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CSEM Area A-CAM Preliminary Exam (CSE 386C–D)
May 30, 2019, 9:00 a.m. – 12:00 noon

Work any 5 of the following 6 problems.

1. Let X be a Banach space with dual space X∗ and duality pairing 〈·, ·〉, and let A,B :
X → X∗ be linear maps.

(a) State the Closed Graph Theorem and what it means for an operator to be closed.

(b) Assuming 〈Ax, y〉 = 〈Ay, x〉 for all x, y ∈ X, show that A is bounded.

(c) Assuming 〈Bx, x〉 ≥ 0 for all x ∈ X, show that B is bounded. [Hint: Suppose B is not
continuous at 0, so xn → 0 but Bxn → y 6= 0. For w ∈ X such that 〈y, w〉 > 0, consider
xn + εw.]

2. Let Ω = [0, 1] and 1 ≤ p <∞ be given and consider the sequence of functions gn ∈ Lp(Ω)
defined by gn(x) = n1/pe−nx. Show that as n→∞:

(a) gn(x) converges pointwise to zero for each fixed x ∈ (0, 1] and for any p ≥ 1;

(b) gn does not converge strongly to zero in Lp(Ω) for any p ≥ 1;

(c) gn converges weakly to zero in Lp(Ω) if p > 1, but not if p = 1.

3. Prove the Mazur Separation Lemma, which says that if X is a normed linear space, Y a
linear subspace of X, w ∈ X but w 6∈ Y , and

d = dist(w, Y ) = inf
y∈Y
‖w − y‖X > 0,

then there exists f ∈ X∗ such that ‖f‖X∗ ≤ 1, f(w) = d, and f(z) = 0 for all z ∈ Y . [Hint:
Begin by working in Z = Y + Fw.]

4. Let Ω = (0, 1)2 and consider the boundary value problem (BVP)

−uxx + uxy − uyy = f in Ω, (1)

−ux + uy − u = g on ΓL = {(0, y) : y ∈ (0, 1)}, (2)

u = 0 on Γ∗ = ∂Ω \ ΓL. (3)

Let H = {v ∈ H1(Ω) : v = 0 on Γ∗}, which is a Hilbert space.

(a) Find the corresponding variational problem for u ∈ H and test functions v ∈ H. Also
give the function spaces containing f and g.

(b) Show the general Poincaré type inequality: There exists γ > 0 such that

‖∇v‖2
L2(Ω) +

∫
ΓL

v2 ≥ γ‖v‖2
L2(Ω) ∀v ∈ H.

(c) Show that there is a unique solution to the variational problem.
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5. For fixed T > 0, let g : [0, T ] × Rd → Rd be continuous and Lipschitz continuous in the
second argument, i.e., there is some L > 0 such that

‖g(t, v)− g(t, w)‖ ≤ L ‖v − w‖ ∀v, w ∈ Rd, t ∈ [0, T ],

where ‖ · ‖ is the norm on Rd. For any u0 ∈ Rd, consider the initial value problem (IVP)
u′(t) = g(t, u(t)) and u(0) = u0.

(a) Write this IVP as the fixed point of a functional G : C0([0, T ];Rd)→ C0([0, T ];Rd).

(b) Normally, we use the L∞([0, T ])-norm for C0([0, T ];Rd). Show that the function ||| · ||| :
C0([0, T ];Rd)→ [0,∞), defined by

|||v||| = sup
0≤t≤T

(
e−Lt‖v(t)‖

)
,

is a norm equivalent to the L∞([0, T ])-norm.

(c) In terms of this new norm, show that G is a contraction.

(d) Explain how we conclude that there is a unique solution u ∈ C1([0,∞);Rd) to the IVP
for all time.

6. Consider finding extremals to the problem: Find u, v ∈ C1
0,1([0, 1]) minimizing

F (u, v, u′, v′) =

∫ 1

0

(
(u′)2 + (v′)2 + 2uv

)
dx.

(a) Find the Euler-Lagrange (EL) equations for this problem.

(b) Reduce the EL equations to a single equation and find its solution. [Hint: The fourth
roots of unity are ±1 and ±i.]

(c) Find the extremal to the problem, up to solving a 4× 4 system of linear equations.

(d) If we add the constraint that

∫ 1

0

u2v′ dx = 0, what EL equations do we get?
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CSEM Area A-CAM Preliminary Exam (CSE 386C–D)
August 7, 2020, about any 3 hours from 9:00 a.m. – 3:00 p.m.

You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

1. A problem on continuous operators.

(a) Define the topological dual of a Banach space.

(b) Define the weak topology on a Banach space.

(c) Let X, Y be Banach spaces and A : X → Y be a linear operator. Prove that A is
continuous if an only if it is weakly continuous (i.e., it is continuous when X and Y are
equipped with their weak topologies).

Solution.

(a) The topological dual X ′ of a normed space X consists of all linear and continuous
functionals defined on X. For a complex space X, we may define the topological dual
as the space of all anti-linear and continuous functionals on X. Either space is equipped
with the norm

l ∈ X ′, ‖l‖X′ := sup
x∈X,x6=0

|l(x)|
‖x‖X

= sup
‖x‖X≤1

|l(x)| = sup
‖x‖X=1

|l(x)| .

For a reflexive Banach space, the supremum is actually attained and can be replaced
with maximum. The dual space is always complete, no matter whether X is complete
or not.

(b) The weak topology on a Banach space X is a locally convex topology defined by a
family of seminorms

X 3 x 7→ |〈x′, x〉| = |x′(x)|, x′ ∈ X ′.

Due to the definitness of the duality pairing (proved using Hahn-Banach Theorem),
the family of seminorms satisfies the axiom of separation which implies that the weak
topology is well-defined.

(c) We first prove that weak continuity of A implies strong continuity of A. Assume, to
the contrary, that there exists a sequence xn such that ‖xn‖X → 0 but ‖Axn‖Y 6→ 0.
At the cost of replacing xn with a subsequence, we can assume that there exists ε > 0
such that ‖Axn‖Y ≥ ε. Define,

x̄n =
xn

‖xn‖1/2X

.

Then,
‖x̄n‖X = ‖xn‖1/2X → 0 and ‖Ax̄n‖Y →∞ .

Area A-CAM 
Aug 2020
w/ solutions



As the strong convergence implies weak convergence, x̄n ⇀ 0 and, by weak continuity
of A, Ax̄n ⇀ 0 in Y . But every weakly convergent sequence must be bounded, a
contradiction.

Assume now that A is strongly continuous.

Lemma: Let X be an arbitrary topological vector space, and Y be a normed space.
Let A ∈ L(X, Y ). The following conditions are equivalent to each other.

(i) A : X → Y (with weak topology) is continuous.
(ii) f ◦ A : X → R(C) is continuous ∀ f ∈ Y ′.

(i) ⇒ (ii). Any linear functional f ∈ Y ′ is also continuous on Y with weak topology.
Composition of two continuous functions is continuous.

(ii) ⇒ (i). Take an arbitrary B(I0, ε), where I0 is a finite subset of Y ′. By (ii),

∀g ∈ I0 ∃Bg, a neighborhood of 0 in X : x ∈ Bg ⇒ |g(A(x))| < ε .

It follows from the definition of filter of neighborhoods that

B =
⋂
g∈I0

Bg

is also a neighborhood of 0. Consequently,

x ∈ B ⇒ |g(A(x))| < ε ⇒ Ax ∈ B(I0, ε) .

To conclude the final result, it is sufficient now to show that, for any g ∈ Y ′,

g ◦ T : X (with weak topology) → R

is continuous. But g ◦ T , as a composition of continuous functions, is a strongly
continuous linear functional and, consequently, it is continuous in the weak topology
as well (compare the discussion in the book).

2. Projections on a Hilbert space. Let X and Y be Hilbert spaces, P : X → Y and
Q : Y → X be bounded linear operators, and suppose that QP : X → X is an orthogonal
projection operator. Let U1 = R(QP ) and U2 = N(QP ), i.e., the image (or range) and null
space (or kernel) of the operator, respectively. Moreover, let V1 = R(P ).

(a) What does it mean to say X = U1 ⊕ U2? Show that U1 and U2 are orthogonal to each
other.

(b) Prove that U1 and V1 are isomorphic.

(c) Show directly that P ∗Q∗ : X → X is an orthogonal projection.

(d) If N(Q)∩R(PQ) = {0}, show that PQ : Y → Y is a projection operator (not necessarily
orthogonal).
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Solution.

(a) The symbols X = U1⊕U2 mean that X = {u1+u2 : ui ∈ Ui, i = 1, 2} and U1∩U2 = {0}.
For ui ∈ Ui, we know that u1 = QPu1 and QPu2 = 0, so

〈u1, u2〉X = 〈QPu1, u2 −QPu2〉X = 0

by the definition of orthogonal projection.
(b) Consider the map T = P |U1 : U1 → V1, that is bounded and linear. Every v ∈ V1

has some u ∈ X such that Pu = v. However, there are (unique) ui ∈ Ui such that
u = u1 + u2, and so Tu1 = Pu1 = Pu = v shows that T maps onto V1. To finish,
we need to show that T maps one-to-one, i.e., that Tu1 = 0 implies that u1 = 0. But
0 = Tu1 = Pu1, so also QPu1 = 0. Thus u1 ∈ U1 ∩ U2, and so u1 = 0.

(c) For u,w ∈ X, we compute

0 = 〈QPu− u,w〉X = 〈u, P ∗Q∗w − w〉X ,

which shows that P ∗Q∗ is also an orthogonal projection operator.
(d) For y ∈ Y , we know that QPQPQy = QPQy, since QP is a projection. But then

0 = QPQPQy −QPQy = Q(PQPQy − PQy) = QP (QPQy −Qy) .

Thus PQPQy − PQy ∈ N(Q) and clearly PQPQy − PQy ∈ R(PQ), so PQPQy =
PQy.

3. Hilbert basis. Let H be a separable Hilbert space and let {en}∞n=1 be a maximal or-
thonormal set (i.e., a Hilbert basis). Let {λn}∞n=1 be a bounded sequence of real numbers,
and define the linear operator A : H → H by

Ax =
∞∑
n=1

λn〈x, en〉en .

(a) Show that A is continuous and self-adjoint.

(b) Show that each λn is an eigenvalue with eigenvector en.

(c) Show that if λn → 0, then A is compact. [Hint: Consider the operator AN defined by a
truncated sum, and show that AN converges to A.]

Solution.

(a) If xm → 0, then ‖xm‖2 =
∑∞

n=1 |〈xm, en〉|2 → 0. Thus

‖Axm‖ =
∞∑
n=1

|λn|2 |〈x, en〉|2 ≤ max
n
|λn|2

∞∑
n=1

|〈xm, en〉|2 → 0 .

That is, A is continuous at 0, and so continuous everywhere.
Now

〈Ax, y〉 =
∞∑
n=1

λn〈x, en〉〈y, en〉 =
∞∑
n=1

〈x, en〉λn〈y, en〉 = 〈x,Ay〉

is clearly self adjoint (since λn is real).
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(b) Compute

(A− λI)x =
∞∑
n=1

λn〈x, en〉en − λ
∞∑
n=1

〈x, en〉en =
∞∑
n=1

(λn − λ)〈x, en〉en ,

and note that this cannot be invertible when λ = λn for some n. Moreover, Aen = λnen
is clear by orthonormality of the basis.

(c) Consider the operators

ANx =
N∑
n=1

λn〈x, en〉en .

Each has finite dimensional range, and is hence compact. Moreover,

‖ANx− Ax‖2 =
∥∥∥ ∞∑
n=N+1

λn〈x, en〉en
∥∥∥2 =

∞∑
n=N+1

|λn|2 |〈x, en〉|2 → 0 ,

so An → A and A is compact.

4. Closed operators. All spaces are real. Consider the operator

A : D(A)→ L2(0, 1), Au = u′ + u,

D(A) := {u ∈ L2(0, 1) : Au ∈ L2(0, 1), u(0) = 0, u(1) = 0},

where the derivative is understood in the sense of distributions.

(a) Interpret D(A) in terms of Sobolev spaces.

(b) Show that A is a closed operator.

(c) Prove that A is bounded below in L2(0, 1).

(d) Compute the L2-adjoint A∗, L2(0, 1) ⊃ D(A∗) 3 v 7→ A∗v ∈ L2(0, 1).

(e) Compute the null space of the adjoint operator A∗.

(f) For an appropriate right-hand side f , discuss the well-posedness of the problem:{
u ∈ D(A),

Au = f .

Solution.

(a) We have

u, u′ + u ∈ L2(0, 1) ⇔ u, u′ ∈ L2(0, 1) ⇔ u ∈ H1(0, 1) .

Consequently, D(A) = H1
0 (0, 1).

Area A-CAM 
Aug 2020
w/ solutions



(b) We need to show that

D(A) 3 un → u, Aun → w ⇒ u ∈ D(A), Au = w .

All convergence is in the L2-sense. Let φ ∈ D(0, 1). We have

(un,−φ′) + (un, φ) = (−u′n + un, φ)→ (w, φ)

↓ ↓
(u,−φ′) (u, φ)

This proves that −u′ + u = w and, therefore, u ∈ H1(0, 1). Moreover, un → u in
H1(0, 1). Continuous embedding of H1(0, 1) into C([0, 1]) implies that,

u(x) = lim
n→∞

un(x) = 0 for x = 0, 1 .

Consequently, u ∈ D(A).
(c) We have

‖Au‖2 = ‖u′‖2 + ‖u‖2 + 2(u′, u) .

But

2(u′, u) =

∫ 1

0

d

dx
(u2) = u2|10 = 0 .

Consequently,
‖Au‖2 = ‖u′‖2 + ‖u‖2 ≥ ‖u‖2 .

(d) Integration by parts and BC’s on u reveal that

D(A∗) = H1(0, 1) A∗v = −v′ + v .

(e) We get
D(A∗) = {cex : c ∈ R} .

(f) According to the Closed Range Theorem for Closed Operators, the equation has a
unique solution u for every f ∈ L2(0, 1) such that f ∈ N (A∗)⊥, i.e.,∫ 1

0

f(x)ex = 0 .

5. Variational formulations. Consider the ultraweak variational formulation of the previous
problem, i.e., 

u ∈ L2(0, 1) =: U∫ 1

0

uA∗v dx︸ ︷︷ ︸
b(u,v)

=

∫ 1

0

fv dx︸ ︷︷ ︸
l(v)

∀v ∈ D(A∗) = H1(0, 1) =: V ,
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where A∗ denotes the L2-adjoint of A, A∗v = −v′ + v, and f ∈ L2(0, 1). [Hint: For this
problem, use results of the previous problem.]

(a) Define the operator B : U → V ′ and its conjugate corresponding to the bilinear form
b(u, v).

(b) State the Babuška-Nečas Theorem for Hilbert spaces.

(c) Use this theorem to investigate the well-posedness of the variational formulation.

Solution.

(a) If the bilinear form b(u, v) is continuous (trivially in our case), then the operator

B : U → V ′, 〈Bu, v〉 := b(u, v), v ∈ V, u ∈ U ,

is always well-defined, linear and continuous. The map setting b into B is an isometric
isomorphism. The conjugate operator,

B′ : V ′′ ∼ V → U ′, 〈B′v, u〉 = b(u, v) u ∈ U, v ∈ V ,

is also well-defined, linear and continuous with the norm equal to that of B.
(b) If the bilinear form satisfies the inf-sup condition,

sup
v∈V

|b(u, v)|
‖v‖V

≥ γ‖u‖U ⇔ ‖Bu‖V ′ ≥ γ‖u‖U

and l ∈ V ′ vanishes on the null space of the transpose operator,

l(v) = 0 ∀v ∈ V0 := {v ∈ V : b(w, u) = 0 ∀w ∈ U} ,

then there exists a unique solution u to the variational problem and

‖u‖U ≤ γ−1‖l‖V ′ .

(c) We first prove the inf-sup condition. It is sufficient to find a v ∈ H1(0, 1) such that
A∗v = u and

‖v‖ ≤ C‖A∗v‖ = C‖u‖.
Once we control the L2-norm of v, we control also the L2-norm of its derivative,

‖v′‖ ≤ ‖−v′ + v︸ ︷︷ ︸
A∗v

‖+ ‖v‖ ≤ (1 + C)‖A∗v‖ = (1 + C)‖u‖ ,

and, consequently,

‖v‖2H1(0,1) = ‖v‖2 + ‖v′‖2 ≤
(
(1 + C)2 + C2

)︸ ︷︷ ︸
C2

1

‖u‖2 .

We have then

sup
v

|b(u, v)|
‖v‖H1

≥
‖u‖2L2

‖v‖L2

≥ 1

C1

‖u‖2L2

‖u‖L2

=
1

C1

‖u‖L2 .
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Next, we determine the null space of the transpose operator. Clearly,

0 =

∫ 1

0

uA∗v ∀u ∈ L2(0, 1) ⇒ A∗v = 0 .

This gives,
N (B′) = {cex : c ∈ R} .

Consequently, by the Babuška-Nečas Theorem, for every l ∈ (H1(0, 1))′ that satisfies
the compatibility condition

l(ex) = 0 ,

the variational problem has a unique solution u that depends continuously upon l.
Note that the right-hand side may be more general than an L2-function. For the
L2-function f ,

l(v) =

∫ 1

0

fv ,

so the function f must be L2-orthogonal to ex.
Finding a solution v ∈ H1(0, 1), A∗v = u ∈ L2(0, 1) is an undetermined problem.

We may fix v by adding an extra BC: v(0) = 0. You can now find v explicitly (this is
an elementary problem), or you can consider an auxiliary problem{

v ∈ H1(0, 1), v(0) = 0 ,

Lv := −v′ + v = u .

By the same argument as in the previous problem, operator L is bounded below,

‖ − v′ + v‖2 = ‖v′‖2 + v(1)2 + ‖v‖2 ≥ ‖v‖2 .

The adjoint,

D(L∗) := {u ∈ H1(0, 1) : u(1) = 0}, L∗u = −u′ + u ,

has a trivial null space. The Closed Range Theorem for Closed Operators implies thus
that there exists a unique solution v ∈ D(L), Lv = A∗v = u, and ‖v‖ ≤ ‖u‖.

6. Nonlinear equations. Let X be a Banach space and T : X → X a bounded linear operator.
Let g : X → X be a nonlinear mapping that is C1 and has g(0) = 0 and Dg(0) = 0. For
f ∈ X, we want to solve

F (u) = u+ Tg(u) = f

We consider the map G(u) = u+ α(F (u)− f) for some α ∈ R.

(a) Show that G(u) is a contractive map for small enough u and properly chosen α.

(b) Use the Banach contraction mapping theorem to show that there is a solution to F (u) =
f , provided f is sufficiently small.

(c) Compute DF (u)(v) from the definition of the Fréchet derivative.

(d) Solve F (u) = f using the inverse function theorem, provided f is sufficiently small.
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Solution.

(a) Let u, v ∈ X and compute

G(u)−G(v) = u− v + α(F (u)− F (v)) = (1 + α)(u− v) + αT (g(u)− g(v)) ,

so that
‖G(u)−G(v)‖ ≤ |1 + α| ‖u− v‖+ |α| ‖T‖ ‖g(u)− g(v)‖ .

Since Dg(0) = 0 and g is C1, given ε > 0, there exists δ > 0 such that for w ∈ Bδ(0),
‖Dg(w)‖ ≤ ε. Therefore the mean value theorem shows that

‖g(u)− g(v)‖ ≤ ε‖u− v‖ ∀u, v ∈ Bδ(0) .

Take, for example, α = −1
2

and 1
2
ε ‖T‖ < 1

4
(which defines δ). Then G is contractive

(with constant 3
4
) on Bδ(0).

(b) It remains to show that G : Bδ(0)→ Bδ(0). Compute

‖G(u)‖ ≤ ‖G(u)−G(0)‖+ ‖G(0)‖ ≤ 3
4
‖u‖+ ‖αf‖ .

Requiring ‖f‖ < δ

4|α|
completes the proof.

(c) We compute

F (u+ v)− F (u) = v + T (g(u+ v)− g(u)) = v + T (Dg(u)(v) +Rg(u, v))

= v + T (Dg(u)(v)) + TRg(u, v) ,

where ‖Rg(u, v)‖ = o(‖v‖). But then ‖TRg‖ ≤ ‖T‖ ‖Rg‖ = o(‖v‖), so

DF (u)(v) = v + TDg(u)(v) .

(d) We note that F is C1 and DF (0) = I is invertible. Thus the inverse function theorem
gives open sets U, V ⊂ X such that 0 ∈ U and F (0) = 0 ∈ V such that F is a
diffeomorphism from U to V . Thus we can solve the problem for f ∈ V .
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CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 28, 2021, about any 3 hours from 9:00 a.m. to 3:00 p.m.

You may use the class textbooks and your own notes on this exam.

Work any 5 of the following 6 problems.

1. Let the field be real and P denote the vector space of all polynomials in x ∈ R; that is,

P =
{
p(x) =

n∑
k=0

ckx
k : n is a nonnegative integer and ck ∈ R

}
. Let ‖ · ‖ : P → [0,∞) be defined

for such p as ‖p‖ = max0≤k≤n |ck|.

(a) Show ‖ · ‖ is a norm on P.

(b) Show that the NLS (P, ‖ · ‖) is not complete.

(c) Let m ≥ 0 and Tm : P → R be defined by Tmp =
∑min(m,n)

k=0 ck, which is clearly linear. Show
that each Tm is bounded.

(d) Since P is not Banach, the Uniform Boundedness Principle need not hold. In fact, show that
supm |Tmp| <∞ for each p ∈ P but supm ‖Tm‖ =∞.

2. Let Ω be some set and (H, 〈·, ·〉) be a Hilbert space of functions f : Ω → F (F is R or C).
Suppose that there is a constant C(x) such that

|f(x)| ≤ C(x)‖f‖ for all f ∈ H.

(a) Show that if f, g ∈ H and x ∈ Ω, then |f(x)− g(x)| ≤ C(x)‖f − g‖.

(b) Show that there exists a function K : Ω × Ω → F (called a reproducing kernel) such that for
each fixed x ∈ Ω, K(·, x) ∈ H and

f(x) = 〈f,K(·, x)〉 for all f ∈ H.

[Hint: Use the Riesz representation theorem.]

(c) Show that K(x, y) = K(y, x) (i.e., K is conjugate symmetric). Be sure to justify that K(x, ·) ∈
H for each x ∈ Ω.

3. Let H be a complex Hilbert space and A a bounded linear operator on H. Define |A| = (A∗A)1/2.

(a) Show that |A| is a well defined, bounded linear, self-adjoint operator. [Hint: Use Theorem 4.26.]

(b) Show that ‖ |A|x ‖ = ‖Ax‖ for all x ∈ H.

(c) Show that H = R(|A|)⊕N(|A|) and that N(|A|) = N(A).
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4. Half Laplacian in R. Let R2
+ = {(x, y) ∈ R2 : y > 0}. For u ∈ H1(R2

+), we denote by ū the
Fourier transform in x only, i.e.,

ū(ξ, y) =
1√
2π

∫
R
u(x, y)e−ixξ dx.

Take f ∈ H1(R), and consider u the solution to{
∂2xu+ ∂2yu = 0, (x, y) ∈ R2

+,

u(x, 0) = f(x), x ∈ R.
(1)

(a) Find the equation verified by ū.

(b) Show that there exists a unique solution of (1) such that ∇u ∈ L2(R2
+), and give a formula for

ū. [Hint: Solutions to the ODE y′′ − ω2y = 0 are of the form Ae−ωt +Beωt.]

(c) For f ∈ H1(R), we define ∆αf , for 0 < α < 1 a real number, through the Fourier transform as

∆̂αf = |ξ|2αf̂ . Show that for u solving (1), we have

−∂yu(x, 0) = ∆1/2f.

(d) Show that ∫
R2
+

|∇u|2 dx dy =

∫
R
f∆1/2f dx =

∫
R
|∆1/4f |2 dx.

5. Let Ω ∈ Rd be a bounded domain with a Lipschitz boundary, f ∈ L2(Ω), and α > 0. Consider
the boundary value problem  −∆u+ u = f in Ω,

∂u

∂ν
+ αu = 0 on ∂Ω.

(a) For this problem, formulate a variational principle

B(u, v) = (f, v) ∀v ∈ H1(Ω).

(b) Show that this problem has a unique weak solution.

6. Given I = [0, b], consider the problem of finding u : I → R such that{
u′(s) = g(s)f(u(s)) for a.e. s ∈ I,
u(0) = α,

(2)

where α ∈ R is a given constant, g ∈ Lp(I), p ≥ 1, and f : R→ R are given functions. We suppose
that f is Lipschitz continuous and satisfies f(0) = 0.

(a) Consider the functional

F (u) = α+

∫ s

0
g(σ)f(u(σ)) dσ.

Show that F maps C0(I) into C0(I) ∩W 1,p(I). Moreover, show that u ∈ C0(I) ∩W 1,p(I) is
the solution to (2) if and only if it is a fixed point of F .

(b) Show that there exists b small enough, not depending on α, such that F has a unique fixed
point in C0(I).

Area A-CAM 
May 2021



Area A-CAM 
May 2021
Solutions



Area A-CAM 
May 2021
Solutions



Area A-CAM 
May 2021
Solutions



Area A-CAM 
May 2021
Solutions



Area A-CAM 
May 2021
Solutions



Area A-CAM 
May 2021
Solutions



CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 31, 2022, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

1. Let Ω ⊂ Rd be a bounded domain with
∫

Ω dx = 1. We consider a real base field and X ∈ L2(Ω) as
a random variable with mean µ(X) =

∫
ΩX(x) dx and standard deviation σ(X) = ‖X−µ(X)‖L2(Ω).

The covariance of X,Y ∈ L2(Ω) is cov(X,Y ) = 〈X − µ(X), Y − µ(Y )〉L2(Ω).

(a) State the domain and range of µ, σ, and cov. Why is µ ∈ (L2(Ω))∗?

(b) Show that σ is a seminorm on L2(Ω). Why is it not a norm?

(c) Show that | cov(X,Y )| ≤ σ(X)σ(Y ).

(d) We denote the probability that X ≥ α as Prob(X ≥ α) =
∫
{x:X(x)≥α} dx. Show Markov’s

inequality: Prob(X ≥ α) ≤ 1
αµ(X).

2. Let H be a separable, infinite dimensional, complex Hilbert space and T a compact, self-
adjoint operator on H. The Hilbert-Schmidt and spectral theorems tell us that there is a maximal
orthonormal set of eigenvectors un with corresponding eigenvalues λn, n = 1, 2, . . .. Let Pn : H → H
be projection onto span{un}.

(a) Show that for all x ∈ H, Pnx = 〈x, un〉un, x =
∑

n Pnx, and T =
∑

n λnPn.

(b) Let f : R → R be a continuous function satisfying the property that f(λ) → 0 as λ → 0.
Define f(T ) : H → H by

f(T ) =
∑
n

f(λn)Pn.

Show that f(T ) is well defined (i.e., the series converges). [Hint: Use Bessel’s inequality.]

(c) Show that if f(x) = x2, then f(T ) = T 2.

3. Let T : D((−1, 1)2)→ D(−1, 1) be defined by (Tϕ)(x) = ϕ(x, 0).

(a) Show that T is a (sequentially) continuous linear operator.

(b) Note that the dual operator T ∗ : D′(−1, 1) → D′((−1, 1)2). Determine T ∗(δ0) and T ∗(δ′0),
where δ0 is the usual Dirac point distribution at 0 in one space dimension.

4. Let Ω ⊂ R2 be an open, connected, and bounded domain with a smooth boundary containing 0.
Let

X = {f ∈W 1,3(Ω) : f(0) = 0}.

(a) Use the Sobolev Embedding Theorem to conclude that X ⊂ C0(Ω) and that X 6= W 1,3(Ω) is
a Banach space.

(b) Prove the Poincaré-like inequality ‖f‖L3(Ω) ≤ C‖∇f‖L3(Ω), for some constant C independent
of f ∈ X.
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5. Let f ∈ L2(Rd) and consider the problem

−∆u+ u = f in Rd.

(a) Find the variational problem associated to the PDE.

(b) Use the Lax Milgram Theorem to show the existence and uniqueness of a solution in H1(Rd)
to the variational problem.

(c) Using the Fourier transform, show that the solution is actually in H2(Rd).

6. Given α ∈ R, consider the problem of finding u such thatu
′(t) =

u(t)

1 + u2(t)
,

u(0) = α.

(a) By integrating, rewrite the differential equation in the fixed-point form u = F (u) for an
appropriate functional F .

(b) Show that F maps C0([0, T ]) into C0([0, T ]) for any T > 0.

(c) Show that the problem has a unique solution u ∈ C0([0, T ]) for sufficiently small but positive T .
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CSEM Area A-CAM Preliminary Exam (CSE 386C–D)
May 15, 2023, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

1. Let X be a normed linear space and M ⊂ X a linear subspace.

(a) State the Hahn-Banach Theorem for normed linear spaces.

(b) If M is closed and x0 ∈ X \M , use the Hahn-Banach Theorem to prove that there is
some f ∈ X∗ satisfying f(x0) 6= 0 and f(x) = 0 for any x ∈M .

(c) If M is not necessarily closed, prove that for any x0 ∈ X, x0 ∈M if and only if there is
no bounded linear functional f on X satisfying f(x) = 0 for any x ∈M but f(x0) 6= 0.

2. Open Mapping Theorem.

(a) State the Open Mapping Theorem.

(b) Suppose that ‖ · ‖ and ‖ · ‖′ are two norms on a vector space X. Suppose that both
(X, ‖ · ‖) and (X, ‖ · ‖′) are complete and there is a constant C > 0 such that

‖x‖ ≤ C‖x‖′ for all x ∈ X.

From the Open Mapping Theorem, show that the two norms are equivalent.

(c) Use (b) to show that when X = L∞([0, 1]), (X, ‖ · ‖L1) is not complete.

3. Let ϕ ∈ C∞0 (Rd).

(a) For ε > 0, let ϕε(x) = ε−dϕ(ε−1x). Show that for f ∈ C0(Rd),

lim
ε→0

∫
Rd

ϕε(x) f(x) dx = Cf(0)

for some constant C. Find the constant C.

(b) Show that for any u ∈ D′(Rd) and any multi-index α, Dαu ∗ ϕ = u ∗Dαϕ.

4. Let Ω be a bounded domain with a smooth boundary and let ν be the unit normal vector
on its boundary. Consider the solution (u, v) of the differential problem

u+ ∆2u+ w = f in Ω,

−∆w − u = g in Ω,

u = ∇u · ν = 0 on ∂Ω,

w = γ on ∂Ω.

(a) Provide an appropriate weak form for the problem. In what Sobolev spaces should u,
w, f , g, γ, and the test functions lie?

(b) Prove that there exists a unique solution to the problem.

EXAM #____CSEM Area A-CAM
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5. Let φ(x) ∈ C(R) ∩ L∞(R) and K(x) ∈ L1(R). Use the contraction mapping principle to
prove that the initial-value problem

∂tu = K ∗ u2, x ∈ R, t > 0,

u(x, 0) = φ(x)

has a continuous and bounded solution u = u(x, t), at least up to some time T <∞.

6. For any a ∈ R and b ∈ R, let the Rectified Linear Unit (ReLU) function Ra,b : R→ R be

Ra,b(x) = max(ax+ b, 0).

Define

G =

{ m∑
j=1

αjRaj ,bj : m ∈ N, αj, aj, bj ∈ R
}
.

Clearly G consists of piecewise linear functions. In fact, ϕ ∈ G, where

ϕ(x) = R0,1(x)−R1,0(x) +R1,−1(x)−R−1,0(x) +R−1,−1(x) =

{
0, |x| ≥ 1,

1− |x| |x| ≤ 1.

(a) Show that G is invariant to scaling (x 7→ αx) and translation (x 7→ x+ c).

(b) Show that if g ∈ C([0, 1]), then∫ 1

0

Ra,b(x) g(x) dx = 0 ∀ a, b ∈ R =⇒ g = 0.

(c) Let S be the set of functions in G restricted to [0, 1]. Show that S is dense in L2(0, 1).
[Hint: use the density of C([0, 1]) in L2(0, 1) and (b) to show that S⊥ = {0}.]
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CSEM Area A-CAM Preliminary Exam (CSE 386C–D)

May 20, 2024, 9:00 a.m. to 12:00 noon

Work on any 5 of the following 6 problems.

1. Let X be an NLS and Y ̸= X a closed subspace.

(a) Define what we mean by the distance from x ∈ X to Y , i.e., dist(x, Y ).

(b) If θ is given with 0 < θ < 1, prove that there is some x ∈ X such that ∥x∥ = 1 and
dist(x, Y ) ≥ θ.

(c) Must there be a unique point x ∈ X such that dist(x, Y ) = 1? Why or why not?

2. The Riesz Representation Theorem states that if H is a Hilbert space and L ∈ H∗, then there
is a unique y ∈ H such that Lx = ⟨x, y⟩ for all x ∈ H.

(a) For a given L ∈ H∗, prove that the associated y ∈ H is unique.

(b) For a given L ∈ H∗, L ̸= 0, prove that the associated y ∈ H exists. [Hint: Recall that if N is
the null space of L, then we expect that y ∈ N⊥. Let z ∈ N⊥ and consider u = (Lx)z− (Lz)x.]

(c) Show that ∥L∥H∗ = ∥y∥H .

3. Let H be a separable Hilbert space and T a positive operator on H. Let {en}∞n=1 be an
orthonormal base for H and define the trace of T to be

tr(T ) =
∞∑
n=1

⟨Ten, en⟩

and suppose this number is finite for T .

(a) Show that if S a positive operator on H such that 0 ≤ T ≤ S, then tr(T ) ≤ tr(S).

(b) Show the the trace of T is independent of which base is chosen. [Hint: Care must be taken
when interchanging infinite sums, unless all the terms are positive. Use the operator T 1/2 to
resolve this issue.]

(c) If T is also compact, show that tr(T ) =
∑∞

n=1 λn, where λn are the eigenvalues of T .

4. Let f, g ∈ L1(Rd). Recall that a continuous function ϕ on Rd is said to vanish at infinity if for
any ϵ > 0, there is a compact set Kϵ such that |ϕ(x)| < ϵ for x ̸∈ Kϵ. The subspace of all such
continuous functions is denoted Cv(Rd).

(a) Prove that Cv(Rd) is a closed linear subspace of L∞(Rd).

(b) Prove that the Fourier transform f̂ ∈ L∞(Rd).

(c) Prove that f ∗ g ∈ L1(Rd) directly (i.e., do not use Young’s inequality) and ∥f ∗ g∥L1(Rd) ≤
∥f∥L1(Rd)∥g∥L1(Rd).

(d) Show that the Fourier transform f̂ ∗ g = (2π)d/2f̂ ĝ.
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5. Let Ω = [0, 1]d, define

H1
#(Ω) =

{
v ∈ H1

loc(Rd) : v is periodic of period 1 in each direction and

∫
Ω
v dx = 0

}
.

(a) Define precisely what it means for v ∈ H1(Rd) to be periodic of period 1 in each direction.

(b) Define the natural inner product and norm that one should use on this space.

(c) Show that H1
#(Ω) is a Hilbert space.

6. Let Ω ∈ Rd have a smooth boundary, Vn be the set of polynomials of degree up to n, for
n = 1, 2, . . ., and f ∈ L2(Ω). Consider the problem: Find un ∈ Vn such that

B(un, vn) = (∇un,∇vn)L2(Ω) + (un, vn)L2(Ω) = (f, vn)L2(Ω) for all vn ∈ Vn.

(a) Show that there exists a unique solution for any n, and that

∥un∥H1(Ω) ≤ ∥f∥L2(Ω)

(b) Show that there is u ∈ H1(Ω) such that, for a subsequence, un ⇀ u weakly in H1(Ω). Find a
variational problem satisfied by u. Justify your answer.

(c) Show that ∥u− un∥H1(Ω) decreases monotonically to 0 as n → ∞.
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