










Part I - CSE 383C - Num Anly: Linear Algebra
This is a closed-book exam. Please explain all your answers.

1. [40 points.] Let M ∈ Rm×m and N ∈ Rn×n be symmetric positive definite matrices. We
use M to define an inner product function in Rm×m as follows: < y, z >M := yT Mz. We use N to
define an inner product function in Rn×n as follows: < x, w >N := xT Nw. Using these inner
products we wish to redefine the SVD of a matrix A ∈ Rm×n using M-inner product for the
column space and the N-inner product for the row space.

(a) Give the formula that defines the ith singular value of A and its associated left and right
singular vectors in the space defined by the M and N inner products.

(b) What are the orthogonality conditions that the left and right singular vector matrices
satsify?

(c) You have a routine that computes the standard SVD of A (in the canonical inner prod-
uct). How can you use this routine to compute the new redefined SVD of A?

2. [30 points.] Let A ∈ Rn×n be non-singular. Let P,L, U be the partial pivoting LU decom-
position of A such that PA = LU . P is a permutation, L is triangular with Lii = 1. Assume
|Lij | ≤ 1. U is upper triangular with elements Uij . Show that cond∞(A) ≥ ‖A‖∞/minj |Ujj |,
where cond∞(A) is the infinity-norm condition number of A.

3. [30 points.] Let A ∈ Rm×n and consider the following algorithm for computing the first
singular value σ1 (assume σ1 > σ2) and the corresponding left and right singular vectors u1
and v1:

choose q0 ∈ Rn, q 6= 0

for k = 1, . . . ,

pk = Aqk−1

pk = pk/‖pk‖2
qk = AT pk

qk = qk/‖qk‖2
end

Explain what’s the logic of the method, how we obtain u1, σ1 and v1, and how it can fail.
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Part II - CSE 383L
Numerical Analysis: Differential Equations

Consider the following weak form of a PDE:

Find u P S “ V such that for all w P V,

apw, uq “ pw, fq (1)

where V is a suitably defined Hilbert space (for example, a Sobolev space), and ap¨, ¨q and p¨, ¨q are
inner products.

Part 1

Define the natural norm, ||| ¨ ||| induced by ap¨, ¨q and state the Cauchy-Schwarz inequality in terms
of ap¨, ¨q and ||| ¨ |||.

Part 2

Consider a Galerkin finite element method for (1):

Find uh P Sh “ Vh such that for all wh P Vh,

apwh, uhq “ pwh, fq

and Vh is an appropriate finite element subspace of V for the weak form.

Prove the “best approximation property,” that is, show

|||e||| ď |||Uh ´ u||| @Uh P Vh

where e “ uh ´ u is the error in the Galerkin finite element solution.

4.
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Consider the non-dimensional form of the advection-diffusion equation,

Pu,x “ u,xx on p0, 1q

with boundary conditions

up0q “ 1,

up1q “ 0,

where P ą 0 is the Péclet number. To solve this BVP, employ the following finite difference method
(FDM):

P puA`1 ´ uA´1q

2h
“
puA`1 ´ 2uA ` uA´1q

h2

where A “ 1, 2, . . . , Amax ´ 1 and boundary conditions

u0 “ 1

uAmax “ 0.

Part 1

Look for solutions of the FDM in the form uA “ c1ζ
A
1 ` c2ζ

A
2 . Determine ζ1, ζ2, c1, and c2.

Part 2

Show that the solution exhibits spurious oscillations when the mesh Péclet number

P h “ P
h

2
ą 1.

Part 3

The FDM can also be viewed as a Galerkin finite element method (FEM) in which piecewise-linear
C0-continuous basis functions are employed. With this, one can show

||e||1 ď C̃p1` P qhp||u||q.

What are the values of p and q?

5.

Area B
May 2019



Area B
May 2019



Area B
May 2019



Consider a central difference method in space and in time for the second-order wave equation

u,tt “ c2u,xx

with periodic boundary conditions, viz.,

un`1
A ´ 2unA ` u

n´1
A

∆t2
“
c2punA`1 ´ 2unA ` u

n
A´1q

h2

where uhA « upxA, tnq, etc. We can write this equation in non-dimensional fashion in terms of the
Courant number, C “ c∆t

h as follows.

un`1
A ´ 2unA ` u

n´1
A “ C2punA`1 ´ 2unA ` u

n
A´1q (˚)

Part 1

Is the method implicit or explicit?

Part 2

Perform a Von Neumann stability analysis and prove the method is Von Neumann stable if C ď 1.

Part 3

What result of Fourier analysis enables one to show that Von Neumann stability implies `2-stability?

Part 4

Introduce the local truncation error in the usual way for (˚), namely ∆t2T p∆t, hq. Show that
T p∆t, hq “ Op∆tpq `Op∆tqq and determine p and q.

6.
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[B,C] = myfun(A)

[m,n] = size(A)
B = A
C = In
for i = 1 : min(m,n)

x = B(i, i : n)t

H = householder(n, x)
B = BHt

C = HC
end

The matrix In is the n × n identity matrix, Zt denotes the transpose of Z, and the function
householder builds a Householder reflector. To be precise, given a k × 1 vector x and an inte-
ger n such that k ≤ n, the matrix H = householder(n, x) is the n × n Householder reflector such
that for any vector y of size (n− k)× 1, we have

H

[
y
x

]
=

 y
‖x‖

0k−1,1

 ,
where 0k−1,1 is the zero vector of size (k − 1)× 1, and where ‖x‖ is the Euclidean norm.

(a) (10p) Describe how the matrices B and C relate to A, and any particular properties they
may have (such as being diagonal / orthogonal / triangular / . . . ).

(b) (10p) Can any numerical problems arise in the execution of the function myfun? In other
words, is there a risk that you may encounter division by zero, or excessive amplification of
round off errors?

(c) (10p) As m and n grow, the number of floating point operations required by myfun grows
as O(ma nb) for some positive numbers a and b. Determine a and b. Is it possible to slightly
rearrange the execution of myfun to improve its asymptotic complexity without changing
its output (assuming exact arithmetic)?

(d) (10p) Suppose that A is an m × n matrix of rank n. Describe how you can use myfun to
solve an inconsistent linear system Ax = b in a least squares sense.

CSEM Preliminary Exam
AREA B
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Question 1: (40p) Consider a function myfun that takes as input an m × n matrix A with real
entries, and computes two matrices B and C through the following procedure:
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Question 2: (20p) Let f : V →W be a function from the vector space V = Rn to the vector space
W of all matrices of size n× n. We define the relative condition number κ(x) of f at the point x to
be the quantity

κ(x) = lim
δ→0

sup
‖y‖V ≤δ

‖f(x + y)− f(x)‖W ‖x‖V
‖f(x)‖W ‖y‖V

.

We use the max-norm on V , so that ‖x‖V = max1≤i≤n |xi|. In this question, you are asked to
evaluate κ(x) for the function

f(x) = UD(x)Q∗

where U and Q are two fixed unitary matrices of size n × n, and where D(x) is the n × n matrix
whose diagonal entries are given by the entries of x.

(a) (10p) Evaluate κ(x) when ‖ · ‖W is the spectral norm on W , so that

‖A‖W = sup
‖x‖2=1

‖Ax‖2,

where ‖ · ‖2 is the Euclidean norm.

(b) (10p) Evaluate κ(x) when ‖ · ‖W is the Frobenius norm on W , so that

‖A‖W =

 n∑
i,j=1

|A(i, j)|2
1/2

.

Question 3: (40p) Let A be a real matrix of size m × n. You know that m > n and that A has
rank n. Suppose that you are interested in computing the real number

c = inf
‖x‖=1

‖Ax‖,

and also a vector w ∈ Rn such that
c = ‖Aw‖.

(a) (10p) Describe how you would determine c and w if you had access to a function that
computes the singular value decomposition (SVD) of A.

(b) (10p) Describe how you would determine c and w if you had access to a function that
computes the eigenvalue decomposition (EVD) of a symmetric matrix (but not a function
that computes the SVD). If you had access to routines for computing both the SVD and
the EVD, then which would you choose?

(c) (10p) Suppose now that you do not have access to functions for computing either the EVD
or the SVD of a matrix. However, you can compute standard factorizations of a matrix (QR,
LU, Cholesky, etc.) and you can perform standard operations such as the matrix-matrix
product, solving a linear system, and so on. Describe an easy to implement and computa-
tionally efficient iterative method for computing approximations to c and w. Comment on
what properties of A determine the speed of convergence of the iteration.

(d) (10p) Suppose now that A is large but very sparse. In other words, you cannot afford to
compute any full factorizations, but you can affordably compute matrix-vector products
involving A. Would it be possible to use the Lanczos iteration to estimate c and w? Either
describe how this would work, or explain why this method is not applicable.
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4. The 2-point boundary value problem,

!
𝑑!𝑦
𝑑𝑥! = 𝑓(𝑥), 0 < 𝑥 < 1

𝑦(0) = 𝑦(1) = 𝑦"(0) = 𝑦"(1) = 0

can be seen as an approximation of a clamped beam. 
(a) Rewrite the problem on variational form and propose suitable spaces for the continuous
problem and corresponding discrete FEM approximation. Discuss convergence.
(b) Rewrite the problem as a first order system and determine the corresponding trapezoidal
rule FDM approximation.
(c) Describe how this first order system can be solved by initial value techniques (shooting).

5. Consider the heat equation,

⎩
⎪
⎨

⎪
⎧
𝜕𝑢
𝜕𝑡 = ∇ ∙ 𝜎(𝑥, 𝑦)∇𝑢, 0 < 𝜎# < 𝜎(𝑥, 𝑦) ≤ 𝜎$, 0 < 𝑥 < 1,0 < 𝑦 < 1,

𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 0,						0 ≤ 𝑥 ≤ 0
𝜕𝑢
𝜕𝑥
(0, 𝑦) =

𝜕𝑢
𝜕𝑥
(1, 𝑦) = 0,						0 < 𝑦 < 1

𝑢(𝑥, 𝑦, 0) = 𝑢%(𝑥, 𝑦),							0 < 𝑥 < 1,0 < 𝑦 < 1

(a) Formulate an implicit Euler-in-time FEM approximation of this problem based on an
appropriate variational formulation.
(b) Outline a convergence proof based on the properties of the bilinear and linear forms.
(c) Determine the convergence condition (CFL number) for a FDM approximation based on
forward Euler in time and centered difference in space. Use von Neumann analysis and assume
periodic boundary conditions with constant conductivity 𝜎.

6. The following nonlinear hyperbolic conservation law is given,

:

𝜕𝑢
𝜕𝑡 +

𝜕
𝜕𝑥 𝑓

(𝑢) = 0, 0 ≤ 𝑓"(𝑢) ≤ 𝐶, 𝑡 > 0,0 < 𝑥 < 1

𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐	𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
𝑢(𝑥, 0) = 𝑢%(𝑥), 0 < 𝑥 < 1

(a) Formulate an explicit first order finite volume approximation
(b) Show that the scheme is on discrete conservation form and give conditions on the step sizes
such that the scheme is monotone.
(c) Formulate a P1 discontinuous Galerkin (DG) approximation with appropriate interface
conditions.

Part II - CSE 383L Num Anly: Differential Equations
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CSEM Area B Preliminary Exam

May 26, 2021, about any 3 hours from 9:00 a.m. to 3:00 p.m.

Open notes, open book(s), open internet.

Work Part I and either Part II or Part III, but not both.

Part I, Numerical Analysis: Linear Algebra

1. (10 points) Let A ∈ Rm×m have the property that ‖Ax‖2 = ‖x‖2 for all x ∈ Rm . Use the
Singular Value Decomposition Theorem to show that A must be a unitary matrix.

2. (10 points) Let A be a symmetric positive definite matrix. Prove or disprove that f : Rm → R
defined by

f(x) =
√
xTAx

is a vector norm. You may invoke knowledge you have about various p-norms and other relevent
knowledge from the course.

3. (20 points) Let A ∈ Rm×n have linearly independent columns.

You have encountered a number of different algorithms for computing the QR factorization of such
a matrix. You will build on that knowledge in this question.

(a) Use permutation matrices and what you know about the QR factorization to prove that there
exists a QL factorization of A:

A = Q̂L

where Q̂ is an m × n matrix with orthonormal columns and L is a lower triangular matrix of
appropriate size.

(b) Develop an algorithm inspired by Modified Gram-Schmidt for computing this factorization.
It should overwrite matrix A with Q̂ and also compute L. Your algorithm may not use any
additional temporary space. Give enough detail so that you can discuss why each step in your
algorithm is well defined.

(c) Briefly, say a few words about what techniques you would use instead if your algorithm is to
produce highly orthonormal columns in Q̂ when floating point arithmetic is employed.

What is it fundamentally about these techniques that improves the orthogonality of the resulting
matrix Q̂?
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Part II, Numerical Analysis: Differential Equations

1. Consider an ODE initial value problem and the corresponding, so called, θ-method,

y′(t) = f(y(t)), t > 0, y(0) = y0,

yn+1 = yn + h
(
θ f(yn) + (1− θ) f(yn+1)

)
, y0 given, tn = nh, 0 < θ < 1.

(a) Determine 0-stability (Dahlquist stability), A-stability and the order of the method as a function
of θ.

(b) Even if the θ-method is not strictly symplectic for θ = 1/2, show that this θ value is the only
one for which, as a complex valued function, |y(t)| = |y0|, t > 0, when f(y) = iy.

(c) The approximation yn+1 is computed using θ = 1 and step size h. Also starting with yn
assume there is another approximation of y(tn+1) ≈ ỹ, based on the same method but with
step size h/2. Discuss how these two approximations (yn+1 and ỹ) of y(tn+1) can be used for
an a posteriori error estimate.

2. Given the parabolic differential equation for u(x, t),

ut = auxx + bux + cu+ f(x), 0 < x < 1, t > 0, a > 0, c < 0,

u(x, 0) = u0(x), u(0, t) = 0, ux(1, t) = 0.

(a) Sketch an implicit Euler in time finite element approximation.

(b) Sketch a finite difference approximation based on forward differencing in time and centered
differencing in space.

(c) For theory show coercivity of the relevant bilinear form for the stationary problem (no ut term)
based on limits on |b| for the method given in (a). Also apply von Neumann stability analysis
for the method in (b) in the simplified case of b = 0 and periodic boundary conditions.

3. Consider the following nonlinear hyperbolic conservation law for u(x, t),

ut + f(u)x = 0, 0 < x < 1, t > 0, f ′(u) > 0,

u(x, 0) = u0(x), u(0, t) = 0.

(a) Write the equation on weak form and formulate a general Discontinuous Galerkin (DG) method
based of forward differencing (Euler) in time.

(b) Give realistic interface conditions (numerical fluxes).

(c) Show that the method is essentially explicit (only inversion of block diagonal matrix) for
discontinuous, piecewise linear (P1) elements.
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Part III, Foundations of Machine Learning and Data Science

Theorem 1: Random Projection Theorem

Let v ∈ Rd be fixed. Draw r vectors u1,u2, . . . ,ur as i.i.d. standard spherical Gaussian
vectors ui ∼ N (0, Id), i = 1, 2, . . . , r. Consider the random linear map f : Rd → Rr given
by f(x) = (〈u1,x〉, . . . , 〈ur,x〉). For any ε ∈ (0, 1),

Prob
(∣∣‖f(v)‖2 −

√
r‖v‖2

∣∣ ≥ ε√r‖v‖2) ≤ 3e−
rε2

96

where the probability is taken with respect to the random draws of the vectors u1, . . . ,ur.

The first two problems consider the version of the Random Projection Theorem above.

1. In the Random Projection Theorem, the statement is not true if the first two conditions
“Let v ∈ Rd be fixed. Draw r vectors u1,u2, . . . ,ur as i.i.d. standard spherical Gaussian vec-
tors ui ∼ N (0, Id),” are replaced by “Draw r vectors u1,u2, . . . ,ur as i.i.d. standard spherical
Gaussian vectors ui ∼ N (0, Id). Let v ∈ Rd be an arbitrary vector.” Show this by constructing a
counterexample.

2. From the Random Projection Theorem, prove the following statement.
Let V = {v1,v2, . . . ,vp} be a fixed set of p points in Rd. If r ≥ 19200 log(2p), there exists a

linear map f : Rd → Rr with the property that for all vj ,vk ∈ V ,

.9‖vj − vk‖2 ≤
1√
r
‖f(vj)− f(vk)‖2 ≤ 1.1‖vj − vk‖2

State clearly and justify all of the steps in the derivation.

The next two problems consider the following set up. Consider a collection of data points
x1, . . . ,xn in Rd which can be partitioned into two sets {S1, S2} such that

max
x∈S1

‖x− µS1‖2 ≤ min
y∈S1,z∈S2

‖y − z‖2

max
x∈S2

‖x− µS2‖2 ≤ min
y∈S1,z∈S2

‖y − z‖2 (1)

where µS1 ∈ Rd is the average of the points in S1 and µS2 ∈ Rd is the average of the points
in S2. Consider the data matrix X = [x1, . . . ,xn] ∈ Rd×n whose columns are the data points
x1, . . . ,xn. Letting µ = 1

n

∑n
j=1 xj ∈ Rd be the average of all the points, consider the centered

matrix Xc = [x1 − µ,x2 − µ, . . . ,xn − µ] and its Gram matrix XT
c Xc ∈ Rn×n.

3. Suppose that the two clusters are of the same size: |S1| = |S2| = n
2 . Prove that under the

separability condition (1), the leading eigenvector v = (v1, . . . , vn) ∈ Rn of XT
c Xc has the property

that sign(vj) 6= sign(vk) whenever xj and xk belong to different clusters. (Hint: show if sign(vj) =
sign(vk) for some xj and xk belonging to different clusters, this contradicts the fact that v =
arg maxu:‖u‖2=1 ‖Xcu‖2)

4. Use the answer from the previous problem to describe a clustering algorithm which takes as
input a collection of data points x1, . . . ,xn and outputs a partition of the data points into two
clusters.
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CSEM Area B Preliminary Exam
Numerical Analysis: Linear Algebra (CSE 383C)

Numerical Analysis: Differential Equations (CSE 383L)

May 27, 2022, 9:00 a.m. to 12:00 noon
200 points total

1. [30 pts.] In this problem, we seek to fit a polynomial p(x) =
∑n

j=1 cjx
j−1 to a given set of

measured points
(
xi, yi

)m
i=1

such that x1 < x2 < · · · < xm and n < m. To be precise, we seek to
determine a polynomial p that minimizes the error

E =
m∑
i=1

∣∣p(xi)− yi∣∣2.
(a) Consider first the case of fitting the points to a quadratic p(x) = c1 + c2x+ c3x

2. Describe how
you can formulate the minimization problem using a linear algebraic framework, and how you
would go about solving the problem that you formulated. In this part of the question, you do
not need to worry about computational efficiency or sensitivity to round-off errors.

(b) Now suppose that you want to fit an n− 1’th order polynomial p(x) =
∑n

j=1 cjx
j−1. Describe

how the associated linear algebraic problem can be solved in different ways, using the QR,
singular value, and Cholesky decompositions. Discuss the advantages and disadvantages of the
different methods when m and n are both large.

2. [40 pts.] Let A be an n× n symmetric non-singular matrix that is partitioned as

A =

[
A11 A12

A21 A22

]
,

where A11 is an invertible matrix. The matrix A admits a factorization of the form

A = LDL∗

where

L =

[
I 0
L21 I

]
and D =

[
A11 0
0 B22

]
.

Please motivate your answers to the questions below.

(a) Specify the matrices L21 and B22.

(b) Now consider the special case where A11 = [e] for some real number e ∈ (0, 1), and

A =

[
e 1
1 0

]
.

Specify the corresponding factors D and L, the condition numbers κ(A) and κ(D) as functions
of e, and finally the limit

lim
e↘0

κ(D)

κ(A)
.

(Use the standard definition κ(A) = ‖A‖ ‖A−1‖ where ‖A‖ = sup‖x‖=1 ‖Ax‖.)

(c) Is it possible to factorize the matrix A =

[
e 1
1 0

]
as A = CC∗, where C is lower triangular?
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3. [30 pts.] Let A be an n× n matrix, and define the function

r(x) = x∗Ax, x ∈ Rn×1.

Let v be an eigenvector of A of unit length with an associated eigenvalue λ, so that

Av = λv.

For full credit, please motivate your answers to questions (b) and (c).

(a) Evaluate the gradient ∇r(x).

(b) Suppose that (xj)∞j=1 is a sequence of unit vectors that converge to v at the rate O(j−3) as

j → ∞. In other words, ‖xj‖ = 1 and ‖v − xj‖ = O(j−3). Please specify the limit of the
sequence (r(xj))∞j=1, as well as the speed of convergence (in the worst case).

(c) Does your answer to question (b) change if you know that A is Hermitian, so that A∗ = A?
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4. [25 pts.] Consider the ODE u′ = f(u) and the generic, explicit, second order Runge-Kutta
method for parameter α 6= 0 with Butcher tableau

0 0 0
α α 0

1− 1
2α

1
2α

.

(a) Combine the Runge-Kutta stages to write the method for un+1 in terms of un in a single line
over the time step from tn to tn+1, ∆t = tn+1 − tn > 0.

(b) Show that the local truncation error is at least O(∆t3), but not in general O(∆t4).

5. [30 pts.] Let Ω ⊂ R3 be a domain, e = (1, 1, 1)/
√

3, and consider the variational problem: Find
u ∈ H1(Ω) such that

(∇u,∇v) + (e · ∇u, v) + (u, v) = (f(u), v) ∀v ∈ H1(Ω).

(a) Find the partial differential equation and boundary condition corresponding to this variational
form.

(b) Suppose that f is Lipschitz with constant L ≤ 1/4 and that we use the finite element method
to approximate u by uh ∈ Vh ⊂ H1(Ω). Prove the error estimate

‖u− uh‖H1 ≤ C inf
vh∈Vh

‖u− vh‖H1

for some constant C > 0.

6. [15 pts.] Perform a von Neumann linear stability analysis for the backward Euler scheme

un+1
j = unj −

∆t

h

[
f(un+1

j+1 )− f(un+1
j−1 )

]
to show that the scheme is unconditionally stable.

7. [30 pts.] Let E = [0, h]2 and suppose that v ∈ C1(E).

(a) Show that (∫ h

0
|v(0, y)|2 dy

)1/2
≤ C

[
h−1/2‖v‖L2(E) + h1/2‖∇v‖L2(E)

]
.

(b) Prove the inverse inequality: If v is a polynomial of degree k ≥ 0, then there is some C > 0
independent of v and h such that

‖∇v‖L2(E) ≤ Ch−1‖v‖L2(E).
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CSEM Area B Preliminary Exam
Numerical Analysis: Linear Algebra (CSE 383C)

Foundational Techniques in Machine Learning & Data Science (CSE 382M)

May 27, 2022, 9:00 a.m. to 12:00 noon
200 points total

1. [30 pts.] In this problem, we seek to fit a polynomial p(x) =
∑n

j=1 cjx
j−1 to a given set of

measured points
(
xi, yi

)m
i=1

such that x1 < x2 < · · · < xm and n < m. To be precise, we seek to
determine a polynomial p that minimizes the error

E =
m∑
i=1

∣∣p(xi)− yi∣∣2.
(a) Consider first the case of fitting the points to a quadratic p(x) = c1 + c2x+ c3x

2. Describe how
you can formulate the minimization problem using a linear algebraic framework, and how you
would go about solving the problem that you formulated. In this part of the question, you do
not need to worry about computational efficiency or sensitivity to round-off errors.

(b) Now suppose that you want to fit an n− 1’th order polynomial p(x) =
∑n

j=1 cjx
j−1. Describe

how the associated linear algebraic problem can be solved in different ways, using the QR,
singular value, and Cholesky decompositions. Discuss the advantages and disadvantages of the
different methods when m and n are both large.

2. [40 pts.] Let A be an n× n symmetric non-singular matrix that is partitioned as

A =

[
A11 A12

A21 A22

]
,

where A11 is an invertible matrix. The matrix A admits a factorization of the form

A = LDL∗

where

L =

[
I 0
L21 I

]
and D =

[
A11 0
0 B22

]
.

Please motivate your answers to the questions below.

(a) Specify the matrices L21 and B22.

(b) Now consider the special case where A11 = [e] for some real number e ∈ (0, 1), and

A =

[
e 1
1 0

]
.

Specify the corresponding factors D and L, the condition numbers κ(A) and κ(D) as functions
of e, and finally the limit

lim
e↘0

κ(D)

κ(A)
.

(Use the standard definition κ(A) = ‖A‖ ‖A−1‖ where ‖A‖ = sup‖x‖=1 ‖Ax‖.)

(c) Is it possible to factorize the matrix A =

[
e 1
1 0

]
as A = CC∗, where C is lower triangular?
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3. [30 pts.] Let A be an n× n matrix, and define the function

r(x) = x∗Ax, x ∈ Rn×1.

Let v be an eigenvector of A of unit length with an associated eigenvalue λ, so that

Av = λv.

For full credit, please motivate your answers to questions (b) and (c).

(a) Evaluate the gradient ∇r(x).

(b) Suppose that (xj)∞j=1 is a sequence of unit vectors that converge to v at the rate O(j−3) as

j → ∞. In other words, ‖xj‖ = 1 and ‖v − xj‖ = O(j−3). Please specify the limit of the
sequence (r(xj))∞j=1, as well as the speed of convergence (in the worst case).

(c) Does your answer to question (b) change if you know that A is Hermitian, so that A∗ = A?
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4. [30 pts.] Suppose A ∈ Rm×n is a fixed matrix, and suppose X = (Xj,k) ∈ Rn×r is a ran-
dom matrix with independent and identically distributed entries Xj,k satisfying E(Xj,k) = 0 and
Var(Xj,k) = 1/r.

(a) Show that E‖AX‖2F = ‖A‖2F .

(b) Use Markov’s inequality to give a nontrivial upper bound on the probability of the event

‖AX‖2F ≥ 10 ‖A‖2F .

(c) In the case where X ∈ Rn×r has independent and identically distributed entries Xj,k ∼
N (0, 1/r), give a bound on the number of columns r in X ∈ Rn×r to guarantee that with
probability at least 1− 1

10 ,
1

2
‖A‖2F ≤ ‖AX‖2F ≤

3

2
‖A‖2F .

5. [40 pts.] Let A ∈ Rm×n be a full-rank matrix with m ≥ n and indexed by column vectors
a1, . . . ,an ∈ Rm. Suppose that A has singular value decomposition A = UΣVT and distinct
singular values σ1 > σ2 > · · · > σn, and let b ∈ Rm be a fixed vector. For each optimization
problem below, provide expressions for the solution set in terms of A,U,Σ, V, and b.

(a) max
v∈Rn: ‖v‖2=1

‖Av‖2

(b) min
v∈Rn: ‖v‖2=1

‖Av‖2

(c) min
u∈Rn

‖Au− b‖22

(d) min
w∈Rm

n∑
j=1

‖aj −w‖22

6. [30 pts.] Let A ∈ Rm×n be a full-rank matrix with m ≥ n and indexed by column vectors
a1, . . . ,an ∈ Rm, and fix b ∈ Rm. Consider Φ ∈ Rr×m such that ΦA is full-rank, and

xopt = arg min
x∈Rn

‖Ax− b‖22, x̃opt = arg min
x∈Rn

‖ΦAx− Φb‖22

(a) Show that if

(1− δ)‖Axopt − b‖22 ≤ ‖Φ(Axopt − b)‖22 ≤ (1 + δ)‖Axopt − b‖22,
(1− δ)‖Ax̃opt − b‖22 ≤ ‖Φ(Ax̃opt − b)‖22 ≤ (1 + δ)‖Ax̃opt − b‖22,

then

‖Ax̃opt − b‖22 ≤
(

1 + δ

1− δ

)
‖Axopt − b‖22. (1)

(b) If Φ is a random matrix whose entries are i.i.d. N (0, 1/r), give a bound on the number of rows
r needed to ensure the bound (1) with high probability.
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Solutions to NALA part of Area B prelim, May 2022

Question 1:

(a) Form the m× 3 matrix A with entries

A(i, j) = xj−1i

and the m× 1 vector y = [yi]
m
i=1. Then

E =

m∑
i=1

∣∣p(xi)− yi∣∣2 =

m∑
i=1

∣∣ n∑
j=1

cjx
j−1
i − yi

∣∣2 =

m∑
i=1

∣∣A(i, : )c− yi
∣∣2 = ‖Ac− y‖2,

where c = [c1, c2, c3]
∗. To solve the minimization problem, you could for instance form the normal

equations
A∗Ac = A∗y.

In the present case, the normal equations form a 3× 3 non-singular system that can be solved using, e.g.,
Gaussian elimination.

(b) This problem can be formulated in a way that is entirely analogous to the method in (a), but involving
an m× n matrix A,

min
c∈Cn×1

‖Ac− y‖.

Let us discuss three ways of solving it:

Normal equations: Form the n×n matrix N = A∗A, then form the Cholesky factorization N = R∗R, and
finally evaluate c = R−1(R∗)−1y via two triangular solves. This method is quite efficient in practice, but
leads to loss of accuracy when A is ill-conditioned, since κ(N) = (κ(A))2. In the present case, A will get
very ill-conditioned as n grows, so this method is not recommended.

QR factorization: Form the QR factorization A = QR, and then determine c via c = R−1(Q∗y), where R−1

is applied via a triangular solve. This technique is computationally efficient, and reasonably numerically
stable.

SVD factorization: Form the singular value decomposition A = UDV∗, and then determine c via
c = VD−1U∗y. This method is the most numerically stable, and can easily be stabilized even further
by ignoring all singular modes associated with singular values below a certain threshold. It is reason-
ably computationally efficient, although slightly slower than the methods relying on QR or the normal
equations.
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Question 2:

(a) Multiplying the factors together, we get

LDL∗ =

[
I 0
L21 I

] [
A11 0
0 B22

] [
I L∗21
0 I

]
= · · · =

[
A11 A11L

∗
21

L21A11 B22 + L21A11L
∗
21

]
.

To ensure the product equals A, we need L21A11 = A21, which implies that

L21 = A21A
−1
11 . (1)

We must also have
A22 = B22 + L21A11L

∗
21. (2)

Combining (2) and (1), we get
B22 = A22 − A21A

−1
11 A12.

(b) Using the formulas we derived in (a), we immediately get[
e 1
1 0

]
=

[
1 0
1/e 1

]
︸ ︷︷ ︸

=L

[
e 0
0 −1/e

]
︸ ︷︷ ︸

=D

[
1 1/e
0 1

]
︸ ︷︷ ︸

=L∗

.

The matrix D clearly has the singular values e and 1/e, so

κ(D) =
σmax

σmin
=

1/e

e
= 1/e2.

In order to evaluate κ(A), we first compute the eigenvalues of A:

λ1,2 =
e

2
±
√
e2

4
+ 1.

Since the singular values of a symmetric matrix are the absolute values of the eigenvalues, we find that

κ(A) =

√
e2

4 + 1 + e
2√

e2

4 + 1− e
2

.

We see that as e→ 0, we have

κ(D)→∞, and κ(A)→ 1.

In consequence

lim
e↘0

κ(D)

κ(A)
=∞.

(c) No, since C∗C is a non-negative matrix, and A is not.

To be precise, observe that for any vector x, we have

x∗C∗Cx = (Cx)∗Cx = ‖Cx‖2 ≥ 0,

so C∗C is non-negative. But for x = [1,−1]∗, we have

x∗Ax = e− 2 < 0.
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Question 3:

(a) Since r(x) =
∑n

i=1

∑n
j=1 aijxixj , we find that

∂r

∂xk
=

n∑
i=1

aikxi +
n∑

j=1

akjxj ,

and so
∇r(x) = Ax + A∗x.

(b) The answer is that

r(xj) = λ+O(‖v − xj‖) = λ+O(j−3), as j →∞.

To justify this claim, observe first that r is continuous since it is simply a quadratic function in the
components of x, so clearly

lim
j→∞

r(xj) = r( lim
j→∞

xj) = r(v) = v∗Av = v∗(λv) = λ‖v‖2 = λ.

To prove the O(j−3) rate, use the bound on the gradient from (a),

|r(v)− r(xj)| = |∇r(v) · (v − xj) +O(‖v − xj‖2) ≤ (‖A∗v‖+ ‖Av‖)‖v − xj‖+O(‖v − xj‖2) = O(j−3).

(c) The answer is that

r(xj) = λ+O(‖v − xj‖2) = λ+O(j−6), as j →∞.

To motivate this, observe that when A∗ = A, we have ∇r(v) = 2Av = 2λv. This means that the second
term in the Taylor expansion, ∇r(v) · (v − xj), vanishes quadratically as j →∞, since the vectors v and
v − xj become orthogonal as xj → v along the surface of the unit sphere. To be precise,

∇r(v) · (v − xj) = 2λv · (v − xj) = λ(2‖v‖2 − 2v · xj) = λ(‖v‖2 − 2v · xj + ‖xj‖2) = λ‖v − xj‖2,
where in the second to last equality we used that ‖v‖ = ‖xj‖ (they are both unit length).
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Summer 2023, Numerical Linear Algebra, Preliminary exams
This is a closed-book exam. Please explain all your answers.

A single double-sided cheat sheet is allowed.

Givens rotations and QR factorizations (70 points)

If you haven’t read about Givens rotations do not worry. This problem is self contained and uses
material covered in the class.

Let G2(θ) ∈ R2×2 be the 2D rotation matrix defined by

G2(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=

[
c −s
s c

]
, where c := cos(θ), s := sin(θ). (1)

For any vector u ∈ R2, we can find θ such that G2u = ∥u∥2e1, where e1 is the first canonical basis
vector. In other words, we can use G2(θ) to rotate u to align with the horizontal axis.

A generic Givens rotation matrix G(i)(θ) ∈ Rn×n is defined as follows. Let I be the n-by-
n identity matrix. We set G(i) = I and then we set the ith 2-by-2 diagonal block of G(i) to

G
(i)
i:i+1,i:i+1 = G2(θ). That is:

G(i) =



1
. . .

c −s
s c

. . .

1


, where G

(i)
i,i+1 = −s, G

(i)
i,i = c, etc . (2)

1. Show that that G(i) is a unitary matrix.

2. Let u ∈ Rn. Show that we can find a Givens rotation matrix G such that v = Gu and the
i+ 1 element of v satisfies vi+1 = 0.

3. What is the work complexity and floating point error in computing v = Gu from the above
question?

4. Explain what steps you would follow to estimate the floating point error in computing vi?
Please just give a very rough sketch of how you would get to the solution.

5. Assuming no pivoting is used, give and algorithm that uses n−1 Givens rotations to compute
the QR factorization of a a real square upper Hessenberg matrix.

6. Let A = I + uvT , where u, v ∈ Rn. Show that there exists a series of Givens rotations G(i),
i = n, . . . , 2 that convert u to ∥u∥2e1 and the matrix A to an upper Hessenberg matrix.

7. Given the results above, given an O(n2) work and storage algorithm for computing the QR
factorization of I + uvT .

1
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8. How does this algorithm compare with the modified Gram-Schmidt in terms of work com-
plexity and accuracy? For accuracy just give one or two sentences based on your analysis for
Question 4.

9. Let A ∈ Rm×n, with m > n. Let Q,R be the reduced QR factors of A. Let B = A + uvT

where u ∈ Rm and v ∈ Rn. Given the Q,R matrices and assuming u ∈ span(A), give an
O(mn) algorithm to compute the QR factorization of B.

10. Now relax the assumption that u ∈ span(A). Given the reduced QR factors of A, suggest an
O(mn) algorithm for computing the QR factorization of B.

Review questions (30 points)

Let A ∈ Rn×n be a symmetric positive definite matrix.

1. Suggest a dense direct solver for solving for Ax = b and state its work complexity.

2. Suggest an iterative solver for solving Ax = b and state its work complexity assuming the
cost a matrix-vector multiplication with A is O(n).

3. Assume that A is sparse, numerically rank deficient, b is polluted by noise and n is very large.
Is solving Ax = b possible? Suggest a solver for finding an exact or an approximate solution
to Ax = b.

4. Suppose we’re interested in computing the 10 largest eigenvalues of A. Suggest and algorithm
to compute them.

5. Suppose we’re interested in computing the 10 smallest eigenvalues of A. Suggest and algorithm
to compute them.

2



Prelim, CSEM, Area B, Numerical Differential equations 

1. Let the ordinary differential equation, 𝑢! = 𝑓(𝑢) be approximated by,

𝑢"#$ = 𝑢" + ℎ𝜃𝑓(𝑢") + ℎ(1 − 𝜃)𝑓(𝑢"#$), 0 ≤ 𝜃 ≤ 1 

(a) Investigate the order of the local truncation error (the order of the convergence of the
method in terms of powers of ℎ) for different values of 𝜃.

(b) Rewrite the algorithm on the standard form of Runge-Kutta methods after replacing 𝑢"#$ by
𝑢" + ℎ𝑓(𝑢") and determine if the algorithm is 0-stable (Dahlquist stable).

(c) Assume 𝑓(𝑢) = 𝜆𝑢	and	determine if ℎ𝜆 = −1 is in the region of absolute stability for the
original algorithm with 𝜃 = 1. Is there a value of 𝜃 for which the method after the modification
given in (b) above is A-stable.

2. (a) Rewrite the strong form the elliptic PDE,

−∇ ∙ 𝑎(𝑥)∇𝑢 + 𝑏(𝑥)𝑢 = 𝑓(𝑥), 𝑥 ∈ Ω ⊂ 𝑅%, 𝑎(𝑥) ≥ 𝑎 > 0, 𝑏(𝑥) ≥ 𝑏 > 0, 
𝜕𝑢
𝜕𝑛 = 𝛼𝑢 + 𝛽, 𝑥 ∈ 𝜕Ω 

on weak (variational) form suitable for a FEM formulation. Define coercivity and continuity of 
the related bilinear and linear forms.  

(b) Investigate coercivity for the bilinear form.

(c) Redo (a) when Ω = ∑ Ω""  with the purpose of applying Discontinuous Galerkin (DG). Include
interface terms but you do not need to elaborate on numerical fluxes. Also determine the
number of degrees of freedom if a square domain Ω in divided into 4 squares (2 by 2) with Q1
(bilinear) elements for the DG setting and also the same for conforming elements in FEM.

3. Consider the initial boundary value problem,

𝑢& + 𝑓(𝑢)' = 𝜀𝑢'' , 0 < 𝑥 < 1, 𝑡 > 0, 𝑓!(𝑢) > 0, 𝜀 > 0 

 𝑢(𝑥, 0) = 𝑢((𝑥),			0 < 𝑥 < 1, periodic	bondary	conditions. 

(a) Construct an explicit finite volume scheme based on upwind differencing of the nonlinear
term and centered differencing of the second order term. (It can also be seen as finite
difference scheme on conservation form.)

(b) For 𝑓(𝑢) = 0,	use von Neumann analysis to investigate 𝐿% stability.

(c) For 𝜀 = 0, give conditions on the step sizes such that the Lax-Friedrich scheme below is
monotone,

𝑢)"#$ = R𝑢)#$" + 𝑢)*$" S/2 + V
∆𝑡
2Δ𝑥Y Z𝑓R𝑢)#$

" S − 𝑓R𝑢)*$" S[. 
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Area B Prelim Exam - Data Science

Date: May 12, 2023

Instructions: For this portion of the Area B Prelim Exam, you are allowed
to use two double-sided A4-sized “cheat sheets” (typed or handwritten) that you
prepared yourself containing material from CSE 382M. This portion of the exam
is intended to take about 90 minutes. Write legibly and give sufficient justifi-
cation for your answers. If there is a part of a question you cannot answer,
you may assume it and proceed to the next part of the question. The maximum
possible total score is 60 points. Print your prelim exam number above.

Problem Points Max

1 20

2 20

3 20

Total 60

1
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Problem 1. Clustering and kernel methods

We are given a dataset X = {x1, . . . ,xn} ⊆ Rd. Fix a positive integer k. Recall
Lloyd’s algorithm for clustering X into k parts:

• initialize a partition of X as C
(0)
1 ⊔ . . . ⊔ C

(0)
k

• compute means µ
(t)
α = 1

|C(t)
α |

∑
xj∈C

(t)
α

xj for α = 1, . . . , k

• compute clusters C
(t+1)
α =

{
xi ∈ X :

∥∥xi−µ
(t)
α

∥∥
2
≤

∥∥xi−µ
(t)
β

∥∥
2
for all β

}
for α = 1, . . . , k

• repeat the two steps above

We assume throughout this problem that we encounter no degenerate behavior,
i.e. that there are never ties in minimal distances and no part becomes empty.

(a) [6 pts] Let t ≥ 1. Explain why the convex hulls of C
(t)
α for α = 1, . . . , k

must be disjoint.

(Hint: How does C
(t)
α relate to the Voronoi cell of µ

(t−1)
α ?)

(b) [2 pts] Draw a dataset X in the plane R2 where there are obviously two
“natural” clusters, yet Lloyd’s algorithm could never converge to that partition.

2
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(c) [4 pts] Justify the formula∥∥xi − µ(t)
α

∥∥2
2

= ⟨xi,xi⟩ − 2

|C(t)
α |

∑
xj∈C

(t)
α

⟨xi,xj⟩ +
1

|C(t)
α |2

∑
xj ,xj′∈C

(t)
α

⟨xj ,xj′⟩.

3
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(d) [6 pts] Let φ : Rd → RD be a feature map withD ≫ d. Describe a variant of
Lloyd’s algorithm that applies to the points φ(X ) = {φ(x1), . . . , φ(xn)} ⊆ RD,
but that avoids any explicit operations on D-dimensional vectors. Assume the
kernel matrix (K(xi,xj))

n
i,j=1 ∈ Rn×n has been precomputed, where K(x,y) :=

⟨φ(x), φ(y)⟩.
(Hint: Apply part (c) appropriately in RD.)

(e) [2 pts] In the kernel-based variant of Lloyd’s algorithm, roughly how many
flops does each iteration cost? Express your answer in big O notation.

4
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END OF PROBLEM 1
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Problem 2. Gradient descent and a simple neural network

(a) Suppose ℓ : Rd → R is a C2 loss function bounded below by ℓ∗ ∈ R. To
minimize ℓ we can use gradient descent with constant step size α > 0:

• initialize w0 ∈ Rd

• set wt+1 = wt − α∇ℓ(wt)

• repeat the step above

Assume there is a constant C > 0 such that the Hessian ∇2ℓ(w) has maximal
eigenvalue upper-bounded by C for each w ∈ Rd. Set the step size as α = 1

C .

(i) [6 pts] Prove ℓ(wt+1) ≤ ℓ(wt)− 1
2C ∥∇ℓ(wt)∥22.

(Hint: Use Taylor’s theorem, ℓ(wt+1) = ℓ(wt) +∇ℓ(wt)
⊤(wt+1 −wt) +

1
2 (wt+1 −wt)

⊤∇2ℓ(w∗)(wt+1 −wt) for some w∗ on the line segment be-
tween wt+1 and wt, with the bound on the maximal eigenvalue of ∇2ℓ(w∗).)

6

CSEM Area B 
Part II - CSE 382M 
May 2023



(ii) [6 pts] Deduce gradient descent converges in the sense that

min
t=0,...,T−1

∥∇ℓ(wt)∥22 ≤
2C

(
ℓ(w0)− ℓ∗

)
T

.

(Hint: Rearrange ℓ(wt+1) ≤ ℓ(wt)− 1
2C ∥∇ℓ(wt)∥22, and sum over t.)

7
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(b) In a classification task, we are given 1D training data (x1, y1), . . . , (xn, yn) ∈
R× {0, 1}. We want to predict the probability of being classified as 1 given x.
We consider a simple one-neuron model:

f(w, x) = σ(wx)

where w ∈ R is a trainable parameter and σ(s) = es

1+es is the sigmoidal activa-
tion function. Use the following training loss, which is a negative log-likelihood:

ℓ(w) = −
∑

k:yk=1

log(σ(wxk)) −
∑

k:yk=0

log(1− σ(wxk)). (⋆)

(i) [4 pts] Calculate the second derivative ℓ′′(w).

(ii) [4 pts] Give a constant step size α > 0 so that gradient descent applied
to the loss (⋆) is guaranteed to converge at a rate of O(1/T ) as in (a)(ii).

(Hint: Your answer should depend on x1, . . . , xn.)

8
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END OF PROBLEM 2
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Problem 3. Randomized projections and linear subspaces

Let L ⊆ Rd be a fixed subspace of dimension k passing through the origin. Let
δ ∈ (0, 1) and η ∈ (0, 1). Over the course of this problem, you will prove that if

m ≥ ck log(12/δ) + c log(3/η)

δ2

and Φ ∈ Rm×d is a Gaussian matrix with i.i.d. N (0, 1/m)-entries, then the event

(1− δ)∥x∥2 ≤ ∥Φx∥2 ≤ (1 + δ)∥x∥2 for all x ∈ L (⋆)

holds with probability at least 1− η (where c > 0 is a universal constant).

(a) [2 pts] Let S = {x ∈ L : ∥x∥2 = 1} be the (k − 1)-dimensional unit sphere
in L. Explain why (⋆) is equivalent to 1− δ ≤ ∥Φx∥2 ≤ 1 + δ for all x ∈ S.

(b) [4 pts] Let ε ∈ (0, 1) and γ > 0 (to be specified later). We introduce the
concept of an ε-net on the sphere. This is a subset N ⊆ S such that for all
x ∈ S there exists y ∈ N with ∥x− y∥2 ≤ ε. You may assume that we can fix
N to have size |N | ≤ (3/ε)k. Using the random projection theorem and a union
bound, give a nontrivial lower bound on the probability of the following event:

1− γ ≤ ∥Φy∥2 ≤ 1 + γ for all y ∈ N . (⋆⋆)

(Hint: The random projection theorem says that for fixed y ∈ S we have
P
(∣∣∥Φy∥2 − 1

∣∣ ≥ γ
)
≤ 3 exp(−Cmγ2) where C > 0 is a universal constant.)

10
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(c) [4 pts] Let σmax := maxx∈S ∥Φx∥2. Prove σmax ≤ 1 + γ + εσmax so long
as the event (⋆⋆) holds.

(Hint: Let σmax be attained at xmax ∈ S. Choose y ∈ N so that ∥xmax−y∥2 ≤ ε.
Then write Φxmax = Φy +Φ(xmax − y). How can you bound the norm?)

(d) [2 pts] From part (c), deduce σmax ≤ 1 + ε+γ
1−ε if event (⋆⋆) holds.

11
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(e) [4 pts] Let σmin := minx∈S ∥Φx∥2 be attained at xmin ∈ S. Similarly to the
above, show if (⋆⋆) holds then σmin ≥ 1−γ− σmaxε. Deduce σmin ≥ 1− ε+γ

1−ε .

(f) [4 pts] Finish the proof of the theorem about (⋆) at the start of the problem.

(Hint: Choose ε = δ
4 and γ = δ

2 . Verify ε+γ
1−ε ≤ δ. How big should m be so the

probability from part (b) is at least 1− η?)

12
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END OF EXAM
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1. [12 points.] Let

A =

[
2 0
0 1

] [
1 −1 0
1 1 0

]
.

(a) What are the singular values of A?

(b) What is a basis for range(A)?

(c) What is a basis for range(AT )?

2. [12 points.] Let A ∈ Rm×n and b ∈ Rm be given. Considering storage and computation
time, suggest an algorithm for solving minx ∥Ax− b∥2 for the following cases:

(a) m = n, A is full rank dense.

(b) m = n, A is full rank sparse symmetric.

(c) m > n, n = O(1), A is full rank dense.

(d) m > n, A has unknown rank.

(e) m > n, A is sparse with unknown rank.

(f) m < n, m = O(1), A is full rank.

1
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3. [6 points.] Consider A ∈ Rn×n, and A = LU is its unpivoted LU factorization. Propose an
algorithm to compute the (i, j) entry of A−1 in O((n−j)2+(n−1)2) floating-point operations.

4. [15 points.] Determine whether the following statements are true or false. Assume that
we use IEEE arithmetic, that a, b, and c are normalized floating point numbers and that no
exceptions occur at the stated operations.

(a) round{a+ b} = round{b+ a}.
(b) round{b− a} = −round{a− b}.
(c) round{a+ a} = round{2a}.
(d) round{(a+ b) + c} = round{a+ (b+ c)}.
(e) a ≤ round{(a+ b)/2} ≤ b , assuming a ≤ b.

2
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5. [10 points.] Let

A =

[
2 −1
−1 2

]
.

We want to solve Ax = b with a matrix splitting scheme in which A = M −N , and M = the
lower triangular part of A.

(a) Does this iterative scheme converge?

(b) Assume b = 0 and x0 ̸= 0 be the initial guess. Let e0 the initial error. How many
iterative steps k do we need to approximately have ∥ek∥∞/∥e0∥∞ ≤ 10−5?

3
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6. [25 points.] Let A ∈ Rn×n with A = AT . Let dim(null(A)) = 1 and Av = 0 with ∥v∥2 = 1.

(a) Propose an iterative method for solving minx ∥Ax − b∥ that does not deteriorate the
inherent conditioning of the problem.

(b) What the expected perturbation in the solution x given perturbations in b?

(c) What is the work complexity of the method assuming A is sparse with O(n) non-zero
values?

4
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7. [5 points.] Let v ∈ Rn with ∥v∥ = 1. What are the eigenvalues and eigenvectors of H =
I − 2uuT ?

8. [15 points.] Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of an n×n real symmetric matrix A.

(a) To which of the eigenvalues of A is possible for the power method to converge by using
an appropriately chosen shift σ?

(b) In each such case, what value for the shift gives the most rapid convergence?

(c) Answer the same two questions for the inverse iteration method.

5
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EXAM#:

Area B Prelim Exam - Data Science

Date: May 17, 2024

Instructions: For this portion of the Area B Prelim Exam, you are allowed
to use one double-sided A4-sized “cheat sheet” (typed or handwritten) that you
prepared yourself containing material from CSE 382M. This portion of the exam
is intended to take about 90 minutes. Write legibly and give sufficient justifi-
cation for your answers. If there is a part of a question you cannot answer,
you may assume it and proceed to the next part of the question. The maximum
possible total score is 60 points. Print your prelim exam number above.

Problem Points Max

1 20

2 20

3 20

Total 60
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Problem 1. Spectral clustering and kernel methods

We are given a dataset X = {x1, . . . ,xn} ⊂ Rd. Fix a positive integer k. Recall
the k-means objective as a function of a partition C1 ⊔ . . . ⊔ Ck = [n] is

f(C1, . . . , Ck) :=
k∑

i=1

∑
j∈Ci

∥xj −
1

|Ci|
∑
j′∈Ci

xj′∥22,

where Ci are assumed to be nonempty.

(a) [6 pts] Show that

f(C1, . . . , Ck) =
n∑

j=1

∥xj∥22 −
k∑

i=1

1

|Ci|
∑

j,j′∈Ci

⟨xj′ ,xj′′⟩.

Expanding the squares and summing up the three terms, compute

f(C1, . . . , Ck) =

k∑
i=1

∑
j∈Ci

(
∥xj∥22 −

2

|Ci|
∑
j′∈Ci

⟨xj ,xj′⟩+
1

|Ci|2
∑

j′,j′′∈Ci

⟨xj′ ,xj′′⟩
)

=
n∑

j=1

∥xj∥22 −
k∑

i=1

2

|Ci|
∑

j,j′∈Ci

⟨xj ,xj′⟩+
k∑

i=1

|Ci|
|Ci|2

∑
j′,j′′∈Ci

⟨xj′ ,xj′′⟩

=
n∑

j=1

∥xj∥22 −
k∑

i=1

1

|Ci|
∑

j,j′∈Ci

⟨xj′ ,xj′′⟩.

Here we renamed the dummy indices j′, j′′ as j, j′ in the rightmost sum in the
second line to merge with the middle sum there.

(b) [2 pts] Deduce that the k-means problem

min
C1⊔...⊔Ck=[n]

f(C1, . . . , Ck)

is equivalent to
max

C1⊔...⊔Ck=[n]
⟨GX ,ZC1,...,Ck

⟩,

where GX ∈ Rn×n is the Gram matrix of X with (j, j′) entry given by ⟨xj ,xj′⟩,
and ZC1,...,Ck

∈ Rn×n is the so-called weighted adjacency matrix of the partition
with (j, j′) entry given by 1

|Ci| if xj ,xj′ are in the same cluster and 0 otherwise.

We use the result from part (a). Since
∑n

j=1 ∥xj∥22 is independent of the
partition, and the other sum is being subtracted in the formula in part (a), min-

imizing f(C1, . . . , Ck) is equivalent to maximizing
∑k

i=1
1

|Ci|
∑

j,j′∈Ci
⟨xj′ ,xj′′⟩.
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The latter cost function equals
∑n

j,j′=1(GX )j,j′(ZC1,...,Ck
)j,j′ by definition of the

Gram matrix and weighted adjacency matrix, hence k-means is equivalent to

max
C1⊔...⊔Ck=[n]

⟨GX ,ZC1,...,Ck
⟩.

(c) [6 pts] Explain how the formulation in part (b) is relaxed to the following:

max
Q∈Rn×k

Q⊤Q=Ik

⟨GX ,QQ⊤⟩.

What is the solution Q∗ to the relaxation? (A proof for this second sentence is
not needed, if the relevant fact from linear algebra is stated clearly.) How can
we use Lloyd’s algorithm to obtain from Q∗ a partition C1 ⊔ . . . ⊔ Ck of [n]?

Define QC1,...,Ck
∈ Rn×k to have (j, i) entry 1√

|Ci|
if xj ∈ Ci and 0 other-

wise, and notice ZC1,...,Ck
= QC1,...,Ck

Q⊤
C1,...,Ck

and Q⊤
C1,...,Ck

QC1,...,Ck
= Ik.

Therefore ZC1,...,Ck
is an orthogonal projector onto a rank-k linear subspace.

Though ZC1,...,Ck
satisfies other (combinatorial) constraints, we drop them to

obtain a larger search space and so a relaxation of k-means:

max
Q∈Rn×k

Q⊤Q=Ik

⟨GX ,QQ⊤⟩.

The relaxation is computationally tractable because its solution Q∗ is given
by the leading k eigenvectors of GX . This holds since for any symmetric matrix
M ∈ Rn×n, the leading k eigenvectors of M solve maxQ∈Rn×k,Q⊤Q=Ik⟨M,QQ⊤⟩.

The unrelaxed solution QC1,...,Ck
has rows which are scaled indicator func-

tions of the clusters. Therefore it makes sense to cluster the rows of the relaxed
solution Q∗ using Lloyd’s algorithm, to obtain a valid clustering from Q∗. In
particular, we run Lloyd’s algorithm in Rk rather than Rd.

(d) [6 pts] For clusters with complicated geometry, in theory it is advantageous
to use a feature map φ : Rd → RD, and apply the procedure in part (c) to the
dataset φ(X ) = {φ(x1), . . . , φ(xn)} ⊂ RD. If D ≫ d, explain why a naive
implementation of this is impractical. Describe how an efficient implementation
could be achieved, at least for convenient choices of φ. Sketch what flop and
storage costs might be achieved in the efficient version. (Hint: kernel methods.)

A naive implementation would involve operations on D-dimensional vectors
in φ(X ), which is impractical if D ≫ d (especially so if D = ∞). However,
the procedure in part (b) only needs access to the Gram matrix of the dataset.

3
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Thus, to run it on φ(X ) we just need Gφ(X ) ∈ Rn×n given by (Gφ(X ))j,j′ =

⟨φ(xj), φ(x
′
j)⟩. For nice feature maps φ, the kernel function K : Rd ×Rd → R,

K(x,x′) = ⟨φ(x), φ(x′)⟩ can be evaluated in O(d) flops and bytes. In this case,
the Gram matrix costs O(n2d) flops to form and O(n2) space to store, which
greatly improve over naive methods. For the rest, it costs O(n2k) flops to com-
pute the top k-eigenvectors from Gφ(X ), and O(nk2) flops per Lloyd iteration.

Problem 2. Gradient descent and the PL inequality

(a) [6 pts] Suppose f : Rd → R is a C2 loss function which is bounded below.
To minimize f we can use gradient descent with constant step size α > 0:

• initialize w0 ∈ Rd

• set wt+1 = wt − α∇f(wt)

• repeat the step above.

Assume there is a constant L > 0 such that ∇2f(w) has maximal eigenvalue
upper-bounded by L for all w ∈ Rd. Set the step size as α = 1

L . Please prove

f(wt+1) ≤ f(wt)−
1

2L
∥∇f(wt)∥22.

(Hint: Taylor’s theorem.)

Taylor’s theorem for twice continuously differentiable functions states

f(wt+1) = f(wt)+ (wt+1 −wt)
⊤∇f(wt)+

1

2
(wt+1 −wt)

⊤∇2f(w̄)(wt+1 −wt)

for some w̄ ∈ Rd on the line segment connecting wt and wt+1. Plugging in the
spectral bound on the Hessians and the definition of wt+1 yields

f(wt+1) ≤ f(wt) + (wt+1 −wt)
⊤∇f(wt) +

1

2
L∥wt+1 −wt∥22

= f(wt) +
(
− 1

L∇f(wt)
)⊤ ∇f(wt) +

1

2
L
∥∥− 1

L∇f(wt)
∥∥2
2

= f(wt)−
1

2L
∥∇f(wt)∥22.

(b) [6 pts] In addition, assume there is a constant µ ∈ (0, L] such that for all
w ∈ Rd,

1

2
∥∇f(w)∥22 ≥ µ(f(w)− f∗),

4

CSEM Area B
Part II - CSE 382M 
May 2024
(w/ solutions)



where f∗ ∈ R is the minimum value of f . Prove that gradient descent must
converge linearly to the global minimum, i.e.,

f(wt)− f∗ ≤ κt(f(w0)− f∗),

for some constant κ ∈ [0, 1). Please express κ in terms of L and µ.

Inserting the Polyak- Lojasiewicz inequality into the result from part (a),

f(wt+1) ≤ f(wt)−
µ

L
(f(wt)− f∗).

Subtracting f∗ from both sides and factorizing gives

f(wt+1)− f∗ ≤ f(wt)−
µ

L
(f(wt)− f∗)− f∗ = (1− µ

L
)(f(wt)− f∗).

Recursing on t we have

f(wt)− f∗ ≤ (1− µ

L
)t(f(w0)− f∗).

This shows linear convergence to the global minimum with rate κ = 1− µ
L .

(c) [6 pts] As an example, consider overdetermined least squares regression:

min
w∈Rd

f(w) with f(w) = 1
2∥Xw − y∥22,

where X ∈ Rm×d, y ∈ Rm and m ≫ d. Is there a constant L satisfying the
L-Lipschitz gradient condition in part (a)? If so, what is L? Is there a constant
µ satisfying the PL inequality condition in part (b)? If so, what is µ? Please
justify your answers.

We compute expressions for the function f(w) = 1
2w

⊤X⊤Xw − y⊤Xw +
∥y∥22, the gradient ∇f(w) = X⊤Xw−X⊤y and the Hessian ∇2f(w) = X⊤X.
Because the Hessian is independent of w, clearly there exists an L as in part
(a). We take it to be the largest eigenvalue of X⊤X, i.e., L = λmax(X

⊤X) if
X ̸= 0. For the PL inequality, we note that ∇f(w) = X⊤(Xw − y) implies

∥∇f(w)∥2 ≥ σmin(X
⊤)∥Xw − y∥2,

where σmin denotes the minimal singular value. Therefore, 1
2∥∇f(w)∥22 ≥

1
2σmin(X

⊤)2∥Xw − y∥22 = λmin(X
⊤X)f(w). Hence so long as X is full-rank,

there exists µ as in part (b). In this case we can take it to be the smallest
eigenvalue of X⊤X, i.e., µ = λmin(X

⊤X).

(d) [2 pts] In the context of the example in part (c), what would be stochastic
gradient descent with batch size b? What is the computational cost of an SGD

5

CSEM Area B
Part II - CSE 382M 
May 2024
(w/ solutions)



iteration compared to that of a GD iteration? (An answer in big O notation is
fine.)

Stochastic gradient descent would randomly select one equation or a mini-
batch of b equations from the overdetermined linear least squares from part (c)
to determine each gradient step (possibly over multiple epochs). Here equations
correspond to the rows of X, and the selection of b equations corresponds to
selecting a submatrix X̃ ∈ Rb×d of X. The stochastic gradient would be

∇̃f(w) = X̃⊤X̃w − X̃⊤y,

which consists of three mat-vec multiplications. It costs O(bd) flops to evaluate,
and dominates the SGD update wt+1 = wt−α∇̃f(wt). Meanwhile, the full GD
iteration is the same but with X instead of X̃. Therefore it costs O(md) flops.

Problem 3. MCMC sampling and Metropolis-Hastings

(a) [2 pts] Consider a strongly connected Markov chain on n states with tran-
sition matrix P ∈ Rn×n and initial distribution p(0) ∈ R1×n. Let p(t) ∈ R1×n

denote the distribution of the state after t steps. What is p(t) in terms of P
and p(0)? (No justification needed.)

The relation is p(t) = p(0)Pt.

(b) [6 pts] Define the running average by a(t) = 1
t (p(0)+. . .+p(t− 1)). Show

∥a(t)P− a(t)∥1 ≤ 2

t
.

(Remark: In particular, this is a key step in seeing that the Markov chain has
a unique stationary distribution π, i.e., one such that π = πP.)

From part (a) note p(k) = p(k− 1)P. Therefore we get a telescoping sum:

a(t)P− a(t) = 1
t (p(0) + . . .+ p(t− 1))P− 1

t (p(0) + . . .+ p(t− 1))

= 1
t (p(1) + p(2) + . . .+ p(t))− 1

t (p(0) + . . .+ p(t− 1))

= 1
t (p(t)− p(0)).
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The triangle inequality implies

∥a(t)P− a(t)∥1 = ∥ 1
t (p(t)− p(0))∥1 ≤ 1

t (∥p(t)∥1 + ∥p(0)∥1) =
2

t
,

where in the last equality we used that p(t) and p(0) are probability mass func-
tions and hence have ℓ1 norms of 1.

(c) [4 pts] Next suppose a given distribution p ∈ R1×n obeys

piPij = pjPji

for all i, j. Explain why p must be the unique stationary distribution.

Taking the remark in part (b) for granted, there exists a unique stationary
distribution for a strongly connected Markov chain. Therefore we just need to
check that p satisfies stationarity. Summing both sides of piPij = pjPji over j,

n∑
j=1

piPij =
n∑

j=1

pjPji.

The left-hand side of the above equals pi

∑n
j=1 Pij = pi, since the row sums

of P are all 1 (as Pij is the probability of walking from i to j). Meanwhile
the right-hand side equals (pP)i, i.e., the ith entry of the row vector matrix
product. So

pi = (pP)i.

As this holds for all i, conclude p = pP.

(d) [6 pts] Turning things around, suppose we start just with n states and a
target distribution (possibly unnormalized) p ∈ R1×n, from which we would like
to sample. We choose a connected undirected graphG on the states. Metropolis-
Hastings constructs a random walk on the states as follows.

• Let r be the maximum vertex degree of G.

• At state i, select neighbor j with probability 1
r .

• If state j is selected, we walk to it with probability 1 if pj ≥ pi and with
probability pj/pi if pj < pi.

• Else we stay at state i for the next time step.

7
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This describes a Markov chain on the n states. What is a formula for the (i, j)
entry of the transition matrix P? Can you show that p is the unique stationary
distribution?

For simplicity of the description below, we treat G as loopless. We also
assume that p is nonzero on all states.

As a formula, the transition probabilities for Metropolis-Hastings are

Pij =


1
r min(1,

pj

pi
) if (i, j) ∈ E(G)

1−
∑

k:(i,k)∈E(G)
1
r min(1, pk

pi
) if i = j

0 otherwise.

To see p is the unique stationary distribution, it suffices to show that it
satisfies the detailed balance equations from part (c) since the Markov chain is
strongly connected as G is connected. Thus we may check

piPij = pjPji

for all i, j. If i = j, the equation holds trivially. If i ̸= j and (i, j) /∈ E(G), the
equation also holds because both sides are 0. Finally if i and j are neighbors,

piPij = pi
1

r
min(1,

pj

pi
) =

1

r
min(pi,pj) = pj

1

r
min(

pi

pj
, 1) = pjPji.

(e) [2 pts] As an example, consider using Metropolis-Hastings to create a
Markov chain whose stationary probability is that given in the following ta-
ble. Use the 3× 3 lattice for the underlying graph. Please write down two rows
of the transition matrix.

The graph looks like this:

00 01 02

10 11 12

20 21 22
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The transition matrix is 9× 9. Ordering its rows and columns in the order 00,
01, 02, 10, 11, 12, 20, 21, 22, the first two rows are(

1
2

1
4 0 1

4 0 0 0 0 0

1
8

1
2

1
8 0 1

4 0 0 0 0

)
.

Here we just plugged the given target distribution p into the formula from part

(d), e.g., the (01, 02) transition probability is P01,02 = 1
4 min(1, 1/16

1/8 ) = 1
4 ·

1
2 = 1

8 .

END OF EXAM
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CSEM Area B Preliminary Exam

Part 2: Numerical Analysis: Differential Equations (CSE 383L)

May 17, 2024, 100 points total for part 2, a page of notes is allowed

1. [30 pts.] Consider the ODE u′ = f(u). Let ∆t > 0, tn = n∆t, and un ≈ u(tn) in the Runge-Kutta method

un+1 = un +
∆t

4

[
fn + 3f

(
un + 2

3∆tf(u
n + 1

3∆tf
n)
)]
,

where fn = f(un).

(a) Give the multiplication factor that arises in a linear stability analysis.

(b) Show that the local truncation error is O(∆t4) (so the method is O(∆t3) accurate).

2. [45 pts.] Let Ω ⊂ R2 be a nice domain, f ∈ L2(Ω), and consider the variational problem: Find u ∈ H1
0 (Ω) such

that
(∇u,∇v) + (u, v) = (f, v) ∀v ∈ H1

0 (Ω).

Let Ω be decomposed into triangles and Vh ⊂ H1
0 (Ω) be a piecewise continuous finite element space of linear

polynomials. We approximate the solution u by: Find uh ∈ Vh such that

(∇uh,∇v) + (uh, v) = (f, v) ∀v ∈ Vh.

Recall that infvh∈Vh
∥u− vh∥Hj ≤ Ch2−j∥u∥H2 , j = 0, 1.

(a) Prove that the solution is stable, i.e., that there is some constant C > 0 such that ∥uh∥H1 ≤ C∥f∥L2 .

(b) Prove that for some constant C > 0, ∥u− uh∥H1 ≤ Ch∥u∥H2 .

(c) Prove that for some constant C > 0, ∥u− uh∥L2 ≤ Ch2∥u∥H2 [Hint: Recall that in the proof we need to use
the solution of the dual problem: (∇ψ,∇v) + (ψ, v) = (u− uh, v) ∀v ∈ H1

0 (Ω), and the elliptic regularity
theorem.]

3. [25 pts.] Let ∆t > 0 and h > 0 and consider the scheme

un+1
j − unj

∆t
−
unj+1 − 2unj + unj−1

h2
+
unj+1 − unj−1

h
= 0,

(a) Perform a von Neumann linear stability analysis to determine the multiplication factor Q(θ). [Hint: show
that |Q(θ)|2 = q(ξ), there ξ = cos θ ∈ [−1, 1] and q is quadratic.]

(b) Show that the condition ∆t ≤ h2/2 is a necessary condition (but it may not be sufficient) to obtain stability
of the scheme.
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