be used to enable tumor forecasting
and optimization of therapeutic response. We will begin by identifying relevant quantitative imaging data
types and how they are incorporated into existing image-based models of cancer growth and treatment.
We will also provide insights into the technical aspects of numerical implementation, model calibration,
and model selection. Then, we will introduce a promising framework to optimize patient treatment plans.
We will conclude with a discussion of the barriers to successfully translating image-based computational
tumor forecasting into patient care.

2 Relevant data types from medical imaging

While measuring tumor size throughout therapy is central in oncological response assessments [111], the
dynamics of tumor size changes are often temporally downstream of intratumoral biological and phys-
iological responses to therapy. Magnetic resonance imaging (MRI) and positron emission tomography
(PET) provide non-destructive and non-invasive 3D quantitative measurements of biological properties
within and around the tumor. Hence, the acquisition of these imaging data at several timepoints is well-
suited to initialize and parameterize mathematical models of tumor growth and treatment response. In
this section, we will briefly introduce the relevant MRI and PET measurements that have been commonly
used in computational oncology (see Fig. 1 for representative images of these techniques). For a detailed
review of advanced MRI and PET techniques in oncology, the reader is respectively referred to [40] and
[28].
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2.1 Diffusion weighted magnetic resonance imaging

Diffusion weighted (DW-) MRI is an established technique that has been applied in oncology as a nonin-
vasive assessment of cellularity changes during treatment [84]. DW-MRI is sensitive to the diffusion of
water molecules within tissue. In a DW-MRI experiment, water molecules are first tagged based on their
spatial location. Then, after a short delay of typically 20—60 ms, a second spatial-encoded tag is applied.
During this delay, water molecules move throughout the tissue due to diffusion. If the water molecules
do not travel far, the first spatial-encoded tag can be largely removed by the second spatial-encoded tag
and there is no loss (or gain) in signal intensity. However, if the water molecules move throughout the
domain, there is a net-difference between the two spatial-encoded tags resulting in a decrease in signal
intensity. Thus, the signal intensities within each voxel in the resulting image are “weighted” based on
water diffusion. In practice, several diffusion weighted experiments are performed with different settings
(e.g., varied diffusion-sensitizing gradient amplitudes of the magnetic field) to spatially quantify the ap-
parent diffusion coefficient (ADC) of water. However, water diffusion in tissue is heavily restricted by
cells, macromolecules, and extracellular structures. Hence, these physical barriers reduce the measured
ADC. This phenomenon has been observed in several studies showing an inverse correlation between
ADC and cellularity [4, 8, 55]. Following these reports’ results, ADC can be used to estimate cellularity
using:

N(xxx, t) = θ

(
ADCw−ADC(xxx, t)
ADCw−ADCmin

)
(2.1)

where θ represents the maximum tumor cell carrying capacity for an imaging voxel (determined by the
voxel dimensions and assumptions in cell geometry and packing density), ADCw is the ADC of free water
at 37◦C (i.e., 2.5 · 10−3 mm2/s; [116]), ADC(xxx, t) is the ADC value at a given 3D position xxx and time t,
and ADCmin is the minimum ADC value observed within the tumor. Fig. 1 displays a representative ADC
map from breast and brain cancer. While there are significant correlations between cellularity and the
measured ADC, cellularity is not the sole factor in dynamic changes in ADC. Changes in cell size, cell
permeability, and tissue tortuosity may alter the measured ADC [84]. Other diffusion-based imaging
approaches can also report on cell size [55] and diffusion anisotropy [105]. The reader is referred to [58]
for a technical review of DW-MRI and its applications in oncology.

2.2 Dynamic contrast-enhanced magnetic resonance imaging

Dynamic contrast-enhanced (DCE-) MRI consists of the rapid acquisition of a series of heavily T1-
weighted images before, during, and after the injection of a T1 altering-contrast agent (typically a Gadolin-
ium chelate) to probe vascular properties in tissue [122]. Using a pre-contrast T1 map, any post-contrast
T1 changes can be related to the concentration of the contrast agent. Thus, each image voxel yields
a signal intensity time course that can be related to the concentration of the contrast agent within that
voxel. The subtraction images obtained from pre- and post-contrast enhanced images are often used to
identify tumor regions, which usually show areas of rapid and intense enhancement due to their higher
and more permeable vascularity than the neighboring healthy tissue. The dynamics of signal intensity
are commonly analyzed with a two-compartment pharmacokinetic model describing the extravasation of
the contrast agent from the plasma space to the tissue space [122]. The solution to this model is given by

Ct(xxx, t) = Ktrans(xxx)
∫ t

0
Cp(u)e

−Ktrans(xxx)
ve(xxx)

(t−u)du+ vp(xxx)Cp(t), (2.2)

where Ct(xxx, t) is the concentration of the contrast agent in tissue at position xxx and time t, Cp(t) is the
concentration of the contrast agent in the plasma space at time t, Ktrans(xxx) is the volume transfer constant
from the plasma to tissue space, ve(xxx) is the extravascular-extracellular volume fraction, and vp(xxx) is
the plasma volume fraction. Importantly, Ct , Ktrans, ve, and vp are all voxel-specific and are related to
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ADC Ktrans ve 18FDG-PET SUV

(a) Clinical breast cancer imaging data

ADC Ktrans ve

(b) Preclinical glioblastoma imaging data
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Figure 1: Representative quantitative imaging measurements from clinical and preclinical settings. (a) Parameter maps ex-
tracted from DW-MRI, DCE-MRI, and 18FDG-PET through the central slice of a breast tumor (all MR data are from the same
patient, PET data are from a different individual). DW-MRI provides estimates of ADC, while DCE-MRI yields estimates of
Ktrans and ve. The 18FDG-PET SUV map shows increased glucose uptake within the breast tumor relative to surrounding tissue.
(b) Parameter maps acquired in a preclinical murine model of glioblastoma from DW-MRI (ADC) and DCE-MRI (Ktrans, ve,
and vp).

structural (cell density) and physiological (vessel permeability and perfusion) properties. Cp(t) can be
measured directly for individual subjects from a large artery within the image field of view or can be
replaced with a population-based estimate [65]. Fig. 1 shows Ktrans, ve, and vp maps from a preclinical
and a clinical study.

2.3 Molecular imaging with positron emission tomography

PET relies on the injection of a radiopharmaceutical (or PET tracer) to generate image contrast. As
there is no endogenous signal, PET has excellent sensitivity to detect and localize the distribution of
radiopharmaceuticals throughout the body. Several radiopharmaceuticals have been developed to probe
tumor properties, such as glucose metabolism (via 18F-fludeoxyglucose or 18FDG), hypoxia (via 18F-
fluoromisonidazole or 18F-MISO), cellular proliferation (via 18F-Flurodeoxythymidine [119]), and re-
ceptor status (e.g., 64Cu-diethylenetriaminepen-taacetic acid Trastuzumab for HER2+ positive cancers
[79]). We will primarily focus on 18FDG and 18F-MISO as they are well-established in oncology, but the
analysis techniques are similar for other PET tracers.

In an 18FDG-PET study, a single image is acquired following the injection of the glucose analogue
18FDG, which cells uptake in a similar fashion to glucose. However, once internalized, 18FDG is phos-
phorylated and trapped intracellularly. The resulting image intensities are proportional to the concen-
tration of 18FDG within each voxel. PET tracer uptake can be quantified using the standardized uptake
value (SUV ), which is the ratio of the concentration of 18FDG radioactivity in tumor tissue to the total
injected dose and divided by the patient’s body weight. In oncology studies, contrast between tissues is
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typically generated due to variations in glucose uptake due to an overexpression of glucose transporters
and hexokinase activity in tumor cells relative to healthy cells [14]. This difference in 18FDG uptake is
also shown in Fig. 1.

Likewise, in 18F-MISO PET a single image is also acquired following the injection of 18F-MISO,
which is a radiopharmaceutical that produces images sensitive to oxygen concentration in tissue [88].
After 18F-MISO is internalized by cells, it is reduced to produce a radical anion. In normoxic or oxygen-
rich environments, oxygen accepts the electron from the radical anion enabling 18F-MISO to leave the
cell. Conversely, in hypoxic or oxygen-poor environments, the radical anion of 18F-MISO binds to other
intracellular macromolecules trapping it within the cell. Thus, the concentration of 18F-MISO and the
produced PET signal within a voxel are inversely proportional to the oxygen concentration. 18F-MISO
uptake is quantified using the standardized uptake value (SUV ) or the oxygen enhancement ratio (OER),
which is the ratio of signal intensity in tumor relative to blood.

3 Image-based mathematical models of cancer

Medical imaging provides an excellent way to develop, calibrate, and validate personalized mathematical
models of cancer evolution and treatment response [121] for three main reasons. First, medical imaging
enables the in vivo measurement of relevant biological properties in tumor and healthy tissues, which
would otherwise be impractical or impossible to measure in individual patients. Second, medical imaging
data can be obtained frequently throughout the clinical management of the patient’s tumor, which enables
model calibration. Third, medical imaging data are acquired on a regular voxel grid, which facilitates
their computational processing. In this section, we discuss common image-based models of tumor growth
and treatment response that leverage the quantitative imaging data types introduced in Section 2. Fig. 2
shows simulation outputs of many of the models discussed in this section.

3.1 Baseline tumor growth models

In mathematical oncology [89], the logistic growth model is one of the simplest and most common
approaches to describe changes in tumor volume [11] or cell number [6] over time. It is a flexible model
that can be adapted to in vitro and in vivo data alike. The formulation of the logistic growth model over
a certain tissue region of interest follows the partial differential equation (PDE):

∂N(xxx, t)
∂ t

= k(xxx)N(xxx, t)
(

1− N(xxx, t)
θ

)
, (3.1)

where N(xxx, t) is the tumor cell density at position xxx and time t, k(xxx) is a spatially-varying net proliferation
rate, and θ is the carrying capacity. The image-informed applications of this model have typically been
posed voxelwise, such that N(xxx, t) is redefined as the number of cancer cells within the voxel in position
xxx at time t. Atuegwu et al. [6] used this approach to predict tumor growth in breast cancer patients
receiving neoadjuvant chemotherapy. First, they used Eq. (2.1) to estimate N(xxx, t) from ADC maps
obtained via DW-MRI. The estimates of N at baseline (pre-treatment) and after one cycle of therapy
were used to determine k(xxx). Then, Atuegwu et al. used their model equipped with the resulting k(xxx)
to predict N at the conclusion of therapy. They observed a strong correlation between the predictions
and data estimates of N over the entire tumor (Pearson correlation coefficient, PCC, of 0.95) and for
individual voxels (PCC=0.70). Fig. 2 shows an example of this approach for a clinical breast cancer
model and a preclinical glioblastoma model.

However, the logistic growth model fails to capture the potential movement of cells that may occur
over time. To overcome this limitation, the logistic growth model can be extended to a reaction-diffusion
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model given by the PDE

∂N(xxx, t)
∂ t

= ∇ · (D∇N(xxx, t))+ k(xxx)N(xxx, t)
(

1− N(xxx, t)
θ

)
, (3.2)

where the first term on the right is a diffusion term describing the movement of tumor cells with a constant
diffusion coefficient D, while the second term on the right is a reaction term represented by the logistic
growth of cancer cells.

Eq. (3.2) is well established in computational oncology [35, 36, 51, 90, 91, 106, 115, 118]. The
work of Swanson et al. [7] in high grade gliomas showed one of its first image-informed applications,
using anatomical MRI data to provide segmentation of tumor boundaries and fixed cell-density counts in
enhancing and non-enhancing disease. The spatiotemporal changes in tumor boundaries were used to es-
timate a constant tumor-specific proliferation rate k and tissue-specific D, which were then used to predict
patient survival. This approach has had promising results in relating growth kinetics to patient outcomes
[7, 81]. However, it does not describe the intratumoral heterogeneity of cell density. Hormuth et al. [41]
addressed this limitation by estimating N from ADC maps obtained via DW-MRI using Eq. (2.1) in a
murine model of glioma. In this study, animals were imaged up to seven times over ten days. The first
three imaging datasets were used to initialize N as well as to calibrate k(xxx) and D. In a separate calibra-
tion, a spatially-constant k (i.e., tumor specific) was also calibrated along with D. The calibrated model
was then used to predict N(xxx, t) at the remaining imaging visits. While both calibration scenarios overes-
timated future tumor growth, the predictions with a spatially-varying k(xxx) rendered lower tumor volume
errors, higher Dice correlation coefficients, and higher concordance correlation coefficients (CCC; all
p < 0.05). These results highlight the importance of accounting for the intratumoral heterogeneous dy-
namics to obtain accurate tumor forecasts and the promising potential of quantitative imaging to provide
the required data for this purpose. Other studies have used alternative quantitative imaging measures to
inform the reaction-diffusion model in Eq. (3.2); examples include incorporating anisotropic diffusion
via diffusion tensor imaging (DTI, a form of DW-MRI [105]) [53, 106], using cell density measurements
via contrast-enhanced computed tomography [118], and estimating cell phenotypes via DCE-MRI [91].

Alternatively, phase-field models are another common paradigm to describe tumor growth [1, 66,
70, 71, 120]. The phase field φ(xxx, t) identifies healthy tissue (e.g., φ = 0) from tumor tissue (e.g., φ = 1),
showing a smooth and thin transition between either region. Phase-field models usually focus on the
dynamics of tumor morphology through the evolution of the healthy-tumor interface, which is implicitly
defined by a phase-field isosurface. These models rely on more complex physics than those described
above, usually requiring the definition of an energy functional that drives tumor growth [31, 66, 67].
Phase-field modeling has been notably applied in brain tumors [1, 66], prostate cancer [70, 71], and
tumor angiogenesis [113, 120]. However, there is a paucity of studies using quantitative imaging data to
inform phase-field models. This is partly due to their more complex dynamics, which usually requires
a higher number of parameters, larger and richer patient-specific datasets, more advanced numerical
methods, and more computational resources.

We identified two illustrative works that use imaging measurements to initialize, calibrate, and/or
validate phase-field models of cancer. Lima et al. [66, 67] have been investigating model selection to
identify the best formulation of murine glioma growth according to longitudinal anatomical MRI tumor
measurements, including an array of phase-field models also accounting for the local tumor-induced
mechanical stress field (see Section 3.2). Their work shows that phase-field models are plausible formu-
lations of tumor growth and in [66] they emerge as the best models indeed. Additionally, Agosti et al.
[1] developed a phase-field model of glioblastoma multiforme that uses quantitative DTI data to define
anisotropic tumor cell motility and nutrient diffusion. Their work focuses on the prediction of tumor
recurrence after surgical resection and subsequent radiotherapy. By accounting for post-surgery changes
in tissue architecture, they obtained a Jaccard index of 0.71 post-radiotherapy.
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3.2 Mechanically-coupled models

Local mechanical tissue properties and tumor-induced mechanical stresses are known to affect cancer
growth dynamics [34, 46, 80]. For example, Helmlinger et al. [34] observed that tumor spheroid growth
in vitro was increasingly inhibited as the substrate matrix stiffness was augmented. Uncontrolled tumor
growth can also severely deform healthy tissue structures, thereby adversely impacting patient health and
quality of life. Therefore, several mathematical models of cancer couple tumor growth dynamics with
local mechanical equilibrium [18, 35, 42, 51, 69, 70, 115].

A common approach [115] is to dampen the diffusion coefficient in Eq. (3.2) with a function of local
tissue stress:

D(xxx, t) = D0e−γvσvm(xxx,t), (3.3)

where D(xxx, t) is now a spatially and temporally varying diffusion coefficient, D0 is the tumor cell dif-
fusion coefficient in the absence of stress, γv is an empirical coupling constant, and σvm(xxx, t) is the von
Mises stress. Here, σvm(xxx, t) is used to summarize the local mechanical stress field, which is calculated
assuming quasistatic linear elastic equilibrium with tissue-specific mechanical properties:

∇ ·
(
λ (∇ ·uuu) III +µ

(
∇uuu+∇uuuT ))− γN∇N = 000, (3.4)

where λ and µ are the Lamé coefficients (related to the tissue’s Young modulus E and Poisson’s ratio
ν), uuu is the displacement field due to tumor cell growth, and γN is another empirical coupling constant.
In Eq. (3.3), the first term on the left-hand side represents the linear elastic tissue response to the local
tumor-induced forces described by the second term on the left. Weis et al. [115] used tumor cell number
estimates from DW-MRI data using Eq. (2.1) to initialize and calibrate a mechanically-coupled reaction-
diffusion model of breast cancer growth during neoadjuvant chemotherapy consisting of Eqs. (3.2)–
(3.4). Their work shows that the mechanically-coupled model rendered more accurate predictions of N
(PCC=0.85) than the baseline reaction-diffusion model (PCC=-0.29). Several subsequent studies have
also used Eqs. (3.3)–(3.4) to couple mechanics to breast and brain tumor dynamics [42, 51], as shown in
Fig. 2. Lima et al. further considered a mechanical inhibition of tumor proliferation following a similar
formulation to Eq. (3.3) [66, 67]. Moreover, the prostate cancer model of Lorenzo et al. [70] extended
Eq. (3.3) to combine the measure of mechanical tissue distortion via σvm with hydrostatic stress, which
is not captured by σvm and contributes to a more precise description of intratumoral stress.

Other mathematical models couple local mechanics to tumor growth dynamics through a reaction-
advection-diffusion equation [35, 69] in which the tumor cell drift velocity is related to the displacement
field, thereby explicitly simulating the displacement of cells due to mechanical deformation. Addition-
ally, Wong et al. [118] leveraged a hyperelastic biomechanical model. Interestingly, in this study tumor
dynamics was described using a reaction-diffusion model in which the proliferation rate k(xxx) was cali-
brated with 18FDG-PET SUV data, as follows:

k(xxx) =
αSUV (xxx)−βc(xxx, t)
c(xxx, t)(1− c(xxx, t))

, (3.5)

where SUV (xxx) is the standardized uptake value at position xxx, α and β are unknown constants to be
calibrated, and c(xxx, t) is the cell volume fraction estimated from computed tomography at position xxx and
time t.

3.3 Vasculature-coupled models

Co-opting of local vasculature and recruitment of new blood vessels via angiogenesis is a critical com-
ponent of cancer development that is needed to support growth past 2–3 mm3 in size [30, 45]. Thus,
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(b) Preclinical glioblastoma setting

(a) Clinical breast cancer setting

Initial data Final data Logistic

Reaction-diffusion Drug-informedMechanically-coupled

0

1
N(x,t)/θ

Initial data Final data Logistic

Reaction-diffusion Vasculature coupledMechanically-coupled

0

1
N(x,t)/θ

Figure 2: Differences between image-based models in clinical and preclinical settings. (a) Example from a clinical breast
cancer model, where measured initial, measured final, and model forecasts of the final distributions of tumor cell density
are shown. The logistic model fails to capture the expansion of the tumor into nearby tissue, while the remaining models
incorporating a diffusion term perform better. (b) Example from a preclinical model of glioblastoma, where measured initial,
measured final, and model predicted final distributions of tumor cell density are shown. The logistic model also fails to predict
the expansion, but does predict an intratumoral low cell density area.

understanding the evolving distribution and function of the tumor-supporting vasculature is crucial to
accurately model tumor growth and treatment response. There is an extensive literature on mathematical
models of tumor angiogenesis [113]. However, very few describe this phenomenon at the imaging/tissue
scale [36, 108] or personalize it for individual tumors.

Hormuth et al. [36] developed a murine model of glioma growth coupled with angiogenesis that
was initialized and calibrated using tumor cell number estimates obtained from DW-MRI via Eq. (2.1)
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and estimates of the blood volume fraction extracted from DCE-MRI. The spatiotemporal evolution of
tumor cells and vasculature was described using two coupled reaction-diffusion equations. In this model,
vasculature influenced the direction of tumor growth and was coupled to the carrying capacity. Similarly,
tumor cells also influenced the direction of vasculature evolution. The animals were imaged up to seven
times over a period of ten days. Model parameters were calibrated using the first three imaging datasets,
and then used in a forward evaluation of the model to predict tumor growth at the remaining imaging
time points. The authors observed that their model resulted in less than 10.3% error in tumor volume
predictions and less than 9.4% error at the voxel-level for all prediction time points. Fig. 2 shows an
example of this approach in a pre-clinical model of glioblastoma.

Roque et al. [91] developed a vasculature-informed preclinical reaction-diffusion model of breast
cancer accounting for normoxic, hypoxic, and necrotic cancer subpopulations along with nutrient dynam-
ics, which regulates normoxic cell proliferation as well as the normoxic-hypoxic and hypoxic-necrotic
transfer rates. While not explicitly evolving the tumor-supporting vascular network, the authors used
vasculature-derived parameters obtained from DCE-MRI (e.g., blood flow, mean transit time, and maxi-
mum enhancement) to initialize all model variables and calibrate key parameters. While the study results
suggested that further model development is needed to capture individual differences in tumor growth,
this work is a unique effort to identify tumor subpopulations using quantitative imaging data.

3.4 Radiotherapy

Radiotherapy is a common treatment for many cancers [77]. However, intratumoral heterogeneity may
result in significant variations in treatment response, which may ultimately lead to poor therapeutic out-
comes [9, 30]. Image-based modeling could prove valuable to predict the response to radiotherapy and
hence optimize treatment protocols for individual patients. To this end, several studies have investigated
incorporating imaging measures from PET [90] and MRI [33, 37, 38, 67] into reaction-diffusion based
models to characterize patient response to radiotherapy. The usual approach to model radiotherapy ef-
fects is by instantaneously killing a fraction of tumor cells at treatment times [33, 37, 38, 67, 90]. This
strategy may be further combined with a transient or permanent reduction in tumor cell proliferation
[37, 38, 67]. These radiotherapy effects are usually modeled as a function of the prescribed dose, which
may also account for local tumor cell and vascular densities.

Rockne et al. [90] adapted the glioblastoma model by Swanson et al. [7] to explicitly incorporate
cell death due to radiotherapy based on 18F-MISO PET data. Oxygen concentration and the degree of
hypoxia in tumors are known to significantly impact response to radiotherapy [112]. Thus, Rockne et al.
used 18F-MISO PET to assess the level of hypoxia by calculating the OER, which is then used along with
the usual linear quadratic model of radiotherapy response [22] to calculate cell survival, S, as follows:

S = exp
(
−α (OER(xxx))

(
d +

d2

α/β (OER(xxx))

))
, (3.6)

where d is the prescribed radiation dose while α (OER(xxx)) and α/β (OER(xxx)) are radiosensitivity pa-
rameters as a function of the OER at position xxx. Rockne et al. observed that predictions by a model
featuring Eq. (3.6) outperformed those obtained with a model with uniform radiosensitivity (1.1% vs
14.6% error in tumor volume, respectively).

3.5 Chemotherapy

Chemotherapy is another common treatment for most cancers [77]. Unlike the localized nature of radia-
tion therapy, chemotherapy relies on drugs that are administered systemically throughout the body. While
chemotherapy has traditionally leveraged cytotoxic drugs (i.e., promoting cell death), recent approaches
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also use drugs targeting specific cancer cell markers to decrease proliferation or triggering particular
immune responses. Similar to radiation therapy, challenges for modeling chemotherapies stem from
quantifying how much drug is distributed in the tumor (and healthy tissues) and patient-specific treat-
ment efficacy. Multiple mathematical models have been proposed to describe the effect of chemotherapy
on tumor growth [107, 110, 124], but only a few are informed by quantitative imaging data.

In particular, the contribution by Jarrett et al. [51] extended the mechanically-coupled reaction
diffusion model consisting of Eqs. (3.2)–(3.4) by including the dynamic effect of chemotherapy in the
tumor growth equation:

∂N(xxx, t)
∂ t

= ∇ · (D(xxx, t)∇N(xxx, t))+ k(xxx)N(xxx, t)
(

1− N(xxx, t)
θ

)
−αCd(xxx, t)N(xxx, t) (3.7)

where α is the patient-specific drug efficacy and Cd(xxx, t) is the drug concentration in the tissue. Cd(xxx, t)
was approximated patient-wise by means of the two-compartment model commonly used to analyze the
contrast agent pharmacokinetics in DCE-MRI data (see Section 2.2). This approach has two central limi-
tations: it assumes that the drug and the contrast agent have similar dynamics, and that all chemotherapies
explicitly induce tumor cell death. However, Jarrett et al. showed that their drug-informed model predic-
tions outperformed those of the mechanically-coupled reaction-diffusion model without the drug term
when compared to patient-specific estimates of tumor cell density extracted from DW-MRI via Eq. (2.1)
at the end of chemotherapy; in particular, the CCC improved from 0.85 to 0.99 (p < 0.01).

4 Computational methods to solve image-based cancer models

Mechanistic models of cancer usually consist of coupled, nonlinear PDEs. Using the appropriate nu-
merical strategies, these cancer models can be solved and rendered as a computer simulation of the
spatiotemporal development of a patient’s tumor; i.e., a tumor growth forecast. In this section we will
provide an elementary description of the Finite Difference Method (FDM) [64], Finite Element Analysis
(FEA) [43] and Isogeometric Analysis (IGA) [21]. All these numerical methods have been widely used
to solve PDEs in science and engineering.

4.1 The Finite Difference Method

The FDM relies on a direct approximation of the derivatives involved in the PDEs of the model by means
of Taylor series expansions [64]. To apply the FDM, we define a global time interval for the simulation
[0,T ] and a geometric domain Ω consisting of a 3D box that includes the tumor-harboring organ. Let
us discretize [0,T ] with a constant time step ∆t, leading to a partition in time subintervals [tn, tn+1], such
that tn+1− tn = ∆t, t0 = 0, tnt = T , and n = 0, . . . ,nt − 1. We discretize Ω with a uniform 3D cartesian
grid composed of np = nxnynz nodes numbered A = 1, . . . ,np, where nx, ny and nz are the number of
nodes in each spatial direction. Let ggg = (i, j,k) further denote the grid coordinates of each node, such
that i = 0, . . . ,nx−1, j = 0, . . . ,ny−1, and k = 0, . . . ,nz−1. Then, the spatial coordinates of each node
A can be written as xxxA = xxx0 + hhh · ggg, where hhh = (hx,hy,hz) is a vector holding the grid spacing in each
spatial direction. Fig. 3 illustrates an FDM grid in 2D.

The standard FDM uses first-order approximations of the time and spatial derivatives in the PDE at
the grid nodes and at a certain time instant t̃ ∈ [tn, tn+1]. For example, the time derivative in Eq. (3.2)
would be approximated by

∂N(xxx, t)
∂ t

≈ N(xxxA, tn+1)−N(xxxA, tn)
∆t

=
Nn+1

i, j,k −Nn
i, j,k

∆t
(4.1)
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Figure 3: The Finite Difference Method (FDM). (a) In FDM, the model equations are solved on a rectangular grid of physical
nodes, which approximates the physical space Ω representing the problem’s geometry. Ancillary fictitious nodes may also be
required to construct the FDM grid. Spatial derivatives are approximated with linear combinations of the model solution at
times tn and tn+1 on each node and adjacent neighbors in each grid direction. (b) The FDM can be formulated using imaging
voxel data by defining one node per voxel. The organ segmentation can be used to build a map g(x) to define Ω and hence
identify physical (g(x) = 1) and fictitious nodes (g(x) = 0).

on each node at t = tn+1. Higher-order derivatives are recursively approximated with first-order approx-
imations of the subsequent lower-order derivatives. Ultimately, the FDM method reduces the PDE on
every node to an algebraic equation involving a combination of values of the PDE solution on the current
and adjacent nodes in each spatial direction (see Fig. 3) at instants tn and tn+1. Then, the general strategy
is to recursively use the known nodal values of the PDE solution at tn, {N(xxxA, tn)}A=1,...,np , to calculate
the nodal values at tn+1, {N(xxxA, tn+1)}A=1,...,np .

Depending on the choice of t̃, there are three common FDM approaches in practice: the explicit
Euler method (t̃ = tn), the implicit Euler method (t̃ = tn+1), and the Crank-Nicolson method (t̃ = tn +
∆t/2) [64]. The explicit method enables the direct calculation of the PDE solution on the grid nodes
at tn+1, {N(xxxA, tn+1)}A=1,...,np , from the nodal values of the solution at tn. This approach involves a
minimal computational cost, which has been exploited for the recursive model resolutions involved in
the patient-specific calibration of image-based models of brain and breast cancer [36, 51]. For example,
the application of the explicit method to Eq. (3.2) yields

Nn+1
i, j,k −Nn

i, j,k

∆t
= D

(
Nn

i−1, j,k−2Nn
i, j,k +Nn

i+1, j,k

h2
x

+
Nn

i, j−1,k−2Nn
i, j,k +Nn

i, j+1,k

h2
y

+

+
Nn

i, j,k−1−2Nn
i, j,k +Nn

i, j,k+1

h2
z

)
+ ki, j,kNn

i, j,k

(
1−

Nn
i, j,k

θ

)
(4.2)

at every grid node, where we have denoted k(xxxA) = ki, j,k. Note that in Eq. (4.2), we can directly compute
Nn+1

i, j,k from a linear combination of nodal values at tn. However, the explicit method usually requires small
time steps to ensure numerical stability. The implicit and Crank-Nicolson methods lead to a system of
np× np algebraic equations whose resolution provides {N(xxxA, tn+1)}A=1,...,np . These FDM schemes are
computationally more intensive, but show better numerical stability and enable the use of larger time
steps. Application of these methods to nonlinear PDEs like Eq. (3.2) results in a nonlinear algebraic
system, which can be solved with Newton’s method by iteratively solving the corresponding linearized
system [64]. Alternatively, an implicit-explicit method can use an implicit approach for the diffusion
operator and an explicit scheme for the nonlinear logistic term [64, 92], which leads to a linear algebraic
system. Currently, multiple sparse-matrix algorithms enable a computationally efficient resolution of
most linear systems emanating from the application of the implicit, Crank-Nicolson, and implicit-explicit
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methods [64].

Boundary conditions (BCs) in FDM are applied to the grid nodes lying on the boundary of Ω (i.e.,
∂Ω). The usual approach is to fix the value of the PDE solution on them (Dirichlet BCs) or to approxi-
mate a differential boundary condition with an FDM scheme (Neumman and Robin BCs) [64]. However,
organ borders have complex geometries that rarely coincide with the FDM cartesian grid. This leads to
the partition of Ω into the physical domain, corresponding to the tumor-harboring organ, and a fictitious
domain, as shown in Fig. 3. FDM codes label grid nodes as physical or fictitious and only solve the PDE
on the former. Additionally, FDM codes need to identify the physical nodes closer to organ borders to
apply BCs.

FDM may be appealing for image-based cancer models because of its simplicity, rapid implementa-
tion, and that the cartesian grid can naturally fit the voxel datasets obtained with the imaging technologies
described in Section 2, as shown in Fig. 3. However, the FDM neglects the approximation of the organ
geometry and simply relies on placing sufficient grid nodes to capture the organ’s border. This impedes
an accurate implementation of BCs and may also compromise the resolution of geometry-sensitive prob-
lems (e.g., mechanics). FEA and IGA overcome these limitations, also providing superior numerical
results that are supported by a strong and rigorously demonstrated mathematical basis [21, 43].

4.2 Finite Element Analysis and Isogeometric Analysis

4.2.1 General framework

The central constituents of FEA and IGA are (i) the weak or variational formulation of the strong form
of the model, and (ii) a robust approximation of this variational formulation using finite-dimensional
function spaces with powerful approximation properties [21, 43]. To define and illustrate these ideas, let
us start by considering the stationary heat equation over a certain physical domain Ω:

∇ · (κ∇u(xxx))+ f (xxx) = 0, (4.3)

where κ is the constant heat conductivity, u(xxx) is the spatial map of temperatures over Ω, and f (xxx) is a
heat source. We further consider homogeneous Dirichlet BCs (i.e., u(xxx) = 0 on ∂Ω), which together with
Eq. (4.3) constitute the strong form of the problem. To derive the weak form or variational formulation of
this PDE model, we define the trial function space U , where the PDE solution resides, and the weighting
function space V . To this end, we choose U ,V ⊂ H1, which is the Sobolev space of square-integrable
functions with square-integrable first derivatives. Standard FEA and IGA follow a Bubnov-Galerkin
approach. For our heat problem, this translates in U = V with functions u ∈ U and w ∈ V verifying
u(xxx) = w(xxx) = 0 on ∂Ω. The interested reader is referred to [21, 43] for a rigorous construction of U
and V . We obtain the weak form of our heat problem as follows: we multiply all terms in Eq. (4.3) by an
arbitrary w(xxx) ∈ V , integrate the PDE in space over Ω, and integrate the diffusive term by parts using the
divergence theorem recalling that w(xxx) = 0 on ∂Ω, which cancels the boundary integral. As a result, the
weak form is ∫

Ω

∇w(xxx) · (κ∇u(xxx))dxxx−
∫

Ω

w(xxx) f (xxx)dxxx = 0, (4.4)

which accounts for both the PDE and the BCs [21, 43]. Let us define the finite-dimensional subspaces
Uh ⊂ U and Vh ⊂ V to approximate the infinite-dimensional spaces U and V , respectively. We choose
a set of basis functions {BA(xxx)}A=1,...,np spanning Uh and Vh, where np = dim(Uh) = dim(Vh). This
enables us to discretize the weak form in space. Now, our aim is to find uh(xxx) = ∑

np
B=1 uBBB(xxx) in Uh

satisfying Eq. (4.4) for any wh(xxx) = ∑
np
A=1 wABA(xxx) in Vh = Uh. In these expressions, the coefficients

uB and wA are real constants. Using the definition of wh and recalling that all wA are arbitrary, we can
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simplify Eq. (4.4) to the Galerkin form∫
Ω

∇BA(xxx) ·
(

κ∇uh(xxx)
)

dxxx−
∫

Ω

BA(xxx) f h(xxx)dxxx = 0, (4.5)

for all A = 1, . . . ,np and where f h(xxx) = ∑
np
A=1 fABA(xxx). Then, by introducing uh(xxx) = ∑

np
B=1 uBBB(xxx) in

Eq. (4.5) and rearranging terms, we obtain

np

∑
B=1

uB

∫
Ω

∇BA(xxx) · (κ∇BB(xxx))dxxx =
∫

Ω

BA(xxx) f h(xxx)dxxx, (4.6)

for all A = 1, . . . ,np. Eq. (4.6) corresponds to a linear algebraic system KKKUUU = FFF , where FFF = {FA} and
KKK = {KAB} are given by

FA =
∫

Ω

BA(xxx) f h(xxx)dxxx and KAB =
∫

Ω

∇BA(xxx) · (κ∇BB(xxx))dxxx. (4.7)

The solution UUU = {uB} provides the coefficients to determine the FEA or IGA approximation uh(xxx) =
∑

np
B=1 uBBB(xxx) to our original model in Eq.(4.3). In this process, the construction of the finite spaces Uh

and Vh along with the basis {BA(xxx)}A=1,...,np are key steps that ultimately control the convergence and
accuracy of the numerical scheme, and that exhibit methodological differences between FEA and IGA.

Standard FEA uses piecewise Lagrangian polynomial bases to approximate uh(xxx) [43]. The piece-
wise architecture of FEA bases enables the partition of Ω in a mesh of ne subregions termed elements,
as shown in Fig. 4. FEA bases are also isoparametric [43], which is a crucial property enabling the
use of the same basis functions to describe the geometry Ω of our problem by means of a function
G(xxx) = ∑

np
A=1 xxxABA(xxx), where xxxA are the physical coordinates of a known set of points over the elements

termed global nodes.

FEA bases {BA(xxx)}A=1,...,np are built from a canonical local basis defined on a parent element Ω̂,
which is common for all the elements in the mesh. The local basis {ba(ξξξ )}a=1,...,nb is composed of nb
functions constructed on the local coordinate system ξξξ of the parent element (see Fig. 4). Each local
basis function ba is associated to a unique point in the parent element termed local node, with local
coordinates ξξξ a (see Fig. 4). For each element e in the mesh, we can build a geometric mapping from the
parent element given by xxxe(ξξξ ) = ∑

nb
a=1 xxxe

abe
a(ξξξ ), where xxxe

a are the physical coordinates of the local nodes
of element e in Ω. Hence, we can repeatedly map the parent element and the local basis to each of the
elements in the mesh (see Fig. 4), thereby obtaining the definition of the local basis over each element
e, i.e., {be

a(xxx
e)}a=1,...,nb . In this process, we also build a connectivity array of the form A = c(e,a) to

identify the global nodes xxxA and global basis functions BA(xxx) associated to each element’s local nodes xxxe
a

and local functions be
a(xxx

e) [43]. Note that the combination of all element geometric mappings ultimately
renders the geometric function G(xxx) representing all Ω.

The geometric map xxxe is invertible, such that we can use its inverse to map each element e in
the mesh back to the parent element. This pull-back enables us to integrate any basis function over
the common parent element and always use the same quadrature rule. This is a key idea to efficiently
calculate vector FFF and matrix KKK, using processes called formation and assembly. This strategy consists
of looping over the elements of the mesh, such that for each element e we (i) use the connectivity array to
identify the local nodes and basis functions, (ii) pull them back to the parent element, (iii) calculate the
integrals participating in Eq. (4.7) using Gaussian quadrature, and (iv) assemble the resulting local values
f e
a and Ke

ab by summing them into their corresponding global counterparts FA and KAB as indicated by the
connectivity array. Note that FA and KAB will receive a contribution from each of the elements sharing
node A. In step (ii) we can also pull back spatially varying functions over each element, such as f (xxx) or
even uh(xxx) (e.g., in nonlinear problems). Thus, the processes of formation and assembly capitalize on
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Figure 4: Finite Element Analysis (FEA) and Isogeometric Analysis (IGA). (a) In FEA, we approximate the physical domain
by repeatedly mapping a common parent element Ω̂ over Ω using a geometric map xxxe to generate each element in the mesh.
The parent element supports a local function basis {b1,b2,b3}, which, once mapped to Ω from each element, contributes to
the definition of a global function basis. This is used to approximate the model equations in variational form and is usually
integrated using quadrature rules also defined on the parent element (red crosses). (b) Unstructured FEA meshes can be built
to match the segmentation of an organ extracted from medical images (left). Alternatively, immersed-boundary approaches
define a FEA mesh matching the voxel grid and a map g(x) to identify the physical domain in which the model will be solved
(right). (c) In IGA, the physical domain is approximated with a topologically equivalent parametric space Ω̂, that is globally
mapped onto Ω. The parametric space results from the tensor product of univariate piecewise spline basis {bi}i=1,...,ni and
{b j} j=1,...,n j . The resulting multivariate spline basis is used to approximate the model equations in variational form. These can
be integrated using quadrature rules (red crosses) defined over the quadrature space Ω̃, which is mapped to Ω via composition
of the geometric maps φ e and xxxe for each element. (d) IGA meshes can be built to match the segmentation of an organ extracted
form medical images (left). Alternatively, immersed-boundary strategies define an IGA mesh aligning with the voxel grid and
a map g(x) to identify the physical domain in which the model will be solved (right).

the piecewise definition of FEA bases over the elements to efficiently calculate the integrals in Eq. (4.7)
specifically wherever the basis functions are defined, instead of performing an inefficient integration over
the whole physical domain Ω[43].

IGA is considered a generalization of FEA because it relies on the same core ideas. However, IGA
employs more sophisticated polynomial functions coming from computer graphics because its root idea is
to use the functions exactly describing a computer-generated geometric model of Ω (e.g., an engineering
design, an organ segmentation) to numerically solve the PDE problem posed on such geometry [21].
Conversely, in FEA we first choose the basis to approximate the solution uh(xxx) and then we use it to
describe Ω, which usually results in an approximation of Ω as well. Thus, IGA bases are geometrically-
exact and isoparametric. IGA bases also show higher global continuity, which ultimately yields superior
accuracy [21].
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Non-Uniform Rational B-splines (NURBS) define the most usual function space in IGA [21, 25].
Univariate NURBS bases are globally defined by a knot vector, which is a set of non-decreasing coor-
dinates termed knots enabling the definition of all NURBS basis functions over a segment parametric
space Ω̂ (see Fig. 4). Multivariate NURBS bases are defined by the tensor product of univariate NURBS
bases. Likewise, the tensor product of the corresponding knot vectors results in the definition of the
complete IGA mesh formed by ne elements in a multivariate parametric space Ω̂, which is topologi-
cally equivalent to the physical space Ω. The isogeometric elements are formed by the knot lines in
each parametric direction (see Fig. 4). Each of the resulting np basis functions BA(ξξξ ) defined in Ω̂ is
associated to a control point, with parametric coordinates ξξξ A and physical coordinates xxxA. This results
in the definition of an invertible global geometric mapping xxxg(ξξξ ) = ∑

np
A=1 xxxABA(ξξξ ), bringing the whole

IGA mesh from the parametric space Ω̂ into the physical space Ω and providing an explicit definition
of the problem geometry (i.e., G(xxx)). Contrary to global nodes in FEA, the control points in IGA do
not necessarily align with the mesh and may even be placed out of Ω [21, 25]. The restriction of xxxg to
each of the elements also enables the construction of the invertible element geometric mapping xxxe, which
relies on the identification of the nb local basis functions and associated local control points defined over
the element e by means of a connectivity array as in FEA. Additionally, the connectivity array in IGA
further accounts for the univariate basis functions that gave rise to the multivariate basis functions [21].

As the knot vectors are arbitrary, the elements in parametric space may have varying sizes. Thus, we
further define a unique quadrature space Ω̃, which is common to all elements, and an ancillary invertible
element mapping φ e(ξ̃ξξ ) from Ω̃ to each element in Ω̂. During the process of formation and assembly,
we combine xxxe and φ e to perform the pull-back from Ω to Ω̃ and calculate the integrals participating
in matrices and vectors of the final system (see Eq. (4.7)). The rest of the assembly steps in IGA are
essentially the same as in FEA (see [21]).

4.2.2 FEA and IGA for image-based cancer models

Let us now consider the reaction-diffusion cancer growth model in Eq. (3.2). Standard FEA and IGA
approaches are boundary-fitted, i.e., the physical space Ω represents the patient’s organ (see Fig. 4).
Here, we will derive the weak form of Eq. (3.2) with the usual no-flux BC ∇N · nnn = 0. We choose
U ,V ⊂ H1 and, using a Bubnov-Galerkin approach, we obtain U = V [21, 43]. We define Uh ⊂ U and
Vh ⊂ V and we choose a basis {BA(xxx)}A=1,...,np to span Uh and Vh. Standard FEA and IGA approximate
time-dependent functions f (xxx, t) as f h(xxx, t) = ∑

np
A=1 fA(t)BA(xxx). Then, the Galerkin discretization of the

reaction-diffusion model’s weak form is∫
Ω

BA
∂Nh

∂ t
dΩ+

∫
Ω

∇BA · (D∇Nh)dΩ−
∫

Ω

BAkhNh
(

1− Nh

θ

)
dΩ = 0, (4.8)

for all A = 1, . . . ,np and where kh(xxx) = ∑
np
A=1 kABA(xxx). To discretize and integrate in time, we propose the

generalized-α method [17, 21, 48]. This approach relies on a partition of [0,T ] in subintervals [tn, tn+1]
with an arbitrary time step ∆tn, the discretization of ∂Nh(xxx, t)/∂ t = ∑

np
A=1 ṄA(t)BA(xxx), and the definition

of vectors NNNn = NNN(tn) = {NA(tn)} and ṄNNn
= ṄNN(tn) = {ṄA(tn)}. The generalized-α method is a predictor-

multicorrector algorithm that provides NNNn+1 and ṄNNn+1 given NNNn and ṄNNn. This method can be proven to
be second-order accurate and A-stable by adequately choosing its defining parameters (see [20, 21]). The
resulting system of nonlinear algebraic equations can be solved iteratively with Newton’s method (see
[20, 21]).

Finally, there are multiple approaches to generate boundary-fitted meshes in FEA and IGA [126].
Unstructured meshes are the usual strategy in FEA and consist of populating a geometric model of the
patient’s tumor-hosting organ generated from its segmentation with tetrahedral or hexahedral elements
[1, 67, 115]. In IGA, a common approach is parametric mapping, whereby a known geometric model
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that is topologically equivalent to the organ’s geometry is deformed to match the organ’s segmentation
[70, 71]. However, image-based cancer models may be more amenable to immersed-boundary methods
[13, 24, 78, 85, 100]. These strategies rely on constructing the FEA/IGA mesh to align with the voxel
grid and defining a function g(xxx) accurately representing the organ’s boundary. Hence, the function g(xxx)
enables the definition of the physical space Ω and a fictitious space over the rest of the mesh (see Fig. 4).
The model PDEs are solved over the whole mesh but their parameters are weighted with g(xxx), such
that they take their usual value in the physical domain and a negligible value in the fictitious domain.
Immersed-boundary methods may also rely on local refinement to improve the discretization of g(xxx)
[100].

5 Calibrating image-based mathematical oncology models

Mathematical models of cancer define a forward problem, whose solution provides state variables (e.g.,
tumor cell density). In general, these models are parameterized by unknown biophysical parameters (and
possibly initial conditions) that typically manifest substantial variability across subjects [68, 75, 98].
The estimation of these unknown variables (also called inversion variables) should be patient-specific
and can be mathematically posed as an inverse problem, which aims at optimizing an objective function
constrained by the model. Since image-based cancer models are usually represented by PDEs, the re-
sulting inverse problem is formally a PDE-constrained optimization problem. In this section, we outline
the general formulation of the inverse parameter estimation problem and discuss the standard methods
to compute its solution, keeping in mind the ultimate goal of patient-specific tumor characterization and
model prediction. Fig. 5 illustrates the typical image-based inverse problem workflow in the context of
brain tumors.

5.1 Inverse problems for oncology models

Let F(ppp,c) = 0 denote a cancer model consisting of a PDE system, where ppp is a vector of unknown
parameters and c(xxx, t) represents the state variables. The inverse problem seeks to estimate ppp such that
the model state variables c(xxx, t) match given observational patient data (see Fig. 5). In oncology, the input
data is usually a series of medical images (e.g., MRI, PET) at specific time instances {t j} j=1,··· ,nt within a
finite time horizon (0,T ]. These define our observations ĉ j(xxx) of the state variables in the forward model
c(xxx, t), e.g., tumor cell density (see Section 2.1). Then, the inverse problem can be mathematically
formulated as

min
ppp
J (ppp,c) =

1
2

nt

∑
j=1

∫
Ω

(
c(xxx, t j)− ĉ j(xxx)

)2dxxx+R(ppp) s.t. F(ppp,c) = 0, (5.1)

where Ω is the spatial domain representing the patient’s tumor-harboring organ. The objective function
J (ppp,c) minimizes the mismatch between the predicted tumor and observed data at times {t j} j=1,··· ,nt

using an L2 distance measure. Additionally, it balances this data fidelity/mismatch term with a regular-
ization operatorR(ppp).

Designing algorithms for the efficient and effective numerical solution of such PDE-constrained op-
timization problems is a challenging task [2, 63]. While derivative-free optimization strategies are pop-
ular due to ease of implementation, they are typically associated with slow convergence and can become
prohibitively expensive (especially if the dimensionality of ppp is large). Hence, optimization algorithms
that utilize gradient information are preferable. In addition to improving convergence and computation
time, these methods can reveal important characteristics of the objective function landscape, which can be
exploited to design better algorithms and help us understand the sensitivities and ill-posedness inherent
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Figure 5: Workflow for an image-driven biophysical inverse problem. (a) The goal is to extract clinically relevant biomark-
ers from input multi-parametric MRI data that can predict and guide intervention so as to improve clinical outcome. Purely
imaging-based approaches (feature extraction) can be integrated with biophysical priors (biophysical model inversion) to de-
velop tools that can assist in treatment and prognosis. (b) The input data for patients with brain tumors (multi-parametric MRI
scans) is at a single time point (treatment typically follows immediately after diagnosis) and is translated into model observables
for tumor concentration cobs. The inverse problem seeks to estimate unknown biophysical parameters ppp of a given mathematical
model. The basic idea is to perform a number of model simulations with different parameters so that the model-predicted tumor
matches the observed data. The panels in this figure are adapted from [73].

to PDE-constrained optimization problems. There exist multiple options for evaluating the gradient (and
higher order derivatives) of the objective function, such as automatic differentiation, numerical approxi-
mation through finite differences, and adjoint-based methods. For oncology models, several groups have
employed adjoints for inversion [19, 27, 29, 35, 57, 104]. Some efforts also employ Hessian information
to accelerate convergence [29, 97]. Other strategies such as derivative-free optimization [15, 60, 76, 118]
or finite difference approximations [41] have also been considered in literature, but are usually less effec-
tive than adjoint-based methods. For large-scale 3D inversion, parallel (distributed memory) algorithms
have been considered in [29, 97, 104].

While the deterministic approaches just described are successful in estimating the optimal parame-
ters to the minimization problem in Eq. (5.1), their utility could be limited due to uncertainties arising
from modeling errors and noise in measurements/data. A probabilistic (Bayesian) formulation can miti-
gate this drawback by characterizing our confidence in the inversion variables ppp using probability density
functions. This approach will be described in Section 6.2, as part of a comprehensive Bayesian frame-
work for model selection. In the following section, we briefly describe adjoint-based inversion methods.
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5.2 Adjoint methods for inverse problems

The standard technique for solving the inverse problem posed in Eq. (5.1) is to introduce Lagrange
multipliers λ (xxx, t), which are termed adjoint variables or simply adjoints, and construct the Lagrangian
functional as

L(c, ppp,λ ) = J (ppp,c)+ 〈F(ppp,c),λ 〉, (5.2)

where 〈.〉 denotes an appropriate inner product (typically L2) and J (ppp,c) denotes the objective function
defined in Eq. (5.1). By requiring stationarity with respect to the state, adjoint, and inversion variables,
we arrive at the first order optimality conditions by taking the following variations:

δλL= 0 (forward equations), (5.3a)

δcL= 0 (adjoint equations), (5.3b)

δpppL= 0 (inversion equations), (5.3c)

where δzL denotes the variation of L with respect to z. The forward equations are simply the tumor
growth PDE model. The adjoint equations are linear PDEs in the adjoint variables backward in time.
The inversion equations denote the PDE-constrained gradient of J (ppp,c), which is set to zero at the local
minimum.

For example, consider the reaction-diffusion cancer model in Eq. (3.2) with the usual no-flux BC
∇N ·nnn = 0 and two tumor cell density observations N̂0(xxx) and N̂1(xxx) derived from DW-MRI at t = t0 = 0
and t = t1 (see Section 2.1). We assume that N̂0(xxx) are known initial conditions for Eq. (3.2), and use
N̂1(xxx) to calibrate ppp = {D,k(xxx)}, where D is a scalar constant and k(xxx) is a spatial field, representing the
tumor cell diffusion and proliferation rate, respectively (see Section 2.1). Then, we define the objective
function J (ppp,N) and the Lagrangian functional L(N, ppp,λ ) as

J (ppp,N) =
1
2

∫
Ω

(
N(xxx, t1)− N̂1(xxx)

)2dxxx+
a
2

(
D2 +

∫
Ω

k2(xxx)dxxx
)
, (5.4)

L(N, ppp,λ ) = J (ppp,N)+
∫ t1

0

∫
Ω

λ (xxx, t)
(

∂N(xxx, t)
∂ t

−∇ · (D∇N(xxx, t))

−k(xxx)N(xxx, t)
(

1− N(xxx, t)
θ

))
dxxxdt, (5.5)

where a is a regularization parameter. Following Eq. (5.3b), the adjoint equation is

− ∂λ (xxx, t)
∂ t

= ∇ · (D∇λ (xxx, t))+ k(xxx)λ (xxx, t)
(

1− 2N(xxx, t)
θ

)
, (5.6)

which is a linear backward problem in time subject to the BC ∇λ ·nnn= 0 on ∂Ω and the terminal condition
λ (xxx, t1) = N̂1(xxx)−N(xxx, t1). Following Eq. (5.3c), the inversion equations are given by

aD+
∫ t1

0

∫
Ω

∇λ (xxx, t) ·∇N(xxx, t)dxxxdt = 0, (5.7)

ak(xxx)−
∫ t1

0
λ (xxx, t)N(xxx, t)

(
1− N(xxx, t)

θ

)
dt = 0. (5.8)

In general, Eq. (5.3) represents a large, non-linear, coupled system of PDEs, which can be sig-
nificantly challenging to solve simultaneously. Instead, a standard approach involves a reduced space
algorithm, which is an iterative strategy that reduces Eq. (5.3) to a system involving only the inversion
variables. In each iteration, we use the current approximation to ppp to solve the state and adjoint equa-
tions to respectively get the current approximation to the state and adjoint variables. Then, we update
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our inversion variables using the inversion equations. This process is repeated until convergence, which
is typically set by a user-defined threshold on the parameter update (i.e., the parameter gradient). In
contrast to full space methods, reduced space methods present more tractable systems that can exploit
existing PDE solvers for the state and adjoint equations and are better conditioned. We refer the reader
to [2] for more details on adjoint methods in PDE-constrained optimization.

6 Model selection and identification of relevant parameters

Given the vast array of cancer growth models in the literature, it is not trivial to choose which is the best
to represent the available data and to predict key quantities of interest (e.g., the tumor size, treatment
efficacy, or percentage of necrosis) for a certain tumor type. In this section, we describe the Occam Plau-
sibility Algorithm (OPAL), which has been proposed in [26] as an adaptive process for model selection
and validation in the presence of uncertainties. The strategy relies on three key steps: sensitivity analysis
to identify the relevant model parameters, model calibration of the relevant parameters, and calculation
of model selection criteria. The OPAL can be referred to as model agnostic in that no single model is
advocated; rather, the best model is selected based upon our model selection criteria. Details regarding
each step of the OPAL are given in the next subsections.

6.1 Variance-based sensitivity analysis

Sensitivity analysis quantifies how changes in parameter values affect the uncertainty in model output
[93]. We can distinguish between local and global methods. Local methods compute the variation of
the model output changing one parameter at a time (i.e., first-order effects) usually via derivation, but
neglect the interactions between the parameters. In global methods, the contribution of each parameter
along with its interactions with other parameters (i.e., higher-order effects) are taken into account, as
all parameters are varied simultaneously over the entire parameter space. In this work, we present the
variance-based global sensitivity analysis method, also known as the Sobol method [95, 102]. Details
regarding local and other global methods can be found in [95].

Let MMM(θθθ) be a model parameterized by k parameters θθθ , which belong to a parameter space ΘΘΘ⊂Rk.
The computational cost of the sensitivity analysis of model MMM(θθθ) depends on the number of parameters
k and the sample size N, with the total number of model evaluations given by NT = N(k+1). There are
several approaches to estimate the total sensitivity index for each parameter, which quantifies all effects
of the parameter on the model output. Here, we present the strategy in [94], as it is known to demand a
reduced sample size to converge.

First, we randomly generate two sampling matrices, AAA and BBB, with size N×k. Each row of these ma-
trices represents a sampled value for the vector of parameter θθθ . Additionally, we create k matrices AAA(k)

BBB ,
where we copy the values from the matrix AAA and replace the values from column k with the values from BBB.
For the case where N = 1, these matrices are given as: AAA = [θ a

1,1 θ a
1,2 . . . θ a

1,k], BBB = [θ b
1,1 θ b

1,2 . . . θ b
1,k],

AAA(1)
BBB = [θ b

1,1 θ a
1,2 . . . θ a

1,k], AAA(2)
BBB = [θ a

1,1 θ b
1,2 . . . θ a

1,k], . . ., and AAA(k)
BBB = [θ a

1,1 θ a
1,2 . . . θ b

1,k].

Then, we run the forward model for each row in matrix AAA and all matrices AAA(k)
BBB . The outputs of the

model are stored in corresponding solution vectors for each matrix; i.e., YYY A, YYY 1
AB, . . . , YYY k

AB. Finally, we
compute the total sensitivity index STi for each parameter, which can be approximated [49, 94, 95] by

STi =
1

2NVar(YYY A)

N

∑
j=1

(
(YYY A) j−

(
YYY (i)

AB

)
j

)2

, (6.1)
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where Var(YYY A) is the variance of vector YYY A. According to [95], a parameter i can be considered non-
influential if STi = 0. In practice, we define a threshold ε and we identify a parameter i as non-influential
if STi < ε . The choice of ε is relative to other STj and problem-dependent. If STi is sufficiently small, then
the parameter does not affect the quantities of interest, and the complexity of the model can be reduced
by removing or fixing the parameter to any value within the uncertainty range [95].

6.2 Model calibration

To characterize uncertainties in the observable data and the stochastic behavior of tumor growth, we
follow the Bayesian statistical calibration procedure. This method captures these uncertainties by de-
livering a probabilistic distribution of the model parameters, instead of a single value for each of them
[66, 67, 82, 83]. The basic ideas behind the Bayesian parameter estimation involve the following steps:

1. Select the observational data DDD to be used (e.g., baseline and follow-up MRI).

2. Establish the prior distribution of the model parameters πprior(θθθ). In the cases where we do not
have knowledge regarding the distribution of the parameters, and we can only estimate the range
of these parameters, the usual approach is to assume a uniform prior distribution.

3. Construct the likelihood function, which, given the values assigned to the parameters θθθ , yields
the probability of DDD being observed [82]. Assuming both the experimental error and the model
inadequacy to be Gaussian, and the experimental data to be independent and identically distributed,
the likelihood is given as

πlike(DDD|θθθ) =
Nt

∏
i=1

1√
2πσ2

exp
(
−(Di−Yi(θθθ))

2

2σ2

)
, (6.2)

where Nt is the number of data points, σ is the standard deviation of the experimental error and
model inadequacy, and Y (θθθ) is the model output.

4. Compute the posterior distribution of the parameters πpost(θθθ |DDD) as

πpost(θθθ |DDD) =
πlike(DDD|θθθ)πprior(θθθ)

πevid(DDD)
, (6.3)

where πevid(DDD) =
∫

Θ
(πlike(DDD|θθθ)πprior(θθθ)) dθθθ is the model evidence. The resulting posterior dis-

tribution of the parameters allows the prediction of the quantities of interest taking into account
the uncertainties in the parameters.

The posterior probability density function is, in general, non-Gaussian. Sampling schemes such
as Markov Chain Monte Carlo (MCMC) methods can be used to evaluate posterior expectations [66,
67]. These stochastic methods can incur in a large computational cost, so efficient sampling strategies
exploiting the problem structure are actively being investigated [23, 86, 87, 114].

6.3 Model selection criteria

Following the Bayesian framework used for calibration, we approach model selection by computing the
model plausibility [10, 16, 54, 82, 87]. Given a set of m models MMM = {Mi(θθθ i)}m

i=1, the Bayes’ rule in Eq.
(6.3) can be rewritten assuming that probabilities are conditional on the model Mi and the set M:

πpost(θθθ i|DDD,Mi,MMM) =
πlike(DDD|θθθ i,Mi,MMM)πprior(θθθ i|Mi,MMM)

πevid(DDD|Mi,MMM)
. (6.4)
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Figure 6: The Occam Plausibility Algorithm (OPAL). This framework brings together experimental data for model calibration
and validation, sensitivity analysis, selection, and model prediction.

The evidence of each model can be viewed as a likelihood for a discrete Bayesian calculation, yielding a
new posterior called the model plausibility, πplaus, given as

πplaus(Mi|MMM,DDD) =
πevid(DDD|,Mi,MMM)πprior(Mi|MMM)

πevid(DDD|MMM)
, 1≤ i≤ m. (6.5)

If we assume that all models are equally probable, πprior(Mi|MMM) = 1
m . The sum of all model plausibilities

is equal to one (i.e., ∑
m
i=1 πplaus(Mi|MMM,DDD) = 1). The model with highest plausibility is selected as the

best model in MMM to capture the data.

Another popular method of model selection is the Akaike Information Criterion (AIC) [59]. In this
method, the likelihood of the maximum likelihood estimator, θ̂θθ , is penalized according to the number of
model parameters, i.e.,

AICi =−2logπlike(DDD|θ̂θθ)+2ki, 1≤ i≤ m, (6.6)

where ki the number of parameters in model Mi. In this case, the model with the lowest AIC is the best
model in MMM.

6.4 The Occam Plausibility Algorithm

OPAL has been proposed as a comprehensive framework that combines parameter sensitivity analysis,
and model calibration, validation, selection, and prediction [26, 82]. Fig. 6 shows a schematic represen-
tation of the main OPAL steps, which we outline in the following [26, 83]:

1. Identify a set MMM = {M1(θθθ 1),M2(θθθ 2), . . . ,Mm(θθθ m)} of parametric models, each with parameters
θθθ i belonging to an appropriate parameter space ΘΘΘi, 1≤ i≤ m.

2. Perform a sensitivity analysis to identify non-influential parameters. Based on this analysis, the
values of these parameters are fixed to the mean value used in the sensitivity analysis. If there is a
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model in MMM, whose only difference to other model is given by the non-influential parameters, this
model can be eliminated, yielding a reduced set M̄MM = {M̄1(θθθ 1),M̄2(θθθ 2), . . . ,M̄l(θθθ l)} of models,
with l ≤ m.

3. Divide the models in M̄MM into “Occam Categories” according to their complexity (e.g., number of
parameters). These categories are sorted in ascending order according to their complexity.

4. Calibrate the models in Category 1 using the calibration data DDDc.

5. Select the best model to represent the data in this category (e.g., the model with the highest plau-
sibility).

6. Test the best model identified in the current category in a validation scenario, where the posterior
from the calibration step is used as a prior and the distribution of the parameters are updated
against the validation data DDDv. If the model is able to represent the data within a preset tolerance,
the model is considered “valid”. If not, we return to step 3 and move to the next Occam category.
If we are not able to find a valid model, we need to return to step 1 and include new models.

7. After finding the “simplest” valid model, solve the forward model in the prediction scenario and
compute the quantities of interest.

All of these steps are designed to consider uncertainties in the choice of model, the model pa-
rameters, the observational data, and the target quantities of interest. All uncertainties are generally
characterized by probability densities.

7 Towards the optimization of personalized treatment plans

Several image-based mathematical models of cancer growth have shown promise in predicting treatment
outcomes in a patient-specific manner, as discussed in Sections 3.4 and 3.5. Those models could pro-
vide a means to determine optimal therapeutic regimens to treat a certain type of cancer in silico, which
could then be investigated within a clinical trial in vivo. Hence, this computational approach seeks to
help clinicians navigate the vast array of radiotherapy and drug combinations, dosing options, and treat-
ment schedules and select optimal strategies, which are virtually impossible to assess in clinical trials.
Ultimately, cancer models could also serve as a digital twin for the patient’s tumor, thereby enabling
the pathological assessment, monitoring, and design of optimal therapeutic regimens for the individual
patient in silico. In this section, we discuss the use of image-based predictive tumor growth models
accounting for the therapeutic regimen and associated tumor response for the discovery of optimal ther-
apeutic regimens and the design of patient-specific optimal treatment strategies.

7.1 Potential to select treatment plans for individual patients

Selecting a treatment regimen for a patient is a complex process. Oncologists use decision tree algo-
rithms to select therapeutics for each patient considering, for example, tumor grade and cell markers
[12]. However, the determination of the optimal dosing regimens for these therapies is vastly underin-
vestigated. This limitation follows from the impossibility to test all the potential dosing strategies within
a clinical trial. Additionally, regimens may be altered by the treating oncologist due to considerations
like side effects and quality of life for the patient, where doses may be skipped, dosages decreased, and/or
supportive medications prescribed. However, these changes are made only with a limited knowledge of
their effects on the treatment outcome for any given patient.
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As patients present with varying physiologies and sensitivities, the one-size-fits all approach is
clearly not optimal for all patients. Mathematical models of tumor growth and treatment response can
help us predict therapeutic efficacy accounting for each patient’s specific tumor dynamics and, poten-
tially, select the best therapeutic regimen for each individual patient. For instance, Jarrett et al. [52] used
the model in Eq. (3.7) to investigate alternative dosing regimens of cytotoxic therapies for breast cancer
in silico. First, the model was parameterized patient-wise using MRI data collected prior to the start
of therapy and after one drug cycle as indicated in Section 3.5. The resulting personalized model was
then simulated to the time of completion of the prescribed therapeutic regimen, and the simulated tumor
growth was compared to the actual tumor response measured by MRI for each patient. The model pre-
dictions were found to be highly correlated with actual tumor response (N = 13, CCC> 0.90, p < 0.01
for total cellularity, total volume, and longest axis), so the model was considered valid to reproduce the
effects of chemotherapy in breast cancer. Their validated model was then used to explore alternative
therapeutic regimens, which were defined patient-wise by fixing the total dose prescribed in standard
regimen and varying frequency and dosage. The authors indicated that an additional 0-46% reduction
(median=17%) in total cellularity may have been achievable across the patient cohort (N = 13) compared
to the standard chemotherapeutic regimens that the patients were prescribed. The dosing regimens that
the model predicted to reduce/control each tumor were also found to significantly outperform standard
regimens for tumor control (p < 0.001), thereby supporting the claim that standard regimens may not be
the most effective for every patient.

7.2 Optimal control theory for personalized treatment planning

Consider a dynamical system involving a set of variables u(t) and controls z(t), which are functions de-
scribing external forces that can alter the system dynamics. Optimal control theory (OCT) was developed
to determine the solution of the system that achieves a particular outcome by adequately adjusting the
controls. The mathematical formulation of the optimal control problem consists of minimizing or max-
imizing an objective functional J(u,z). Thus, given a particular dynamical system over a certain time
interval [0,T ], applying OCT largely consists of determining the objective functional, problem-specific
constraints, and a method for solving the OCT problem. The general form of the objective functional for
OCT is

J(u,z) = Φ[u(t j),z(t j), t j]+
∫ t f

t0
L(u(t),z(t), t)dt, (7.1)

where Φ[u(t j),z(t j), t j] includes target values of the variables and the controls at specific times {tk}k=1,...,nt ,
while L(u(t),z(t), t) accounts for the target dynamics of the variables and the controls over [0,T ]. Φ[u(t j),
z(t j), t j] has several names in OCT literature, including endpoint cost in minimization problems and
terminal payoff in maximization problems. The formulation of the objective function can also be di-
vided into three canonical types: endpoint control, which only includes Φ[u(t j),z(t j), t j]; bang-bang
control, which only features a linear L(u(t),z(t), t); and continuous control, which only has a quadratic
L(u(t),z(t), t). The objective function can also be constructed by combining these canonical types. The
term bang-bang refers to the usual dynamics of optimal control z(t) for this type of functional, which
switches between the maximum admissible value and z(t) = 0 (i.e., no effect). Additionally, the quadratic
term in the continuous control is not usually motivated by problem-dependent phenomena, but it ensures
that the optimization problem is convex. Hence, the optimal control problem has key mathematical fea-
tures, including the existence of a global minimum.

In the context of cancer, we can apply OCT to obtain optimal treatment strategies by using a math-
ematical model to simulate tumor growth and therapeutic response as a dynamical system, setting the
treatment as a control, and selecting clinically-relevant treatment outcomes in the objective functional.
Here we will briefly discuss the formulation of the OCT problem using a simplification of the PDE model
of breast cancer chemotherapy in Eq. (3.7), whereby we directly model the total number of tumor cells
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n(t) using the ordinary differential equation (ODE) [56, 124]:

dn(t)
dt

= kn(t)
(

1− n(t)
θ

)
−αz(t)n(t) (7.2)

where k describes global tumor cell proliferation, θ is the tissue carrying capacity, α models chemother-
apy efficacy, and z(t) represents the dynamics of the concentration of drug(s) in the plasma, which is
used to derive the initial concentration of drug in the tissue Cdrug(xxx, t) in Eq. (3.7) [51]. We chose this
ODE model for the sake of simplicity and because ODE models have been commonly used in the cancer
OCT literature [5, 50, 62, 96, 107]. However, the following ideas could also be applied to the PDE model
in Eq. (3.7) by defining n(t) =

∫
Ω

N(xxx, t)dxxx (see [3]).

A primary goal of OCT problems for cancer treatment is to minimize the tumor burden only at the
completion of the therapy, which can be formulated by the endpoint control functional

J1(n) = n(t f ). (7.3)

This optimal control problem requires additional constraints for the therapeutic regimen z(t). For ex-
ample, these can limit the maximum dose by setting z(t) < zmax and/or the total maximum dose by
imposing

∫ T
0 z(t)dt < ztot , which is termed an isoperimetric constraint (see Fig. 7). The limits zmax and

ztot are drug-dependent and may be patient-specific (e.g., quality of life, comorbidities). However, the
optimization of J1(n) is insensitive to the dynamics of the drug concentration; i.e., it does not formally
adapt the drug regimen to the tumor burden. Another limitation of endpoint control formulations is that
they do not consider the potential growth of the tumor during therapy, which may be relevant to select
actionable therapeutic regimens depending on the type of cancer.

To address this limitation, we can extend the objective functional in Eq. (7.3) with a bang-bang term
accounting for z(t):

J2(u,z) = w1n(t f )+w2

∫ T

0
z(t)dt. (7.4)

where w1 and w2 are problem specific weights that can be included in the objective function to give
greater or lesser importance to the different terms in the objective functional during optimization. For
example, if a particular treatment has significant adverse side effects, w2 > w1 may be enforced to fo-
cus the problem on minimizing the total drug dose. Similarly, an objective function that includes the
continuous control of the therapy can be written as

J3(u,z) = w1n(t f )+
w2

2

∫ T

0
(z(t))2dt. (7.5)

Furthermore, the objective function can also account for the tumor growth over the entire treatment
period:

J4(u,z) =
1
2

∫ T

0
w1(n(t))2 +w2(z(t))2dt. (7.6)

The main difference between the optimal treatment solution found for objective function J2 versus
J3 and J4 is that J2 assumes that a constant dose is given over a certain interval, while J3 and J4 assume
that the drug concentration z(t) can change over time. These differences are shown in Fig. 7. In principle,
an on-off (bang-bang) control would be more clinically relevant than the continuous control, as patients
are not usually treated over time in a continuous manner. However, this type of control would result
in a sudden drop in z(t) after the conclusion of each drug cycle (see Fig. 7), whereas in reality z(t)
decays with an approximately exponential trend. With the introduction of take-home infusion pumps
for chemotherapy [125], evaluating continuous control may be a more plausible avenue of investigation.
However, the optimal z(t) obtained under continuous control may also be unachievable with the current
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Figure 7: Optimal control problem solutions for the ODE model of cancer chemotherapy in Eq. (7.2). (a) Without an isoperi-
metric constraint, the optimal control problem using J1 yields z(t) = zmax, which would probably induce acute toxicity in
patients. The optimal z(t) for the bang-bang control using J2 produces the characteristic stepwise solution, while the optimal
z(t) obtained with the continuous controls in J3 and J4 show a continuous decay. The drug regimens calculated with J1, J3
and J4 successfully control tumor growth, while for J2 we observe regrowth once z(t) drops to zero. (b) If we impose the
isoperimetric constraint, the optimal z(t) for J1 and J2 coincide and produce a similar regimen to the bang-bang solution with-
out isoperimetric constraint. The optimal z(t) obtained with the continuous controls in J3 and J4 now take lower concentration
values, which translate into a limited tumor control. Balancing the maximum drug delivered during treatment, the maximum
reduction in tumor burden, and the relative weights in the formulations of J2, J3, and J4 is a challenge in OCT applications in
cancer, which may render very different results.

drugs for cancer treatment (e.g., due to incompatible pharmacokinetics). Ultimately, the optimal drug
concentrations z(t) obtained with these functionals can render valuable information to guide the design
of clinically-feasible optimal therapeutic strategies. Another future goal could even be the synthesis of
new drugs or the adaptation of current drug compounds to match target dynamics emanating from the
combination of OCT, cancer modeling, and pharmacodynamics [44, 72, 101].

Finally, optimal control problems using J2, J3, and J4 may include clinically-relevant constraints to
further focus the solution, including the limitations to z(t) discussed for J1. For instance, we can limit
the tumor burden at any time by imposing n(t) < nr, where nr is an arbitrary threshold. Additional
constraints can also limit the frequency f of doses, for example, by setting f ≤ T/nd , where nd is the
maximum number of doses per treatment period. Larger systems of equations that may account for the
healthy and immune cell populations may also require additional constraints and/or incorporate these
other variables into the optimal control problem itself. Beyond biological concerns are the logistical,
monetary, and psychological costs that may also be considered for an optimal regimen. The reader is
referred to [5, 50, 62, 96, 107] for further details on applying OCT to cancer models.
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8 Barriers to success

One of the principal issues preventing the successful translation of image-based computational mod-
eling technologies to routine clinical practice is access to proper data. Calibration and validation of
image-based cancer models require individual quantitative imaging data at multiple time points during
the course of surveillance or treatment. The acquisition of frequent and rich imaging datasets might be
feasible in preclinical settings, thereby enabling the realization of controlled studies to thoroughly assess
model validity. However, such controlled studies are extremely challenging in a clinical scenario for two
key reasons. First, the timely and effective treatment of the patient and their quality of life are the utmost
priorities. Thus, a controlled validation study would require the acquisition of minimal datasets to ensure
a reliable calibration of the model, while ensuring that data collection is not a burden for patients and that
those in the model-informed arm will be closely monitored in case immediate action is warranted during
the course of the controlled study. Second, quantitative imaging data are not routinely collected in the
current clinical protocols. Standard-of-care imaging primarily focuses on delineating tumor boundaries
for staging and planning interventions (e.g., biopsy, surgery, and radiotherapy). However, anatomical
imaging fundamentally limits modeling approaches as it does not quantitatively characterize the unique
heterogeneous nature of each patient’s tumor. In addition, standard-of-care images are often acquired
only before and following the completion of therapy. This is partly due to financial constraints, hospital
workflow, scanner availability, and patient burden. Thus, carefully designed studies are needed to de-
termine a clinically-feasible strategy to collect sufficient quantitative imaging data enabling an accurate
parameterization of predictive models of cancer. For instance, abbreviated imaging protocols may fit
quantitative, research-focused scans into routine clinical visits alleviating the need for separate research
scans. Additionally, many quantitative imaging data types can now be acquired in the community setting
(i.e., away from major hospitals or oncology centers), which may be more convenient for patients [103].

From a modeling viewpoint, a central challenge is balancing model complexity, a rational use of
computational resources, data requirements to ensure an accurate calibration, and predictive accuracy.
The dynamics of cancer growth and treatment response is extremely complex, involving a multitude of
biophysical processes interacting at various spatial and temporal scales [74]. Mathematical models of
cancer are built upon a series of relevant biophysical phenomena, whose selection, formulation, and cali-
bration ultimately determines the predictive power of the model [89, 121, 123]. The accurate modeling of
some of these phenomena (e.g., angiogenesis [113]) would require complex equations at multiple scales,
a large number of parameters requiring extensive spatiotemporal data, and advanced numerical methods
that may incur in a large computational cost. However, such models would be incompatible with the con-
straints on quantitative imaging data availability and patient care during the controlled validation studies
discussed above.

Thus, clinically-oriented image-based models usually require conservative modeling assumptions,
which enables the description of cancer growth and treatment response at organ scale using simple mod-
eling paradigms and involving a minimal set of parameters whose calibration is feasible with existing
quantitative imaging techniques [121]. However, these model assumptions may incur substantial errors
that ultimately limit the predictive power of the model. Moreover, some biophysical model fields (e.g.,
tumor cell density) are not directly observed. Instead, the observed imaging data must be preprocessed
to create a proxy to the biophysical observables. Such pseudo-correspondences introduce additional
uncertainties and can significantly affect the reconstruction results [29, 32, 61, 109]. Likewise, the phe-
nomenological nature of macroscopic cancer models introduces parameters without direct biological
counterparts (e.g., tumor cell diffusivity, drug efficacy), which further complicates model assessment
and validation.

Nevertheless, the future development of image-based cancer models requires the initial validation
of simpler models because this enables the identification of key improvements in model formulation
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to refine predictive accuracy. In addition, the success of simpler models also provides justification to
collect further data to calibrate more complex biophysical mechanisms in subsequent model extensions.
For example, this has been the process behind the extension of the logistic model in Eq. (3.1) to the
reaction-diffusion model in Eq. (3.2), then to a mechanically-coupled model in Section 3.2, and later to
a vasculature-coupled or drug-informed model in Sections 3.3 and 3.5, respectively.

Biophysical inversion is a promising strategy to calibrate predictive models of cancer, but also
presents several challenges. Complex, typically nonlinear and time-dependent, PDE-based models often
result in ill-conditioned and non-convex optimization problems, which require sophisticated numerical
algorithms to stabilize the inversion, such as multiresolution continuation, parameter continuation, and
regularization schemes [29, 98, 99, 104]. Data scarcity can exacerbate the ill-posedness. Mitigating this
issue can entail imposing additional modeling assumptions and regularization strategies [104]. The noise
arising from various sources in imaging data also complicates model inversion. Further modeling priors
and structure-exploiting algorithms can help mitigate some of these issues. Other mathematical consid-
erations such as the choice of mismatch function (e.g., L2 loss, cross-entropy loss) and regularization
models can further complicate the inversion. Inversion methods may also require several forward model
evaluations, so specialized solvers are needed to prevent prohibitive computational costs.

OPAL is an attractive methodology to decide potential model extensions by comprehensively as-
sessing the improvement in model predictions against the increase in model complexity. In particular,
OPAL can guide the modeler to select the best valid model representing a certain experimental or clinical
setting while accounting for uncertainties in both data and model parameters. However, OPAL may also
face certain challenges. For example, computationally expensive models might require a more efficient
approach for sensitivity analysis than the Sobol method, such as the elementary effects method or meta-
models [95]. Another major difficulty in model selection is that every model in the initial set of models
might be invalid (i.e., they do not satisfy the validation criteria), which would require to extend such set
with further models.

Finally, application of OCT to mathematical models of tumor growth and treatment response is a
promising strategy for the optimization of therapeutic regimens in silico [52]. However, the reliability
and plausibility of solutions generated by OCT methods depend on several factors including the valid-
ity of the model, the accurate definition of the objective functional, the uncertainty in the parameters
and data, the application of clinically-relevant constraints, and the accuracy in solving the OCT problem
itself. Additionally, implementation of OCT approaches within the clinical trial system is even more
complicated than model validation. Beyond the challenges on data availability, model assumptions, and
biophysical inversion described above, a controlled clinical study to validate OCT-generated therapies
would involve the test of novel computationally-derived regimen protocols in patients. This requires a
close monitoring of treatment response, toxicity, and patient well-being, which can be extremely com-
plex to balance and maintain during such clinical study. Thus, robust preclinical evidence showing the
advantages of OCT for the design of therapeutic regimens is required before advancing to clinical sce-
narios.

9 Conclusion

Integrating quantitative data obtained from biomedical imaging with mechanism-based mathematical
modeling represents a significant departure from current para-digms in cancer biology and oncology.
More specifically, this approach is fundamentally different from the current trend in modeling which em-
phasizes applying the methods of artificial intelligence to extremely large data sets. However, statistical
inference - though enormously powerful - relies on properties of large populations that can frequently
obscure important characteristics (or conditions) that are specific to individual patients and may drive
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the development of their disease or their response to therapy. The high-consequence decisions present in
clinical oncology simply must be based on more than data analytics. These decisions must incorporate
biophysical processes within a rigorous, mathematical framework that can be calibrated with patient-
specific data to make patient-specific predictions. The transformation from population-based care to
patient-based care is inevitable, and the intimate integration of quantitative imaging, mechanism-based
mathematical modeling, and efficient computational methods enabling precise in silico tumor forecasts
is a very promising avenue to achieve this important goal.
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