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An efficient modification by Douglas and Kim of the usual alternating directions method
reduces the splitting error from O(k2) to O(k3) in time step k. We prove convergence of
this modified alternating directions procedure, for the usual non-mixed Galerkin finite
element and finite difference cases, under the restriction that k/h2 is sufficiently small,
where h is the grid spacing. This improves the results of Douglas and Gunn, who require
k/h4 to be sufficiently small, and Douglas and Kim, who require that the locally one-
dimensional operators commute. We propose a similar and efficient modification of alter-
nating directions for mixed finite element methods that reduces the splitting error to
O(k3), and we prove convergence in the noncommuting case, provided that k/h2 is
sufficiently small. Numerical computations illustrating the mixed finite element results
are also presented. They show that our proposed modification can lead to a significant
reduction in the alternating direction splitting error.
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1. Introduction

We consider in this paper the approximation of a parabolic problem on a bounded
domain Ω ⊂ R

d of the form

cut −∇·(a∇u) = f, x ∈ Ω, 0 < t ≤ T, (1.1)

u = g, x ∈ ∂Ω, 0 < t ≤ T, (1.2)

u = u0, x ∈ Ω, t = 0, (1.3)

where ut is the time partial derivative of u(x, t), c(x) and a(x) are uniformly positive
on Ω̄, and c(x), a(x), f(x, t), g(x, t) and u0(x) are sufficiently smooth for our pur-
poses. Since the 50s, scientists have formulated time-stepping procedures to numer-
ically approximate the solutions of such problems. The Alternating Direction (AD)
methods were first introduced in 1955 by Douglas, Peaceman and Rachford.4,8,13

They noted that

−∇·(a∇) = −
d∑

i=1

∂

∂xi

(
a

∂

∂xi

)

is a sum of d one-dimensional operators and, thereby, treated the spatial variables
of (1.1) individually in a cyclic fashion. This locally one-dimensional approach pro-
duces a splitting error over an approach that treats the full d-dimensional problem
at once.

An AD method can be interpreted as being a perturbation of some underly-
ing implicit numerical time-stepping method, such as Crank–Nicolson or backward
Euler. The spatial variable splitting error terms form a perturbation of the same
order in the time step k as the truncation error terms associated with the Crank–
Nicolson method, O(k2), and of higher order with the backward Euler method,
O(k). Thus, the asymptotic rate of convergence for the AD method should be of
the same order in the spatial and temporal discretization parameters as that for
its associated underlying method. However, at practical levels of discretization, the
actual errors associated with an AD method can be much larger than that of the
underlying method. To rectify this, Douglas and Kim7 (cf. Ref. 5) proposed the
Modified Alternating Direction iteration algorithms (AD-M), sometimes referred
to as AD-II, AD with Improved Initialization (see (2.11)–(2.13) below). They mod-
ify the right-hand side of an AD algorithm to reduce the order of the splitting error
from O(k2) to O(k3).

This paper has two main results. In Ref. 7, Douglas and Kim give a convergence
proof for AD-M under the assumption that the order in which the individual spatial
variables are treated is immaterial. More precisely, if Am is the discrete approxima-
tion to the one-dimensional operator −∂/∂xm(a∂/∂xm), they require that Am1 and
Am2 commute for all m1 and m2. This condition generally does not hold in practice,
for example, when a is not constant. Some four decades ago, Douglas and Gunn6

provided a general formulation and proof of convergence of the AD method in the
non-commutative case. However, they required the restriction that k/h4 must be
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sufficiently small, where h is the grid spacing. Our first main result is a convergence
proof for the AD-M under the constraint that merely k/h2 is sufficiently small.

Our second main result is an improved treatment of mixed finite element
methods.3,14 These methods approximate the flux variable q = −a∇u simulta-
neously with the scalar variable u, and they are often employed to solve for flow
fields in physics and engineering problems. Douglas and Pietra9 formulated an AD
iterative technique for solving the algebraic systems associated with mixed finite
element methods for second order elliptic problems. We propose a modification sim-
ilar to the AD-M method for the non-mixed formulation. Our modification reduces
the splitting error from O(k2) to O(k3). A similar convergence theory to that our
first main result is developed for this mixed AD-M method. That is, we obtain con-
vergence for the noncommuting case with the restriction that k/h2 is sufficiently
small.

The rest of the paper is organized as follows. In Sec. 2, we define the non-mixed
AD and AD-M methods for the usual Galerkin finite element or finite difference
discretizations of parabolic equations. We present our convergence proof for AD-M
in Sec. 3. After a review of the standard mixed finite element method, given in
Sec. 4, the AD-M for mixed finite element methods is formulated in Sec. 5. Our
convergence results for mixed methods are given in Sec. 6. Finally, in Sec. 7, we
present some numerical experiments illustrating the utility of our mixed methods,
and confirming our theoretical results.

2. The Basic Methods in Non-Mixed Form

Although our results do not require the following constraint, for simplicity we tacitly
suppose that Ω ⊂ R

d admits a rectangular spatial grid of maximal spacing h. This
is the usual situation considered since AD can be implemented efficiently in this
case. Also for simplicity, we take a uniform time step k = T/N > 0. We define
discrete times tn = nk and use the notation ϕn in place of ϕ(tn) and ϕn+1/2 in
place of ϕ((tn + tn+1)/2).

Loosely speaking, we let A be the d-dimensional linear operator obtained from
finite difference or finite element approximation of −∇·(a∇) over the grid on Ω
with order of accuracy O(hs). We assume that

A =
d∑

m=1

Am,

where each Am can be inverted relatively easily (cf. Ref. 5). Normally, Am is a
one-dimensional linear operator obtained from approximation of −∂m(a∂m), where
∂m = ∂/∂xm, on an xm-line of Omega over the grid. However, we need to be more
precise about exactly what we mean by the operator Am, especially for the next
section where we need to apply it multiple times to the true solution. It is confusing
to explain the finite difference and finite element cases together, so we present only
the more difficult finite element case and leave it to the reader to translate things
to the finite difference case.
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We begin by rewriting our differential system (1.1)–(1.2) in variational form.
Let (·, ·) denote the inner-product in L2(Ω). We find u ∈ H1

0 (Ω) + g, where g is
extended to all of Ω, such that

(cut, v) + (a∇u,∇v) = (f, v), v ∈ H1
0 (Ω). (2.1)

Let Vh ⊂ H1
0 (Ω) denote our finite element space, with nodal basis

Vh = span
i

{vi}.
We will approximate u in Vh+g. Now A and Am are symmetric, positive semidefinite
matrices, with ij-entries

Aij = (a∇vi,∇vj) and Am,ij = (a∂mvi, ∂mvj).

We also need the positive definite matrix

Cij = (cvi, vj)

(which is diagonal if mass lumping is used, and so trivially inverted) and the vector
Fn+θ given by

Fn+θ
i = (f, vi) −

(
c
gn+1 − gn

k
, vi

)
− (a∇[θgn+1 + (1 − θ)gn],∇vi

)
,

for θ chosen immediately below.

2.1. The backward Euler and Crank–Nicolson methods

The basic time-stepping algorithms for (1.1) can be written together using θ = 1
for backward Euler and θ = 1/2 for Crank–Nicolson.

We approximate un by un
h ∈ Vh + gn, which has the expansion

un
h =

∑
i

Un
i vi + gn, (2.2)

in terms of the vector Un which satisfies

C
Un+1 − Un

k
+ A

(
θUn+1 + (1 − θ)Un

)
= Fn+θ, n = 0, 1, . . . , N − 1, (2.3)

where U0 is the vector of nodal values for some given and accurate approximation
to u0 − g0 in Vh. It is well known that the local time truncation error is O(k) for
backward Euler and O(k2) for Crank–Nicolson, which we can write in the compact
form O(k3−2θ). Unfortunately, we must solve an implicit multi-dimensional problem
for each time step.

2.2. The AD method

The Douglas–Gunn algorithm6 for AD time discretization of (2.3) asks that, for
each n = 0, 1, . . . , N − 1, we find wn,m, for m = 1, . . . , d, such that

C
wn,m − wn

k
+

m∑
i=1

Ai

(
θwn,i + (1 − θ)wn

)
+

d∑
i=m+1

Aiw
n = Fn+θ, (2.4)
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and then set wn+1 = wn,d, where wn approximates un in the usual sense:

wn
AD,h =

∑
i

wn
i vi + gn. (2.5)

Note that we need to solve implicitly only a one-dimensional problem at each stage.
This algorithm is written in the efficiently computable, equivalent form

(C + θkA1)wn,1 =
(

C − (1 − θ)kA1 − k

d∑
i=2

Ai

)
wn + kFn+θ, (2.6)

(C + θkAm)wn,m = Cwn,m−1 + θkAmwn, m = 2, . . . , d, (2.7)

wn+1 = wn,d. (2.8)

Multiply (2.7) by (1 + θkC−1A1) · · · (1 + θkC−1Am−1), sum on m, and add (2.6)
to see that

C
wn+1 − wn

k
+ A

(
θwn+1 + (1 − θ)wn

)
+ B(wn+1 − wn) = Fn+θ, (2.9)

where

B = k−1C
[
(1 + θkC−1A1) · · · (1 + θkC−1Ad) − 1 − θkC−1A

]
= θ2k

∑
1≤m1<m2≤d

Am1C
−1Am2 + θ3k2

∑
1≤m1<m2<m3≤d

Am1C
−1Am2C

−1Am3

+ · · · + θdkd−1A1C
−1A2 · · ·C−1Ad. (2.10)

This equation is similar to (2.3), and from it we conclude, without being very
precise, that the splitting error is

B(wn+1 − wn) = kB

(
wn+1 − wn

k

)
= O

(
k2
∑
i,j

∣∣∣∣ ∂

∂t

∂2

∂x2
i

∂2

∂x2
j

(u − g)
∣∣∣∣
)

= O(k2),

provided that w (i.e. wAD,h− g) is a good approximation of u− g, and a, c, g and u

are sufficiently smooth.

2.3. The AD-M method

The Douglas–Kim AD-M algorithm7 adds a term to the right-hand side of (2.6);
that is, for each n = 1, 2, . . . , N − 1, we find Wn,m for m = 1, . . . , d such that

(C + θkA1)Wn,1 =
(

C − (1 − θ)kA1 − k

d∑
i=2

Ai

)
Wn

+ kFn+θ + B(Wn − Wn−1), (2.11)

(C + θkAm)Wn,m = CWn,m−1 + θkAmWn, m = 2, . . . , d, (2.12)

Wn+1 = Wn,d, (2.13)

where Wn approximates un via

wn
h =

∑
i

Wn
i vi + gn. (2.14)
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We retain the property that only one-dimensional problems need to be solved
implicitly at each stage. These equations imply

C
Wn+1 − Wn

k
+ A

(
θWn+1 + (1 − θ)Wn

)
+ B(Wn+1 − 2Wn + Wn−1) = Fn+θ,

(2.15)

from which we see that the splitting error

B(Wn+1 − 2Wn + Wn−1) = k2B

(
Wn+1 − 2Wn + Wn−1

k2

)

= O
(

k3
∑
i,j

∣∣∣∣ ∂2

∂t2
∂2

∂x2
i

∂2

∂x2
j

(u − g)
∣∣∣∣
)

= O(k3)

is improved in convergence order from the AD method. The price we pay is that
we need some good approximation to W 1, which we might obtain, for example, by
solving AD several times with a smaller time step.

3. A New Proof of Convergence for AD-M

As noted in the Introduction, Douglas and Kim7 gave a convergence proof for
AD-M under the assumption that the Am commute. Douglas and Gunn6 handled
non-commutative problems, but required the restriction that kh−4 be sufficiently
small. We significantly relax this constraint in this section.

Recall that (·, ·) is the inner-product in L2(Ω), and let ‖ · ‖ denote the induced
L2(Ω)-norm. We will also use some of the H�(Ω)-norms, denoted by ‖ ·‖�. We make
the following reasonable assumptions regarding the underlying discretizations.

Assumption 3.1. For some constant C independent of h and k, kh−2 ≤ C.
Moreover, for any vector Ψ ∈ R

dim Vh ,

|Ψ| ≤ C‖ψ‖,
where ψ =

∑
i Ψivi.

The latter inequality above holds if the mesh is quasi-uniform.

Assumption 3.2. For some constant C depending on the smoothness of a, c and g,

but not on h or k, the discrete spatial operators Am and B satisfy:

1. Each Am is bounded in the sense that ‖Am‖ ≤ Ch−2;
2. B satisfies the bound |Bv| ≤ Ckh−4|v|.
Moreover, 0 < a∗ ≤ a ≤ a∗ < ∞ and 0 < c∗ ≤ c ≤ c∗ < ∞ on Ω̄.

Note that Part 1 holds for the usual finite element spaces, and it (with Assump-
tion 3.1) implies Part 2.

Assumption 3.3. For some constant C depending on the smoothness of u, a, c

and g, but not on h or k, the following hold.
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1. The initial approximation is the elliptic projection, meaning that u0
h = w0

h ∈
Vh + g0 satisfies

(a∇(u − u0
h),∇v) = 0, v ∈ Vh. (3.1)

Moreover,

‖u0 − u0
h‖ + h‖u0 − u0

h‖1 ≤ Chs.

2. The solution uh to the full scheme (2.3) approximates the true solution u of
(1.1)–(1.3) in the sense that the error En = un − un

h satisfies(
N−1∑
n=0

∥∥∥∥En+1 − En

k

∥∥∥∥
2

k

)1/2

+ max
0≤m≤N

‖Em‖ ≤ C{hs + k3−2θ},

max
0≤m≤N

‖Em‖1 ≤ C{hs−1 + k3−2θ}.

It is well known that this assumption holds for the usual s-order accurate
finite element spaces, when we carefully choose the approximation to the initial
condition.1,15 In fact, Part 2 can be proven to hold using techniques similar to
what we use in the remainder of this section.

To prove convergence of AD-M, let En = Un − Wn and subtract (2.15) from
(2.3) to obtain

C
En+1 − En

k
+ A

(
θEn+1 + (1 − θ)En

)
= B(Wn+1 − 2Wn + Wn−1). (3.2)

In integral form, with en = un
h − wn

h , the ith component is(
c
en+1 − en

k
, vi

)
+
(
a∇[θen+1 + (1 − θ)en],∇vi

)
=
(
B(Wn+1 − 2Wn + Wn−1)

)
i
. (3.3)

Take the dot product of this with the test vector En+1 − En, i.e. the test function
en+1 − en, to obtain for n = 1, 2, . . . , N − 1,∥∥∥∥c1/2 en+1 − en

k

∥∥∥∥
2

k + θ(a∇en+1,∇en+1)

+ (1 − 2θ)(a∇en+1,∇en) − (1 − θ)(a∇en,∇en)

= B(Wn+1 − 2Wn + Wn−1) · (En+1 − En).

Thus, for either θ = 1 or θ = 1/2,

c∗

∥∥∥∥en+1 − en

k

∥∥∥∥
2

k +
1
2
(
(a∇en+1,∇en+1) − (a∇en,∇en)

)
≤ C|B(Wn+1 − 2Wn + Wn−1)| ‖en+1 − en‖

≤ C|B(Wn+1 − 2Wn + Wn−1)|2k +
c∗
2

∥∥∥∥en+1 − en

k

∥∥∥∥
2

k. (3.4)
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Now for Ψ ∈ R
dim Vh , with ψ =

∑
i Ψivi, note that

BΨ = θ2k
∑

1≤m1<m2≤d

Am1C
−1Am2Ψ + · · · + θdkd−1A1C

−1A2 · · ·C−1AdΨ

= θ2k
∑

1≤m1<m2≤d

Am1C
−1
(
(a∂m2vi, ∂m2ψ)

)
i

+ · · · + θdkd−1A1C
−1A2 · · ·C−1

(
(a∂dvi, ∂dψ)

)
i

= θ2k
∑

1≤m1<m2≤d

Am1C
−1
(
(vi,−∂m2a∂m2ψ)

)
i

+ · · · + θdkd−1A1C
−1A2 · · ·C−1

(
(vi,−∂da∂dψ)

)
i
.

In this way, we see that B can be applied naturally to a function. Using Assump-
tions 3.1 and 3.2, we determine that

|B(Wn+1 − 2Wn + Wn−1)|

≤ |B(en+1 − 2en + en−1)| + |B(En+1 − 2En + En−1)|

+ |B((u − g)n+1 − 2(u − g)n + (u − g)n−1)|

≤ C
{

k2

h4

[∥∥∥∥en+1 − en

k

∥∥∥∥+
∥∥∥∥en − en−1

k

∥∥∥∥
]

+
∥∥∥∥En+1 − En

k

∥∥∥∥+
∥∥∥∥En − En−1

k

∥∥∥∥+
(∫ tn+1

tn−1
‖(u − g)tt‖2

2 dt

)1/2

k3/2

}
. (3.5)

We remark that the last term above was easily estimated to be O(k2), which is all
we need for our error estimate. However, it should be O(k3), as noted above, but
this is not so easy to prove rigorously in the finite element case.

Combining (3.4) and (3.5), we obtain

c∗

∥∥∥∥en+1 − en

k

∥∥∥∥
2

k + (a∇en+1,∇en+1) − (a∇en,∇en)

≤ C|B(Wn+1 − 2Wn + Wn−1)|2k

≤ C
{(

k

h2

)4 [∥∥∥∥en+1 − en

k

∥∥∥∥
2

k +
∥∥∥∥en − en−1

k

∥∥∥∥
2

k

]

+
∥∥∥∥En+1 − En

k

∥∥∥∥
2

k +
∥∥∥∥En − En−1

k

∥∥∥∥
2

k +
∫ tn+1

tn−1
‖(u − g)tt‖2

2 dt k4

}
.
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Summing on n from 1 to m − 1, we see that

c∗
m−1∑
n=1

∥∥∥∥en+1 − en

k

∥∥∥∥
2

k + (a∇em,∇em)

≤ (a∇e1,∇e1) + C
{(

k

h2

)4 m−1∑
n=1

∥∥∥∥en+1 − en

k

∥∥∥∥
2

k +
∥∥∥∥e1 − e0

k

∥∥∥∥
2

k

+
m−1∑
n=0

∥∥∥∥En+1 − En

k

∥∥∥∥
2

k +
∫ T

0

‖(u − g)tt‖2
2 dt k4

}
.

For k/h2 sufficiently small, we can remove the second term on the right-hand side,
and the estimation of the error generated by the AD-M method is reduced to
bounding the errors in w0

h and w1
h. With Assumption 3.3, this gives us two of the

convergence results stated below.

Theorem 3.1. Under Assumptions 3.1–3.3, the solution wn
h of the AD-M

(2.11)–(2.13) converges to the solution u of (1.1)–(1.3) in the sense that the error
δn = un − wn

h satisfies

(N−1∑
n=0

∥∥∥∥δn+1 − δn

k

∥∥∥∥
2

k

)1/2

+ max
1≤m≤N

‖δm‖

≤ C
{

hs + k3−2θ + ‖u1
h − w1

h‖1 +
∥∥∥∥δ1 − δ0

k

∥∥∥∥√k

}
,

max
1≤m≤N

‖δm‖1 ≤ C
{

hs−1 + k3−2θ + ‖u1
h − w1

h‖1 +
∥∥∥∥δ1 − δ0

k

∥∥∥∥√k

}
,

provided that k and k/h2 are sufficiently small, wherein C depends on the smoothness
of u, a, c and g, but not on h or k, and uh is the solution to the unmodified method
(2.2)–(2.3).

It remains to prove the estimate on max ‖δm‖. Returning to (3.3), we take test
vector θEn+1 + (1 − θ)En to obtain, for n = 1, 2, . . . , N − 1,(

c
en+1 − en

k
, θen+1 + (1 − θ)en

)
+
(
a∇[θen+1 + (1 − θ)en],∇[θen+1 + (1 − θ)en]

)
= B(Wn+1 − 2Wn + Wn−1) · (θEn+1 + (1 − θ)En

)
.

Again, for either θ = 1 or θ = 1/2, we can estimate

1
2
(‖c1/2en+1‖2 − ‖c1/2en‖2

)
≤ C|B(Wn+1 − 2Wn + Wn−1)| ‖θen+1 + (1 − θ)en‖k
≤ C{|B(Wn+1 − 2Wn + Wn−1)|2k +

(‖en+1‖2 + ‖en‖2
)
k
}
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≤ C
{(‖en+1‖2 + ‖en‖2

)
k +

∥∥∥∥en+1 − en

k

∥∥∥∥
2

k +
∥∥∥∥en − en−1

k

∥∥∥∥
2

k

+
∥∥∥∥En+1 − En

k

∥∥∥∥
2

k +
∥∥∥∥En − En−1

k

∥∥∥∥
2

k +
∫ tn+1

tn−1
‖(u − g)tt‖2

2 dt k4

}
,

using (3.5) again. Now sum on n from 1 to m − 1 to obtain that

‖c1/2em‖2 ≤ ‖c1/2e1‖2 + C
{ m∑

n=1

‖en‖2k +
m−1∑
n=0

∥∥∥∥en+1 − en

k

∥∥∥∥
2

k

+
m−1∑
n=0

∥∥∥∥En+1 − En

k

∥∥∥∥
2

k +
∫ T

0

‖(u − g)tt‖2
2 dt k4

}
.

We can remove the second term on the right-hand side using the Gronwall inequal-
ity, provided that k is sufficiently small. The third term on the right-hand side is
estimated using the first result of the theorem. Assumption 3.3 completes the proof
in the finite element case. The finite difference case is similar to the above, only
simpler, since it is trivial to apply B to a set of finite difference points of the true
solution.

4. The Mixed Finite Element Formulation

We rewrite (1.1)–(1.3) in mixed form by defining

q = −a∇u, (4.1)

and then, with α(x) = 1/a(x), we have

αq + ∇u = 0, x ∈ Ω, 0 < t ≤ T, (4.2)

cut + ∇·q = f, x ∈ Ω, 0 < t ≤ T, (4.3)

u = g, x ∈ ∂Ω, 0 < t ≤ T, (4.4)

u = u0, x ∈ Ω, t = 0. (4.5)

Define the function spaces

V = H(div; Ω) = {q ∈ (L2(Ω))d : ∇·q ∈ L2(Ω)},
W = L2(Ω).

If (4.2) is tested by a function in V and (4.3) is tested by a function in W , the
weak form of (4.2)–(4.4) of interest for the mixed method results; that is, we find
for each time (q, u) ∈ V × W such that

(αq,v) − (∇·v, u) = −〈g,v · ν〉, v ∈ V, (4.6)

(cut, w) + (∇·q, w) = (f, w), w ∈ W, (4.7)

where the inner-product (·, ·) is taken in W or W d, as appropriate, 〈·, ·〉 is the
inner-product in L2(∂Ω), and ν is the outer unit normal to ∂Ω.
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The mixed finite element method approximates the solution in a properly cho-
sen subspace Vh × Wh of V × W (see, e.g., Ref. 14). In semi-discrete form (i.e.
discretizing space only), we seek (qh(t), uh(t)) ∈ Vh × Wh such that

(αqh,v) − (∇·v, uh) = −〈g,v · ν〉, v ∈ Vh, (4.8)

(cuh,t, w) + (∇·qh, w) = (f, w), w ∈ Wh. (4.9)

5. AD-M for Mixed Finite Elements

We derive our AD-M method only for the case that d = 2; the extension to d = 3 is
straightforward. We assume that Vh × Wh is the Raviart–Thomas space14 RTs−1

of index s − 1 ≥ 0, though spaces with similar properties could be used instead,
such as the Brezzi–Douglas–Fortin–Marini spaces.2 The usual basis for Vh,

Vh = span
i,j

{vx,i,vy,j},

has the properties that the vector function vx,i has a vanishing y-component,
is supported in at most two grid elements sharing an edge with normal in the
x-direction, and is discontinuous in the y-direction; similarly, vy,j has a vanish-
ing x-component, is supported in at most two grid elements sharing an edge with
normal in the y-direction, and is discontinuous in the x-direction. The usual basis
for Wh,

Wh = span
�

{w�},

is piecewise discontinuous over the grid.
We now reduce (4.8)–(4.9) to a system of linear equations. First consider the

matrix A arising from the form (αv1,v2), for two basis functions of Vh. Any mixture
of x and y basis functions results in

(αvx,i,vy,j) = 0,

so A is block diagonal with blocks

Ax,i1,i2 = (αvx,i1 ,vx,i2),

Ay,j1,j2 = (αvy,j1 ,vy,j2).

Note that both Ax and Ay are invertible. Moreover, with the appropriate ordering,
these matrices are banded with bands densely concentrated around the diagonal.
For the x-basis functions, we use standard (i, j) ordering of the elements, with i

advancing fastest. Starting from (1, 1), we progress through the grid, numbering
all vx,� with support in (i, j). However, for the y-basis functions, we use (i, j)
ordering of the elements with j advancing fastest. Thus these matrices have just a
few bands near the diagonal, and so it is easy to solve linear subsystems involving
Ax and Ay.
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With any ordering of the elements, we also have the nonsingular, block diagonal
matrix C defined by

C�1,�2 = (cw�1 , w�2).

Finally, let

Bx,i,� = (w�,∇·vx,i),

By,j,� = (w�,∇·vy,j),

which are sparse, but not particularly well structured.
Let us expand the solution in the basis as

uh(x, y, t) =
∑

�

z�(t)w�(x, y), (5.1)

qh(x, y, t) =
∑

i

µi(t)vx,i(x, y) +
∑

j

λj(t)vy,j(x, y). (5.2)

Then Eqs. (4.8)–(4.9) reduce to the system of linear equations

Axµ − Bxz = Gx, (5.3)

Ayλ − Byz = Gy, (5.4)

Czt + BT
x µ + BT

y λ = F, (5.5)

where

Gx,i = −〈g,vx,i · ν〉,
Gy,j = −〈g,vy,j · ν〉,

F� = (f, w�).

5.1. Backward Euler and Crank–Nicolson time discretization

When we employ backward Euler (θ = 1) or Crank–Nicolson (θ = 1/2) time dis-
cretization, we begin with some approximation of z0 and define µ0 and λ0 from

Axµ0 − Bxz0 = G0
x, (5.6)

Ayλ0 − Byz0 = G0
y, (5.7)

and then, for n = 0, 1, . . . , N − 1, our system becomes

Axµn+1 − Bxzn+1 = Gn+1
x , (5.8)

Ayλn+1 − Byz
n+1 = Gn+1

y , (5.9)

C
zn+1 − zn

k
+ BT

x

(
θµn+1 + (1 − θ)µn

)
+ BT

y

(
θλn+1 + (1 − θ)λn

)
= Fn+θ.

(5.10)

This is an indefinite saddle-point problem, and, therefore, generally difficult to solve.
Now let

Mx = BT
x A−1

x Bx and My = BT
y A−1

y By.



July 20, 2007 16:56 WSPC/103-M3AS 00228

Improved Accuracy for Alternating-Direction Methods 1291

By solving (5.6) and (5.7) or (5.8) and (5.9) for µn and λn, we reduce (5.10) to

C
zn+1 − zn

k
+ (Mx + My)

(
θzn+1 + (1 − θ)zn

)
= Fn+1, (5.11)

where

Fn+1 = Fn+θ−BT
x A−1

x

(
θGn+1

x +(1−θ)Gn
x

)−BT
y A−1

y

(
θGn+1

y +(1−θ)Gn
y

)
. (5.12)

Now (5.11) is positive definite, but unfortunately, Mx +My is a full matrix, and so
it is still difficult to solve.

5.2. An Uzawa mixed AD method

An efficiently computable Uzawa AD algorithm (see Ref. 9) iterates on n =0,

1, . . . , N − 1 as follows:
x-sweep:

Axµn,1 − Bxzn,1 = Gn+1
x , (5.13)

C
zn,1 − zn

k
+ BT

x

(
θµn,1 + (1 − θ)µn

)
+ BT

y λn = Fn+θ, (5.14)

y-sweep:

Ayλn+1 − Byzn+1 = Gn+1
y , (5.15)

C
zn+1 − zn

k
+BT

x

(
θµn,1 +(1−θ)µn

)
+BT

y

(
θλn+1 +(1−θ)BT

y λn
)

= Fn+θ, (5.16)

corrector step:

Axµn+1 − Bxzn+1 = Gn+1
x . (5.17)

Eliminating µn and λn, the Uzawa AD algorithm becomes

C
zn,1 − zn

k
+ Mx

(
θzn,1 + (1 − θ)zn

)
+ Myz

n = Fn,1, (5.18)

C
zn+1 − zn

k
+ Mx

(
θzn,1 + (1 − θ)zn

)
+ My

(
θzn+1 + (1 − θ)zn

)
= Fn+1, (5.19)

where

Fn,1 = Fn+θ − BT
x A−1

x

(
θGn+1

x + (1 − θ)Gn
x

)− BT
y A−1

y Gn
y . (5.20)

Subtract (5.18) from (5.19), multiply the result by θkMxC−1, and combine with
(5.19) to obtain the single equation

C
zn+1 − zn

k
+ (Mx + My)

(
θzn+1 + (1 − θ)zn

)
+ θ2kMxC−1My(zn+1 − zn)

= Fn+1 − θ2kMxC−1BT
y A−1

y (Gn+1
y − Gn

y ). (5.21)

Comparing this with (5.11) shows that the splitting error is

θ2kMxC−1
[
My(zn+1 − zn) + BT

y A−1
y (Gn+1

y − Gn
y )
]

= θ2kMxC−1BT
y (λn+1 − λn),

which is O(k2) for a sufficiently smooth solution u and boundary condition g.
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5.3. A new Uzawa mixed AD-M method

Equations (5.21) are not efficiently computable, but they do illuminate the splitting
error and suggest, similar to (2.9) in Ref. 7, that we can reduce it to O(k3) by adding
terms to make the splitting error equal to

θ2kMxC−1
[
My(zn+1 − 2zn + zn−1) + BT

y A−1
y (Gn+1

y − 2Gn
y + Gn−1

y )
]

= θ2kMxC−1BT
y (λn+1 − 2λn + λn−1) = O(k3).

Then the local splitting error would be higher order in k than the local error for the
backward Euler or Crank–Nicolson approximation, and also for the local splitting
error of the AD method itself.

Although Ax and Ay have bands concentrated near the diagonal, their inverses
may be full, so to avoid computing the inverse of Ax and Ay, we propose the
efficiently computable algorithm, for n = 1, 2, . . . , N − 1,
x-sweep:

Axµn,1 − Bxzn,1 + θkBxC−1BT
y (λn − λn−1) = Gn+1

x , (5.22)

C
zn,1 − zn

k
+ BT

x

(
θµn,1 + (1 − θ)µn

)
+ BT

y λn = Fn+θ, (5.23)

y-sweep:

Ayλn+1 − Byzn+1 = Gn+1
y , (5.24)

C
zn+1 − zn

k
+ BT

x

(
θµn,1 + (1 − θ)µn

)
+ BT

y

(
θλn+1 + (1 − θ)λn

)
= Fn+θ, (5.25)

corrector step:

Axµn+1 − Bxzn+1 = Gn+1
x . (5.26)

After some manipulation, we have

C
zn+1 − zn

k
+ (Mx + My)

(
θzn+1 + (1 − θ)zn

)
+ θ2kMxC−1My(zn+1 − 2zn + zn−1)

= Fn+1 − θ2kMxC−1BT
y A−1

y (Gn+1
y − 2Gn

y + Gn−1
y ), (5.27)

which has the promised O(k3) splitting error.

6. Convergence of Mixed AD-M

We suppose that Vh × Wh approximates V × W as in the case of RTs−1, i.e.

min
v∈Vh

‖q− v‖ ≤ C‖q‖sh
s and min

w∈Wh

‖u − w‖ ≤ C‖u‖sh
s. (6.1)
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All the usual mixed spaces satisfy the property that ∇·Vh = Wh, and they each
have a linear projection operator π : V ∩ (Lp(Ω))d → Vh, where p > 2, such that

‖v − πv‖ ≤ C‖v‖sh
s, (6.2)

(∇·(v − πv), w) = 0, w ∈ Wh, (6.3)

‖∇·(v − πv)‖ ≤ C‖∇·v‖sh
s. (6.4)

We also let P be the linear orthogonal projection operator of L2(Ω) onto Wh. We
will also need below P0, which is the linear orthogonal projection operator of L2(Ω)
onto the space of discontinuous constants (i.e. the scalar space of RT0). Trivially,

‖c − P0c‖L∞ ≤ C‖∇c‖L∞h,

where ‖ · ‖L∞ is the L∞-norm.
Mixed methods on rectangles have many interesting and important superconver-

gence properties. For example, it is known12,10,11 that the weighted L2-projection
Pα

V, defined by

(
α(v − Pα

Vv), ṽ
)

= 0, ṽ ∈ Vh,

has the property that

‖πv − Pα
v v‖ ≤ C‖v‖s+1h

s+1. (6.5)

Recalling (5.1)–(5.2), we have from (4.6) and either (5.6)–(5.7) or (5.26), (5.24)
that the errors en = un − un

h and σn = qn − qn
h satisfy, for each n = 0, 1, . . . , N ,

(απσn,v) − (∇·v,Pen) =
(
α(πqn − qn,v

)
, v ∈ Vh. (6.6)

Solving either (5.6)–(5.7) or (5.26), (5.24) for µn and λn, we can rewrite (5.27) as

C
zn+1 − zn

k
+ BT

x

(
θµn+1 + (1 − θ)µn

)
+ BT

y

(
θλn+1 + (1 − θ)λn

)
= θFn+1 + (1 − θ)Fn − θ2kMxC−1BT

y (λn+1 − 2λn + λn−1). (6.7)

From (4.7) at times tn and tn+1, then, we obtain for wi ∈ Wh that

(
cP en+1 − en

k
, wi

)
+
(∇·[θπσn+1 + (1 − θ)πσn], wi

)
= θ2k

(
MxC−1BT

y (λn+1 − 2λn + λn−1)
)
i

+
(

c

[
P un+1 − un

k
− θun+1

t − (1 − θ)un
t

]
, wi

)
, (6.8)

wherein we introduced π trivially using (6.3).
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We bound the splitting error as follows. First note that

BT
y λ = Myz + BT

y A−1
y Gy

= −MyE + MyU + BT
y A−1

y Gy

= −MyE + BT
y A−1

y (ByU + Gy),

where E and U are the vectors of finite element coefficients of Pe and Pu, respec-
tively. Now, if we take test function vy,j in (4.6) and let Q be the α-weighted linear
orthogonal projection of (L2(Ω)

)2 onto Vh, we see that

(αQq,vy,j) − (∇·vy,j ,Pu) = −〈g,vy,j · ν〉,
and, with Q being the vector of finite element coefficients of Qq,

AyQ − ByU = Gy.

Combining, we have that

BT
y λ = −MyE + BT

y Q.

The second step in bounding the splitting error is to note that ‖Ax‖ + ‖Ay‖ +
‖C‖ ≤ C and ‖A−1

x ‖+ ‖A−1
y ‖+ ‖C−1‖ ≤ C, and that we have only ‖Bx‖+ ‖By‖ ≤

Ch−1. Thus,

|θ2kMxC−1BT
y (λn+1 − 2λn + λn−1)|

≤ |kMxC−1My(En+1 − 2En + En−1)| + |kMxC−1BT
y (Qn+1 − 2Qn + Qn−1)|

≤ Ckh−2
{
h−2‖P(en+1 − 2en + en−1)‖ + ‖∂2(Qqn+1

2 − 2Qqn
2 + Qqn−1

2 )‖}
≤ C k

h2

{
k

h2

(∥∥∥∥P en+1 − en

k

∥∥∥∥+
∥∥∥∥P en − en−1

k

∥∥∥∥
)

+ k

∫ tn+1

tn−1
‖∂2(Qq2)tt‖ dt

}

≤ C k

h2

{
k

h2

(∥∥∥∥P en+1 − en

k

∥∥∥∥+
∥∥∥∥P en − en−1

k

∥∥∥∥
)

+ k3/2

(∫ tn+1

tn−1
‖q2,tt‖2

1 dt

)1/2}
,

(6.9)

using the stability of the L2-projection Q in H1.
The overall analysis of (6.8) proceeds much as in the non-mixed case. First

take the difference of (6.6) at times tn+1 and tn, and then choose the test function
v = θπσn+1 + (1− θ)πσn. Combine the result with w = P(en+1 − en) in (6.8), and
obtain that(

cP en+1 − en

k
,P(en+1 − en)

)
+
(
α(πσn+1 − πσn), θπσn+1 + (1 − θ)πσn

)
= θ2kMxC−1BT

y (λn+1 − 2λn + λn−1) · (En+1 − En)

+
(
P
{

c

[
P un+1 − un

k
− θun+1

t − (1 − θ)un
t

]}
,P(en+1 − en)

)

+
(
α(πqn+1 − Pα

v qn+1 − πqn + Pα
v qn), θπσn+1 + (1 − θ)πσn

)
,
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wherein we introduced the operators P and Pα
v . Again assuming that k/h2 is suf-

ficiently small, after some manipulation similar to that in Sec. 3, we obtain

1
2

∥∥∥∥√cP en+1 − en

k

∥∥∥∥
2

k +
1
2
(‖√απσn+1‖2 − ‖√απσn‖2

)

≤ C
{(

k

h2

)4 [∥∥∥∥P en+1 − en

k

∥∥∥∥
2

k +
∥∥∥∥P en − en−1

k

∥∥∥∥
2

k

]

+ k4

∫ tn+1

tn−1
‖q2,tt‖2

1 dt +
∥∥∥∥P
(

c

[
P un+1 − un

k
− θun+1

t − (1 − θ)un
t

])∥∥∥∥
2

k

+
∥∥(Pα

v qn+1 − πqn+1) − (Pα
v qn − πqn)

∥∥2
k−1 + ‖σn+1‖2k + ‖σn‖2k

}
.

For the time truncation error, we expand

c = (c − P0c) + P0c

and bound

∥∥∥∥P
(

(c − P0c)
[
P un+1 − un

k
− θun+1

t − (1 − θ)un
t

])∥∥∥∥
2

k

≤ ‖c − P0c‖L∞

{∥∥∥∥P
(

un+1 − un

k
− θun+1

t − (1 − θ)un
t

)∥∥∥∥
+ θ‖un+1

t − Pun+1
t ‖ + (1 − θ)‖un

t − Pun
t ‖
}2

k

≤ C
{

k6−4θh2

∫ tn+1

tn

‖∂4−2θ
t u‖2 dt +

(‖un+1
t ‖2

s + ‖un
t ‖2

s

)
h2(s+1)k

}
,

since P is bounded in the L2-norm. The remaining term is then

∥∥∥∥P0cP
[
un+1 − un

k
− θun+1

t − (1 − θ)un
t

]∥∥∥∥
2

k ≤ Ck6−4θ

∫ tn+1

tn

‖∂4−2θ
t u‖2 dt.

Moreover, we have that

∥∥(Pα
v qn+1 − πqn+1) − (Pα

v qn − πqn)
∥∥2

k−1 =
∥∥∥∥
∫ tn+1

tn

(Pα
v q − πq)t dt

∥∥∥∥
2

k−1

≤
(∫ tn+1

tn

‖Pα
vqt − πqt‖ dt

)2

k−1 ≤
∫ tn+1

tn

‖Pα
v qt − πqt‖2 dt

≤ h2(s+1)

∫ tn+1

tn

‖qt‖2
s+1 dt.
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Finally, Gronwall’s lemma implies that, for k and k/h2 sufficiently small,
N−1∑
n=1

∥∥∥∥P en+1 − en

k

∥∥∥∥
2

k + max
1≤n≤N

‖πσn‖2

≤ C
{
‖πσ1‖2 +

∥∥∥∥P e1 − e0

k

∥∥∥∥
2

k + k4

∫ T

0

‖q2,tt‖2
1 dt + k6−4θ

∫ T

0

‖∂4−2θ
t u‖2 dt

+ h2(s+1)

( N∑
n=1

‖un
t ‖2

sk +
∫ T

0

‖qt‖2
s+1 dt

)}
. (6.10)

For our second estimate of (6.8), take the θ-weighted average of (6.6) at times
tn+1 and tn, and choose the test function v = θπσn + (1 − θ)πσn. Combined with
(6.8) using w = θPen+1 + (1 − θ)Pen, it follows that(

cP en+1 − en

k
, θPen+1 + (1 − θ)Pen

)
+
(
α(θπσn+1 + (1 − θ)πσn), θπσn+1 + (1 − θ)πσn

)
= θ2kMxC−1BT

y (λn+1 − 2λn + λn−1) · [θPEn+1 + (1 − θ)PEn]

+
(
P
{

c

[
P un+1 − un

k
− θun+1

t − (1 − θ)un
t

]}
, θPen+1 + (1 − θ)Pen

)
+
(
α[θ(πqn+1 − Pα

vqn+1) + (1 − θ)(πqn − Pα
v qn)], θπσn+1 + (1 − θ)πσn

)
.

Again after some manipulation, we have that
1
2
(‖√cPen+1‖2 − ‖√cPen‖2

)
+

1
2
‖√α(θπσn+1 + (1 − θ)πσn)‖2k

≤ C
{∥∥∥∥P en+1 − en

k

∥∥∥∥
2

k +
∥∥∥∥P en − en−1

k

∥∥∥∥
2

k + k4

∫ tn+1

tn−1
‖q2,tt‖2

1 dt

+
∥∥∥∥P
(

c

[
P un+1 − un

k
− θun+1

t − (1 − θ)un
t

])∥∥∥∥
2

k + ‖Pen+1‖2k + ‖Pen‖2k

+ ‖Pα
vqn+1 − πqn+1‖2k + ‖Pα

v qn − πqn‖2k

}
.

Gronwall’s lemma and the previous estimate (6.10) implies that

max
1≤n≤N

‖Pen‖2 +
N−1∑
n=1

‖θπσn+1 + (1 − θ)πσn)‖2k

≤ C
{
‖Pe1‖2 + ‖πσ1‖2 +

∥∥∥∥P e1 − e0

k

∥∥∥∥
2

k

+ k4

∫ T

0

‖q2,tt‖2
1 dt + k6−4θ

∫ T

0

‖∂4−2θ
t u‖2 dt

+ h2(s+1)

( N∑
n=1

(‖un
t ‖2

s + ‖qn‖2
s+1

)
k +

∫ T

0

‖qt‖2
s+1 dt

)}
. (6.11)
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Our results (6.10) and (6.11) lead to the following theorem.

Theorem 6.1. Assuming (6.1), the solution (un
h,qh) of the mixed AD-M

(5.22)–(5.26) converges to the solution (u,q) of (4.6)–(4.7) in the sense that the
errors en = un − un

h and σn = qn − qn
h satisfy(N−1∑

n=1

∥∥∥∥P en+1 − en

k

∥∥∥∥
2

k

)1/2

+ max
1≤n≤N

‖Pen‖ + max
1≤n≤N

‖πσn‖

≤ C
{
‖Pe1‖ + ‖πσ1‖ +

∥∥∥∥P e1 − e0

k

∥∥∥∥√k

+ k2

(∫ T

0

‖q2,tt‖2
1 dt

)1/2

+ k3−2θ

(∫ T

0

‖∂4−2θ
t u‖2 dt

)1/2

+ hs+1

[( N∑
n=1

(‖un
t ‖2

s + ‖qn‖2
s+1

)
k

)1/2

+
(∫ T

0

‖qt‖2
s+1 dt

)1/2]}
,

provided that k and k/h2 are sufficiently small, wherein C depends on the smoothness
of a, c and g, but not on h or k. Moreover,(N−1∑

n=1

∥∥∥∥en+1 − en

k

∥∥∥∥
2

k

)1/2

+ max
1≤n≤N

‖en‖ + max
1≤n≤N

‖σn‖

≤ C
{
‖Pe1‖ + ‖πσ1‖ +

∥∥∥∥P e1 − e0

k

∥∥∥∥√k

+ k2

(∫ T

0

‖q2,tt‖2
1 dt

)1/2

+ k3−2θ

(∫ T

0

‖∂4−2θ
t u‖2 dt

)1/2

+ hs

[
max

1≤n≤N
‖un‖s + max

1≤n≤N
‖qn‖s

+
( N∑

n=1

‖un
t ‖2

s k

)1/2

+
(∫ T

0

(‖ut‖2
s + ‖qt‖2

s

)
dt

)1/2]}
.

The last estimate follows from the above argument using only Hs-smoothness
(i.e. not invoking superconvergence) and adding the projection errors to the right-
hand side.

7. Numerical Results

In this section, we present some numerical experiments illustrating the utility of
our mixed method for RT0 and confirming our theoretical results. We test only the
Crank–Nicolson procedures. The errors reported are measured in discrete L2-norms.
For the scalar solution u, this is

‖|e‖|L∞(L2) = max
n

{∑
�

(en
� )2h2

}1/2

,
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where en
� = un − un

h is the error at the center of grid cell �, wherein u is the exact
solution of (4.2)–(4.5) and uh is the approximation from either the full Crank-
Nicholson (C-N) system (5.8)–(5.10), the AD method (5.13)–(5.17), or our AD-M
method (5.22)–(5.26). This norm is O(h2) close to ‖Pe‖, and so it should exhibit
superconvergence of order O(h2 + k2).

We also report the errors

‖|et‖|L2(L2) =
{∑

n

∑
�

(
en+1

� − en
�

k

)2

h2 k

}1/2

,

and, for the vector solution q,

‖|σ‖|L∞(L2) = max
n

{∑
i

(σn
x,i)

2h2 +
∑

j

(σn
y,j)

2h2

}1/2

,

where σn = qn − qn
h are the errors at the center of the cell edges in the x and y

directions, respectively, which are O(h2) close to πσ. Again, these norms should
exhibit superconvergence of order O(h2 + k2).

Note that we should use a scaling of h ∼ k, since the overall error is O(h2 +k2).
However, the condition k/h2 → 0 is required for the theoretical results. We have
been unable to find an example that requires this condition, however. Thus, we use
a single discretization parameter n so that h = k = 1/n. We note in passing that
the condition k/h2 → 0 is natural for the Backward Euler methods combined with
RT0, since then the superconvergent errors are O(h2 + k).

In our AD-M method, for practical purposes, λ1 was obtained by running 10
micro-time steps of AD using one-tenth of the time step. We use the unit square
as Ω and T = 1.0. In all our test cases, we choose a specific solution u(x, y, t)
and coefficient a(x, y), and then we determine f , g and u0 so that (4.2)–(4.5) are
satisfied.

7.1. Smooth examples

In this set of examples, based on those of Ref. 7. In Table 1, we show the results
for the exact solution

u+(x, y, t) = sin(2πt) + sin(2πx) + sin(2πy)

and a(x, y) = 1, for which f(x, y) = 2 cos(2πt)π + 4 sin(2πx)π2 + 4 sin(2πy)π2.
In this example, the AD method does not introduce a larger splitting error, so
all three methods are comparable in their errors, at least for large values of n

(i.e. small values of h = k). We see second-order convergence for the full Crank–
Nicolson system for all three norms. Moreover, we see nearly second-order conver-
gence for the two alternating direction methods, but the rate is somewhat degraded
to about 1.6 to 1.8 for some of the norms. It appears that in this simple example,
the splitting errors actually cancel some of the approximation error, giving less
overall error for AD and AD-M than for C-N in some norms for small values of n.
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Table 1. Discrete errors with exact solution u+, and the observed convergence rates.

Error Method n = 20 n = 40 n = 80 n = 160 Rate

‖|e‖|L∞(L2) C-N 6.51e–3 1.51e–3 3.79e–4 9.47e–5 2.03

AD 6.05e–3 1.51e–3 3.79e–4 9.47e–5 2.00
AD-M 6.09e–3 1.51e–3 3.79e–4 9.47e–5 2.00

‖|et‖|L2(L2) C-N 2.21e–2 6.18e–3 1.68e–3 4.46e–4 1.88

AD 1.90e–2 5.95e–3 1.68e–3 4.49e–4 1.80
AD-M 1.10e–2 3.28e–3 1.15e–3 3.66e–4 1.62

‖|σ‖|L∞(L2) C-N 6.83e–2 1.77e–2 4.58e–3 1.17e–3 1.95

AD 4.89e–2 1.43e–2 4.27e–3 1.17e–3 1.79
AD-M 8.44e–2 2.08e–2 4.91e–3 1.18e–3 2.06

Table 2. Discrete errors with exact solution u×, and the observed convergence rate.

Error Method n = 20 n = 40 n = 80 n = 160 Rate

‖|e‖|L∞(L2) C-N 1.09e–2 2.73e–3 6.81e–4 1.70e–4 2.00

AD 6.28e–2 1.58e–2 3.94e–3 9.86e–4 2.00
AD-M 2.70e–2 4.50e–3 8.84e–4 1.94e–4 2.37

‖|et‖|L2(L2) C-N 2.86e–2 7.84e–3 2.12e–3 5.63e–4 1.89

AD 2.59e–1 6.92e–2 2.27e–2 8.63e–3 1.63
AD-M 9.75e–2 1.33e–2 2.19e–3 5.10e–4 2.53

‖|σ‖|L∞(L2) C-N 1.67e–1 4.15e–2 1.03e–2 2.59e–3 2.00

AD 1.80e–0 6.45e–1 2.70e–1 1.17e–1 1.31
AD-M 6.40e–1 1.14e–1 2.14e–2 4.20e–3 2.42

In Table 2, we show the results for the exact solution

u×(x, y, t) =
(
sin(2πt) + 1

)(
sin(2πx) + 1

)(
sin(2πy) + 1

)

and diffusion coefficient a(x, y) = 1. We see second-order convergence for C-N. In
this example, the AD method has much more error than C-N. AD produces a large
splitting error that degrades the effectiveness of the algorithm. It does not even
appear that we have entered the region of asymptotic convergence for this method,
since the convergence rates are less than expected for et and σ.

On the other hand, the AD-M method produces an error larger but comparable
to C-N. The AD-M splitting error is much smaller than that for AD. We observe
somewhat better rates of convergence (greater than 2), because the splitting error
is being removed at the rate of O(k3).

We show the reduction in splitting error in Fig. 1, where we plot the base 10 log
of the error ‖|e‖|L∞(L2) for the base 10 log of n, where n = 5, 10, 20, 40, 80 and 160.
The data are for exact solution u(x, y, t) =

(
sin(πt)+1

)(
sin(πx)+1

)(
sin(πy)+1

)
.

The graph clearly shows a slope of about 3, i.e. O(k3) convergence, for small n.
The slope quickly reduces to about 2, i.e. O(k2) convergence.
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Fig. 1. The log of the error ‖|e‖|L∞(L2) versus the log of n.

Table 3. Discrete L2-errors for n = 80 with exact solu-
tion u×.

Error Method a = a1 a = a2 a = a3

‖|e‖|L∞(L2) C-N 6.81e–4 6.79e–4 6.85e–4

AD 3.94e–3 2.43e–3 6.08e–3
AD-M 8.84e–4 7.77e–4 9.64e–4

‖|et‖|L2(L2) C-N 2.12e–3 1.87e–3 3.59e–3

AD 2.27e–2 1.49e–2 3.00e–2
AD-M 2.19e–3 1.91e–3 3.24e–3

‖|σ‖|L∞(L2) C-N 1.03e–2 6.40e–3 1.74e–2

AD 2.70e–1 1.37e–1 5.29e–1

AD-M 2.14e–2 1.17e–2 4.49e–2

In our final smooth experiment, we test our AD-M with a variable coefficient.
We again take the exact solution u×, but set a to one of the three choices

a1(x, y) = 1,

a2(x, y) =
1

2 + cos(3πx) cos(2πy)
,

a3(x, y) =




1 + 0.5 sin(5πx) + y3, if x ≤ 0.5,

1.5
1 + (x − 0.5)2

+ y3, otherwise.

In Table 3, we present the results, which show again that AD is inferior to AD-M,
which is comparable to the full solution.
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7.2. Nonsmooth examples

In this set of examples, we consider the true solution

uα(x, y, t) = |xyt − 0.25|α,

for some parameter α. Note that the solution has bounded partial derivatives (of
any type) only up to order α. According to Theorem 6.1, we should take α > 3 to
have the regularity demanded of the solution for superconvergence, and α > 2 to
obtain convergence of order O(k + h) (since the time error will degenerate to first
order).

In the first set of tests, we take a = 1, which means that the 1-D operators
commute. It is reasonable to expect that there is no requirement that k/h2 be
sufficiently small in this case, assuming the results of Douglas and Kim7 extend
to mixed methods. Indeed we see in Table 4 good convergence for this case when
α = 3.1, meaning that q has 2 derivatives.

When α = 2.1, C-N behaves as expected in Table 5, which shows the convergence
rate of et and σ degrading to about O(k + h). The fact that the error norm of e

retains its superconvergence is unexpected. Both AD and AD-M follow the general

Table 4. Discrete errors with exact solution u3.1 and a = 1, and the
observed convergence rates.

Error Method n = 20 n = 40 n = 80 n = 160 Rate

‖|e‖|L∞(L2) C-N 1.14e–4 2.85e–5 7.13e–6 1.78e–6 2.00

AD 1.32e–3 3.41e–4 8.62e–5 2.16e–5 2.00
AD-M 2.52e–4 4.51e–5 9.10e–6 2.02e–6 2.32

‖|et‖|L2(L2) C-N 1.84e–4 4.63e–5 1.18e–5 2.97e–6 1.98

AD 1.78e–3 4.63e–4 1.18e–4 3.00e–5 1.97
AD-M 5.28e–4 1.23e–4 3.12e–5 8.23e–6 2.00

‖|σ‖|L∞(L2) C-N 8.71e–4 2.17e–4 5.49e–5 1.38e–5 1.99

AD 5.29e–2 2.02e–2 7.42e–3 2.67e–3 1.44
AD-M 6.96e–3 1.36e–3 2.49e–4 4.79e–5 2.40

Table 5. Discrete errors with exact solution u2.1 and a = 1, and the
observed convergence rates.

Error Method n = 20 n = 40 n = 80 n = 160 Rate

‖|e‖|L∞(L2) C-N 1.04e–4 2.65e–5 9.06e–6 1.89e–6 1.89

AD 8.78e–4 2.22e–4 5.75e–5 1.38e–5 1.99
AD-M 1.39e–4 3.02e–5 9.43e–6 2.09e–6 1.99

‖|et‖|L2(L2) C-N 6.90e–4 4.41e–4 2.37e–4 1.08e–4 0.89

AD 1.02e–3 3.78e–4 1.66e–4 7.10e–5 1.27
AD-M 7.51e–4 3.70e–4 1.85e–4 8.47e–5 1.04

‖|σ‖|L∞(L2) C-N 2.04e–3 9.24e–4 4.90e–4 2.07e–4 1.08

AD 2.94e–2 1.07e–2 3.87e–3 1.39e–3 1.47
AD-M 2.93e–3 9.24e–4 3.75e–4 1.62e–4 1.38
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Table 6. Discrete errors with exact solution u1.9 and a = 1, and the
observed convergence rates.

Error Method n = 20 n = 40 n = 80 n = 160 Rate

‖|e‖|L∞(L2) C-N 1.74e–4 5.07e–5 1.73e–5 5.30e–6 1.67

AD 8.49e–4 2.15e–4 5.17e–5 1.49e–5 1.96
AD-M 1.84e–4 5.33e–5 1.48e–5 4.98e–6 1.75

‖|et‖|L2(L2) C-N 1.64e–3 1.47e–3 9.17e–4 4.43e–4 0.66

AD 1.37e–3 9.13e–4 5.50e–4 2.56e–4 0.80
AD-M 1.36e–3 9.48e–4 5.80e–4 2.77e–4 0.76

‖|σ‖|L∞(L2) C-N 4.55e–3 2.66e–3 1.68e–3 7.71e–4 0.83

AD 2.67e–2 9.79e–3 3.55e–3 1.29e–3 1.46
AD-M 3.73e–3 1.63e–3 8.19e–4 3.84e–4 1.08

Table 7. Discrete errors with exact solution u3.1 and nonsmooth a, and
the observed convergence rates.

Error Method n = 20 n = 40 n = 80 n = 160 Rate

‖|e‖|L∞(L2) C-N 7.04e–5 1.77e–5 4.44e–6 1.11e–6 2.00

AD 5.11e–3 1.47e–3 3.88e–4 9.88e–5 1.90
AD-M 8.32e–4 1.11e–4 1.56e–5 2.41e–6 2.81

‖|et‖|L2(L2) C-N 1.91e–4 4.40e–5 1.12e–5 2.93e–6 2.01

AD 6.97e–3 1.97e–3 5.17e–4 1.33e–4 1.91
AD-M 1.57e–3 3.27e–4 7.77e–5 1.99e–5 2.10

‖|σ‖|L∞(L2) C-N 5.03e–3 1.26e–3 3.16e–4 7.92e–5 2.00

AD 7.89e–1 3.70e–1 1.51e–1 5.76e–2 1.26
AD-M 1.46e–1 2.87e–2 5.23e–3 9.46e–4 2.43

Table 8. Discrete errors with exact solution u2.1 and nonsmooth a, and
the observed convergence rates.

Error Method n = 20 n = 40 n = 80 n = 160 Rate

‖|e‖|L∞(L2) C-N 7.14e–5 2.34e–5 8.24e–6 1.91e–6 1.72

AD 3.46e–3 9.15e–4 2.34e–4 5.85e–5 1.96

AD-M 3.37e–4 5.61e–5 1.18e–5 3.09e–6 2.26

‖|et‖|L2(L2) C-N 9.14e–4 6.44e–4 3.49e–4 1.60e–4 0.84

AD 3.90e–3 1.12e–3 3.67e–4 1.37e–4 1.61
AD-M 1.59e–3 6.51e–4 3.09e–4 1.42e–4 1.15

‖|σ‖|L∞(L2) C-N 5.58e–3 2.41e–3 1.24e–3 5.28e–4 1.12

AD 4.61e–1 1.92e–1 7.37e–2 2.71e–2 1.36
AD-M 4.64e–2 1.32e–2 4.47e–3 1.71e–3 1.59

results of C-N, but with somewhat greater error (and AD is worse than AD-M).
When α = 1.9 (Table 6), we lose sufficient regularity to have full good convergence,
but we nevertheless retain a fractional rate of convergence (as we should expect) of
order about 0.9 for et and σ, and a bit better partial superconvergence rate for e.
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Table 9. Discrete errors with exact solution u1.9 and nonsmooth a, and
the observed convergence rates.

Error Method n = 20 n = 40 n = 80 n = 160 Rate

‖|e‖|L∞(L2) C-N 1.85e–4 6.77e–5 2.50e–5 6.64e–6 1.58

AD 3.08e–3 8.02e–4 1.97e–4 5.21e–5 1.97
AD-M 3.68e–4 7.70e–5 2.35e–5 6.84e–6 1.90

‖|et‖|L2(L2) C-N 2.15e–3 2.20e–3 1.38e–3 6.66e–4 0.86

AD 3.77e–3 1.55e–3 8.30e–4 3.89e–4 1.07
AD-M 2.41e–3 1.42e–3 8.64e–4 4.24e–4 0.82

‖|σ‖|L∞(L2) C-N 1.15e–2 6.72e–3 4.17e–3 1.93e–3 0.84

AD 3.86e–1 1.57e–1 5.97e–2 2.19e–2 1.38
AD-M 5.41e–2 1.49e–2 7.24e–3 3.60e–3 1.03

In the second set of nonsmooth tests, we also take a nonsmooth a given by

a(x, y) =




2 + sin(xy2) + 32(x − 0.5)(y − 0.5), x ≤ 0.5, y ≤ 0.5,

2 + sin(xy2) + 8(x − 0.5)(y − 0.5), x > 0.5, y > 0.5,

2 + sin(xy2), otherwise.

In this case, the 1-D operators do not commute. Nevertheless, we do not seem to
require that k/h2 be sufficiently small (contrary to what Theorem 6.1 suggests). The
results for α = 3.1, 2.1 and 1.9 are given in Tables 7–9, and they agree qualitatively
with the previous test cases.

8. Conclusions

We have shown that the AD and AD-M algorithms for finite difference and Galerkin
approximations to second order parabolic equations converge optimally if only
k/h2 → 0 (not k/h4 → 0).

We have shown that the AD-M modification in Ref. 7 can be applied to mixed
finite element procedures. Moreover, we formulated an efficient Uzawa AD-M imple-
mentation. The resulting method has splitting error of size O(k3). For RTs, the
Uzawa AD and AD-M converge optimally at the rate O(kr + hs+1) provided that
k/h2 → 0, where r = 1 for backward Euler and r = 2 for Crank–Nicolson time dis-
cretization. Moreover, both methods exhibit superconvergence. In discrete norms,
the scalar and vector variables converge with order O(kr + hs+2).

Numerical results using Crank–Nicolson and RT0 show that k ∼ h works well
for AD and AD-M, suggesting that the condition k/h2 → 0 is not actually needed
(though we cannot prove this now). The numerical results also clearly show that
the splitting error is higher order, and was seen to be O(k3). Generally, we saw that
the AD-M error was comparable to C-N, but AD had more error.
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It is clear from the algorithms that the AD-M modification requires little extra
computation compared to AD, but it can lead to a significant reduction in the
splitting perturbation error associated with the AD method for mixed finite ele-
ments. Moreover, AD-M is much easier to solve than C-N alone, but often produces
comparable error.
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