1. Let $A \in \mathbb{R}^{N \times N}$ be a symmetric positive semidefinite matrix of rank $r < N$. Consider the following 2-by-2 block partitioning of A

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

where A_{11} is an r-by-r matrix. Let

$$B = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} A_{11}^{-1} \begin{bmatrix} A_{11} & A_{12} \end{bmatrix}.$$

(a) Is B defined under all possible symmetric permutations of A? (That is, if P is a permutation matrix, a symmetric permutation of A is PAP^T). If not, what is the condition that the permutation P needs to satisfy?

(b) What are the differences and similarities of the three factors of B with the U, S, V factors of the reduced SVD of A? (For example, discuss row and column bases, orthogonality properties, and singular values.)

(c) Show that $A - B = 0$ and using this result derive an expression for A_{22}.

(d) What is $A - B$ and the formula for A_{22} if A is only approximately rank r?

2. Given $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, we wish to solve $Ax = b$ for x. Assume $n = 1E6$, and rank(A) = 20. We don’t have direct access on the elements of A. We only have a “black-box” routine that computes Av for any $v \in \mathbb{R}^m$ and this operation costs $O(n)$ operations.

(a) Assume $m = 100$. Give an algorithm for solving $Ax = b$ that is stable, accurate, and fast. What is the approximate number of floating point operations of your algorithm? (An $O(\cdot)$ estimate suffices.)

(b) Can your algorithm be used for the $m = n$ case (A is still a rank 20 matrix)? If not, state an alternative algorithm and the number of floating point operations for this new algorithm.

(c) Consider $(A + \delta A)(x + \delta x) = b + \delta b$. Give an estimate for $\|\delta x\|_2/\|x\|_2$ as a function of $\|\delta b\|_2$ and $\|\delta A\|_2$.

Area B
May 2016
1. Consider the ordinary differential equation initial value problem,

\[x'(t) = f(x'(t), x(t), t), \quad t > 0, \]
\[x'(0) = x'_0 \]
\[x(0) = x_0 \] (1)

and the corresponding two stage Runge-Kutta approximation

(a) Rewrite the initial value problem (1) as a first order autonomous system,

\[X'(t) = F(X(t)), \quad t > 0, \]
\[X(0) = X_0 \] (2)

and give the corresponding trapezoidal difference approximation

(b) Consider the example \(f(x', x, t) = cx \) in (1) and investigate if the corresponding trapezoidal method for (2) has bounded solutions for all initial values. (Consider both signs of c.)

(c) Determine the region of absolute stability of the trapezoidal method for scalar problems and relate it to you results in (b).

2. The following elliptic PDE is given,

\[-\nabla \cdot a(x, y) \nabla u + b \cdot \nabla u + cu = f(x, y), \quad 0 < x < 1, \quad 0 < y < 1, \quad 0 < a \leq a(x, y) \leq A \]
\[u = d_1(x, y), \quad x = 0 \text{ and } x = 1, 0 < y < 1, \]
\[u_y + su = d_2(x, y), y = 0 \text{ and } y = 1, 0 < x < 1, \]

(a) Rewrite the equation on weak form.

(b) Describe the related FEM based on continuous piecewise linear (P1) basis and the related P1 DG method. (For DG you do not need to give an explicit form for the numerical fluxes). Show that the relevant bilinear form is coercive if \(b = c = d_1 = d_2 = s = 0 \).

(c) How many degrees of freedom do the FEM and DG formulations have if the mesh is generated by first decomposing the domain into squares with sides of length \(h \) and the triangulate by the diagonal from upper left to lower right in each square. Give the basis functions for the squares in the corners.
3. A hyperbolic system has the form,

\[u_t + Au_x + B(x)u = f(x), \quad 0 < x < 1, \ t > 0 \]

\[
A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad B(x) = \begin{pmatrix} b_{1,1}(x) & b_{1,2}(x) \\ b_{2,1}(x) & b_{2,2}(x) \end{pmatrix}
\]

(a) Devise an upwind finite difference method for the equation above and determine the order of the local truncation error.
(b) Use von Neumann analysis to determine necessary and sufficient conditions for the spatial and temporal step sizes to guarantee \(L_2 \) stability when there are periodic boundary conditions. (If you forgot how to analyze systems consider the corresponding scalar case with \(A = 1 \).)
Part II – Stat/Dis Meth Sci Comp (CSE 383M)

1

(a) Suppose two points are chosen independently and uniformly from the interval [0,1]. Let D denote the Euclidean distance (2-norm) between these two points. (i) What is the Probability that $D \leq 0.1$? (ii) What is $E(D^2)$?

(b) Suppose the two random points are chosen independently and uniformly from the unit hypercube $[0,1]^n$, and let D denotes the Euclidean distance (2-norm) between the two points. What is $E(D^2)$?

(c) Let X_1, X_2, X_3, \ldots be i.i.d. random variables, with mean $\mu = E(X_i)$ and variance $\sigma^2 = \text{Var}(X_i)$, and let $S_n = \sum_{i=1}^{n} X_i$ denote the partial sums of the X_i. The Weak Law of Large Numbers (WLLN) is for any $\epsilon > 0$,

$$\lim_{n \to \infty} P \left(\left| \frac{S_n}{n} - \mu \right| \leq \epsilon \right) = 1$$

Show that WLLN is equivalent to the statement that μ is an unbiased estimator of $\frac{S_n}{n}$

2

A stochastic matrix P is a matrix with non negative entries in which each row sums to one.

(a) Show that for a stochastic matrix P, the largest eigenvalue is one.

(b) Show that the eigenvalue has multiplicity one if and only if the corresponding Markov Chain is connected.

(c) Show that if P is a stochastic matrix and π satisfies $\pi_i p_{ij} = \pi_j p_{ji}$, then for any left eigenvector v of P, the vector u with components $u_i = v_i / \pi_i$ is a right eigenvector with the same eigenvalue.
Part 1 - Numerical linear algebra

1. Let $m > n$, and $A \in \mathbb{R}^{m \times n}$ a rectangular real matrix of rank r. Let $U \Sigma V^T$ be the reduced SVD of A (e.g., $\Sigma \in \mathbb{R}^{r \times r}$). Give the results of the following expressions and explain your answer.
 (a) $U(:,j)^T AV(:,i) = $
 (b) $\|A - UU^T A\|_2 = $
 (c) $\|A^T - VV^T A^T\|_2 = $
 (d) $\|U^T AV - \Sigma\|_2 = $
 (Notation: $M(:,k)$ indicates the the k_{th} column of matrix M.)

2. Let $m > n$, and $A \in \mathbb{R}^{m \times n}$ a rectangular real matrix of rank r. Let $U \Sigma V^T$ be the reduced SVD of A (e.g., $\Sigma \in \mathbb{R}^{r \times r}$). Let $\epsilon > 0$ be given. Let $\Sigma(i,i) = 1/i^2$, $i = 1 \ldots, r$. Let $\rho < r$. For given ρ, let A_{ρ} be the best (in the ℓ_2 norm sense) rank-ρ approximation of A.
 For given ρ, let A_{ρ}^\dagger be the best rank-ρ approximation of A^\dagger (in the ℓ_2 norm), where A^\dagger is the pseudoinverse of A.
 (a) Find ρ (as a function of ϵ) such that $\|A_{\rho} - A\|_2 \leq \epsilon \|A\|_2$;
 (b) Find ρ (as a function of ϵ) such that $\|A_{\rho}^\dagger - A^\dagger\|_2 \leq \epsilon \|A^\dagger\|_2$.

3. Let $m > n$ and $A \in \mathbb{R}^{m \times n}$ a rank-deficient matrix. Let $R \in \mathbb{R}^{n \times n}$ be a full-rank matrix.
 Given $b \in \mathbb{R}^m$, we wish to solve
 \[
 x = \arg \min_{x \in \mathbb{R}^n} \|Ax - b\|_2 + \|Rx\|_2. \tag{1}
 \]
 (a) One approach is to use the optimality condition for equation (1):
 \[
 A^T A x + R^T R x = A^T b.
 \]
 Discuss whether or not you can use the Cholesky factorization for this problem. Give a "big-O" estimate of the number of floating-point operations required to solve this problem. If the input data b is perturbed by δb, what is the expected perturbation δx in the solution x?
 (b) There exists an alternative scheme that uses the pivoted QR factorization on a least-squares problem that, in infinite precision, has the same solution with (1). However the QR-based algorithm is expected to be less sensitive in perturbations in b. Suggest a QR-based formulation and give a "big-O" estimate of floating-point operations required by your algorithm. If the input data b is perturbed by δb, what is the expected perturbation δx in the solution x?
Part 2 - Numerical differential equations

4. Consider the PDE \(u_t + u_x - u_{xx} = 0 \) defined on the real line \(-\infty < x < \infty \) and for \(t > 0 \).

Consider a finite difference approximation

\[
\frac{u_{j+1}^{n+1} - u_j^n}{\Delta t} + \frac{u_j^{n+\alpha} - u_{j-1}^{n+\alpha}}{\Delta x} - \frac{u_{j+1}^{n+\beta} - 2u_j^{n+\beta} + u_{j-1}^{n+\beta}}{\Delta x^2} = 0
\]

where \(\alpha, \beta \in [0, 1] \).

(a) Determine the conditions for the method to satisfy a maximum principle if \(\alpha = \beta = 0 \).

(b) What if \(\alpha = 0 \) and \(\beta = 1 \)?

(c) What if \(\alpha = \beta = 1 \)?

5. Consider the ODE \(y'(t) = \lambda y(t) \) for \(t > 0 \) and \(y(0) = 1 \) where \(\lambda \in \mathbb{C} \).

(a) Define what it means for a numerical method for this problem to be absolutely stable.

(b) Define the region of absolute stability.

(c) Define what it means for a method to be \(\mathcal{A} \)-stable.

(d) Consider the trapezoidal rule:

\[
y_{n+1}^{\text{trapez}} = y_n + \frac{h}{2} \left[f(t^n, y^n) + f(t^{n+1}, y^{n+1}) \right]
\]

Is this method \(\mathcal{A} \)-stable? Prove or disprove.

6. Consider Burger’s equation \(u_t + (u^2/2)_x = 0 \) with the initial condition

\[
u(x, 0) = \begin{cases}
1, & x < 0 \\
-1, & x > 0
\end{cases}
\]

The solution to this problem is \(u(x, t) = u(x, 0) \). Suppose we apply the Godunov method with a mesh such that \(x = 0 \) is a boundary between two elements. That is, say \(U_i^0 = 1 \) and \(U_{i+1}^0 = -1 \) where \(x_{i+1/2} = 0 \). Show that the Godunov method gets the answer exactly.
Please explain your answers.

1. **30 points.** Let \(A \in \mathbb{R}^{3 \times 2} \). We wish to determine \(A \).

 Let \(\sigma_{\text{max}} = 2 \) be the largest singular value of \(A \). Let \(\sigma_{\text{min}} = 1 \) be the smallest singular value of \(A \). Let \(A^T e_3 = 0 \), where \(e_3 \) is the third column of the 3-by-3 identity matrix. Let \(A e_2 = \sigma_{\text{max}} u \), where \(e_2 \) is the first column of the 2-by-2 identity matrix, and \(u \) is a column vector with entries \([1/\sqrt{2}, 1/\sqrt{2}, 0] \).

 The information above is not quite sufficient for determining \(A \).

 (a) Explain why.

 (b) Introduce the *minimum* number of additional assumptions that are required to be able to fully determine all the entries of \(A \) and then state \(A \) (either in full or factored form).

2. **70 points.** Let \(A \in \mathbb{R}^{m \times m} \) be symmetric *semi-positive* definite matrix (i.e., \(x^T A x \geq 0 \) for all \(x \) such that \(\| x \| > 0 \)). We seek stable algorithms for solving \(A x = b \).

 (a) What will happen if apply the Cholesky factorization algorithm on \(A \)?

 (b) Suppose \(V \) is a basis for the null space of \(A \). Assume that \(b \in \text{Range}(A) \). Using \(V \) and the Cholesky factorization, give an algorithm for solving \(A x = b \).

 (c) What is the complexity of your algorithm (number of floating point operations) as a function of \(m \) and the dimension of the null space of \(A \)?

 (d) Assume now that \(b \notin \text{Range}(A) \). Can you use your algorithm to solve \(\min_x \| A x - b \|_2^2 \)?

 (e) What is the stability bound \(\| \delta x \| / \| x \| \) of your algorithm, where \(\delta x \) minimizes \(\| A(x + \delta x) - (b + \delta b) \|_2^2 \)? Here \(b \) and \(\delta b \notin \text{Range}(A) \) and \(x \) minimizes \(\| A x - b \|_2^2 \).

 (f) What is its stability of your algorithm for the above case in the presence of round-off errors?

 (g) Assume \(A \) is sparse. Suggest an alternative iterative algorithm (that exploits the sparsity of \(A \)) for solving \(A x = b \). State its complexity. Under what conditions is this new algorithm faster than your original Cholesky factorization algorithm?
3. Consider the following ordinary differential equation, two-point boundary value problem.

\[y''(x) = f(y'(x), y(x)) \] \hspace{1cm} (1)

(a) With the initial conditions \(y(0) = 1, y'(0) = 2 \), rewrite as first order system and approximate by implicit Euler. What is the local truncation error and is the algorithm 0-stable (Dahlquist stable)?

(b) With the boundary conditions \(y(0) = 1, y'(1) = 2 \) rewrite as first order system and approximate by trapezoidal rule. Describe briefly how Richardson extrapolation can be used to improve the order of accuracy.

(c) Rewrite the problem (1) on variational form when \(f \) is linear and with the boundary conditions of (b). Determine a finite element algorithm for its approximation.

4. Consider the following elliptic PDE,

\[-\nabla \cdot a(x,y) \nabla u + b \cdot \nabla u + cu = f(x,y), \quad 0 < x < 1, \quad 0 < y < 1, \quad 0 < a(x,y) \leq A, c \geq 0, \]

\[u = g(x,y), \quad x = 0 \text{ and } x = 1, \quad 0 < y < 1, \]

\[u_y + su = 0, \quad y = 0 \text{ and } y = 1, \quad 0 < x < 1, \]

(a) Rewrite the equation on weak form.

(b) State and prove the fundamental error estimate for the finite element method that the error measured in a suitable norm between the PDE and FEM solutions are modulo a constant bounded by the error between the PDE solution and any function in a suitable space.

(c) Show that the relevant bilinear form in (a) for \(c = g = b = s = 0 \) is continuous and coercive and that the relevant linear form is continuous.

5. A nonlinear scalar, viscous conservation law with has the form,

\[u(x,t) + f(u(x,t))_x = bu(x,t)_x, \quad b > 0 \]

(a) Use von Neumann analysis when \(f(u) = au \) to set up the conditions, which determine necessary and sufficient conditions for the spatial and temporal step.
sizes to guarantee L_2 stability for explicit Euler in time and central 2nd order differencing in space.

(b) Devise an upwind finite difference method for the equation above when $f'(u) > 0$, $b = 0$ and show that the method is consistent and on conservation form.

(c) Give conditions on the spatial and temporal step sizes to guarantee the scheme in (b) is monotone.
3. [25 points]

Consider points on the real line \mathbb{R}. Let \mathcal{H} be the family of all unit-length closed intervals in \mathbb{R}. (In other words, \mathcal{H} consists of all intervals in the form $[a, a + 1]$ where $a \in \mathbb{R}$.) The growth function of \mathcal{H} is defined as

$$H[m] = \max_{|S|=m} |\mathcal{H}[S]|,$$

where $\mathcal{H}[S] = \{h \cap S : h \in \mathcal{H}\}$.

A set S is shattered by \mathcal{H} if $|\mathcal{H}[S]| = 2^{|S|}$. The VC-dimension of \mathcal{H} is defined as $D = \max\{m : \mathcal{H}[m] = 2^m\}$.

(a) Find the VC-dimension D of \mathcal{H} and justify your answer.

(b) Are all point sets of \mathbb{R} of size D shattered by \mathcal{H}? Explain your answer.

(c) Show that $\mathcal{H}[50] \geq 100$.

(a) $D = 2$.

To show that $D \geq 2$, it suffices to show that the set $S = \{1, 2\}$ can be shattered.

$$[-1, 0] \cap S = \emptyset$$
$$[0, 1] \cap S = \{1\}$$
$$[1, 2] \cap S = \{2\}$$
$$[2, 3] \cap S = \{1, 2\}$$

To show that $D < 3$, consider $S = \{x_1, x_2, x_3\}$. We may assume that $x_1 < x_2 < x_3$. If $x_1, x_3 \in [a, a+1]$, then $x_2 \in [a, a+1]$. Therefore, $\{x_1, x_3\} \notin \mathcal{H}[S]$.

(b) No. The point set $S = \{0, 2\}$ is not shattered by \mathcal{H}.

If $0 \in [a, a+1]$, then $a \leq 0$. So, $2 \notin [a, a+1]$. Therefore, $\{0, 1\} \notin \mathcal{H}[S]$.

(c) Consider $S = \{1, 2, \ldots, 50\}$.

$$[-1, 0] \cap S = \emptyset$$
$$[i - \frac{1}{2}, i + \frac{1}{2}] \cap S = \{i\} \quad \text{for all } 1 \leq i \leq 50$$
$$[i, i + 1] \cap S = \{i, i + 1\} \quad \text{for all } 1 \leq i \leq 49$$

Therefore, $\mathcal{H}[m] \geq |\mathcal{H}[S]| \geq 1 + 50 + 49 = 100$.
4. [25 points]

Let \(a_1, a_2, \ldots, a_n \in \mathbb{R}^d \) be data points on the unit sphere, with labels \(\ell_1, \ldots, \ell_n \in \{ \pm 1 \} \). Define the maximum margin as

\[
\gamma_{\text{max}} = \max_{\|w\|_2 = 1} \min_{1 \leq i \leq n} (v^T a_i) \ell_i.
\]

Flip each label independently and randomly with probability 0.1, such that

\[
\ell_i' = \begin{cases}
-\ell_i & \text{with probability 0.1} \\
\ell_i & \text{with probability 0.9}
\end{cases}
\]

Using these noisy labels and parameter \(C > 0 \), the support vector machine with hinge loss computes \(w \in \mathbb{R}^d \) and \(\xi_1, \xi_2, \ldots, \xi_n \) that

minimize \(\|w\|_2^2 + C \sum_{i=1}^n \xi_i \)

subject to \((w^T a_i) \ell_i' \geq 1 - \xi_i \quad \forall 1 \leq i \leq n \)

and \(\xi_i \geq 0 \quad \forall 1 \leq i \leq n \).

Suppose \(\gamma_{\text{max}} \geq 0.5 \). Show that

\[
\Pr \left[\|w\|_2^2 \geq \gamma_{\text{max}}^{-2} + 0.9Cn \right] \leq \mathcal{O} \left(\frac{1}{n} \right).
\]

Define \(X_i = \begin{cases}
1 & \text{if } \ell_i' = -\ell_i \\
0 & \text{if } \ell_i' = \ell_i
\end{cases} \).

Then, \(X_i \) is Bernoulli random variable with parameter 0.1. By Chebyshev Inequality,

\[
\Pr \left[\sum_{i=1}^n X_i \geq 0.1n + 0.1n \right] \leq \frac{0.09n}{(0.1n)^2} \leq \mathcal{O} \left(\frac{1}{n} \right).
\]

So, it suffices to show that \(\sum_{i=1}^n X_i \leq 0.2n \) implies \(\|w\|_2^2 \leq \gamma_{\text{max}}^{-2} + 0.9Cn \).

Let \(\nu_{\text{max}} \in \mathbb{R}^d \) such that \(\|\nu_{\text{max}}\|_2^2 = 1 \) and

\[
\min_{1 \leq i \leq n} (\nu_{\text{max}}^T a_i) \ell_i = \gamma_{\text{max}}.
\]

Let \(w' = \gamma_{\text{max}}^{-1} \nu_{\text{max}} \). Let \(\xi_i' = 3X_i \). If \(\ell_i = \ell_i' \), then

\[
((w')^T a_i) \ell_i' = ((w')^T a_i) \ell_i = \gamma_{\text{max}}^{-1} (\nu_{\text{max}}^T a_i) \ell_i \geq \gamma_{\text{max}}^{-1} \gamma_{\text{max}} = 1 = 1 - 0 = 1 - \xi_i'.
\]

If \(\ell_i \neq \ell_i' \), then

\[
((w')^T a_i) \ell_i' = -((w')^T a_i) \ell_i = -\gamma_{\text{max}}^{-1} (\nu_{\text{max}}^T a_i) \ell_i \\
\geq -\gamma_{\text{max}}^{-1} \|\nu_{\text{max}}\|_2 \cdot \|a_i\| \cdot \|\ell_i\| \geq -2(1)(1)(1) = 1 - 3 = 1 - \xi_i'.
\]

Also, \(\xi_i' \geq 0 \). So, \((w', \{\xi_i'\}_{i=1}^n) \) satisfies the constraints of the minimization problem. Thus,

\[
\|w\|_2^2 \leq \|w\|_2^2 + C \sum_{i=1}^n \xi_i \leq \|w\|_2^2 + C \sum_{i=1}^n \xi_i' = \gamma_{\text{max}}^{-2} + 0.6Cn.
\]
1. **[40 points.]** Let $M \in \mathbb{R}^{m \times m}$ and $N \in \mathbb{R}^{n \times n}$ be symmetric positive definite matrices. We use M to define an inner product function in $\mathbb{R}^{m \times m}$ as follows: $\langle y, z \rangle_M := y^T M z$. We use N to define an inner product function in $\mathbb{R}^{n \times n}$ as follows: $\langle x, w \rangle_N := x^T N w$. Using these inner products we wish to *redefine* the SVD of a matrix $A \in \mathbb{R}^{m \times n}$ using M-inner product for the column space and the N-inner product for the row space.

(a) Give the formula that defines the $i \text{th}$ singular value of A and its associated left and right singular vectors in the space defined by the M and N inner products.

(b) What are the orthogonality conditions that the left and right singular vector matrices satisfy?

(c) You have a routine that computes the standard SVD of A (in the canonical inner product). How can you use this routine to compute the new redefined SVD of A?

2. **[30 points.]** Let $A \in \mathbb{R}^{n \times n}$ be non-singular. Let P, L, U be the partial pivoting LU decomposition of A such that $PA = LU$. P is a permutation, L is triangular with $L_{ii} = 1$. Assume $|L_{ij}| \leq 1$. U is upper triangular with elements U_{ij}. Show that $\text{cond}_\infty(A) \geq \|A\|_\infty / \min_j |U_{jj}|$, where $\text{cond}_\infty(A)$ is the infinity-norm condition number of A.

3. **[30 points.]** Let $A \in \mathbb{R}^{m \times n}$ and consider the following algorithm for computing the first singular value σ_1 (assume $\sigma_1 > \sigma_2$) and the corresponding left and right singular vectors u_1 and v_1:

choose $q_0 \in \mathbb{R}^n, \ q \neq 0$
for $k = 1, \ldots,$
\begin{align*}
p_k &= A q_{k-1} \\
p_k &= p_k / \|p_k\|_2 \\
q_k &= A^T p_k \\
q_k &= q_k / \|q_k\|_2
\end{align*}
end

Explain what’s the logic of the method, how we obtain u_1, σ_1 and v_1, and how it can fail.
4. Consider the following weak form of a PDE:

Find \(u \in \mathcal{S} = \mathcal{V} \) such that for all \(w \in \mathcal{V} \),

\[
a(w, u) = (w, f) \tag{1}
\]

where \(\mathcal{V} \) is a suitably defined Hilbert space (for example, a Sobolev space), and \(a(\cdot, \cdot) \) and \((\cdot, \cdot) \) are inner products.

Part 1

Define the natural norm, \(||| \cdot ||| \) induced by \(a(\cdot, \cdot) \) and state the Cauchy-Schwarz inequality in terms of \(a(\cdot, \cdot) \) and \(||| \cdot ||| \).

Part 2

Consider a Galerkin finite element method for (1):

Find \(u^h \in \mathcal{S}^h = \mathcal{V}^h \) such that for all \(w^h \in \mathcal{V}^h \),

\[
a(w^h, u^h) = (w^h, f)
\]

and \(\mathcal{V}^h \) is an appropriate finite element subspace of \(\mathcal{V} \) for the weak form.

Prove the “best approximation property,” that is, show

\[
|||e||| \leq |||U^h - u||| \quad \forall U^h \in \mathcal{V}^h
\]

where \(e = u^h - u \) is the error in the Galerkin finite element solution.
Problem 4.

Part 1 \[\| \mathbf{w} \|_1 = \| (A(\mathbf{w}, \mathbf{w}))^{1/2} \| \]
\[A(\mathbf{w}, \mathbf{w}) \leq \| A(\mathbf{w}, \mathbf{w}) \| \leq \| \mathbf{w} \| \| \mathbf{w} \| \]

Part 2 You can do this part at least three different ways. Here is one way:

Let \[e = \mathbf{u}^h - \mathbf{u} = \mathbf{u}^h - \mathbf{U}^h + \mathbf{U}^h - \mathbf{u} \]
\[= e^h + \eta^h \]
where \(\mathbf{U}^h \) is an interpolated \(\mathbf{u} \).
Note \(e \in V, \ e^h \in V^h, \ \eta^h \in V \).

\[\| e \|_1 = \| A(e, e) \| \]
\[= \| A(e^h + \eta^h, e) \| \]
\[\leq \| \eta^h \|_1 \| e^h \|_1 \]
\[\leq \| \eta^h \| \| e^h \| \]
\[\leq \| \mathbf{u}^h - \mathbf{u} \| \quad \forall \mathbf{u} \in V^h \]
5. Consider the non-dimensional form of the advection-diffusion equation,

\[Pu_x = u_{xx} \quad \text{on} \ (0, 1) \]

with boundary conditions

\[u(0) = 1, \quad u(1) = 0, \]

where \(P > 0 \) is the Péclet number. To solve this BVP, employ the following finite difference method (FDM):

\[
P \left(\frac{u_{A+1} - u_{A-1}}{2h} \right) = \frac{1}{h^2} \left(u_{A+1} - 2u_A + u_{A-1} \right)
\]

where \(A = 1, 2, \ldots, A_{\text{max}} - 1 \) and boundary conditions

\[u_0 = 1, \quad u_{A_{\text{max}}} = 0. \]

Part 1

Look for solutions of the FDM in the form \(u_A = c_1 \zeta_1^A + c_2 \zeta_2^A \). Determine \(\zeta_1, \zeta_2, c_1, \) and \(c_2 \).

Part 2

Show that the solution exhibits spurious oscillations when the mesh Péclet number

\[P^h = \frac{Ph}{2} > 1. \]

Part 3

The FDM can also be viewed as a Galerkin finite element method (FEM) in which piecewise-linear \(C^0 \)-continuous basis functions are employed. With this, one can show

\[||e||_1 \leq \tilde{C}(1 + P)h^p||u||_q. \]

What are the values of \(p \) and \(q \)?
Problem 5

Part 1 You can do this part either before or after determining $S_{1,2}$. Here is the solution "before":

\[\mu_A = c_1 S_1^A + c_2 S_2^A , \quad \mu_0 = 1 , \quad \mu_{A_{\text{max}}} = 0. \]

\[1 = c_1 S_1^0 + c_2 S_2^0 = c_1 + c_2 \]

\[c_1 = 1 - c_2 . \]

\[0 = \mu_{A_{\text{max}}} = c_1 (S_1^{A_{\text{max}}}) + c_2 (S_2^{A_{\text{max}}}) \]

\[c_1 = S_2^{A_{\text{max}}} / (S_2^{A_{\text{max}}} - S_1^{A_{\text{max}}}) \]

\[= \frac{1}{\left(1 - (S_1 / S_2)^{A_{\text{max}}} \right) / \lambda} \]

\[\mu_A = \frac{1}{\lambda} S_1^A + (1 - \frac{1}{\lambda}) S_2^A \]

\[= \frac{1}{\lambda} (S_1^A - S_2^A) + S_2^A \]

\[= \frac{S_1^A - S_2^A}{1 - (S_1 / S_2)^{A_{\text{max}}}} + S_2^A . \]
Problem 5

Part 2

\[\frac{P_h}{2} (u_{A+1} - u_{A-1}) - u_{A+1} - 2u_A + u_{A-1} = 0 \]

\[(P_h - 1) u_{A+1} + 2u_A - (P_h + 1) u_{A-1} = 0 \]

\[(P_h - 1) S^2 + 2S - (P_h + 1) = 0 \]

\[S_{1,2} = \frac{-1 \pm \sqrt{1 + (P_h - 1)(P_h + 1)}}{2(P_h - 1)} \]

\[= \frac{-1 \pm \sqrt{1 + (P_h)^2 - 1}}{(P_h - 1)} \]

\[= \frac{-1 \pm P_h}{P_h - 1} \]

\[= \frac{-1 + P_h}{P_h - 1}, \frac{-1 - P_h}{P_h - 1} \]

\[= 1, \frac{-(P_h + 1)}{(P_h - 1)} \]

\[= 1, \frac{(1 + P_h)}{(1 - P_h)} \]

If \(P_h > 1 \), \(S_2 < 0 \), and \(S_2 \) oscillates.

Part 3.

\[\|u_h\| \leq \sqrt{(1 + P) \|u_h - u\|_{H^1} A \|u_h\|_{H^1}} \]

\[\exists u_h \in U^h \text{ (an "interpolate")} \]

\[\|u_h - u\| \leq C h^{k+1-s} \|u\|_{k+1} \]

\(k = 1, s = 1 \). Therefore \(p = 1, q = 2 \).
6. Consider a central difference method in space and in time for the second-order wave equation

\[u_{tt} = c^2 u_{xx} \]

with periodic boundary conditions, viz.,

\[\frac{u_A^{n+1} - 2u_A^n + u_A^{n-1}}{\Delta t^2} = \frac{c^2(u_{A+1}^n - 2u_A^n + u_{A-1}^n)}{h^2} \]

where \(u_A^h \approx u(x_A, t_n) \), etc. We can write this equation in non-dimensional fashion in terms of the Courant number, \(C = \frac{c\Delta t}{h} \) as follows.

\[u_A^{n+1} - 2u_A^n + u_A^{n-1} = C^2 (u_{A+1}^n - 2u_A^n + u_{A-1}^n) \quad (\star) \]

Part 1
Is the method implicit or explicit?

Part 2
Perform a Von Neumann stability analysis and prove the method is Von Neumann stable if \(C \leq 1 \).

Part 3
What result of Fourier analysis enables one to show that Von Neumann stability implies \(\ell_2 \)-stability?

Part 4
Introduce the local truncation error in the usual way for (\(\star \)), namely \(\Delta t^2 T(\Delta t, h) \). Show that \(T(\Delta t, h) = O(\Delta t^p) + O(\Delta t^q) \) and determine \(p \) and \(q \).
Problem 6

Part 1 Explicit

Part 2
\[u^{n+1}_A - 2u^n_A + u^{n-1}_A = C^2 (u_{A+1}^n - 2u^n_A + u_{A-1}^n) \]
\[\hat{u}^{n+1} + 2\hat{u}^n + \hat{u}^{n-1} = C^2 \frac{(e^{-i\delta} - 2 + e^{+i\delta}) \hat{u}^n}{-2(1 - \cos \delta)} = -4\sin^2 \left(\frac{\delta}{2} \right) \hat{u}^n \]
\[\delta^2 - 2\delta + 1 = -4C^2 \sin^2 \left(\frac{\delta}{2} \right) \]
\[\delta^2 - 2(1 - 2C^2 \sin^2 \left(\frac{\delta}{2} \right)) \delta + 1 = 0. \]
\[S_{1,2} = \left(\frac{2 \mp \sqrt{4 - 4}}{2} \right) = \frac{\delta}{\sqrt{1 - \delta^2}} \]

Assume \(C \leq 1 \). Then \(\delta^2 - 1 = (1 - 2C^2 \sin^2 \frac{\delta}{2}) - 1 \leq 0 \ \forall \delta \in (0, 2\pi) \).

Hence, we can write
\[S_{1,2} = \delta \pm \sqrt{1 - \delta^2}, \text{ and} \]
\[|S_{1,2}|^2 = S_{1,2} \overline{S}_{1,2} = \delta^2 + (1 - \delta^2) = 1. \text{ Thus, when } C \leq 1, \text{ the method is VN stable.} \]

Note: We can show that the result is sharp in that if \(C > 1 \), it is VN unstable, as done in class.

Part 3 Parseval identity
Part 4 Be careful to distinguish between small \(c \) (wave speed) and large \(C = c \Delta t / h \) (Courant number).

\[\Delta t^2 T = u_x(x_n, t_{n+1}) - 2u_x(x_n, t_n) + u_x(x_n, t_{n-1}) \]

\[- C^2 \left(u_{xx}(x_{n+1}, t_n) - 2u_{xx}(x_n, t_n) + u_{xx}(x_{n-1}, t_n) \right) \]

\[u(x_n, t_{n+1}) = u(x_n, t_n) + \Delta t u_{xx}(x_n, t_n) + \frac{\Delta t^2}{2} u_{xxx}(x_n, t_n) + O(\Delta t^4) \]

\[u(x_{n+1}, t_n) = u(x_n, t_n) + h u_{xx}(x_n, t_n) + \frac{h^2}{2} u_{xxx}(x_n, t_n) + O(h^4) \]

\[(2) \& (3) \Rightarrow (1) \Rightarrow \]

\[\Delta t^2 T = \Delta t^2 \left(u_{xx}(x_n, t_n) - C^2 u_{xx}(x_n, t_n) \right) \]

\[+ O(\Delta t^4) + O(\Delta t^2 h^2) \]

\[. \quad T = O(\Delta t^2) + O(h^2) \]

Note: All odd derivative terms cancel.
Question 1: (40p) Consider a function `myfun` that takes as input an \(m \times n \) matrix \(A \) with real entries, and computes two matrices \(B \) and \(C \) through the following procedure:

\[
\begin{align*}
\mathbf{B}, \mathbf{C} &= \text{myfun}(\mathbf{A}) \\
[m, n] &= \text{size}(\mathbf{A}) \\
\mathbf{B} &= \mathbf{A} \\
\mathbf{C} &= \mathbf{I}_n \\
\text{for } i &= 1 : \min(m, n) \\
\quad x &= \mathbf{B}(i, i : n)^\top \\
\quad H &= \text{householder}(n, x) \\
\quad \mathbf{B} &= \mathbf{BH}^\top \\
\quad \mathbf{C} &= \mathbf{HC} \\
\text{end}
\end{align*}
\]

The matrix \(\mathbf{I}_n \) is the \(n \times n \) identity matrix, \(\mathbf{Z}^\top \) denotes the transpose of \(\mathbf{Z} \), and the function `householder` builds a Householder reflector. To be precise, given a \(k \times 1 \) vector \(\mathbf{x} \) and an integer \(n \) such that \(k \leq n \), the matrix \(\mathbf{H} = \text{householder}(n, \mathbf{x}) \) is the \(n \times n \) Householder reflector such that for any vector \(\mathbf{y} \) of size \((n - k) \times 1 \), we have

\[
\mathbf{H} \begin{bmatrix} \mathbf{y} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{y} \\ \|\mathbf{x}\| \\ 0_{k-1,1} \end{bmatrix},
\]

where \(0_{k-1,1} \) is the zero vector of size \((k - 1) \times 1 \), and where \(\|\mathbf{x}\| \) is the Euclidean norm.

(a) (10p) Describe how the matrices \(\mathbf{B} \) and \(\mathbf{C} \) relate to \(\mathbf{A} \), and any particular properties they may have (such as being diagonal / orthogonal / triangular / \ldots).

(b) (10p) Can any numerical problems arise in the execution of the function `myfun`? In other words, is there a risk that you may encounter division by zero, or excessive amplification of round off errors?

(c) (10p) As \(m \) and \(n \) grow, the number of floating point operations required by `myfun` grows as \(O(m^a n^b) \) for some positive numbers \(a \) and \(b \). Determine \(a \) and \(b \). Is it possible to slightly rearrange the execution of `myfun` to improve its asymptotic complexity without changing its output (assuming exact arithmetic)?

(d) (10p) Suppose that \(\mathbf{A} \) is an \(m \times n \) matrix of rank \(n \). Describe how you can use `myfun` to solve an inconsistent linear system \(\mathbf{Ax} = \mathbf{b} \) in a least squares sense.
Question 2: (20p) Let \(f : V \to W \) be a function from the vector space \(V = \mathbb{R}^n \) to the vector space \(W \) of all matrices of size \(n \times n \). We define the relative condition number \(\kappa(x) \) of \(f \) at the point \(x \) to be the quantity

\[
\kappa(x) = \lim_{\|y\|_V \to 0} \sup_{\|y\|_V \leq \delta} \frac{\|f(x + y) - f(x)\|_W}{\|y\|_V} \frac{\|x\|_V}{\|f(x)\|_W}.
\]

We use the max-norm on \(V \), so that \(\|x\|_V = \max_{1 \leq i \leq n} |x_i| \). In this question, you are asked to evaluate \(\kappa(x) \) for the function \(f(x) = U D(x) Q^* \) where \(U \) and \(Q \) are two fixed unitary matrices of size \(n \times n \), and where \(D(x) \) is the \(n \times n \) matrix whose diagonal entries are given by the entries of \(x \).

(a) (10p) Evaluate \(\kappa(x) \) when \(\|\cdot\|_W \) is the spectral norm on \(W \), so that \(\|A\|_W = \sup_{\|x\|_2 = 1} \|Ax\|_2 \),

where \(\|\cdot\|_2 \) is the Euclidean norm.

(b) (10p) Evaluate \(\kappa(x) \) when \(\|\cdot\|_W \) is the Frobenius norm on \(W \), so that

\[
\|A\|_W = \left(\sum_{i,j=1}^{n} |A(i,j)|^2 \right)^{1/2}.
\]

Question 3: (40p) Let \(A \) be a real matrix of size \(m \times n \). You know that \(m > n \) and that \(A \) has rank \(n \). Suppose that you are interested in computing the real number

\[
c = \inf_{\|x\|=1} \|Ax\|,
\]

and also a vector \(w \in \mathbb{R}^n \) such that

\[
c = \|Aw\|.
\]

(a) (10p) Describe how you would determine \(c \) and \(w \) if you had access to a function that computes the singular value decomposition (SVD) of \(A \).

(b) (10p) Describe how you would determine \(c \) and \(w \) if you had access to a function that computes the eigenvalue decomposition (EVD) of a symmetric matrix (but not a function that computes the SVD). If you had access to routines for computing both the SVD and the EVD, then which would you choose?

(c) (10p) Suppose now that you do not have access to functions for computing either the EVD or the SVD of a matrix. However, you can compute standard factorizations of a matrix (QR, LU, Cholesky, etc.) and you can perform standard operations such as the matrix-matrix product, solving a linear system, and so on. Describe an easy to implement and computationally efficient iterative method for computing approximations to \(c \) and \(w \). Comment on what properties of \(A \) determine the speed of convergence of the iteration.

(d) (10p) Suppose now that \(A \) is large but very sparse. In other words, you cannot afford to compute any full factorizations, but you can affordably compute matrix-vector products involving \(A \). Would it be possible to use the Lanczos iteration to estimate \(c \) and \(w \)? Either describe how this would work, or explain why this method is not applicable.
4. The 2-point boundary value problem,
\[
\begin{align*}
\frac{d^4y}{dx^4} &= f(x), \quad 0 < x < 1 \\
y(0) &= y(1) = y'(0) = y'(1) = 0
\end{align*}
\]
can be seen as an approximation of a clamped beam.
(a) Rewrite the problem on variational form and propose suitable spaces for the continuous problem and corresponding discrete FEM approximation. Discuss convergence.
(b) Rewrite the problem as a first order system and determine the corresponding trapezoidal rule FDM approximation.
(c) Describe how this first order system can be solved by initial value techniques (shooting).

5. Consider the heat equation,
\[
\begin{align*}
\frac{\partial u}{\partial t} &= \nabla \cdot (\sigma(x,y) \nabla u), \quad 0 < \sigma_1 < \sigma(x,y) \leq \sigma_2, \quad 0 < x < 1, 0 < y < 1, \\
u(x,0) &= u(x,1) = 0, \quad 0 \leq x \leq 0 \\
\frac{\partial u}{\partial x}(0,y) &= \frac{\partial u}{\partial x}(1,y) = 0, \quad 0 < y < 1 \\
u(x,y,0) &= u_0(x,y), \quad 0 < x < 1, 0 < y < 1
\end{align*}
\]
(a) Formulate an implicit Euler-in-time FEM approximation of this problem based on an appropriate variational formulation.
(b) Outline a convergence proof based on the properties of the bilinear and linear forms.
(c) Determine the convergence condition (CFL number) for a FDM approximation based on forward Euler in time and centered difference in space. Use von Neumann analysis and assume periodic boundary conditions with constant conductivity σ.

6. The following nonlinear hyperbolic conservation law is given,
\[
\begin{align*}
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} f(u) &= 0, \quad 0 \leq f'(u) \leq C, \quad t > 0, 0 < x < 1 \\
\text{periodic boundary conditions} \\
u(x,0) &= u_0(x), 0 < x < 1
\end{align*}
\]
(a) Formulate an explicit first order finite volume approximation
(b) Show that the scheme is on discrete conservation form and give conditions on the step sizes such that the scheme is monotone.
(c) Formulate a P1 discontinuous Galerkin (DG) approximation with appropriate interface conditions.
CSEM Area B Preliminary Exam
May 26, 2021, about any 3 hours from 9:00 a.m. to 3:00 p.m.

Open notes, open book(s), open internet.

Work Part I and either Part II or Part III, but not both.

Part I, Numerical Analysis: Linear Algebra

1. (10 points) Let $A \in \mathbb{R}^{m \times m}$ have the property that $\|Ax\|_2 = \|x\|_2$ for all $x \in \mathbb{R}^m$. Use the Singular Value Decomposition Theorem to show that A must be a unitary matrix.

2. (10 points) Let A be a symmetric positive definite matrix. Prove or disprove that $f : \mathbb{R}^m \to \mathbb{R}$ defined by

$$f(x) = \sqrt{x^T Ax}$$

is a vector norm. You may invoke knowledge you have about various p-norms and other relevent knowledge from the course.

3. (20 points) Let $A \in \mathbb{R}^{m \times n}$ have linearly independent columns.

You have encountered a number of different algorithms for computing the QR factorization of such a matrix. You will build on that knowledge in this question.

(a) Use permutation matrices and what you know about the QR factorization to prove that there exists a QL factorization of A:

$$A = \tilde{Q}L$$

where \tilde{Q} is an $m \times n$ matrix with orthonormal columns and L is a lower triangular matrix of appropriate size.

(b) Develop an algorithm inspired by Modified Gram-Schmidt for computing this factorization. It should overwrite matrix A with \tilde{Q} and also compute L. Your algorithm may not use any additional temporary space. Give enough detail so that you can discuss why each step in your algorithm is well defined.

(c) Briefly, say a few words about what techniques you would use instead if your algorithm is to produce highly orthonormal columns in \tilde{Q} when floating point arithmetic is employed.

What is it fundamentally about these techniques that improves the orthogonality of the resulting matrix \tilde{Q}?
Part II, Numerical Analysis: Differential Equations

1. Consider an ODE initial value problem and the corresponding, so called, θ-method,

$$y'(t) = f(y(t)), \quad t > 0, \quad y(0) = y_0,$$

$$y_{n+1} = y_n + h(\theta f(y_n) + (1-\theta)f(y_{n+1})), \quad y_0 \text{ given}, \quad t_n = nh, \quad 0 < \theta < 1.$$

(a) Determine 0-stability (Dahlquist stability), A-stability and the order of the method as a function of θ.

(b) Even if the θ-method is not strictly symplectic for $\theta = 1/2$, show that this θ value is the only one for which, as a complex valued function, $|y(t)| = |y_0|$, $t > 0$, when $f(y) = iy$.

(c) The approximation y_{n+1} is computed using $\theta = 1$ and step size h. Also starting with y_n assume there is another approximation of $y(t_{n+1}) \approx \tilde{y}$, based on the same method but with step size $h/2$. Discuss how these two approximations (y_{n+1} and \tilde{y}) of $y(t_{n+1})$ can be used for an a posteriori error estimate.

2. Given the parabolic differential equation for $u(x,t)$,

$$u_t = au_{xx} + bu_x + cu + f(x), \quad 0 < x < 1, \quad t > 0, \quad a > 0, \quad c < 0,$$

$$u(x,0) = u_0(x), \quad u(0,t) = 0, \quad u_x(1,t) = 0.$$

(a) Sketch an implicit Euler in time finite element approximation.

(b) Sketch a finite difference approximation based on forward differencing in time and centered differencing in space.

(c) For theory show coercivity of the relevant bilinear form for the stationary problem (no u_t term) based on limits on $|b|$ for the method given in (a). Also apply von Neumann stability analysis for the method in (b) in the simplified case of $b = 0$ and periodic boundary conditions.

3. Consider the following nonlinear hyperbolic conservation law for $u(x,t)$,

$$u_t + f(u)_x = 0, \quad 0 < x < 1, \quad t > 0, \quad f'(u) > 0,$$

$$u(x,0) = u_0(x), \quad u(0,t) = 0.$$

(a) Write the equation on weak form and formulate a general Discontinuous Galerkin (DG) method based of forward differencing (Euler) in time.

(b) Give realistic interface conditions (numerical fluxes).

(c) Show that the method is essentially explicit (only inversion of block diagonal matrix) for discontinuous, piecewise linear (P1) elements.
Part III, Foundations of Machine Learning and Data Science

Theorem 1: Random Projection Theorem

Let \(\mathbf{v} \in \mathbb{R}^d \) be fixed. Draw \(r \) vectors \(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r \) as i.i.d. standard spherical Gaussian vectors \(\mathbf{u}_i \sim \mathcal{N}(0, I_d) \), \(i = 1, 2, \ldots, r \). Consider the random linear map \(f : \mathbb{R}^d \to \mathbb{R}^r \) given by \(f(\mathbf{x}) = (\langle \mathbf{u}_1, \mathbf{x} \rangle, \ldots, \langle \mathbf{u}_r, \mathbf{x} \rangle) \). For any \(\epsilon \in (0, 1) \),

\[
\Pr \left(\|f(\mathbf{v})\|_2 - \sqrt{r}\|\mathbf{v}\|_2 \geq \epsilon \sqrt{r}\|\mathbf{v}\|_2 \right) \leq 3e^{-\frac{r\epsilon^2}{6}}
\]

where the probability is taken with respect to the random draws of the vectors \(\mathbf{u}_1, \ldots, \mathbf{u}_r \).

The first two problems consider the version of the Random Projection Theorem above.

1. In the Random Projection Theorem, the statement is not true if the first two conditions “Let \(\mathbf{v} \in \mathbb{R}^d \) be fixed. Draw \(r \) vectors \(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r \) as i.i.d. standard spherical Gaussian vectors \(\mathbf{u}_i \sim \mathcal{N}(0, I_d) \),” are replaced by “Draw \(r \) vectors \(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r \) as i.i.d. standard spherical Gaussian vectors \(\mathbf{u}_i \sim \mathcal{N}(0, I_d) \). Let \(\mathbf{v} \in \mathbb{R}^d \) be an arbitrary vector.” Show this by constructing a counterexample.

2. From the Random Projection Theorem, prove the following statement.

Let \(V = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\} \) be a fixed set of \(p \) points in \(\mathbb{R}^d \). If \(r \geq 19200 \log(2p) \), there exists a linear map \(f : \mathbb{R}^d \to \mathbb{R}^r \) with the property that for all \(\mathbf{v}_j, \mathbf{v}_k \in V \),

\[
.9\|\mathbf{v}_j - \mathbf{v}_k\|_2 \leq \frac{1}{\sqrt{r}}\|f(\mathbf{v}_j) - f(\mathbf{v}_k)\|_2 \leq 1.1\|\mathbf{v}_j - \mathbf{v}_k\|_2
\]

State clearly and justify all of the steps in the derivation.

The next two problems consider the following set up. Consider a collection of data points \(\mathbf{x}_1, \ldots, \mathbf{x}_n \) in \(\mathbb{R}^d \) which can be partitioned into two sets \(\{S_1, S_2\} \) such that

\[
\max_{\mathbf{x} \in S_1} \|\mathbf{x} - \mu_{S_1}\|_2 \leq \min_{\mathbf{y} \in S_1} \min_{\mathbf{z} \in S_2} \|\mathbf{y} - \mathbf{z}\|_2
\]

\[
\max_{\mathbf{x} \in S_2} \|\mathbf{x} - \mu_{S_2}\|_2 \leq \min_{\mathbf{y} \in S_1} \min_{\mathbf{z} \in S_2} \|\mathbf{y} - \mathbf{z}\|_2
\]

(1)

where \(\mu_{S_1} \in \mathbb{R}^d \) is the average of the points in \(S_1 \) and \(\mu_{S_2} \in \mathbb{R}^d \) is the average of the points in \(S_2 \). Consider the data matrix \(\mathbf{X} = [\mathbf{x}_1, \ldots, \mathbf{x}_n] \in \mathbb{R}^{d \times n} \) whose columns are the data points \(\mathbf{x}_1, \ldots, \mathbf{x}_n \). Letting \(\mu = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_j \in \mathbb{R}^d \) be the average of all the points, consider the centered matrix \(\mathbf{X}_c = [\mathbf{x}_1 - \mu, \mathbf{x}_2 - \mu, \ldots, \mathbf{x}_n - \mu] \) and its Gram matrix \(\mathbf{X}_c^T \mathbf{X}_c \in \mathbb{R}^{n \times n} \).

3. Suppose that the two clusters are of the same size: \(|S_1| = |S_2| = \frac{n}{2} \). Prove that under the separability condition (1), the leading eigenvector \(\mathbf{v} = (v_1, \ldots, v_n) \in \mathbb{R}^n \) of \(\mathbf{X}_c^T \mathbf{X}_c \) has the property that \(\text{sign}(v_j) \neq \text{sign}(v_k) \) whenever \(\mathbf{x}_j \) and \(\mathbf{x}_k \) belong to different clusters. (Hint: show if \(\text{sign}(v_j) = \text{sign}(v_k) \) for some \(\mathbf{x}_j \) and \(\mathbf{x}_k \) belonging to different clusters, this contradicts the fact that \(\mathbf{v} = \arg \max_{\mathbf{u}} \|\mathbf{u}\|_2 \|\mathbf{X}_c \mathbf{u}\|_2 \))

4. Use the answer from the previous problem to describe a clustering algorithm which takes as input a collection of data points \(\mathbf{x}_1, \ldots, \mathbf{x}_n \) and outputs a partition of the data points into two clusters.