CSEM Area A-CAM Preliminary Exam (CSE 386C-D)
May 31, 2016, 9:00 am – 12:00 pm

Work any 5 of the following 6 problems.

1. Let X and Y be normed linear spaces and $T : X \to Y$ a linear operator. We say that T is bounded if it takes bounded sets to bounded sets.
 (a) Prove that T is bounded if and only if there is a constant $C > 0$ such that
 $$\|Tx\|_Y \leq C\|x\|_X \quad \forall x \in X.$$
 (b) Prove that T is continuous if and only if T is bounded.

2. Let f_n be a sequence bounded both in $L^2(\mathbb{R}^d)$ and $L^\infty(\mathbb{R}^d)$. Assume that f_n converges pointwise almost everywhere to $f \in L^2(\mathbb{R}^d)$.
 (a) Prove that the entire sequence f_n converges weakly to f in $L^2(\mathbb{R}^d)$. [Hint: consider compactly-supported test functions.]
 (b) If additionally $\|f_n\|_{L^2} \to \|f\|_{L^2}$, prove that the entire sequence f_n converges strongly to f in $L^2(\mathbb{R}^d)$.

3. Define the linear operator $T : L^2([0, 1]) \to L^2([0, 1])$ by
 $$Tf(x) = \int_0^x \int_y^1 f(z) \, dz \, dy.$$
 (a) Show that T is self-adjoint.
 (b) Show that T is compact.
 (c) Find an orthogonal basis for $L^2([0, 1])$ based on the eigenvalues of this operator. [Hint: differentiate twice and consider carefully the boundary conditions that must be satisfied.]

4. Let $\Omega \subset \mathbb{R}^d$ be a domain and let $w \in L^\infty(\Omega)$. Define
 $$H_w(\Omega) = \{ f \in L^2(\Omega) : \nabla(wf) \in (L^2(\Omega))^d \}.$$
 (a) Give reasonable conditions on w so that $H_w(\Omega) = H^1(\Omega)$.
 (b) Prove that $H_w(\Omega)$ is a Hilbert space. What is the inner product?
 (c) Suppose that Ω is bounded. Prove that there is a constant $C > 0$ such that for all $f \in H_w(\Omega)$ satisfying $\int_\Omega w(x) f(x) \, dx = 0$,
 $$\|f\|_{L^2(\Omega)} \leq C \left\{ \|\nabla(wf)\|_{L^2(\Omega)} + \|(1 - w)f\|_{L^2(\Omega)} \right\}.$$
5. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary $\partial \Omega$ and unit outward normal ν. Given smooth functions $f(x), g(x)$ and $a(x)$, consider the following boundary-value problem (BVP) in non-divergence form:

$$\begin{align*}
-a \Delta u + u &= f \quad \text{in } \Omega \\
a \nabla u \cdot \nu &= g \quad \text{on } \partial \Omega.
\end{align*}$$

(a) Reformulate the BVP as a variational problem for $u \in H^1(\Omega)$. Indicate precisely the spaces for f and g. Is the variational problem equivalent to the BVP?

(b) State reasonable (but not necessarily optimal) conditions on a for which the Lax-Milgram Theorem would be applicable to the variational problem.

(c) Prove the existence of a solution to the variational problem.

6. Let $\phi(x) \in C(\mathbb{R}) \cap L^\infty(\mathbb{R})$ and $K(x) \in L^1(\mathbb{R})$. Use the contraction mapping principle to prove that the initial-value problem

$$\begin{align*}
\partial_t u &= K * (u + u^3), \quad x \in \mathbb{R}, \; t > 0, \\
u(x, 0) &= \phi(x)
\end{align*}$$

has a continuous and bounded solution $u = u(x, t)$, at least up to some time $T < \infty$.
CSEM Area A-CAM Preliminary Exam (CSE 386C–D)
May 30, 2017, 9:00 a.m. – 12:00 noon

Work any 5 of the following 6 problems.

1. Let \(X \) be a NLS. Suppose \(x \in X, \{x_n\}_{n=0}^{\infty} \) is a sequence in \(X \), and \(M \subset X' \) is such that its span is dense in \(X' \). Prove that \(x_n \to x \) in \(X \) if and only if

 (i) the sequence \(\{\|x_n\|\}_{n=0}^{\infty} \) is bounded, and
 (ii) for every \(f \in M \subset X' \), \(f(x_n) \to f(x) \).

2. Up to a constant multiple, the Legendre polynomial of degree \(n \) is

\[
P_n(x) = \frac{d^n}{dx^n} (x^2 - 1)^n.
\]

The Weierstrass approximation theorem says that for any function \(g \in C^0([-1,1]) \) and \(\epsilon > 0 \), there is a polynomial \(p \) such that \(|g(x) - p(x)| \leq \epsilon \) for any \(x \in [-1,1] \).

(a) Show that \(P_n \) has exact degree \(n \).

(b) Show that the Legendre polynomials form an orthogonal base for \(L^2((-1,1)) \). [Hint: For orthogonality, show that \(P_n \) is orthogonal to \(x^m \) for \(m < n \) using integration by parts.]

3. Let \(X \) be a Banach space and consider \(GL(X, X) \), the set of all isomorphisms from \(X \) to \(X \). Show that \(GL(X, X) \) is an open set of \(B(X, X) \). [Hint: Recall that \((1 + x)^{-1} = \sum_{n=0}^{\infty} (-x)^n \).]

4. Consider the boundary value problem:

\[
\begin{align*}
-u_{xx} + (1 + y)u &= f, & \text{for } (x, y) \in (0, 1)^2, \\
u(0, y) &= 0, & u(1, y) = \cos(y), & \text{for } y \in (0, 1).
\end{align*}
\]

(a) Find the associated variational problem. In which space should \(f \) lie?

(b) Show that there exists a unique solution to this problem.
5. Let (X, d) be a complete metric space and $T : X \to X$ be a contraction with contraction constant $\theta \in [0, 1)$ and fixed point $x \in X$. Suppose that $S : X \to X$ is an approximation to T in the sense that for some $\epsilon > 0$,

$$d(T(z), S(z)) \leq \epsilon \quad \text{for all } z \in X.$$

For fixed $x_0 = y_0 \in X$ and integer $m \geq 1$, let $x_m = T(x_{m-1})$ and $y_m = S(y_{m-1})$.

(a) Use induction to show that

$$d(x_m, y_m) \leq \frac{1 - \theta^m}{1 - \theta}.$$

(b) We know that $d(x_m, x) \leq \frac{\theta^m}{1 - \theta}d(x_0, x_1)$. Use this fact to prove that

$$d(y_m, x) \leq \frac{1}{1 - \theta} (\epsilon + \theta^m d(y_0, y_1)).$$

6. Fix $g \in L^2(\mathbb{R}^d)$. For any $u \in H^1(\mathbb{R}^d)$, we define

$$J(u) = \int_{\mathbb{R}^d} (|\nabla u|^2 + |u|^2 - gu) \, dx.$$

(a) Find the Euler-Lagrange equation associated to J.

(b) Find all the critical points of J [Hint: You may use the Fourier transform.]

(c) Are those critical points maxima or minima of J?
1. \(X \text{ NLS}, x \in X, \exists x_n \leq x, M \leq x, \overline{\text{span}(M)} = X \)

\[x_n \to x \iff (i) \text{ all bounded} \\
(ii) f(x_n) \to f(x) \forall f \in M. \]

(\Rightarrow) If \(x_n \to x \), we know that
\[f(x_n) \to f(x) \quad \forall f \in X', \]
so (ii) holds.

Now for a fixed \(f \in X' \),
\[|f(x_n)| \text{ is bounded} \quad \text{(since } f(x_n) \text{ converges)} \]
so
\[|f(x_n)| = |E_{x_n}^f| \leq C_f \forall f \in X'. \]

By UBP:
\[|E_{x_n}^f| \leq C \]
That is, \(\|E_{x_n}\| \leq \|x_n\| \text{ bounded}. \)

(\Leftarrow) Let \(g \in X' \), \(\epsilon > 0 \) and choose \(n, a; \epsilon \in \mathbb{F} \),
\(f_i \in M \) for \(i = 1, 2, \ldots, n \) s.t.
\[\|g_i - \sum a_i f_i\| \leq \epsilon. \]

Then
\[g(x_n) - g(x) = g(x_n - x) = (g - h)(x_n - x) + h(x_n - x) \]

\[\Rightarrow \]
\[|g(x_n - x)| \leq \|g - h\| (\|x_n\| + \|x\|) + |h(x_n - x)| \leq \epsilon \left(M + \|x\| + \|h(x_n - x)\| \right) \to 0 \text{ as } \epsilon \to 0, \ n \to \infty. \]
2. \(P_n = \frac{d^n}{dx^n} (x^2 - 1)^n \)

\(x \in \mathbb{C}, \epsilon > 0 \Rightarrow \exists \delta > 0 \) for \(|x - \rho(x)| \leq \epsilon \) for all \(x \in [\rho - \delta, \rho + \delta] \)

(a) \((x^2 - 1)^n \in P_{2n} \Rightarrow P_n \in P_n^* \)

Leading term of \((x^2 - 1)^n\) is \(x^{2n} \)

\Rightarrow leading term of \(P_n \) is \(\frac{(2n)!}{n!} x^n \)

(b) The set is clearly linearly independent.

For \(1 \), ETS \(\perp \) on \(P_n \) to \(x^m \), \(m < n \).

\[\sum_{i=1}^{n} P_n x^m = \sum_{i=1}^{n} D^n (x^2 - 1)^n x^m \]

\[= D^{n-1} (x^2 - 1)^n x^m l^m - m \sum_{i=1}^{n} D^{n-1} (x^2 - 1)^n x^{m-1} \]

all terms have \((x^2 - 1)\) \Rightarrow term vanishes

\[= \cdots \]

\[= \pm \sum_{i=1}^{n} D(x^2 - 1)^n \cdot 0 = 0. \]

For density, note for \(f \in L^2, \exists g \in L^2 \) s.t. \(\|f-g\| \leq \epsilon \). Wannier gave \(\rho \times g \).

Now \(P \in \text{span } \{P_1, \ldots, P_n\} \)

for some \(n < \infty \), so \(\|f-P\| \leq \|f-g\| + \|g-P\| \leq \epsilon + 2 \epsilon = 3 \epsilon \to 0 \).

Thus we have \(\epsilon \) is bounded.
3. Let \(A \in \text{GL}(X, X) \).

For \(\varepsilon \) to be determined, consider

\[B_\varepsilon(A) = \{ T \in B(X, X) : \|T - A\| < \varepsilon \} \]

Now

\[T = T - A + A = A(I + A^{-1}(T - A)) \]

This is the composition of 2 invertible maps

if (claim) \(\|A^{-1}(T - A)\| < 1 \)

which is true if \(\|T - A\| < \frac{1}{\|A^{-1}\|} \equiv \varepsilon \).

To prove the claim (i.e., \(I + R \) inv. if \(\|R\| < 1 \))

\[S_N = \sum_{n=0}^{N} (-R)^n = I - R + R^2 - \cdots + (-R)^N R^N \]

\[S_N (I + R) = I + (-R)^N R^{N+1} = (I + R) S_N \]

Now \(\|R^{N+1}\| \leq \|R\|^{N+1} \to 0 \) as \(N \to \infty \)

Thus \(S_N \) is Cauchy \(\Rightarrow S_N \to S \in B(X, X) \)

So \(S_N \to (I + R)^{-1} \).
4. \begin{equation*}
\begin{aligned}
\Delta u + (1+\gamma) u &= f & (x, y) \in (0,1)^2 \\
u(0,y) &= 0, & u(1,y) &= \text{cay y}
\end{aligned}
\end{equation*}

(a) Let

\[H = \{ v \in L^2((0,1)^2) : v_x \in L^2((0,1)^2) \} \]

\[H_0 = \{ v \in H : v(0,y) = v(1,y) = 0 \ \forall y \} \]

The wave at \(x=0,1 \) exists because for a.e. \(y \), \(v(\cdot,y) \in H^1((0,1)) \).

Find \(u \in H_0 + x \text{cay y} \) st.

\[(u_x, v_x) + (1+\gamma) u_x v_x = (f, v) \quad \forall v \in H_0 \]

We want \(f \in (H_0)' \).

(b) Let \(a(u,v) = (u_x, v_x) + (1+\gamma) u_x v_x \)

Note: \(H \) is Hilbert with IP

\[\langle u, v \rangle = (u_x, v_x) + (u, v) \]

Completeness follows from the completeness of \(L^2 \):

\[u_n \text{ Cauchy} \Rightarrow u_n \xrightarrow{L^2} u, \quad u_n \xrightarrow{H^1} \]

But

\[\langle u_n, \varphi \rangle = \langle u_n, \varphi_x \rangle \Rightarrow \langle u, \varphi \rangle \]

\[\Rightarrow \quad \varphi = u_x. \quad \text{Thus} \quad u_n \xrightarrow{H} u. \]

Now

\[|a(u,v)| \leq ||u_x|| ||v_x|| + 2 ||u|| ||v|| \leq 3 ||u|| ||v|| \]

and

\[a(u,v) = ||u_x||^2 + (1+\gamma) u_x v_x \geq ||u_x||^2 + ||v||^2 \]

\[\text{Poincaré} \Rightarrow ||u_x|| \geq \gamma ||u_x|| \quad \forall y \Rightarrow ||u_x|| \geq \gamma ||u|| \]

\[\text{Thus} \quad a(u,v) \geq \frac{1}{2} \min (1, \gamma) ||u||^2 \]

\[\text{Lax - Milgram} \Rightarrow \exists! \text{ soln.} \]
(5. \ (x, d) \ \ T: X \to X \text{ contraction, } \Theta, \ \ T x = x.
S: X \to X, \ d(T(x), S(x)) \leq \varepsilon \ \ \forall x \in X.

x_0 = x_0, \ \ x_m = T(x_{m-1}), \ \ y_m = S(y_{m-1})

(a) We have that
\[d(T(x), T(y)) \leq \Theta d(x, y) \]

Now,
(1) \[d(x_0, y_0) = 0 \leq \varepsilon \leq \frac{1-\Theta}{1-\theta} = 0. \]
(2) Suppose \[d(x_m, y_m) \leq \varepsilon \frac{1-\Theta^m}{1-\theta} \]

Consider \[d(x_{m+1}, y_{m+1}) = d(Tx_m, Sy_m) \]
\[\leq d(Tx_m, Ty_m) + d(Ty_m, Sy_m) \]
\[\leq \Theta d(x_m, y_m) + \varepsilon \]
\[\leq \varepsilon (\frac{1-\Theta^m}{1-\theta} + 1) = \varepsilon \frac{1-\Theta^m}{1-\theta} \]

(b) \[d(x_m, x) \leq \frac{\Theta^m}{1-\theta} d(x_0, x_1) \]
\[d(y_m, x) \leq d(y_m, x_m) + d(x_m, x) \]
\[\leq \varepsilon \frac{1-\Theta^m}{1-\theta} + \frac{\Theta^m}{1-\theta} d(x_0, x_1) \]
\[= \frac{1}{1-\theta} \left[\varepsilon (1-\Theta^m) + \Theta^m (d(y_0, x_1) + d(y_1, x_1)) \right] \]
\[\leq \varepsilon \]
\[\leq \frac{1}{1-\theta} (\varepsilon + \Theta^m d(y_0, y_1)) \]
(a) $F(u) = \int_{\mathbb{R}^d} (|D^2 u|^2 + |u|^2 - g u) \, dx$

\[\frac{\partial}{\partial u} F - \frac{2}{\partial (\partial F)} \left(\frac{\partial F}{\partial u_x} \right) = 0 \]

\[\Rightarrow \quad 2u - g - 2 \sum_j u_{x_j x_j} = 0 \]

\[\Rightarrow \quad -\Delta u + u = \frac{1}{2} g \]

(b) \((1 + 13^2) \hat{u} = \frac{1}{2} \hat{g} \)

\[\Rightarrow \quad \hat{u} = \frac{1}{2} \frac{\hat{g}}{1 + 13^2} \Rightarrow u = \frac{1}{2} \left(\frac{\hat{g}}{1 + 13^2} \right)^\nu \]

\[\Rightarrow \quad u = \frac{1}{2} \left(\frac{1}{2\pi} \left(\frac{1}{1 + 13^2} \right) \right)^\nu \]

(c) Sine

\[\int \left((\nabla (u + v))^2 + |u + v|^2 - g(u + v) \right) \, dx \]

\[= \epsilon \int (\nabla u + \nabla v)^2 + 2\nabla u \cdot \nabla v - g u + \epsilon^2 (|\nabla u|^2 + |v|^2) \, dx \]

\[\Rightarrow 0 \quad \Rightarrow \text{minima.} \]
CSEM Area A-CAM Preliminary Exam (CSE 386C–D)
May 31, 2018, 9:00 a.m. – 12:00 noon

Work any 5 of the following 6 problems.

1. The set \mathcal{X} of all sequences $\{x_n\}_{n=1}^{\infty}$ of complex numbers is a vector space. Let $0 < p < 1$ and let $X \subset \mathcal{X}$ be the set of all sequences $\{x_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$.

(a) Show that X is a vector space. [Hint: Show that $|x + y|^p \leq 2^{p-1}(|x|^p + |y|^p).$]

(b) Show that the map taking $\{x_n\}_{n=1}^{\infty} \in X$ to $\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$ is not a norm on X.

(c) Show that the map $d : X \times X \to \mathbb{R}$ defined by $d(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} |x_n - y_n|^p$ is a metric on X.

2. Open Mapping Theorem.

(a) State the Open Mapping Theorem.

(b) Suppose that $\| \cdot \|$ and $\| \cdot \|'$ are two norms on a vector space X. Suppose that both $(X, \| \cdot \|)$ and $(X, \| \cdot \|')$ are complete and there is a constant $C > 0$ such that

$$\|x\| \leq C\|x\|' \quad \text{for all } x \in X.$$

From the Open Mapping Theorem, show that the two norms are equivalent.

3. Let $\Omega = [a, b]$, $p, q \in (1, \infty)$, and $\frac{1}{p} + \frac{1}{q} = 1$. Let $v \in L^q(\Omega)$. For every $u \in L^p(\Omega)$ define a function Au by setting

$$(Au)(t) = \int_{a}^{t} v(s) u(s) \, ds \quad \text{for all } t \in \Omega.$$

(a) Show that A maps $L^p(\Omega)$ into $L^q(\Omega)$ and is continuous.

(b) Explain why $A : L^p(\Omega) \to L^q(\Omega)$ is compact.

4. Suppose (X, d_X) and (Y, d_Y) are metric spaces. Y is complete, $A \subset X$ is dense, and $T : A \to Y$ is uniformly continuous. Prove that there is a unique extension $\tilde{T} : X \to Y$ which is uniformly continuous.
5. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, $f \in L^2(\Omega)$, and $\epsilon > 0$. Suppose u_ϵ satisfies

\[-\epsilon \Delta u_\epsilon + u_\epsilon = f \quad \text{in } \Omega,
\]

\[u_\epsilon = 0 \quad \text{on } \partial \Omega.
\]

Show $u_\epsilon \to f$ in $L^2(\Omega)$ as $\epsilon \to 0$. [Hint: Bound appropriate norms of u_ϵ and $\sqrt{\epsilon} u_\epsilon$.]

6. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a smooth boundary and outer unit normal ν. Let b a constant vector and $f \in L^2(\Omega)$. Consider the fourth order problem

\[u + \Delta^2 u + b \cdot \nabla u = f \quad \text{in } \Omega,
\]

\[u = 0 \quad \text{and} \quad \nabla u \cdot \nu = 0 \quad \text{on } \partial \Omega.
\]

(a) State the Lax-Milgram Theorem for a real Hilbert space.

(b) Develop a suitable variational form for the problem. [Be careful to handle the boundary values and define the Hilbert spaces you use.]

(c) Give a hypothesis on $|b|$ so that the Lax-Milgram theorem provides a unique solution to your variational problem. [Hint: Gårding's inequality gives a $C_G > 0$ such that $\|v\|^2_{H^2} \leq C_G \{\|u\|^2 + \|\Delta u\|^2\}$ for all $v \in H^2_0$.]
(a) (i) $\langle x, y \rangle = x \cdot y$

$\frac{1}{2} \| x + \frac{p}{q} y \|_p \leq \frac{1}{2} \left(\| x \|_p + \| y \|_p \right)$

$\Rightarrow \frac{\| x + y \|_p}{2} \leq \frac{1}{2} \left(\| x \|_p + \| y \|_p \right)$

$\Rightarrow \sum |x_n + y_n|^p \leq 2^{p-1} \left(\sum |x_n|^p + \sum |y_n|^p \right) < \infty$

(ii) $d \langle x, y \rangle = \| x - y \|_p$

$\sum |x_n - y_n|^p < \infty$.

(b) Consider the Δ norm, for

$x = (1, 0, 0, \ldots)$ and $y = (0, 1, 0, 0, \ldots)$

$\Rightarrow \left(\sum |x_n - y_n|^p \right)^{1/p} = 2^{1/p} > 2$

$\Rightarrow \left(\sum |x_n|^p \right)^{1/p} + \left(\sum |y_n|^p \right)^{1/p} = 1 + 1 = 2$

But $2^{1/p} > 2$, so not a norm.

(c) $d \langle x, y \rangle = \sum |x_n - y_n|^p$

(i) $d \langle x, y \rangle = 0 \iff d \langle x, y \rangle = 0 \iff x = y$ for $\forall n$

(ii) $d \langle x, y \rangle = d \langle y, x \rangle$

(iii) $d \langle x, y \rangle \leq d \langle x, z \rangle + d \langle z, y \rangle$

$|x_n - y_n|^p = |x_n - z_n|^p + |z_n - y_n|^p$

$\leq 2^{p-1} \left(|x_n - z_n|^p + |z_n - y_n|^p \right) \left(\text{see (a)} \right)$

$\Rightarrow \sum |x_n - y_n|^p \leq 2 \sum |x_n - z_n|^p + \sum |z_n - y_n|^p$. \(\blacksquare\)
2. Open Mapping
(a) Let X, Y be Banach.
If $T : X \to Y$ is bounded, linear, surjective,
then T is open (maps open sets to open sets).

(b) If $\| \cdot \|, \| \cdot \|'$, $(X, \| \cdot \|)$ & $(X, \| \cdot \|')$ complete,
$\|x\| \leq C \|x\|'$ \forall x \in X.$
Consider
$i : (X, \| \cdot \|') \to (X, \| \cdot \|)$ identity.
Note i is bounded, surjective (and linear).
so i is open \Rightarrow
$i : B_{\varepsilon}' \to Q \subseteq X$ open.
Now $\exists \varepsilon > 0$ s.t. $B_{\varepsilon} \subseteq Q$.
Given $x \in X,$
\[\frac{\varepsilon}{2} \frac{x}{\|x\|} \in B_{\varepsilon} \cap B_{1} \]
$\Rightarrow \quad \frac{\varepsilon}{2} \frac{\|x\|'}{\|x\|} \leq 1 \Rightarrow \|x\|' \leq \frac{2}{\varepsilon} \|x\|.$
Thus the norms are equivalent.
3. \(Q = [a, b], \quad \forall p, q \in (1, \infty), \quad \frac{1}{p} + \frac{1}{q} = 1, \quad v \in L^q(\Omega). \quad A : L^p(\Omega) \rightarrow \text{Rem}. \)

\[(Au)(t) = \int_a^b v(s)u(s)ds \quad \forall t \in \Omega.\]

(a) \(A : \rightarrow L^p(\Omega) \)

\[\int_a^b |(Au)(t)|^p = \int_a^b \left(\int_a^b |v(s)|u(s)ds \right)^p dt \]

\[= \int_a^b \left(\|v\|_{L_b} \|u\|_{L_p} \right)^p dt \]

\[\leq (b-a)^p \|v\|_{L_b} \|u\|_{L_p}^p \]

\[\Rightarrow \|Au\|_{L_p} \leq (b-a)^p \|v\|_{L_b} \|u\|_{L_p}^p \]

So, \(A \) maps into \(L^p \) and is continuous.

(b) \(Au(t) = \int_a^b v(s)K_{a,s}u(s)ds \)

\[v \text{ density \& } C(\Omega) \text{ in } L^p, L^q \]

\[v_j \to v, \quad u_k \rightharpoonup u \]

\[A_j u = \lim_k A_j u_k, \quad A_j : C(\Omega) \to C(\Omega) \]

is compact by Ascoli-Arzela

\[A_j : L^p \to L^p \text{ compact by density} \]

\[A_j \to A \text{ is also compact.} \]
4. \(X, Y \) metric, \(Y \) complete, \(A \subseteq X \) dense
\[T: A \rightarrow Y \text{ unif. cont. (on A)}. \]

\[\forall \varepsilon > 0 \ \exists \delta_\varepsilon > 0 \ \text{s.t.} \ A \ni x, y \in A, \]
\[d_y(Tx, Ty) < \varepsilon \text{ whenever } d_x(x, y) < \delta_\varepsilon. \]

Let \(x \in X \) and \(x_n \rightarrow x, x_n \in A \)

Claim: \(T x_n \) Cauchy.

\(T x_n \) Cauchy \(\Rightarrow \exists N > 0 \) st.
\[d(x_n, x_m) < \delta_\varepsilon \quad \forall \ n, m > N. \]

\(Y \) complete \(\Rightarrow \overline{T}(x_n) \rightarrow \xi = \overline{T}(x). \)

Claim: \(T \) unif. cont. If so, then \(\overline{T}x = Tx \ \forall x \in A \)
and \(\overline{T} \) is unique (since \(A \) dense).

Now \[d_T(Tx, Ty) \leq d_T(Tx, T x_n) + d_T(T x_n, T y_m) + d_T(T y_m, Ty) \]
where \(x_n \rightarrow x, y_m \rightarrow y, x_n, y_m \in A \).

If \(N > 0 \) chosen so
\[d_x(x_n, x_m) < \frac{\delta_\varepsilon}{3} + \frac{\delta_\varepsilon}{3} + \frac{\delta_\varepsilon}{3} \]
for \(n, m > N \) and \(d_x(x_n, y_m) < \frac{\delta_\varepsilon}{3}.
\]
\[\Rightarrow d_y(Tx, Ty) \leq 3 \varepsilon. \text{ For } n, m \text{ large}. \]
5. \(\Omega \subset \mathbb{R}^d, \, f \in L^2, \, \varepsilon > 0 \)

\[-\varepsilon \Delta u_\varepsilon + u_\varepsilon = f, \, \Omega \text{ j } u_\varepsilon = 0, \, \partial \Omega \]

Equi. to variational form is.

\[\varepsilon (\nabla u_\varepsilon, \nabla v) + (u_\varepsilon, v) = (f, v) \quad \forall v \in H_0^1(\Omega). \]

\(\varepsilon \| \nabla u_\varepsilon \|^2 + \| u_\varepsilon \|^2 = (f, u_\varepsilon) \leq \frac{1}{2} \| f \|^2 + \frac{1}{2} \| u_\varepsilon \|^2 \]

\(\Rightarrow \quad \varepsilon \| \nabla u_\varepsilon \|^2 + \frac{1}{2} \| u_\varepsilon \|^2 \leq \frac{1}{2} \| f \|^2 \]

\(\Rightarrow \quad \sqrt{\varepsilon} u_\varepsilon \text{ bounded in } H_0^1 \]

\[\Rightarrow \quad u_\varepsilon \rightharpoonup u \text{ in } L^2 \]

\[\sqrt{\varepsilon} u_\varepsilon \rightharpoonup \varrho \text{ in } H_0^1 \Rightarrow \sqrt{\varepsilon} u_\varepsilon \rightarrow \varrho \text{ in } L^2 \]

But \(\sqrt{\varepsilon} u_\varepsilon \rightarrow 0 \Rightarrow \varrho = 0 \)

Thus,

\[0 + (u, v) = (f, v) \quad \forall v \in H_0^1(\Omega) \]

\[\Rightarrow \quad (u - f, v) = 0 \Rightarrow u = f \]
6. \(\Omega \subset \mathbb{R}^d \), \(b \in L^2 \)

\[
\begin{cases}
 \Delta^2 u + b \cdot \nabla u = f, & \Omega \\
 u = 0, & \nabla u \cdot n = 0, & \partial \Omega
\end{cases}
\]

(a) Let \(\mathcal{H} \) be a real Hilbert space with closed subspace \(\mathcal{H} \). Let \(B : \mathcal{H} \times \mathcal{H} \to \mathbb{R} \)
be bilinear s.t.

(c) \(|B(x, y)| \leq M \|x\| \|y\| \quad \forall x, y \in \mathcal{H} \), \(\text{and} \)

(c) \(B(x, x) \geq \varepsilon \|x\|^2 \quad \forall x \in \mathcal{H} \), \(\text{coercive} \)

If \(x_0 \in \mathcal{H} \), \(F \in \mathcal{H}^* \), then \(\exists! u \in \mathcal{H} + x_0 \) s.t.

\[
B(u, v) = F(v) \quad \forall v \in \mathcal{H}.
\]

\[
\|u\| \leq \frac{1}{\varepsilon} \|F\| + (\frac{M}{\varepsilon} + 1) \|x_0\|
\]

(b) Find \(u \in \mathcal{H} = \{w \in L^2 : w = \omega, \Delta w = 0 \text{ on } \partial \Omega \} \) s.t.

\[
\begin{align*}
 (u, v) + (u, \Delta v) + (b \cdot \nabla u, v) &= (f, v) \quad \forall v \in \mathcal{H}.
\end{align*}
\]

(c) \(\text{LHS} = B(u, v) \), which is cont. For coercivity:

\[
\begin{align*}
 \|u\|^2 + \|\Delta u\|^2 + (b \cdot \nabla u, u) \\
 &\geq \|u\|^2 + \|\Delta u\|^2 - 16 \|\Delta u\| \|u\| \\
 &\geq \|u\|^2 + \|\Delta u\|^2 - \varepsilon \|u\|^2 \\
 &= (1 - \varepsilon) \|u\|^2 + \|\Delta u\|^2 - \varepsilon \|u\|^2 \\
 \text{Now } \epsilon (\|u\|^2 + \|\Delta u\|^2) &\geq \|\Delta u\|^2 \Rightarrow \text{Need}
\end{align*}
\]

\[
(1 - \varepsilon) \frac{\varepsilon}{\varepsilon} |b| < c \quad \Rightarrow \quad |b| < \frac{c}{\varepsilon}
\]
1. Let X be a Banach space with dual space X^* and duality pairing $\langle \cdot, \cdot \rangle$, and let $A, B : X \to X^*$ be linear maps.

(a) State the Closed Graph Theorem and what it means for an operator to be closed.

(b) Assuming $\langle Ax, y \rangle = \langle Ay, x \rangle$ for all $x, y \in X$, show that A is bounded.

(c) Assuming $\langle Bx, x \rangle \geq 0$ for all $x \in X$, show that B is bounded. [Hint: Suppose B is not continuous at 0, so $x_n \to 0$ but $Bx_n \to y \neq 0$. For $w \in X$ such that $\langle y, w \rangle > 0$, consider $x_n + \epsilon w$.]

2. Let $\Omega = [0, 1]$ and $1 \leq p < \infty$ be given and consider the sequence of functions $g_n \in L^p(\Omega)$ defined by $g_n(x) = n^{1/p}e^{-nx}$. Show that as $n \to \infty$:

(a) $g_n(x)$ converges pointwise to zero for each fixed $x \in (0, 1]$ and for any $p \geq 1$;

(b) g_n does not converge strongly to zero in $L^p(\Omega)$ for any $p \geq 1$;

(c) g_n converges weakly to zero in $L^p(\Omega)$ if $p > 1$, but not if $p = 1$.

3. Prove the Mazur Separation Lemma, which says that if X is a normed linear space, Y a linear subspace of X, $w \in X$ but $w \not\in Y$, and $d = \text{dist}(w, Y) = \inf_{y \in Y} \|w - y\|_X > 0$,

then there exists $f \in X^*$ such that $\|f\|_X \leq 1$, $f(w) = d$, and $f(z) = 0$ for all $z \in Y$. [Hint: Begin by working in $Z = Y + Fw$.]

4. Let $\Omega = (0, 1)^2$ and consider the boundary value problem (BVP)

$$\begin{align*}
-u_{xx} + u_{xy} - u_{yy} &= f & \text{in } \Omega, \\
-u_x + u_y - u &= g & \text{on } \Gamma_L = \{(0, y) : y \in (0, 1)\}, \\
u &= 0 & \text{on } \Gamma_* = \partial \Omega \setminus \Gamma_L.
\end{align*}$$

Let $H = \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_*\}$, which is a Hilbert space.

(a) Find the corresponding variational problem for $u \in H$ and test functions $v \in H$. Also give the function spaces containing f and g.

(b) Show the general Poincaré type inequality: There exists $\gamma > 0$ such that

$$\|\nabla v\|_{L^2(\Omega)}^2 + \int_{\Gamma_L} v^2 \geq \gamma \|v\|_{L^2(\Omega)}^2 \quad \forall v \in H.$$

(c) Show that there is a unique solution to the variational problem.
5. For fixed $T > 0$, let $g : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ be continuous and Lipschitz continuous in the second argument, i.e., there is some $L > 0$ such that

$$\|g(t, v) - g(t, w)\| \leq L \|v - w\| \quad \forall v, w \in \mathbb{R}^d, t \in [0, T],$$

where $\| \cdot \|$ is the norm on \mathbb{R}^d. For any $u_0 \in \mathbb{R}^d$, consider the initial value problem (IVP) $u'(t) = g(t, u(t))$ and $u(0) = u_0$.

(a) Write this IVP as the fixed point of a functional $G : C^0([0, T]; \mathbb{R}^d) \to C^0([0, T]; \mathbb{R}^d)$.

(b) Normally, we use the $L^\infty([0, T])$-norm for $C^0([0, T]; \mathbb{R}^d)$. Show that the function $||| \cdot ||| : C^0([0, T]; \mathbb{R}^d) \to [0, \infty)$, defined by

$$|||v||| = \sup_{0 \leq t \leq T} (e^{-Lt} \|v(t)\|),$$

is a norm equivalent to the $L^\infty([0, T])$-norm.

(c) In terms of this new norm, show that G is a contraction.

(d) Explain how we conclude that there is a unique solution $u \in C^1([0, \infty); \mathbb{R}^d)$ to the IVP for all time.

6. Consider finding extremals to the problem: Find $u, v \in C^1_0([0, 1])$ minimizing

$$F(u, v, u', v') = \int_0^1 \left((u')^2 + (v')^2 + 2uv \right) dx.$$

(a) Find the Euler-Lagrange (EL) equations for this problem.

(b) Reduce the EL equations to a single equation and find its solution. [Hint: The fourth roots of unity are ± 1 and $\pm i$.]

(c) Find the extremal to the problem, up to solving a 4×4 system of linear equations.

(d) If we add the constraint that $\int_0^1 u^2 v' \, dx = 0$, what EL equations do we get?
1. X Banach, \(A, B : X \to X^* \) linear.

(a) Closed Graph Theorem:
Let \(X \) and \(Y \) be Banach spaces and \(T : X \to Y \) linear. Then: \(T \) is continuous (bounded)
\[\iff T \text{ is closed.} \]
\(T \) is closed if whenever \(x_n \to x, T x_n \to y \), then \(y = T x \).

(b) \(\langle Ax, y \rangle = \langle A x, y \rangle \) \(\forall x, y \in X \).
Suppose \(x_n \to x \), \(A x_n \to y \).
Then \(\langle A x_n, z \rangle = \langle A z, x_n \rangle \) \(\forall z \in X \)
\[\rightarrow \langle A x, z \rangle = \langle A z, x \rangle = \langle A x, z \rangle \]
\[\Rightarrow A x = y, \text{ and } A \text{ continuous (bounded).} \]

(c) \(\langle B x, x \rangle \geq 0 \) \(\forall x \in X \).
ETS for \(x_n \to 0 \), \(B x_n \to y \).
Suppose not: \(y \neq 0 \) so \(\exists w \in X, \langle y, w \rangle \neq 0 \).
Consider
\[0 \leq \langle B(x_n + \varepsilon w), x_n + \varepsilon w \rangle \]
\[\rightarrow \langle y + \varepsilon B w, \varepsilon w \rangle \]
\[= \varepsilon \langle y, w \rangle + \varepsilon^2 \langle B w, w \rangle \]
\[\geq 0. \]
Let \(\varepsilon \to 0 \) so last term negligible.
Contradiction, since \(\varepsilon \) can be + or -.
So \(y = 0 \) and \(B \) cont.
2. \(D = [0, 1] \), \(1 < p < \infty \), \(g_n(x) = \frac{n^p}{e^{nx}} - nx^{\frac{p}{n}} \).

(a) \(g_n(x) = \frac{n^p}{e^{nx}} \to \frac{1}{x^{\frac{p}{n}}} \quad \text{Höpital} \quad \frac{1}{x e^{nx}} \to 0. \)

(b) \[\|g_n\|_p = \int_0^1 n e^{-nx} \, dx = -\frac{1}{n} e^{-nx} \bigg|_0^1 = \frac{1}{n} \left(1 - e^{-n} \right) \to \frac{1}{p} = 0. \]

So \(g_n \to 0. \)

(c) Let \(g(x) = \frac{1}{x^{\frac{p}{n}}} \), \(\frac{1}{p} + \frac{1}{n} = 1. \)

If \(p > 1 \), then by density suppose \(h \in L^p \).

Then \(\exists x_\ast > 0 \) s.t. \(h(x) = 0 \) for \(x < x_\ast \).

Now \[\left| \int_0^1 g_n h \right| \leq \int_0^1 g_n \, |h|, \]

so suppose \(h \geq 0. \)

Note \(\frac{d}{dn} \left(\frac{n^p}{e^{nx}} h \right) = \frac{n^p}{e^{nx}} \left(\frac{1}{p} - x \right) h \)

\(\leq 0 \) for \(n \) large enough, and \(x \geq x_\ast \) (so \(\forall x \)).

Thus \(g_n h \) is monotone, so \(\text{MCT} \Rightarrow \)

\[\lim \int g_n h = \int \lim g_n h = 0. \]

That is, \(g_n \to 0. \)

But for \(p = 1 \), \(L^1 = L^\infty \). Consider \(h \equiv 1. \)

Then \[\int_0^1 n e^{-nx} = -e^{-nx} \bigg|_0^1 = 1 - e \to 1 \neq 0. \]
3. \(\mathbf{X} \) is NLS, \(Y \) is subspace, \(w \in X \setminus Y \).

\[
d = \text{dist}(w, Y) = \inf_{y \in Y} \|w - y\| > 0.
\]

Work in \(Z = Y + \text{lin} w \)

\(z \in Z \Rightarrow \exists! y \in Y, \lambda \in \mathbb{F} \) s.t.

\[
z = y + \lambda w
\]

(for otherwise \(\exists y \neq y' \), \(\lambda \neq \lambda' \), \(w \not\in Y \)).

Let \(\varphi : Z \to \mathbb{F} \)

\(\varphi(z) = \lambda d \) (well defined).

Now \(\varphi \) is linear and

\[
\| \varphi(y + \lambda w) \|_2 = \| \varphi(y) + \lambda \varphi(w) \|_2 = \| \lambda \varphi(w) \|_2 = \lambda \| \varphi(w) \|_2
\]

\[
= \inf_{z \in \mathbb{F}} \frac{\|w - z\|}{\|y + \lambda w\|} \leq 1.
\]

\[
\Rightarrow \| \varphi \| \leq 1.
\]

Extend (using Hahn–Banach) to \(X \).
4. \(Q = (0,1)^2 \)

\[\begin{cases} -u_{xx} + u_{yy} - u_yg = f, & x, \ y \\
-\Delta u = u = 0, & \Gamma \\
u = \partial \mathcal{E}/\sqrt{L} \end{cases} \]

\[H = \{ v \in H^1 : v = 0 \text{ on } \Gamma \} \]

(a) \((u_x, v_x) - \langle u_x, v \rangle_{L^2} - (u_y, v_x) + \langle u_y, v \rangle_{L^2} + (u_y, v_y) \)

\[\Rightarrow \]

\[B(y, v) = (u_x, v_x) - (u_y, v_x) + (u_y, v_y) + \langle u, v \rangle_{L^2} = (\mathcal{F}, v) - \langle g, v \rangle_{L^2} \]

So \(f \in H^\ast, \ g \in (H^2(\Omega))^\ast \)

(b) Suppose not, so \(\exists v, \mathbf{n} \) s.t. \(\| v \|_{L^2} = 1 \)

but \(\| \nabla v \|_{L^2}^2 + S_x v_x^2 \leq n \).

\[\Rightarrow \text{ (sub.)) } \]

\[\nabla v \rightarrow 0, \quad S_x v_x^2 \rightarrow 0 \]

\(\| v \|_{H^1} \leq 2 \Rightarrow v \rightarrow v, \quad v \rightarrow v \)

But \(\nabla v = 0 \Rightarrow v = 0 \) contradicting \(\| v \|_{L^2} = 1 \).

(c) Lax-Milgram, Linear form good by \(\mathcal{F} \).

Continuity: \(|B(v, w)| \leq (\| u_x \|_{L^2} + \| u_y \|_{L^2}) (\| v_x \|_{L^2} + \| v_y \|_{L^2}) + \| u \|_{H^1} \)

\[\leq \| u \|_{H^1} \| v \|_{H^1} + \| v \|_{H^1} \]

Coercivity: \(B(v, v) \geq \| v \|_{H^1}^2 - (\| v_x \|_{L^2}^2 + \| v_y \|_{L^2}^2 + S_x v_x^2) \)

\[\geq \frac{1}{2} \| v \|_{H^1}^2 \quad \text{by (b), } 2 \| v_x \|_{L^2}^2 + 2 \| v_y \|_{L^2}^2 \]
5. \(u' = g(t, u(t)) \quad u(0) = u_0 \cdot \]

\[
\Rightarrow u(t) - u(0) = \int_0^t g(s, u(s)) \, ds
\]

\[
G(u) = u_0 + \int_0^t g(s, u(s)) \, ds
\]

\[
\|v\|_1 = \sup_{\alpha \leq t \leq T} \left(e^{-\lambda t} \|v(t)\| \right)
\]

Note: \(\|v\|_1 \leq \|v\|_\infty, \|v\|_1 \geq e^{-\lambda T} \|v\|_\infty \)

so \(\|v\|_1 \) equiv. to \(\|v\|_\infty \) \rightarrow

\(\|v\|_1 \) satisfies the zero property

Scaling clearly okay

\[
\|v + w\|_1 = \sup_{\alpha \leq t \leq T} \left(e^{-\lambda t} \|v + w\| \right) \leq \sup_{\alpha \leq t \leq T} \left(e^{-\lambda t} \|v\| + \|w\| \right) \\
\leq \sup_{\alpha \leq t \leq T} e^{-\lambda t} \|v\| + \sup_{\alpha \leq t \leq T} e^{-\lambda t} \|w\| \\
= \|v\|_1 + \|w\|_1
\]

so \(\|v\|_1 \) is a norm.

\[
e^{-\lambda t} \|G(u) - G(w)\| = e^{-\lambda t} \left| \int_0^t (g(s, v) - g(s, w)) \, ds \right| \\
\leq Le^{-\lambda t} \int_0^t \|v - w\| \leq Le^{-\lambda t} \int_0^t e^{-\lambda s} \|v - w\| \leq Le^{-\lambda t} \int_0^t e^{\lambda s} \|v - w\| \\
= e^{-\lambda t} \int_0^t e^{\lambda s} \|v - w\| \leq e^{-\lambda t} \int_0^t (1 - e^{\lambda s}) \|v - w\| \Rightarrow \|G(u) - G(w)\| \leq e^{-\lambda t} \|v - w\| \cdot \theta = e^{-\lambda t} \|v - w\| \cdot \Theta = e^{-\lambda t} < 1.
\]

(d) Banach contraction mapping Thm \(\Rightarrow \exists ! \)

\(u \in C^0([0, T]) \) s.t. \(G(u) = u \) (IVP)

But \(\Rightarrow u \in C^0 \), then \(G(u) \in C^0 \)

Finally, let \(T \to \infty \).
6. \(u, v \in C^1_{0,1}([0,1]) \), \(F(u, v, u', v') = \int_0^1 \left[(u')^2 + (v')^2 + 2uv \right] dx

\(\hat{p}_{y_i} = (p_{y_i})' \), \(i = 1, 2 \)

\[
\begin{align*}
2v &= 2u'' \\
2u &= 2v'' \Rightarrow \begin{cases} v = u'' \\
u = v'' \end{cases}
\end{align*}
\]

(6) \(u = v'' = u''' \)

\(\Rightarrow u = e^{rt}, \quad r^4 = 1 \quad (r = \pm 1, \pm i) \)

\(u(x) = Ae^x + Be^{-x} + Ce^{ix} + De^{-ix} \)

(6) \(v(x) = u''

= Ae^x + Be^{-x} - Ce^{ix} - De^{-ix} \)

\[
\begin{cases}
\begin{align*}
u(0) &= A + B + C + D = 0 \\
u(1) &= Ae^x + Be^{-x} + Ce^{ix} + De^{-ix} = 1 \\
v(0) &= A + B - C - D = 0 \\
v(1) &= Ae^x + Be^{-x} - Ce^{ix} - De^{-ix} = 1.
\end{align*}
\end{cases}
\]

(d) \(H = \int_0^1 \left[(u')^2 + (v')^2 + 2uv + \lambda u^2 v' \right] dx \)

\[
\begin{align*}
2v + 2\lambda uv' &= 2u'' \Rightarrow \begin{cases} v + \lambda uv' = u'' \\
u - \frac{1}{2} \lambda (u^2)' = v'' \end{cases}
\end{align*}
\]
1. A problem on continuous operators.

(a) Define the topological dual of a Banach space.

(b) Define the weak topology on a Banach space.

(c) Let X, Y be Banach spaces and $A : X \to Y$ be a linear operator. Prove that A is continuous if and only if it is weakly continuous (i.e., it is continuous when X and Y are equipped with their weak topologies).

Solution.

(a) The topological dual X' of a normed space X consists of all linear and continuous functionals defined on X. For a complex space X, we may define the topological dual as the space of all anti-linear and continuous functionals on X. Either space is equipped with the norm

$$l \in X', \quad \|l\|_{X'} := \sup_{x \in X, x \neq 0} \frac{|l(x)|}{\|x\|_X} = \sup_{\|x\|_X \leq 1} |l(x)| = \sup_{\|x\|_X = 1} |l(x)|.$$

For a reflexive Banach space, the supremum is actually attained and can be replaced with maximum. The dual space is always complete, no matter whether X is complete or not.

(b) The weak topology on a Banach space X is a locally convex topology defined by a family of seminorms

$$X \ni x \mapsto |\langle x', x \rangle| = |x'(x)|, \quad x' \in X'.$$

Due to the definiteness of the duality pairing (proved using Hahn-Banach Theorem), the family of seminorms satisfies the axiom of separation which implies that the weak topology is well-defined.

(c) We first prove that weak continuity of A implies strong continuity of A. Assume, to the contrary, that there exists a sequence x_n such that $\|x_n\|_X \to 0$ but $\|Ax_n\|_Y \not\to 0$. At the cost of replacing x_n with a subsequence, we can assume that there exists $\epsilon > 0$ such that $\|Ax_n\|_Y \geq \epsilon$. Define

$$\bar{x}_n = \frac{x_n}{\|x_n\|_{X'}^{1/2}}.$$

Then,

$$\|\bar{x}_n\|_X = \frac{\|x_n\|_X^{1/2}}{\|x_n\|_{X'}^{1/2}} \to 0 \quad \text{and} \quad \|A\bar{x}_n\|_Y \to \infty.$$
As the strong convergence implies weak convergence, \(\bar{x}_n \to 0 \) and, by weak continuity of \(A \), \(A\bar{x}_n \to 0 \) in \(Y \). But every weakly convergent sequence must be bounded, a contradiction.

Assume now that \(A \) is strongly continuous.

Lemma: Let \(X \) be an arbitrary topological vector space, and \(Y \) be a normed space. Let \(A \in \mathcal{L}(X,Y) \). The following conditions are equivalent to each other.

(i) \(A : X \to Y \) (with weak topology) is continuous.
(ii) \(f \circ A : X \to \mathbb{R}(\mathbb{C}) \) is continuous \(\forall f \in Y' \).

(i) \(\Rightarrow \) (ii). Any linear functional \(f \in Y' \) is also continuous on \(Y \) with weak topology. Composition of two continuous functions is continuous.

(ii) \(\Rightarrow \) (i). Take an arbitrary \(B(I_0, \epsilon) \), where \(I_0 \) is a finite subset of \(Y' \). By (ii),

\[
\forall g \in I_0 \exists B_g, \text{ a neighborhood of } 0 \text{ in } X : x \in B_g \Rightarrow |g(A(x))| < \epsilon.
\]

It follows from the definition of filter of neighborhoods that

\[
B = \bigcap_{g \in I_0} B_g
\]

is also a neighborhood of \(0 \). Consequently,

\[
x \in B \Rightarrow |g(A(x))| < \epsilon \Rightarrow Ax \in B(I_0, \epsilon).
\]

To conclude the final result, it is sufficient now to show that, for any \(g \in Y' \),

\[
g \circ T : X \text{ (with weak topology)} \to \mathbb{R}
\]

is continuous. But \(g \circ T \), as a composition of continuous functions, is a strongly continuous linear functional and, consequently, it is continuous in the weak topology as well (compare the discussion in the book).

2. Projections on a Hilbert space. Let \(X \) and \(Y \) be Hilbert spaces, \(P : X \to Y \) and \(Q : Y \to X \) be bounded linear operators, and suppose that \(QP : X \to X \) is an orthogonal projection operator. Let \(U_1 = R(QP) \) and \(U_2 = N(QP) \), i.e., the image (or range) and null space (or kernel) of the operator, respectively. Moreover, let \(V_1 = R(P) \).

(a) What does it mean to say \(X = U_1 \oplus U_2 \)? Show that \(U_1 \) and \(U_2 \) are orthogonal to each other.

(b) Prove that \(U_1 \) and \(V_1 \) are isomorphic.

(c) Show directly that \(P^*Q^* : X \to X \) is an orthogonal projection.

(d) If \(N(Q) \cap R(PQ) = \{0\} \), show that \(PQ : Y \to Y \) is a projection operator (not necessarily orthogonal).
Solution.

(a) The symbols \(X = U_1 \oplus U_2 \) mean that \(X = \{ u_1 + u_2 : u_i \in U_i, i = 1, 2 \} \) and \(U_1 \cap U_2 = \{0\} \). For \(u_i \in U_i \), we know that \(u_1 = QP u_1 \) and \(QP u_2 = 0 \), so
\[
\langle u_1, u_2 \rangle_X = \langle QP u_1, u_2 - QP u_2 \rangle_X = 0
\]
by the definition of orthogonal projection.

(b) Consider the map \(T = P|_{U_1} : U_1 \to V_1 \), that is bounded and linear. Every \(v \in V_1 \) has some \(u \in X \) such that \(Pu = v \). However, there are (unique) \(u_i \in U_i \) such that \(u = u_1 + u_2 \), and so \(Tu_1 = Pu_1 = Pu = v \) shows that \(T \) maps onto \(V_1 \). To finish, we need to show that \(T \) maps one-to-one, i.e., that \(Tu_1 = 0 \) implies that \(u_1 = 0 \). But \(0 = Tu_1 = Pu_1 \), so also \(QP u_1 = 0 \). Thus \(u_1 \in U_1 \cap U_2 \), and so \(u_1 = 0 \).

(c) For \(u, w \in X \), we compute
\[
0 = \langle QP u - u, w \rangle_X = \langle u, P^* Q^* w - w \rangle_X,
\]
which shows that \(P^* Q^* \) is also an orthogonal projection operator.

(d) For \(y \in Y \), we know that \(QPQ PQ y = PQ Q y \), since \(QP \) is a projection. But then
\[
0 = QPQ PQ y - PQ Q y = Q(PQ PQ y - PQ y) = QP(Q PQ y - Q y).
\]
Thus \(PQQ PQ y - PQ y \in N(Q) \) and clearly \(PQQ PQ y - PQ y \in R(PQ) \), so \(PQQ PQ y = PQ y \).

3. Hilbert basis. Let \(H \) be a separable Hilbert space and let \(\{ e_n \}_{n=1}^\infty \) be a maximal orthonormal set (i.e., a Hilbert basis). Let \(\{ \lambda_n \}_{n=1}^\infty \) be a bounded sequence of real numbers, and define the linear operator \(A : H \to H \) by
\[
A x = \sum_{n=1}^\infty \lambda_n \langle x, e_n \rangle e_n.
\]

(a) Show that \(A \) is continuous and self-adjoint.

(b) Show that each \(\lambda_n \) is an eigenvalue with eigenvector \(e_n \).

(c) Show that if \(\lambda_n \to 0 \), then \(A \) is compact. [Hint: Consider the operator \(A_N \) defined by a truncated sum, and show that \(A_N \) converges to \(A \)]

Solution.

(a) If \(x_m \to 0 \), then \(\| x_m \|^2 = \sum_{n=1}^\infty | \langle x_m, e_n \rangle |^2 \to 0 \). Thus
\[
\| Ax_m \| = \sum_{n=1}^\infty | \lambda_n |^2 | \langle x, e_n \rangle |^2 \leq \max_n | \lambda_n |^2 \sum_{n=1}^\infty | \langle x_m, e_n \rangle |^2 \to 0.
\]
That is, \(A \) is continuous at 0, and so continuous everywhere.

Now
\[
\langle Ax, y \rangle = \sum_{n=1}^\infty \lambda_n \langle x, e_n \rangle \langle y, e_n \rangle = \sum_{n=1}^\infty \langle x, e_n \rangle \lambda_n \langle y, e_n \rangle = \langle x, Ay \rangle
\]
is clearly self adjoint (since \(\lambda_n \) is real).
(b) Compute

\[(A - \lambda I)x = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n - \lambda \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n = \sum_{n=1}^{\infty} (\lambda_n - \lambda) \langle x, e_n \rangle e_n , \]

and note that this cannot be invertible when \(\lambda = \lambda_n \) for some \(n \). Moreover, \(Ae_n = \lambda_n e_n \) is clear by orthonormality of the basis.

(c) Consider the operators

\[A_N x = \sum_{n=1}^{N} \lambda_n \langle x, e_n \rangle e_n . \]

Each has finite dimensional range, and is hence compact. Moreover,

\[\| A_N x - Ax \|^2 = \left\| \sum_{n=N+1}^{\infty} \lambda_n \langle x, e_n \rangle e_n \right\|^2 = \sum_{n=N+1}^{\infty} |\lambda_n|^2 |\langle x, e_n \rangle|^2 \to 0 , \]

so \(A_n \to A \) and \(A \) is compact.

4. Closed operators. All spaces are real. Consider the operator

\[A : D(A) \to L^2(0,1), \quad Au = u' + u , \]

\[D(A) := \{ u \in L^2(0,1) : Au \in L^2(0,1), \, u(0) = 0, \, u(1) = 0 \} , \]

where the derivative is understood in the sense of distributions.

(a) Interpret \(D(A) \) in terms of Sobolev spaces.

(b) Show that \(A \) is a closed operator.

(c) Prove that \(A \) is bounded below in \(L^2(0,1) \).

(d) Compute the \(L^2 \)-adjoint \(A^* , L^2(0,1) \supset D(A^*) \ni v \mapsto A^* v \in L^2(0,1) \).

(e) Compute the null space of the adjoint operator \(A^* \).

(f) For an appropriate right-hand side \(f \), discuss the well-posedness of the problem:

\[\begin{cases}
 u \in D(A), \\
 Au = f.
\end{cases} \]

Solution.

(a) We have

\[u, u' + u \in L^2(0,1) \iff u, u' \in L^2(0,1) \iff u \in H^1(0,1). \]

Consequently, \(D(A) = H^1_0(0,1) \).
(b) We need to show that
\[D(A) \ni u_n \rightarrow u, \quad Au_n \rightarrow w \quad \Rightarrow \quad u \in D(A), \quad Au = w. \]
All convergence is in the \(L^2 \)-sense. Let \(\phi \in D(0,1) \). We have
\[
\begin{align*}
(u_n, -\phi') + (u_n, \phi) &= (-u'_n + u_n, \phi) \rightarrow (w, \phi) \\
\downarrow & \quad \downarrow \\
(u, -\phi') & \quad (u, \phi)
\end{align*}
\]
This proves that \(-u' + u = w\) and, therefore, \(u \in H^1(0,1) \). Moreover, \(u_n \rightarrow u \) in \(H^1(0,1) \). Continuous embedding of \(H^1(0,1) \) into \(C([0,1]) \) implies that,
\[
u(x) = \lim_{n \to \infty} u_n(x) = 0 \quad \text{for} \quad x = 0, 1.
\]
Consequently, \(u \in D(A) \).
(c) We have
\[
||Au||^2 = ||u'||^2 + ||u||^2 + 2(u', u).
\]
But
\[
2(u', u) = \int_0^1 \frac{d}{dx}(u^2) = u^2|_0^1 = 0.
\]
Consequently,
\[
||Au||^2 = ||u'||^2 + ||u||^2 \geq ||u||^2.
\]
(d) Integration by parts and BC’s on \(u \) reveal that
\[
D(A^*) = H^1(0,1) \quad A^*v = -v' + v.
\]
(e) We get
\[
D(A^*) = \{ce^x : c \in \mathbb{R}\}.
\]
(f) According to the Closed Range Theorem for Closed Operators, the equation has a unique solution \(u \) for every \(f \in L^2(0,1) \) such that \(f \in \mathcal{N}(A^*)^\perp \), i.e.,
\[
\int_0^1 f(x)e^x = 0.
\]
5. Variational formulations. Consider the ultraweak variational formulation of the previous problem, i.e.,
\[
\begin{align*}
\begin{cases}
\forall u \in L^2(0,1) =: U, & \\
\int_0^1 uA^*v \, dx = \int_0^1 f v \, dx & \forall v \in D(A^*) = H^1(0,1) =: V,
\end{cases}
\end{align*}
\]
where A^* denotes the L^2-adjoint of A, $A^* v = -v' + v$, and $f \in L^2(0,1)$. [Hint: For this problem, use results of the previous problem.]

(a) Define the operator $B : U \to V'$ and its conjugate corresponding to the bilinear form $b(u,v)$.

(b) State the Babuška-Nečas Theorem for Hilbert spaces.

(c) Use this theorem to investigate the well-posedness of the variational formulation.

Solution.

(a) If the bilinear form $b(u,v)$ is continuous (trivially in our case), then the operator

$$B : U \to V', \quad \langle Bu, v \rangle := b(u,v), \quad v \in V, u \in U,$$

is always well-defined, linear and continuous. The map setting b into B is an isometric isomorphism. The conjugate operator,

$$B' : V'' \to V', \quad \langle B'v, u \rangle = b(u,v) \quad u \in U, v \in V,$$

is also well-defined, linear and continuous with the norm equal to that of B.

(b) If the bilinear form satisfies the inf-sup condition,

$$\sup_{v \in V} \frac{|b(u,v)|}{\|v\|_V} \geq \gamma \|u\|_U \iff \|Bu\|_{V'} \geq \gamma \|u\|_U$$

and $l \in V'$ vanishes on the null space of the transpose operator,

$$l(v) = 0 \quad \forall v \in V_0 := \{ v \in V : b(w,u) = 0 \quad \forall w \in U \},$$

then there exists a unique solution u to the variational problem and

$$\|u\|_U \leq \gamma^{-1} \|l\|_{V'}.$$

(c) We first prove the inf-sup condition. It is sufficient to find a $v \in H^1(0,1)$ such that $A^* v = u$ and

$$\|v\| \leq C \|A^* v\| = C \|u\|.$$

Once we control the L^2-norm of v, we control also the L^2-norm of its derivative,

$$\|v'\| \leq \| -v' + v \|_{A^* v} + \|v\| \leq (1 + C) \|A^* v\| = (1 + C) \|u\|,$$

and, consequently,

$$\|v\|_{H^1(0,1)} = \|v\|^2 + \|v'\|^2 \leq \left(1 + C^2 + C^2\right) \|u\|^2.$$

We have then

$$\sup_{v \in H^1(0,1)} \frac{|b(u,v)|}{\|v\|_{H^1}} \geq \frac{\|u\|_{L^2}^2}{\|v\|_{L^2}^2} \geq \frac{1}{C_1} \frac{\|u\|_{L^2}^2}{\|u\|_{L^2}^2} = \frac{1}{C_1} \|u\|_{L^2}^2.$$
Next, we determine the null space of the transpose operator. Clearly,

\[0 = \int_0^1 u A^* v \text{ } \forall u \in L^2(0, 1) \Rightarrow A^* v = 0. \]

This gives,

\[N(B') = \{ ce^x : c \in \mathbb{R} \}. \]

Consequently, by the Babuška-Nečas Theorem, for every \(l \in (H^1(0, 1))' \) that satisfies the compatibility condition

\[l(e^x) = 0, \]

the variational problem has a unique solution \(u \) that depends continuously upon \(l \). Note that the right-hand side may be more general than an \(L^2 \)-function. For the \(L^2 \)-function \(f \),

\[l(v) = \int_0^1 f v, \]

so the function \(f \) must be \(L^2 \)-orthogonal to \(e^x \).

Finding a solution \(v \in H^1(0, 1) \), \(A^* v = u \in L^2(0, 1) \) is an undetermined problem. We may fix \(v \) by adding an extra BC: \(v(0) = 0 \). You can now find \(v \) explicitly (this is an elementary problem), or you can consider an auxiliary problem

\[
\begin{align*}
 v &\in H^1(0, 1), \ v(0) = 0, \\
 Lv &:= -v' + v = u.
\end{align*}
\]

By the same argument as in the previous problem, operator \(L \) is bounded below,

\[\| -v' + v \|^2 = \|v'\|^2 + v(1)^2 + \|v\|^2 \geq \|v\|^2. \]

The adjoint,

\[D(L^*) := \{ u \in H^1(0, 1) : u(1) = 0 \}, \quad L^* u = -u' + u, \]

has a trivial null space. The Closed Range Theorem for Closed Operators implies thus that there exists a unique solution \(v \in D(L), \ Lv = A^* v = u, \) and \(\|v\| \leq \|u\| \).

6. Nonlinear equations. Let \(X \) be a Banach space and \(T : X \to X \) a bounded linear operator. Let \(g : X \to X \) be a nonlinear mapping that is \(C^1 \) and has \(g(0) = 0 \) and \(Dg(0) = 0 \). For \(f \in X \), we want to solve

\[F(u) = u + T g(u) = f \]

We consider the map \(G(u) = u + \alpha (F(u) - f) \) for some \(\alpha \in \mathbb{R} \).

(a) Show that \(G(u) \) is a contractive map for small enough \(u \) and properly chosen \(\alpha \).

(b) Use the Banach contraction mapping theorem to show that there is a solution to \(F(u) = f \), provided \(f \) is sufficiently small.

(c) Compute \(DF(u)(v) \) from the definition of the Fréchet derivative.

(d) Solve \(F(u) = f \) using the inverse function theorem, provided \(f \) is sufficiently small.
Solution.

(a) Let \(u, v \in X \) and compute

\[
G(u) - G(v) = u - v + \alpha(F(u) - F(v)) = (1 + \alpha)(u - v) + \alpha T(g(u) - g(v)),
\]

so that

\[
\|G(u) - G(v)\| \leq \|1 + \alpha\|\|u - v\| + \|\alpha\|\|T\|\|g(u) - g(v)\|.
\]

Since \(Dg(0) = 0 \) and \(g \) is \(C^1 \), given \(\epsilon > 0 \), there exists \(\delta > 0 \) such that for \(w \in B_\delta(0) \),

\[
\|Dg(w)\| \leq \epsilon.
\]

Therefore the mean value theorem shows that

\[
\|g(u) - g(v)\| \leq \epsilon\|u - v\| \quad \forall \, u, v \in B_\delta(0).
\]

Take, for example, \(\alpha = -\frac{1}{2} \) and \(\frac{1}{2}\epsilon\|T\| < \frac{1}{4} \) (which defines \(\delta \)). Then \(G \) is contractive (with constant \(\frac{3}{4} \)) on \(B_\delta(0) \).

(b) It remains to show that \(G : B_\delta(0) \to B_\delta(0) \). Compute

\[
\|G(u)\| \leq \|G(u) - G(0)\| + \|G(0)\| \leq \frac{3}{4}\|u\| + \|\alpha f\|.
\]

Requiring \(\|f\| < \frac{\delta}{4\|\alpha\|} \) completes the proof.

(c) We compute

\[
F(u + v) - F(u) = v + T(g(u + v) - g(u)) = v + T(Dg(u)(v) + R_g(u,v))
\]

\[
= v + T(Dg(u)(v)) + TR_g(u,v),
\]

where \(\|R_g(u,v)\| = o(\|v\|) \). But then \(\|TR_g\| \leq \|T\|\|R_g\| = o(\|v\|) \), so

\[
DF(u)(v) = v + TDg(u)(v).
\]

(d) We note that \(F \) is \(C^1 \) and \(DF(0) = I \) is invertible. Thus the inverse function theorem gives open sets \(U, V \subset X \) such that \(0 \in U \) and \(F(0) = 0 \in V \) such that \(F \) is a diffeomorphism from \(U \) to \(V \). Thus we can solve the problem for \(f \in V \).
CSEM Area A-CAM Preliminary Exam (CSE 386C–D)
May 28, 2021, about any 3 hours from 9:00 a.m. to 3:00 p.m.

You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

1. Let the field be real and \(\mathbb{P} \) denote the vector space of all polynomials in \(x \in \mathbb{R} \); that is, \(\mathbb{P} = \left\{ p(x) = \sum_{k=0}^{n} c_k x^k : n \text{ is a nonnegative integer and } c_k \in \mathbb{R} \right\} \). Let \(\| \cdot \| : \mathbb{P} \to [0, \infty) \) be defined for such \(p \) as \(\|p\| = \max_{0 \leq k \leq n} |c_k| \).

 (a) Show \(\| \cdot \| \) is a norm on \(\mathbb{P} \).

 (b) Show that the NLS \((\mathbb{P}, \| \cdot \|)\) is not complete.

 (c) Let \(m \geq 0 \) and \(T_m : \mathbb{P} \to \mathbb{R} \) be defined by \(T_m p = \sum_{k=0}^{\min(m,n)} c_k \), which is clearly linear. Show that each \(T_m \) is bounded.

 (d) Since \(\mathbb{P} \) is not Banach, the Uniform Boundedness Principle need not hold. In fact, show that \(\sup_m |T_m p| < \infty \) for each \(p \in \mathbb{P} \) but \(\sup_m \|T_m\| = \infty \).

2. Let \(\Omega \) be some set and \((H, \langle \cdot, \cdot \rangle) \) be a Hilbert space of functions \(f : \Omega \to \mathbb{F} \) (\(\mathbb{F} \) is \(\mathbb{R} \) or \(\mathbb{C} \)). Suppose that there is a constant \(C(x) \) such that \(|f(x)| \leq C(x)\|f\| \) for all \(f \in H \).

 (a) Show that if \(f, g \in H \) and \(x \in \Omega \), then \(|f(x) - g(x)| \leq C(x)\|f - g\| \).

 (b) Show that there exists a function \(K : \Omega \times \Omega \to \mathbb{F} \) (called a reproducing kernel) such that for each fixed \(x \in \Omega \), \(K(\cdot, x) \in H \) and \(f(x) = \langle f, K(\cdot, x) \rangle \) for all \(f \in H \).

 [Hint: Use the Riesz representation theorem.]

 (c) Show that \(K(x, y) = \overline{K(y, x)} \) (i.e., \(K \) is conjugate symmetric). Be sure to justify that \(K(x, \cdot) \in H \) for each \(x \in \Omega \).

3. Let \(H \) be a complex Hilbert space and \(A \) a bounded linear operator on \(H \). Define \(|A| = (A^*A)^{1/2} \).

 (a) Show that \(|A| \) is a well defined, bounded linear, self-adjoint operator. [Hint: Use Theorem 4.26.]

 (b) Show that \(\| |A|x \| = \|Ax\| \) for all \(x \in H \).

 (c) Show that \(H = R(|A|) \oplus N(|A|) \) and that \(N(|A|) = N(A) \).
4. Half Laplacian in \mathbb{R}. Let $\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 : y > 0\}$. For $u \in H^1(\mathbb{R}^2_+)$, we denote by \tilde{u} the Fourier transform in x only, i.e.,
$$
\tilde{u}(\xi, y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x, y) e^{-ix\xi} \, dx.
$$
Take $f \in H^1(\mathbb{R})$, and consider u the solution to
$$
\begin{cases}
\partial_x^2 u + \partial_y^2 u = 0, & (x, y) \in \mathbb{R}^2_+,
\quad u(x, 0) = f(x), & x \in \mathbb{R}.
\end{cases}
$$
(a) Find the equation verified by \tilde{u}.
(b) Show that there exists a unique solution of (1) such that $\nabla u \in L^2(\mathbb{R}^2_+)$, and give a formula for \tilde{u}. [Hint: Solutions to the ODE $y'' - \omega^2 y = 0$ are of the form $Ae^{-\omega t} + Be^{\omega t}$]
(c) For $f \in H^1(\mathbb{R})$, we define $\Delta^\alpha f$, for $0 < \alpha < 1$ a real number, through the Fourier transform as $\hat{\Delta}^\alpha f = |\xi|^{2\alpha} \hat{f}$. Show that for u solving (1), we have
$$
-\partial_y u(x, 0) = \Delta^{1/2} f.
$$
(d) Show that
$$
\int_{\mathbb{R}^2_+} |\nabla u|^2 \, dx \, dy = \int_{\mathbb{R}} f \Delta^{1/2} f \, dx = \int_{\mathbb{R}} |\Delta^{1/4} f|^2 \, dx.
$$
5. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a Lipschitz boundary, $f \in L^2(\Omega)$, and $\alpha > 0$. Consider the boundary value problem
$$
\begin{cases}
-\Delta u + u = f & \text{in } \Omega,
\quad \partial u / \partial \nu + \alpha u = 0 & \text{on } \partial \Omega.
\end{cases}
$$
(a) For this problem, formulate a variational principle
$$
B(u, v) = (f, v) \quad \forall v \in H^1(\Omega).
$$
(b) Show that this problem has a unique weak solution.
6. Given $I = [0, b]$, consider the problem of finding $u : I \to \mathbb{R}$ such that
$$
\begin{cases}
u'(s) = g(s) f(u(s)) & \text{for a.e. } s \in I,
\quad u(0) = \alpha,
\end{cases}
$$
where $\alpha \in \mathbb{R}$ is a given constant, $g \in L^p(I)$, $p \geq 1$, and $f : \mathbb{R} \to \mathbb{R}$ are given functions. We suppose that f is Lipschitz continuous and satisfies $f(0) = 0$.
(a) Consider the functional
$$
F(u) = \alpha + \int_0^s g(\sigma) f(u(\sigma)) \, d\sigma.
$$
Show that F maps $C^0(I)$ into $C^0(I) \cap W^{1,p}(I)$. Moreover, show that $u \in C^0(I) \cap W^{1,p}(I)$ is the solution to (2) if and only if it is a fixed point of F.
(b) Show that there exists b small enough, not depending on α, such that F has a unique fixed point in $C^0(I)$.

Area A-CAM
May 2021
1. \[P = \{ p = \sum_{k=0}^{n} c_k x^k \} \]
\[||p|| = \max |c_k| \]
(a) Norm (i) \[||p|| > 0, \quad ||p|| = 0 \iff c_k = 0 \forall k \]
\[\iff p = 0 \]
(ii) \[||c p|| = ||\sum c_k x^k|| = \max |c c_k| = |c| \max |c_k| = |c||p|| \]
(iii) \[||p + \bar{q}|| = \max |c_k + d_k| \]
\[\leq \max |c_k| + \max |d_k| = ||p|| + ||\bar{q}|| \]
(b) Let \[p_n = 1 + \frac{1}{2}x + \ldots + \frac{1}{n}x^n \]
Then \(p_n \) is Cauchy. \((m > n) \)
\[||p_n - p_m|| = \frac{1}{m+1} \rightarrow 0 \]
But \(p_n \nrightarrow p \) with finite degree
\[(\text{if } \deg p = m, \quad \text{then } ||p_n - p|| \geq \frac{1}{m+1}) \]
Thus \(p \) is not complete
(c) \[\tilde{P} p = \sum_{k=0}^{\min(n,m)} c_k \]
\[||\tilde{P} p|| \leq \sum_{k=0}^{\min(n,m)} |c_k| \leq \min(n,m) ||p|| \]
\[\leq m ||p|| \]
(d) \[\sup ||\tilde{P} p|| \leq n ||p|| < \infty \]
\[\sup ||\tilde{P}|| \geq \sup \frac{||\tilde{P} p||}{||p||}, \quad p = 1 + x + x^2 + \ldots + x^n \]
\[\geq \sup ||\tilde{P} p|| = \min(n, m) = n \rightarrow \infty \]
2. \[H = \{ f : \Omega \rightarrow \mathbb{F}^3 \} \]
\[|f(x)| \leq c(x) \| f \| \quad \forall f \in H \]

(a) \[f, g \in H, x \in \Omega \Rightarrow \]
\[|f(x) - g(x)| = |(f-g)(x)| \leq c(x) \| f-g \| \]

(b) Let \(T_x : H \rightarrow \mathbb{F} \) be \(T_x f = f(x) \).

Then \(T_x \) is a linear functional (by definition of + sc. mult. of funcns).

Riesz \(\Rightarrow \) \(\exists \ \tilde{g} = k(\cdot, x) \in H \) st.
\[f(x) = \langle f, k(\cdot, x) \rangle \quad \forall f \in H. \]

(c) \(k(\cdot, x) \in H \Rightarrow (by \ (\tilde{g})) \)

\[k(\tilde{g}_x) = \langle k(\cdot, x), k(\cdot, \tilde{g}) \rangle \]
\[= \langle k(\cdot, \tilde{g}), k(\cdot, x) \rangle = k(x, \tilde{g}). \]

Note: \(k(x, \tilde{g}) = k(\cdot, x) \in H. \)
3. \(H \) complex Hilbert. \(A \in \mathcal{B}(H, H) \). \(|A| = (A^*A)^{1/2} \)

(a) Let \(T = A^*A \in \mathcal{B}(H, H) \)
\[
\langle Tx, x \rangle = \langle A^*Ax, x \rangle = \langle Ax, Ax \rangle = \langle x, A^*Ax \rangle = \langle x, T^2x \rangle
\]
\[
\Rightarrow T = T^2
\]
\[
\langle Tx, x \rangle = \|Ax\|^2 \geq 0 \Rightarrow T \geq 0
\]

Thm 4.26 \(\Rightarrow T \) has a unique, pos. sq. root \((A^*A)^{1/2} \in \mathcal{B}(H, H) \)

Since \((A^*A)^{1/2} \geq 0 \), it is self-adjoint.

(b) \(\|Ax\|^2 = \langle |A|x, |A|x \rangle \)
\[
= \langle |A|^2x, x \rangle = \langle T^2x, x \rangle
\]
\[
= \langle A^*Ax, x \rangle = \langle Ax, Ax \rangle = \|Ax\|^2
\]

(c) Let \(R = \mathcal{R}(1|A|) \)

Then \(H = R \oplus R^\perp \)
\[
x \in R^\perp \iff \langle x, \gamma \rangle = 0 \quad \forall \gamma \in \mathcal{R}(1|A|)
\]
\[
\iff \langle x, |A|z \rangle = 0 \quad \forall z \in H
\]
\[
\iff \langle 1|A|x, z \rangle = 0 \quad \forall z \in H
\]
\[
\iff x \in N(1|A|)
\]
Thus \(R^\perp = N(1|A|) \) and \(H = \mathcal{R}(1|A|) \oplus N(1|A|) \)

But \(x \in N(1|A|) \iff \|1|A|x\| = 0 \iff \|Ax\| = 0 \iff x \in N(A) \)

So \(N(1|A|) = N(A) \).
\(4. \quad R^2 = S(x, y) \quad y > 0 \quad u = \frac{1}{2\pi} \int_{\mathbb{R}} u(x, y) e^{-ix} \, dx \)

\[\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \\ u(x, 0) = f(x) \in H^1 \end{cases} \]

(a) \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \Rightarrow \quad \frac{\partial^2 u}{\partial y^2} - |y|^2 u = 0 \]

(b) \(u = A e^{-i|y|^2/4} + B e^{i|y|^2/4} \)

But \(u(3, 0) = \hat{f} \) & \(u \) blows up if \(B \neq 0 \)

so \(u(3, 0) = \hat{f}(3) e^{-i3|y|^2/4} \)

\[u(x, y) = f^{-1}_{3\sqrt{2}} \left(\hat{f}(3) e^{-i3|y|^2/4} \right) \]

(2pi) \(f \times f^{-1}_{3\sqrt{2}} (e^{-i3|y|^2/4}) \)

(c) \(\Delta u = 13 |y|^2 \hat{f} \)

\[\frac{\partial^2 u}{\partial y^2} - |y|^2 u(x, y) = (2\pi)^{-1/2} \hat{f}(x) \left(\frac{\partial^2}{\partial y^2} f^{-1}_{3\sqrt{2}} (e^{-i3|y|^2/4}) \right) \]

\[= (2\pi)^{-1/2} \hat{f}(x) \left(f^{-1}_{3\sqrt{2}} (e^{-i3|y|^2/4}) \right) ^2 \]

\[= -13/4 \hat{f}(3) \left(f^{-1}_{3\sqrt{2}} (e^{-i3|y|^2/4}) \right) = -13/4 \hat{f}(x) e^{-i3|y|^2/4} \]

\(\Rightarrow \quad \Delta u = 13 |y|^2 \hat{f} \)

(d) \[\int_{\mathbb{R}^2} |\nabla u|^2 \, dx dy = (\nabla u, \nabla u)_{L^2} = - (\Delta u, u)_{L^2} + \int_{\mathbb{R}^2} \Delta u \cdot u \, dx dy \]

\[= \int_{\mathbb{R}} (\Delta u)^2 \, dx = \int_{\mathbb{R}} 13 |y|^2 \hat{f} \cdot 13 |y|^2 \hat{f} \]

\[= \int_{\mathbb{R}} |\Delta u|^2 \, dx \]
\(\Omega \) \(\alpha > 0 \) \(f \in L^2 \) \(\{ \Delta u + \alpha u = f, \Omega \} \)

\[(a) \quad (\Delta u, v) + (u, v) = (f, v) \]
\[= (\nabla u, \nabla v) - (\nabla u, v) \]
\[= (\nabla u, \nabla v) + (\alpha u, v) \]
\[\Rightarrow \quad B(u, v) = (\nabla u, \nabla v) + \alpha (u, v) \]
\[= (f, v) \quad \forall v \in H^1 \]

where we want \(u \in H^1 \) as well.

(b) Use Lax-Milgram.

\[(f, v) \] given a \(\text{cont. lin. form} \)
\[\forall f \in L^2 \subseteq (H^1)^* \]
\[|B(u, v)| \leq ||\nabla u|| ||\nabla v|| + \alpha ||u|| ||v|| \]
\[\leq \lambda ||u|| ||v||^2 + \alpha ||u||^2 \]
\[\Rightarrow \quad (B(u, v))^2 \geq 2 \alpha ||u||^2 \]

We need a Poincaré type:
\[||u||^2 \leq C (||\nabla u|| + ||u||_{L^2(\Omega)}) \]

Suppose not. Then \(\exists u_n \) s.t.
\[(u_n)^2 \geq n (||\nabla u|| + ||u||_{L^2(\Omega)}) \]
\[\Rightarrow \quad u_n \rightharpoonup u \quad H^1 \quad (u_n \rightharpoonup u \quad L^2) \]
\[\nabla u_n \rightarrow 0 \quad L^2, \quad u_n(\Omega) \rightarrow 0 \quad L^2(\Omega) \]
\[\Rightarrow \quad u = 0 \]
But \(||u|| = 1 \), contradiction.
6. \(I = [0,b] \)
 \[u'(s) = g(s) f(u(s)) \]
 , a.e. \(s \in I \)

 \[u(0) = \alpha \in \mathbb{R} \]

 \[g \in L^p(I), p > 1; f: \mathbb{R} \to \mathbb{R}, f(0) = 0, \text{Lipschitz} \]

 \[F(u) = \alpha + \int_0^s g(\sigma) f(u(\sigma)) d\sigma \]

 \[u \in C^0 \Rightarrow F(u) \in C^0 \Rightarrow F(u) \in L^p \]

 \[(F(u))' = g(s) f(u(s)) \in L^p \]

 \[\in \ell^\infty \text{ since Lipschitz} \]

 If

 \[u = \alpha + \int_0^s g(\sigma) f(u(\sigma)) d\sigma \]

 Then

 \[\int u' = g(s) f(u(s)) \]

 \[u(0) = \alpha \]

 \[(b) \left\| F(u) - F(v) \right\| = \left\| \int_0^s g(\sigma) (f(u(\sigma)) - f(v(\sigma))) d\sigma \right\| \leq ||g||_{L^p(0,b)} \cdot ||f(u-v)||_{L^1(0,b)} \]

 \[\leq ||g||_{L^p(0,b)} \cdot \left\| u - v \right\|_{L^1} \]

 \[\Theta < 1 \text{ if } b \text{ small enough. (say } \Theta = \frac{1}{2} \) \]

 \[\Rightarrow F \text{ contractive} \]

 \[||F(u)||_{L^\infty} = ||F(u) - F(0) + \alpha||_{L^\infty} \leq \Theta (||u||_{L^\infty} + \alpha) \leq \Theta R + \alpha \leq R \]

 \[\Rightarrow \alpha \leq (1-\Theta) R \Rightarrow R = \frac{\alpha}{1-\Theta} = 2\alpha \]

 Thus \(F: B_R(0) \to B_R(0) \)

 and \(F \) has a fixed pt. in \(B_R(0) \)