Second Semester Area A—CAM Option

CSE 386D/M 383D, Methods of Applied Mathematics II

1. The Fourier Transform

- 1.1. The L^1 Theory
- 1.2. The Schwartz Space Theory
- 1.3. The L^2 Theory
- 1.4. The S' Theory
- 1.5. Some Applications

2. Sobolev Spaces

- 2.1. Definitions and Basic Properties
- 2.2. Extensions from Ω to \mathbf{R}^d
- 2.3. The Sobolev Embedding Theorem
- 2.4. Compactness
- 2.5. The H^s Sobolev Spaces
- 2.6. A Trace Theorem
- 2.7. The $W^{s,p}(\Omega)$ Sobolev Spaces

3. Boundary Value Problems

- 3.1. Second Order Elliptic Partial Differential Equations
- 3.2. A Variational Problem and Minimization of Energy
- 3.3. The Closed Range Theorem and Operators Bounded Below
- 3.4. The Lax-Milgram Theorem
- 3.5. Application to Second Order Elliptic Equations
- 3.6. Galerkin Methods
- 3.7. Green's Functions

4. Differential Calculus in Banach Spaces

- 4.1. Differentiation
- 4.2. Fixed Points and Contractive Maps
- 4.3. Nonlinear Equations
- 4.4. Higher Derivatives
- 4.5. Extrema

5. The Calculus of Variations

- 5.1. The Euler-Lagrange Equations
- 5.2. Constrained Extrema and Lagrange Multipliers
- 5.3. Lower Semi-Continuity and Existence of Minima