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Abstract. We investigate the mixed finite element method (MFEM) for solving a second order
elliptic problem with a lowest order term, as might arise in the simulation of single phase flow
in porous media. We find that traditional mixed finite element spaces are not necessary when a
positive lowest order (i.e., reaction) term is present. Hence we propose to use standard conforming
finite elements Qk × (Qk)

d on rectangles or Pk × (Pk)d on simplices to solve for both the pressure
and velocity field in d dimensions. The price we pay is that we have only sub-optimal order error
estimates. With a delicate superconvergence analysis, we find some improvement for the simplest
pair Qk × (Qk)

d with any k ≥ 1, or for P1 × (P1)
d, when the mesh is uniform and the solution has

one extra order of regularity. We also prove similar results for both parabolic and second order
hyperbolic problems. Numerical results using Q1×(Q1)

2 and P1×(P1)
2 are presented in support of

our analysis. These observations allow us to simplify the implementation of the MFEM, especially
for higher order approximations, as might arise in an hp-adaptive procedure.
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1 Introduction

The mixed finite element method (MFEM) is often used to obtain approximate solutions to more
than one unknown at the same time. For example, the MFEM is used to solve the problem of
single-phase flow in porous media, described by a second order elliptic equation written as a system
of two first order equations, to obtain approximations to both the pressure and Darcy velocity
field simultaneously. As another example, Maxwell’s equations are often solved to obtain both the
magnetic and electric fields. Accordingly, we need a different finite element space for each unknown.
Convergence is guaranteed if these two spaces are interrelated in that they satisfy the so-called
discrete inf-sup condition, i.e., the Ladyzhenskaya-Babuška-Brezzi (LBB) condition [7, 25, 27].
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The inf-sup condition complicates the definition of the finite element spaces. For example, in
solving the single-phase flow problem, many complicated mixed finite element spaces have been
proposed such as those of Raviart-Thomas-Nedelec [26, 24], Brezzi-Douglas-Marini [5], Brezzi-
Douglas-Duràn-Fortin [6], Chen-Douglas [12], Brezzi-Fortin-Marini [8], and Arbogast-Wheeler [3].
More details can be consulted the books by Brezzi-Fortin [7] and Roberts-Thomas [27] and refer-
ences therein. Due to the complicated nature of these mixed spaces, usually only the lowest order
spaces are used in practical computations. Furthermore, some postprocessing is needed to visualize
the numerical solution, since the degrees of freedom for the MFEM are not nodal based. Such
postprocessing further complicates the implementation of the MFEM. Hence, it would be desirable
in some cases to be able to use standard nodal basis finite element spaces in the MFEM. Such
efforts have been carried out in the engineering community (e.g., [17, 29]).

In this paper, we approximate a second order elliptic equation, written in mixed form, by
applying the standard conforming finite element spaces, Qk × (Qk)

d on rectangles or Pk × (Pk)
d on

simplices in dimension d = 2, 3, where Qk and Pk are continuous piecewise polynomials of degree k
in each Cartesian variable separately for Qk, and of total degree k for Pk. A careful investigation
shows that these spaces can be successfully used to solve for both the pressure and velocity field
when a reaction term is present, i.e., when a uniformly positive zeroth order term appears in the
equation. Because the inf-sup condition is violated, however, we have suboptimal convergence
properties, losing a single power of the mesh spacing h. On simplicial meshes, these spaces are
smaller in their number of degrees of freedom than the Raviart-Thomas spaces for similar accuracy.
In the rectangular mesh case, again for similar accuracy, these spaces are slightly larger than the
Raviart-Thomas spaces. However our proposed spaces are much simpler to implement, especially
when higher order spaces are desired, or when an hp-adaptive refinement procedure is implemented.

A locally conservative variant is easy to define, in which the scalar variable is approximated by a
discontinuous space of Qk or Pk piecewise polynomials. In fact, we can use Pk on both rectangular
and simplicial meshes.

The convergence result is suboptimal, however, we can recover one-half power of h on uniform
grids for Qk × (Qk)

d with any k ≥ 1, or for P1 × (P1)
d. Moreover, we recover a full power of

h, and thereby obtain optimal accuracy, when the problem has periodic boundary conditions, as
might arise, e.g., from a cell problem in homogenization. This analysis is based on Lin’s integral
identity technique developed in the early 1990’s (see, e.g., [20, 23, 21, 33]) for proving general finite
element method superconvergence. More details and applications of this technique can be found in
the superconvergence books [9, 22].

Finally, we extend our results to parabolic and second order hyperbolic problems. To the best
of our knowledge, no previous reference has pointed out the interesting properties we note in this
paper for the standard spaces in a mixed context when a time derivative or uniformly positive
zeroth order term appears. Because of their simplicity and convergence properties, they seem to be
competitive with, and perhaps the better choice than, corresponding Raviart-Thomas spaces when
(1) simplicial meshes are used, (2) problems with periodic boundary conditions are approximated
with uniform rectangular grids, (3) higher order approximations are desired, and (4) when an
hp-adaptive refinement procedure is implemented.

The rest of the paper is organized as follows. In Section 2, we formulate the MFEM for the
elliptic single-phase flow problem using Qk×(Qk)

d and Pk×(Pk)
d spaces. Existence and uniqueness

of the system is proved, and error estimates are obtained. We pay special attention to the size of
our mixed spaces, and compare to some which satisfy the inf-sup condition. Our improved error
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analysis is also presented here. In Sections 3 and 4, we generalize the results to parabolic and
hyperbolic problems, respectively. In Section 5, we provide some numerical examples to illustrate
our method and confirm our theoretical analysis. Section 6 concludes the paper.

2 The Elliptic Problem

Let Ω ⊂ Rd, d = 2, 3, be an open Lipschitz polygon or polyhedron. For simplicity, we consider the
single-phase flow problem

−∇ · [D(x) (∇p − g(x))] + α(x) p(x) = f(x) in Ω, (1)

p = 0 on ∂Ω, (2)

where the reaction coefficient α(x) ≥ αmin > 0 and D(x) ≥ Dmin > 0. (Other boundary conditions,
including nonhomogeneous Dirichlet and Neumann ones, could be treated by the techniques used in
this paper, but we have restricted ourselves to the homogeneous Dirichlet condition for expository
purposes.) Introduce u = −D(∇p − g) and transform (1)–(2) to the standard mixed form: Find
p ∈ L2(Ω) and u ∈ H(div;Ω) such that

(αp,w) + (∇ · u, w) = (f,w) ∀ w ∈ L2(Ω), (3)

−(p,∇ · v) + (βu,v) = (g,v) ∀ v ∈ H(div;Ω), (4)

where β = D−1 and (·, ·)ω denotes the L2(Ω) inner-product (we omit ω if ω = Ω).

2.1 Discretization.

Let Th be a conforming quasiuniform finite element partition of Ω by either rectangular or simplicial
elements of maximal diameter h. We propose the mixed finite element approximation: Find ph ∈
W k

h,0 and uh ∈ V k
h such that

(αph, wh) + (∇ · uh, wh) = (f,wh) ∀ wh ∈ W k
h,0, (5)

−(ph,∇ · vh) + (βuh,vh) = (g,vh) ∀ vh ∈ V k
h, (6)

where, for k ≥ 1, the mixed finite element spaces are W k
h,0 = W k

h ∩ H1
0 (Ω), and

W k
h = {w ∈ C0(Ω) : w|R ∈ W k

h (E),∀E ∈ Th}, (7)

V k
h = {v ∈ (C0(Ω))d : v|E = (W k

h (E))d,∀E ∈ Th}, (8)

and where W k
h (E) = Qk(E) or Pk(E) for rectangular or simplicial elements, respectively. Note

that our mixed spaces V k
h are the simplest (H1(Ω))d elements, and not any of the standard mixed

finite element spaces [7, 27].
If the standard nodal basis is used, we can interleave the pressure and velocity unknowns to

obtain a linear system with a block-structured matrix. The matrix has the standard stencil in
terms of its blocks, and each block is (d + 1) × (d + 1). If we separate the pressure and velocity
unknowns, we obtain a more standard saddle point linear system. In any case, as with all mixed
methods, we do not have a simple positive definite system, and some care must be exercised in
solving the linear system. (In our numerical results below, we used a direct solver.)
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Remark 2.1 We note that we could have taken

W k
h,0 = W D,k

h,0 = {w : w|R ∈ W k
h (E),∀E ∈ Th, w = 0 on ∂Ω};

that is, we could relax the continuity of the pressure approximating space. Moreover, in this case,
we could replace Qk(E) by Pk(E) on rectangles. Our suboptimal order error estimates below would
continue to hold, but not our improved error estimates. However, this form of the method would
satisfy the local mass conservation principle. That is, in this case, (5) implies that on each element
E ∈ Th,

(αph, 1)E + (∇ · uh, 1)E = (αph, 1)E + (uh · n, 1)∂E = (f, 1)E ,

so that the net flux through ∂E, (uh · n, 1)∂E , is exactly related to the net external sources (f, 1)E
and the reaction or accumulation (αph, 1)E acting over E. This is an important property in certain
applications (see, e.g., [14, 28, 1]).

Remark 2.2 For Galerkin formulations, the Dirichlet boundary condition (BC) is essential and
the Neumann BC is natural, whereas mixed methods have the opposite behavior. The Neumann
boundary condition, being essential, is easily incorporated by fixing the normal components of u

and v to the data and zero, respectively, and taking p in W k
h . The Dirichlet BC is natural. For the

nonhomogeneous case p = pD on ∂Ω, we would modify (4) to read

−(p,∇ · v) + (βu,v) = (g,v) − (pD,v · n) ∀ v ∈ H(div; Ω),

and the method similarly. This BC is imposed naturally with both ph and wh in W k
h . However, we

have a larger finite element space (W k
h versus W k

h,0), and the BC is not set exactly. Therefore, we

chose above to impose the Dirichlet BC as an essential BC. That is, we take p in W k
h such that p

agrees with pD on ∂Ω, and we restrict wh to W k
h,0.

2.2 Suboptimal order error estimates.

Let ‖ · ‖k,ω denote the Hk(ω)-norm, and let | · |k,ω be the Hk(ω)-seminorm of highest derivatives
only, wherein we omit ω if it is Ω. For function w, let wI denote the standard Qk or Pk interpolant.
Then we have the well-known interpolation estimate

‖wI − w‖m ≤ Chl+1−m|w|l+1, ∀ w ∈ Hs(Ω), m = 0, 1, l = min(k, s − 1) ≥ 1. (9)

By quasiuniformity, we also have the inverse inequality

‖wh‖1 ≤ Ch−1‖w‖0, ∀ w ∈ W k
h (Ω). (10)

Since (5)–(6) is a finite dimensional linear system, uniqueness implies existence, so consider
f = 0 and g = 0 in (5)–(6). Take wh = ph and vh = uh, and then add the results to obtain

(αph, ph) + (βuh,uh) = 0,

from which uniqueness is seen.
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Theorem 2.1 Assume p and u = −D(∇p − g) lie in Hk+1(Ω). Let ph and uh be the solution of
(5)–(6) with mixed spaces (7)–(8). Then one has the sub-optimal order error estimate

||p − ph||0 + ||u − uh||0 ≤ C
{

|p|k+1 + |u|k+1

}

hk, (11)

where k ≥ 1 is the degree of the finite element spaces.

Proof. For any wh ∈ W k
h,0 and vh ∈ V k

h, subtracting (5)–(6) from (3)–(4) gives:

(α(pI − ph), wh) + (∇ · (uI − uh), wh) = (α(pI − p), wh) + (∇ · (uI − u), wh), (12)

−(pI − ph,∇ · vh) +
(

β(uI − uh),vh

)

=
(

β(uI − u),vh

)

− (pI − p,∇ · vh). (13)

Choosing wh = pI −ph and vh = uI −uh in (12)–(13), respectively, and adding the results together,
we obtain the estimate

αmin||pI − ph||20 + βmin||uI − uh||20
= (α(pI − p), pI − ph) + (∇ · (uI − u), pI − ph)

+
(

β(uI − u),uI − uh

)

− (pI − p,∇ · (uI − uh)) (14)

≤ Chk
{

[h|p|k+1 + |u|k+1]||pI − ph||0
+ h|u|k+1||uI − uh||0 + h|p|k+1||∇ · (uI − uh)||0

}

,

where we used the interpolation estimate (9) in the last step. Using the Cauchy-Schwarz inequality,
and the inverse estimate (10) to bound the divergence term, we have

||pI − ph||20 + ||uI − uh||20 ≤ C
{

|p|k+1 + |u|k+1

}

h2k,

which along with the triangle inequality and the interpolation estimate (9) concludes our proof.
From the simple proof above, we see that the usual discrete inf-sup condition for the mixed finite

element method is not needed for elliptic problems with positive reaction terms. The price we pay
is that we have only sub-optimal order error estimates and nonuniform convergence as αmin → 0
(i.e., C → ∞ in this limit).

When we choose standard mixed spaces satisfying the inf-sup condition, optimal order error
estimates are obtained, and the bounding constant is independent of αmin. For example, consider
Raviart-Thomas spaces [26] on a rectangular grid Th. For k ≥ 1, on a rectangle R,

W̃ k
h = {w : w|R ∈ Qk−1(R),∀R ∈ Th},

Ṽ
k
h = {v ∈ H(div;Ω) : v|R ∈ Qk,k−1,...,k−1(R) × · · · × Qk−1,...,k−1,k(R),∀R ∈ Th},

where Qk1,...,kd
are polynomials of degree ki in xi for each i = 1, ..., d. The only continuity require-

ments are on the normal velocities across element boundaries. If pI is the L2-projection onto W̃ k
h ,

i.e.,
(pI − p,wh) = 0 ∀ wh ∈ W̃ k

h , (15)

and uI as the Raviart-Thomas or Fortin projection operator for which

(∇ · (uI − u), wh) = 0 ∀ wh ∈ W̃ k
h , (16)

optimal order error estimate can be recovered immediately by using (15), (16), and the fact that

∇ · vh ⊂ W̃ k
h for any vh ∈ Ṽ

k
h, since in this case the last terms in both (12) and (13) vanish. The

independence on αmin is more subtle, and follows from the uniformity of the inf-sup condition [7, 27].
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2.3 Numbers of degrees of freedom.

We note that for accuracy of order k ≥ 1, we have proposed using the continuous elements Qk ×
(Qk)

d, which on an N × · · · × N grid of elements has dimension

dim(W k
h,0 × V k

h) = (kN − 1)d + d(kN + 1)d = O
(

(d + 1)kdNd
)

.

Equivalent accuracy comes from using the Raviart-Thomas spaces [26, 24] Qk−1 × (Qk,k−1,...,k−1 ×
· · · × Qk−1,...,k−1,k), which has dimension

dim(W̃ k−1
h × Ṽ

k−1
h ) = (kN)d + d(kN + 1)(kN)d−1 = O

(

(d + 1)kdNd
)

,

which, although smaller, is not substantially so. The order of the number of degrees of freedom
(DOFs), for large N , is the same for the two methods. In fact, when d = 2, the difference is exactly
3 for all k.

To be fair, however, the Raviart-Thomas spaces on (nonuniform) rectangular grids, at least
in some cases, give superconvergence for both p and u [31, 2]. In such cases, we would need to
compare to Qk−2 × (Qk−1,k−2,...,k−2 × · · · × Qk−2,...,k−2,k−1), which has dimension

dim(W̃ k−2
h × Ṽ

k−2
h ) = (d + 1)((k − 1)N)d + d((k − 1)N)d−1 = O

(

(d + 1)(k − 1)dNd
)

,

which is smaller by a factor of ((k − 1)/k)d. However, since the complexity of the Raviart-Thomas
spaces is great, it may make sense to use the simpler standard spaces W k

h,0 × V k
h, especially in an

hp- or other adaptive procedure.
Furthermore, the Raviart-Thomas spaces give a locally conservative method. If this property

is desired, we noted in Remark 2.1 that we would need to use W D,k
h,0 for the scalar approximating

space. Then the count would be somewhat larger. Using Qk for the scalar would give

dim(W D,Q,k
h,0 × V k

h) = ((k + 1)N − 2)d + d(kN + 1)d = O
(

((k + 1)d + dkd)Nd
)

,

but using Pk for the scalar would be the better choice, giving

dim(W D,P,k
h,0 × V k

h) ≤
(

k + d
d

)

Nd + d(kN + 1)d = O

((

(k + d)!

k! d!
+ dkd

)

Nd

)

,

with the inequality due to the fact that we did not account for the Dirichlet boundary condition.
It is more difficult to compare simplicial meshes. For d = 2, consider a cross-hatched rectangular

N × N grid (with 2N2 elements, as depicted in Figure 2 of Section 5). The continuous elements
Pk × (Pk)2 give a space with dimension

dim(W k
h,0 × V k

h) = (kN − 1)2 + 2(kN + 1)2 = 3(kN)2 + 2kN + 3 = O(3k2N2).

The locally conservative space has dimension

dim(W D,k
h,0 × V k

h) = ((k + 1)N − 2)2 + 2(kN + 1)2

= (3k2 + 2k + 1)N2 − 4N + 6 = O
(

(3k2 + 2k + 1)N2
)

.
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Equivalent accuracy comes from the Raviart-Thomas elements Pk−1 ×
(

xPk−1 ⊕ (Pk−1)
2). The

scalar space is fully discontinuous and has dimension

dim W̃ k−1
h =

(

k + 1
2

)

2N2 = k(k + 1)N2.

The vector variable space has normal continuity, so its dimension is 3 dim(Pk−1)2N
2 minus k times

the number of internal edges; that is,

dim Ṽ
k−1
h = 6

(

k + 1
2

)

N2 − k
(

N2 + 2N(N − 1)
)

= 3(kN)2 + 2kN.

Thus,

dim(W̃ k−1
h × Ṽ

k−1
h ) = (4k2 + k)N2 + 2kN = O

(

(4k2 + k)N2
)

,

which is larger than our proposed continuous spaces (assuming nontrivial N ≥ 2), and larger than
the locally conservative discontinuous spaces for k > 1.

Finally, consider d = 3 and a tetrahedral grid. Again, we restrict to a simple grid: a standard
N ×N ×N rectangular grid with either n = 5 or n = 6 tetrahedrons per grid cell. First we consider
a single coordinate i of the vector variable space V k

h using elements Pk. We count internal DOFs
(if k ≥ 4), then DOFs shared on faces (if k ≥ 3), then DOFs shared on edges (if k ≥ 2), and finally
DOFs shared at vertices. This gives dimension

1

3
dim(V k

h) =

(

k − 1
3

)

nN3 +

(

k − 1
2

)

(

3(N + 1)N2 + (2n − 6)N3
)

+ (k − 1)
(

3(N + 1)2N + (n − 5)N3
)

+ (N + 1)3.

The scalar space is similar:

dim(W k
h,0) =

(

k − 1
3

)

nN3 +

(

k − 1
2

)

(

3(N − 1)N2 + (2n − 6)N3
)

+ (k − 1)
(

3(N − 1)2N + (n − 5)N3
)

+ (N − 1)3.

Thus,

dim(W k
h,0 × V k

h) = 4

(

k − 1
3

)

nN3 +

(

k − 1
2

)

(

12N3 + 6N2 + 4(2n − 6)N3
)

+ (k − 1)
(

12N(N2 + N + 1) + 4(n − 5)N3
)

+ 3(N + 1)3 + (N − 1)3

=

(

2n

3
k3 − 6k2 +

(

10 − 2n

3

)

k + 6

)

N3 + 3k(k + 1)N2 + 12kN + 2.

The discontinuous space count is similar, and results in

dim(W D,k
h,0 × V k

h) ≤
(

k + 3
3

)

nN3 + dim(V k
h)

=

(

2n

3
k3 +

(

n − 9

2

)

k2 +
(4n

3
+

15

2

)

k − n

)

N3 +
9

2
k(k + 1)N2 + 9kN + 3.
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We compare this to the Raviart-Thomas space Pk−1 ×
(

xPk−1 ⊕ (Pk−1)
3), for which

dim(W̃ k−1
h × Ṽ

k−1
h ) = 5

(

k + 2
3

)

nN3 −
(

k + 1
2

)

(

6N2(N − 1) + (2n − 6)N3
)

=

(

5

6
k3 +

3

2
k2 +

2

3
k

)

nN3 + 3(k + 1)kN2,

which is again larger than the proposed space for k > 1 and all nontrivial N ≥ 2, and also now for
k = 1 and N ≥ 4 for n = 5 and N ≥ 3 for n = 6.

2.4 Improved error estimates.

We can improve our error estimates if we use uniform C0 rectangular elements. The key of the
proof is to use Lin’s integral identity superconvergence technique [22], encapsulated in the following
lemma, in which we also state an extension of the results to the periodic case.

Lemma 2.1 If Th is a uniform rectangular partition, then there is C > 0, independent of h, such
that, for any w ∈ Hk+2(Ω),

∣

∣

∣

∣

(

∂

∂xi
(wI − w), vh

)
∣

∣

∣

∣

≤ Chk+1||w||k+2||vh||0, ∀vh ∈ W k
h,0, i = 1, ..., d, (17)

where W k
h,0 contains continuous Qk elements. Moreover, the result holds for all vh ∈ W k

h provided
that w is periodic.

The proof of (17) in Lin and Yan’s book [22] is given in Chinese and rather sketchy in its details.
Considering the elegance of the proof, our extension to the periodic case, its importance for our
numerical examples later, and for completeness, we provide a detailed proof for the case k = 1 in
the Appendix, Section 7). The proof for higher-order elements is similar, though very technical.

Returning to (14), we see that we can estimate, since pI − ph ∈ W k
h,0,

|∇ · (uI − u), pI − ph)| ≤ Chk+1||u||k+2||pI − ph||0. (18)

The other divergence term in (14), (pI −p,∇· (uI −uh)), is more delicate, since uI −uh 6∈ (W k
h,0)

d.

For vh ∈ V k
h, let vh,0 ∈ (W k

h,0)
d agree with vh at degrees of freedom strictly inside Ω. The well

known result
‖vh − vh,0‖0 ≤ Ch1/2‖vh‖0

combined with integration by parts and (17), enables us to obtain, for all vh ∈ V k
h,

|(pI − p,∇ · vh)| = | − (∇(pI − p),vh)|
≤ | − (∇(pI − p),vh,0)| + | − (∇(pI − p),vh − vh,0)|
≤ Chk+1/2||p||k+2||vh||0. (19)

Substituting (18) and (19) into (14) and following the same proof for Theorem 2.1, we have the
following error estimate, improved by a factor of h1/2. The price we pay is that we need one extra
order of regularity for the solution.
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Theorem 2.2 Assume p,u = −∇p + g ∈ Hk+1(Ω). Let ph and uh be the solution of (5)–(6) with
mixed spaces (7)–(8) on rectangles. If Th is a uniform rectangular partition, then

||p − ph||0 + ||u − uh||0 ≤ C
{

|p|k+2 + |u|k+2

}

hk+1/2, (20)

where k ≥ 1 is the degree of the finite element spaces. Moreover, if p is periodic, the estimate holds
optimally, i.e., with hk+1/2 replaced by hk+1.

Theorem 2.3 The estimate (17) holds for P1 elements on uniform conforming triangular meshes
(i.e., uniform in three directions). Hence, in this case, the following improved error estimate holds:

||p − ph||0 + ||u − uh||0 ≤ C
{

|p|3 + |u|3
}

h3/2. (21)

Proof. We need only prove (17). We assume that Th is a uniform triangulation of Ω; that
is, there are directions ~l1,~l2,~l3 such that any edge is parallel to one of those directions (see, e.g.,
Figure 2 of Section 5). Let Di be the directional derivative along ~li, i.e., Di = ~li ·∇, and recall that

W 1
h (Ω) = {v ∈ H1(Ω) : v|τ is linear ∀ τ ∈ Th}.

For any v ∈ W 1
h (Ω), we have [32, p. 1017–1018]

(w − wI , vx) =
∑

τ∈Th

∫

τ
(w − wI)vx = −h2

24

∑

τ∈Th

∫

τ

3
∑

i=1

λ2
i D

2
i w · vx + O(h2)||w||3||v||0,

where λi are some constants independent of h, depending only on the relative lengths of the triangle
edges. Thus, for v ∈ W 1

h,0,

((wI − w)x, v) = (w − wI , vx)

= −h2

24

∑

τ∈Th

∫

τ

3
∑

i=1

λ2
i D

2
i w · vx + O(h2)||w||3||v||0

=
h2

24

∫

Ω

3
∑

i=1

λ2
i (D

2
i w)x · v − h2

24

∫

∂Ω

3
∑

i=1

λ2
i D

2
i w · v nx + O(h2)||w||3||v||0

= O(h2)||w||3||v||0,

where ~n = (nx, ny) is the unit outward normal. Note that in the last step we used the fact that
integration along interior element edges cancel due to the mesh uniformity. Furthermore, since
v ∈ W 1

h,0, then the boundary integral term vanishes also. Hence we have obtained the result (17)
for x-derivatives. A similar argument gives the result for the y-derivative.

3 The Parabolic Problem

In this section, we show that similar results as above hold for the parabolic problem. For simplicity,
we consider the parabolic equation

α(x)pt −∇ · [D(x)(∇p − g(x, t))] = f(x, t) in Ω × (0, T ), (22)

p = 0 on ∂Ω × (0, T ), (23)

p(x, 0) = p0(x) on Ω. (24)
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If Ω ⊂ Rd (d = 2, 3) is a bounded domain with ∂Ω ∈ C2, and

Dij(x) ∈ C0,1(Ω), α(x) ∈ L∞, f,∇ · g ∈ L2(Q), p0 ∈ H1
0 (Ω),

Dijξiξj ≥ γ|ξ|2, ∀ x ∈ Ω, ξ ∈ Rd,

then there exists [15, 30] a unique solution p ∈ L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)) to (22)-(24).
Introduce u = −D(∇p+g) and transform (22)–(23) to the standard mixed form (wherein β = D−1):
For any t ∈ (0, T ), find p(t) ∈ L2(Ω) and u(t) ∈ H(div;Ω) such that

(αpt, w) + (∇ · u, w) = (f,w) ∀ w ∈ L2(Ω), (25)

(βu,v) − (p,∇ · v) = (g,v) ∀ v ∈ H(div;Ω). (26)

Lemma 3.1 The following stability estimates hold:

(i) ||p||L∞(0,T ;L2(Ω)) + ||u||L2(0,T ;L2(Ω)) ≤ C{||f ||L2(0,T ;L2(Ω)) + ||g||L2(0,T ;L2(Ω))},
(ii) ||pt||L2(0,T ;L2(Ω)) + ||u||L∞(0,T ;L2(Ω)) ≤ C{||f ||L2(0,T ;L2(Ω)) + ||gt||L2(0,T ;L2(Ω))},
(iii) ||∇ · u||L2(0,T ;L2(Ω)) ≤ C{||f ||L2(0,T ;L2(Ω)) + ||gt||L2(0,T ;L2(Ω))}.

Above we used the Bochner space Lr(T ;X) with the corresponding norm defined as follows:

||u||Lr(T ;X) =
(

∫

T
||u(t)||rXdt

)1/r
< ∞, 1 ≤ r < ∞,

||u||L∞(T ;X) = ess sup
t∈T

||u(t)||X < ∞.

This result is well-known in the nonmixed context. We recast it in mixed form for our purposes,
and provide a proof, since the techniques are used in the error analysis to follow.

Proof. (i) Taking w = p and v = u in (25) and (26), respectively, and adding together, we
obtain

1

2

d

dt
||
√

αp||20 + ||
√

βu||20 = (f, p) + (g,u) ≤ ||α−1/2f ||0||
√

αp||0 + ||β−1/2g||0||
√

βu||0,

which along with Gronwall’s inequality concludes the proof.
(ii) Taking w = pt in (25), differentiating (26) with respect to t and taking v = u, and adding

together, we obtain

||
√

αpt||20 +
1

2

d

dt
||
√

βu||20 = (f, pt) + (gt,u) ≤ ||α−1/2f ||0||
√

αpt||0 + ||β−1/2gt||0||
√

βu||0,

which along with Gronwall’s inequality concludes the proof.
(iii) Taking w = ∇ · u in (25), we obtain

||∇ · u||20 = (f,∇ · u) − (αpt,∇ · u) ≤
(

||f ||0 + ||αpt||0
)

||∇ · u||0,

which along with (ii) concludes the proof.
There are many existing works on mixed finite element methods for parabolic problems (e.g.,

[10, 19]), which are based on Raviart-Thomas spaces. We propose a semi-discrete mixed finite
element approximation for (25)–(26): Find ph ∈ W k

h,0 and uh ∈ V k
h such that

(αph,t, wh) + (∇ · uh, wh) = (f,wh) ∀ wh ∈ W k
h,0, (27)

(βuh,vh) − (ph,∇ · vh) = (g,vh) ∀ vh ∈ V k
h, (28)
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with initial condition
ph(x, 0) = p0,I(x), (29)

where p0,I denotes the standard Qk or Pk interpolant of p0(x) into W k
h,0. Here the mixed finite

element spaces are the same as for the elliptic case (7)–(8) above.
Existence and uniqueness for (27)–(28) can be proved as follows. Working over a finite element

vector space basis, we rewrite (27)–(28) as

APt + BU = F, (30)

−BT P + DU = G, (31)

where A and D are symmetric positive definite matrices. Solving (31) for U and substituting into
(30) gives us

APt + BD−1BTP = F − BD−1G, (32)

which has a unique solution, since it is a linear system of ordinary differential equations with a
given initial condition P (0). Hence, for any t > 0, (27)–(29) has a unique solution.

The three stability results of Lemma 3.1 hold true for our discrete solution (ph,uh).

Theorem 3.1 Assume p(·, t), pt(·, t), and u(·, t) = −D(∇p(·, t) − g(·, t)) lie in Hk+1(Ω). Let ph

and uh be the solution of (27)–(28) with mixed spaces (7)–(8). Then there is a constant C such that
the sub-optimal order error estimate

||p − ph||L∞(0,T ;L2(Ω)) + ||u − uh||L2(0,T ;L2(Ω)) ≤ C
{

∫ T

0

(

|pt|2k+1 + |p|2k+1 + |u|2k+1

)

dt
}1/2

hk (33)

holds, where k ≥ 1 is the degree of the finite element spaces.

Proof. For any wh ∈ W k
h,0 and vh ∈ V k

h, subtracting (27)–(28) from (25)–(26) yields

(α(pI − ph)t, wh) + (∇ · (uI − uh), wh) = (α(pI − p)t, wh) + (∇ · (uI − u), wh), (34)

(β(uI − uh),vh) − (pI − ph,∇ · vh) = (β(uI − u),vh) − (pI − p,∇ · vh). (35)

Choosing wh = pI −ph and vh = uI −uh in (34)–(35) and adding the equations together, we obtain
the estimate

1

2

d

dt
||
√

α(pI − ph)||20 + ||
√

β(uI − uh)||20
= (α(pI − p)t, pI − ph) + (∇ · (uI − u), pI − ph)

+ (β(uI − u),uI − uh) − (pI − p,∇ · (uI − uh)) (36)

≤ Chk
{

[h|pt|k+1 + |u|k+1]||pI − ph||0
+ h|u|k+1||uI − uh||0 + h|p|k+1||∇ · (uI − uh)||0

}

.

Using the Cauchy-Schwarz inequality, the inverse estimate (10), and Gronwall’s inequality, we have

||(pI − ph)(t)||20 +

∫ t

0
||uI − uh||20 dt ≤ Ch2k,

11



which along with the triangle inequality and the interpolation estimate (9) concludes our proof.
From our proof, it is obvious that the discrete inf-sup conditions can be avoided when solving

parabolic problems by mixed methods (e.g., [11, 13, 18]). The price we pay is that we only have
sub-optimal order error estimates. When we choose those well-known mixed spaces satisfying the
inf-sup condition, it is easy to show that the optimal order error estimate can be recovered by
following the exact proof as we did for the elliptic problem.

Remark 3.1 Similar to the elliptic problem, improved error estimates can be recovered on uniform
grids by using Lin’s integral identity in Lemma 2.1 [22]. For rectangular elements Qk × (Qk)

d

or triangular P1 × (P1)
d, substituting (17) and (19) into (36) and following the same proof for

Theorem 3.1, we have the improved error estimate

||p − ph||L∞(0,T ;L2(Ω)) + ||u − uh||L2(0,T ;L2(Ω)) ≤ Chk+1/2. (37)

The price we pay is that we need one extra order of regularity for the solution.

Remark 3.2 Similar results hold true for fully (i.e., time) discrete approximations of (25)–(26),
such as backward Euler or Crank-Nicolson time stepping procedures, provided that the time step is
sufficiently small (as required by the discrete Gronwall inequality).

4 The Hyperbolic Problem

We now turn to the hyperbolic problem, which for simplicity we take merely the wave equation

ptt −△p = f in Ω × (0, T ) (38)

p = 0 on ∂Ω × (0, T ) (39)

p(x, 0) = p0(x), ∀ x ∈ Ω, (40)

pt(x, 0) = p1(x), ∀ x ∈ Ω. (41)

By introducing σ = pt and u = −∇p, we obtain the mixed weak formulation: Find σ(·, t) ∈ L2(Ω)
and u(·, t) ∈ H(div;Ω) such that

(σt, w) + (∇ · u, w) = (f,w) ∀ w ∈ L2(Ω), (42)

(ut,v) − (σ,∇ · v) = 0 ∀ v ∈ H(div;Ω), (43)

from which we can construct our mixed finite element method: Find σh ∈ W k
h,0 and uh ∈ V k

h such
that

(σh,t, wh) + (∇ · uh, wh) = (f,wh) ∀ wh ∈ W k
h,0, (44)

(uh,t,vh) − (σh,∇ · vh) = 0 ∀ vh ∈ V k
h, (45)

with initial conditions

σh(x, 0) = p1,I(x), (46)

uh,t(x, 0) = (∇p0)I(x), (47)
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where, again, the finite element spaces W k
h,0 and V k

h are defined in (7)–(8) above. Note that

ph(x, t) ∈ W k
h,0 can be recovered as

ph(x, t) =

∫ t

0
σh(x, s) ds + p0,I(x). (48)

Existence and uniqueness of a solution for (44)–(47) can be assured easily, since (44)–(45) can
be rewritten as

Aσt + BU = F, (49)

DUt − BTσ = 0, (50)

with A and D positive definite. So this is a system of (linear) ordinary differential equations, with
the initial conditions (46)–(47), and a unique solution is known to exist.

The stability of (44)–(47) can be seen easily by choosing wh = σh and vh = uh in (44) and (45)
and adding the equations together. For the error analysis, we have the following result.

Theorem 4.1 Assume σ(·, t) = pt(·, t), σt(·, t), u(·, t) = −∇p(·, t), ut(·, t) all lie in Hk+1(Ω). Let
σh and uh be the solution of (44)–(47) with mixed spaces (7)–(8), then the sub-optimal order error
estimate

||σ − σh||L∞(0,T ;L2(Ω)) + ||u − uh||L∞(0,T ;L2(Ω)) ≤ Chk (51)

holds, where k ≥ 1 is the degree of the finite element spaces.

Proof. For any σh ∈ W k
h,0 and uh ∈ V k

h, subtracting (44)–(45) from (42)–(43) yields

((σI − σh)t, wh) + (∇ · (uI − uh), wh) = ((σI − σ)t, wh) + (∇ · (uI − u), wh), (52)

((uI − uh)t,vh) − (σI − σh,∇ · vh) = ((uI − u)t,vh) − (σI − σ,∇ · vh). (53)

Choosing wh = σI − σh ∈ W k
h,0 and vh = uI − uh above, and adding the equations together, we

obtain the following error estimate

1

2

d

dt

(

||σI − σh||20 + ||uI − uh||20
)

= ((σI − σ)t, σI − σh) + (∇ · (uI − u), σI − σh)

+ ((uI − u)t,uI − uh) − (σI − σ,∇ · (uI − uh))

≤ Chk+1|σt|k+1||σI − σh||0 + Chk|u|k+1||σI − σh||0
+ Chk+1|ut|k+1||uI − uh||0 + Chk+1|σ|k+1||∇ · (uI − uh)||0.

Using the Cauchy-Schwarz inequality, the inverse estimate (10) and the Gronwall inequality, we
have

||(σI − σh)(·, t)||20 + ||(uI − uh)(·, t)||20 ≤ Ch2k.

Application of the triangle inequality and the interpolation estimate (9) concludes our proof.
The discrete inf-sup conditions can be avoided for solving hyperbolic problems by mixed meth-

ods. The price we pay is that we only have sub-optimal order error estimates. When we choose
the well-known mixed spaces satisfying the inf-sup condition, it is easy to show that optimal order
error estimates can be achieved by a proof combining techniques given above and given for the for
the elliptic problem using standard mixed spaces.
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Remark 4.1 Similar to the elliptic and parabolic problems, improved error estimates can be re-
covered on uniform grids by using Lin’s integral identity (Lemma 2.1). For rectangular elements
Qk×(Qk)

d or triangular P1×(P1)
d, using (17) and (19) above, we have the improved error estimate

||σ − σh||L∞(0,T ;L2(Ω)) + ||u − uh||L∞(0,T ;L2(Ω)) ≤ Chk+1/2. (54)

Remark 4.2 Again, similar results hold true for fully time discrete approximations of (44)–(47),
provided that the time step is sufficiently small.

5 Numerical Results

In this section we present numerical results on the problem (1)–(2) with Ω = (0, 1)2. In our tests,
we fix the true solution and define the corresponding function f accordingly.

5.1 Constant coefficient cases

Here let g = 0 and α = β = 1. The test cases are as follows:

Example 1, p = x(1 − x)y(1 − y) cos(xy);

Example 2, p = y(1 − y)(1 + x) sin(πx).

Table 1: Ex. 1 errors and convergence rates obtained on Q1 × Q2
1 uniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 1.602E-3 6.066E-3
8 × 8 4.009E-4 2.00 1.803E-3 1.75

16 × 16 1.005E-4 2.00 4.578E-4 1.98
32 × 32 3.341E-5 1.59 1.147E-4 2.00
64 × 64 1.197E-5 1.48 2.870E-5 2.00

Velocity 4 × 4 4.297E-3 1.226E-2
8 × 8 1.178E-3 1.87 3.925E-3 1.64

16 × 16 2.994E-4 1.98 1.141E-3 1.78
32 × 32 9.628E-5 1.64 3.052E-4 1.90
64 × 64 3.549E-5 1.44 7.874E-5 1.96

We first solve these problems on various uniform meshes using continuous conforming Q1 ×Q2
1

rectangular elements and conforming P1 × P 2
1 triangular elements, for which k = 1. Detailed nu-

merical results are presented in Tables 1–4, which show clearly the expected improved convergence
rate O(h3/2). In some cases, it appears that we see somewhat better results, up to a convergence of
O(h2). In Figures 1–2, we show the computed pressure and velocity for Example 2 obtained on both
uniform rectangles and uniform triangles. These results are consistent with our theoretical error
analysis, and show that errors may converge even faster than we proved in some cases. Though a
theoretical error analysis in the L∞-norm is still open, we recorded these errors as well.

We then solved the problems on non-uniform rectangular and triangular meshes to see how well
our mixed finite element spaces work. Detailed numerical results are presented in Tables 5–8, from
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Table 2: Ex. 1 errors and convergence rates obtained on P1 × P 2
1 uniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 2.403E-3 8.867E-3
8 × 8 6.535E-4 1.88 2.291E-3 1.95

16 × 16 1.728E-4 1.92 6.119E-4 1.90
32 × 32 4.431E-5 1.96 1.644E-4 1.90
64 × 64 1.115E-5 1.99 4.254E-5 1.95

Velocity 4 × 4 2.297E-2 1.009E-1
8 × 8 7.706E-3 1.58 5.902E-2 0.77

16 × 16 2.247E-3 1.78 3.176E-2 0.89
32 × 32 6.256E-4 1.84 1.642E-2 0.95
64 × 64 1.653E-4 1.92 8.324E-3 0.98

Table 3: Ex. 2 errors and convergence rates obtained on Q1 × Q2
1 uniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 8.738E-3 3.292E-2
8 × 8 2.197E-3 1.99 9.291E-3 1.83

16 × 16 5.507E-4 2.00 2.330E-3 2.00
32 × 32 1.378E-4 2.00 5.896E-4 1.98
64 × 64 3.445E-5 2.00 1.476E-4 2.00

Velocity 4 × 4 3.787E-2 1.340E-1
8 × 8 8.917E-3 2.09 3.625E-2 1.89

16 × 16 2.185E-3 2.03 1.013E-2 1.84
32 × 32 5.413E-4 2.01 2.628E-3 1.95
64 × 64 1.353E-4 2.00 6.660E-4 1.98

which we see clearly that Q1 ×Q2
1 and P1 ×P 2

1 non-uniform rectangular meshes deliver at least the
theoretically expected convergence of O(h) in both the L2- and L∞-norms. The P1 × P 2

1 spaces
consistently gave somewhat better results than the rectangular case. Moreover, in some cases the
results are somewhat better than expected, but here never as good as O(h2). A selected numerical
pressure and velocity for Example 2 obtained on nonuniform rectangles and triangles are shown in
Figures 3–4.

Finally, we tested some unstructured triangular meshes generated using Delaunay triangulation.
In many cases, we obtain even better results than on simple non-uniform triangle grids. One
example is provided in Table 9, in which accuracy is better compared to Tables 8. In Figure 5 we
show a selected numerical pressure and velocity for Example 2 obtained on unstructured triangular
meshes.

The results of this section confirm computationally our view that our proposed simple mixed
finite element spaces can be used effectively for solving a second order elliptic problem with a
positive reaction term.
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Table 4: Ex. 2 errors and convergence rates obtained on P1 × P 2
1 uniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 1.485E-2 5.583E-2
8 × 8 3.899E-3 1.93 1.434E-2 1.96

16 × 16 1.021E-3 1.93 3.919E-3 1.87
32 × 32 2.610E-4 1.97 1.066E-3 1.88
64 × 64 6.570E-5 1.99 2.816E-4 1.92

Velocity 4 × 4 1.408E-1 0.6705
8 × 8 4.534E-2 1.63 0.3810 0.82

16 × 16 1.301E-2 1.80 0.2022 0.91
32 × 32 3.584E-3 1.86 0.1039 0.96
64 × 64 9.275E-4 1.95 5.195E-2 1.00
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Figure 1: Ex. 2 results on a 16 × 16 uniform rectangular mesh. The left shows the computed
pressure and velocity; the right shows the pointwise pressure error.

5.2 Variable coefficient case

Now let g = 0, α = 1, and D = diag(1 + xy, 1). We choose the exact solution as:

Example 3, p = sin(πx) sin(2πy),

which is non-symmetric. The corresponding right hand side f is

f = (5 + xy)π2 sin(πx) sin(2πy) − πy cos(πx) sin(2πy) + p.

We tested both Q1×(Q1)
2 and P1×(P1)

2 spaces on uniform rectangular mesh, uniform triangular
mesh, non-uniform rectangular mesh, and non-uniform triangular mesh. The selected numerical
results using Q1 element are listed in Tables 10 - 11, which are consist with our theoretical analysis.
The obtained numerical pressure and pointwise pressure error are shown in Fig. 6 and Fig. 7 for
64 × 64 uniform and nonuniform rectangular grids, respectively.
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Figure 2: Ex. 2 results on a 16×16 uniform triangular mesh. The left shows the computed pressure
and velocity; the right shows the pointwise pressure error.

Table 5: Ex. 1 errors and convergence rates obtained on Q1 × Q2
1 nonuniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 2.363E-3 6.485E-3
8 × 8 5.047E-4 2.23 1.999E-3 1.70

16 × 16 1.540E-4 1.71 9.529E-4 1.07
32 × 32 6.951E-5 1.15 4.828E-4 0.98
64 × 64 3.598E-5 0.95 2.386E-4 1.01

Velocity 4 × 4 3.357E-2 8.451E-2
8 × 8 1.547E-2 1.12 4.290E-2 0.98

16 × 16 7.604E-3 1.02 2.050E-2 1.07
32 × 32 3.794E-3 1.00 1.040E-2 0.98
64 × 64 1.897E-3 1.00 5.319E-3 0.97

Table 6: Ex. 1 errors and convergence rates obtained on P1 × P 2
1 nonuniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 5.689E-3 1.381E-2
8 × 8 1.725E-3 1.72 5.678E-3 1.28

16 × 16 5.484E-4 1.65 1.548E-3 1.87
32 × 32 1.499E-4 1.87 4.135E-4 1.90
64 × 64 3.879E-5 1.95 1.077E-4 1.94

Velocity 4 × 4 5.295E-2 1.847E-1
8 × 8 2.141E-2 1.31 1.218E-1 0.60

16 × 16 7.630E-3 1.49 6.773E-2 0.85
32 × 32 2.894E-3 1.40 3.568E-2 0.92
64 × 64 1.096E-3 1.40 1.859E-2 0.94
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Table 7: Ex. 2 errors and convergence rates obtained on Q1 × Q2
1 nonuniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 1.572E-2 4.926E-2
8 × 8 5.179E-3 1.60 2.200E-2 1.16

16 × 16 2.126E-3 1.28 9.589E-3 1.20
32 × 32 9.819E-4 1.11 4.389E-3 1.13
64 × 64 4.875E-4 1.01 2.114E-3 1.05

Velocity 4 × 4 2.124E-1 0.6403
8 × 8 9.329E-2 1.19 0.2410 1.41

16 × 16 4.472E-2 1.06 0.1044 1.21
32 × 32 2.206E-2 1.02 0.0518 1.01
64 × 64 1.103E-2 1.00 2.571E-2 1.01

Table 8: Ex. 2 errors and convergence rates obtained on P1 × P 2
1 nonuniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 3.336E-2 9.044E-2
8 × 8 1.136E-2 1.55 3.593E-2 1.33

16 × 16 3.422E-3 1.73 9.856E-3 1.87
32 × 32 9.175E-4 1.90 2.667E-3 1.89
64 × 64 2.374E-4 1.95 6.950E-4 1.94

Velocity 4 × 4 3.419E-1 0.7966
8 × 8 1.312E-1 1.38 0.4639 0.78

16 × 16 4.667E-2 1.49 0.2339 0.99
32 × 32 1.763E-2 1.40 0.1173 1.00
64 × 64 6.680E-3 1.40 5.865E-2 1.00
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Figure 3: Ex. 2 results on a 16 × 16 nonuniform rectangular mesh. Left is the computed pressure
and velocity. Right is the pointwise pressure error.
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Figure 4: Ex. 2 results on a 16 × 16 nonuniform triangular mesh. Left is the computed pressure
and velocity. Right is the pointwise pressure error.

Table 9: Ex. 2 errors and convergence rates obtained on P1 × P 2
1 unstructured triangles

Variable Number of Number of L2 error Convergence L∞ error Convergence
nodes elements rate rate

Pressure 13 16 1.227E-2 6.398E-2
33 48 7.168E-3 0.78 2.658E-2 1.27
123 212 1.676E-3 2.10 7.614E-3 1.80
469 872 5.160E-4 1.70 2.684E-3 1.50
1807 3484 1.834E-4 1.49 6.157E-4 2.12

Velocity 13 16 2.215E-1 4.850E-1
33 48 3.930E-2 2.50 1.093E-1 2.15
123 212 1.474E-2 1.41 4.791E-2 1.19
469 872 6.390E-3 1.21 3.117E-2 0.62
1807 3484 4.120E-3 0.63 1.892E-2 0.72
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Figure 5: Ex. 2 results on 872 unstructured triangles. The left shows the computed pressure and
velocity; the right shows the pointwise pressure error.

Table 10: Ex. 3 errors and convergence rates obtained on Q1 × Q2
1 uniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 4.1232E-2 0.1668
8 × 8 8.5088E-3 2.276 3.4578E-2 2.270

16 × 16 2.0429E-3 2.058 8.3090E-3 2.057
32 × 32 5.0584E-4 2.013 2.0554E-3 2.015
64 × 64 1.2646E-4 2.000 5.1345E-4 2.001

Velocity 4 × 4 0.2420 0.7352
8 × 8 6.0794E-2 1.993 0.2025 1.860

16 × 16 1.5165E-2 2.003 5.1154E-2 1.985
32 × 32 3.7873E-3 2.001 1.2813E-2 1.997
64 × 64 9.4683E-4 2.000 3.2042E-3 1.999

Table 11: Ex. 3 errors and convergence rates obtained on Q1 × Q2
1 non-uniform grids

Variable Mesh size L2 error Convergence rate L∞ error Convergence rate

Pressure 4 × 4 0.2036 1.0570
8 × 8 6.5093E-2 1.645 0.3133 1.754

16 × 16 2.9069E-2 1.163 0.1358 1.206
32 × 32 1.4131E-2 1.040 6.5834E-2 1.044
64 × 64 7.0167E-2 1.010 3.2667E-2 1.011

Velocity 4 × 4 1.1083 1.7814
8 × 8 0.3518 1.655 0.7902 1.172

16 × 16 0.1575 1.159 0.2917 1.437
32 × 32 7.6191E-2 1.047 0.1244 1.229
64 × 64 3.8095E-2 1.000 6.0801E-2 1.032

20



X
Y

Z

AP_U

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ERR

5.00E-04
4.50E-04
4.00E-04
3.50E-04
3.00E-04
2.50E-04
2.00E-04
1.50E-04
1.00E-04
5.00E-05

Figure 6: Ex. 3 results on a 64 × 64 uniform rectangular mesh. Left is the computed pressure.
Right is the pointwise pressure error.
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5.3 Comparison with the lowest-order Raviart-Thomas element

In this section, we present a numerical comparison of our proposed method with the traditional
mixed method using the lowest-order Raviart-Thomas triangular element (i.e., the RT0 element).
Our implementation of RT0 is modified from the Matlab program EBmfem [4] by adding a lower-
order reaction term to the model equation. We solved Example 2 using both our method and the
RT0 triangular element, and compared the maximum error of p at the barycenter of each element.
As for numerical efficiency, we compare the condition numbers of the resulting matrices from both
methods (i.e., we use the cond Matlab command), since the condition number dominates the
solution time, independent of the implementation.

The results obtained on uniform and unstructured triangular grids are presented in Tables 12
and 13, respectively. From our results, it is interesting to note three things. First, the RT0 method
is a little more accurate compared to our P1×P 2

1 method. More specifically, on uniform meshes, the
L∞ error from our method is about three times larger than that obtained by the RT0 method for
the same grid; while on unstructured meshes, the error from our method is only about one to two
times larger than that obtained by the RT0 method. Second, our results show that the maximum
errors at the barycenters of the elements on both uniform and unstructured meshes are convergent
to order O(h2), with the exception of the last RT0 unstructured mesh, which we attribute to the
ill-condition of the system. Note that O(h2) is better than what we could prove for the P1 × P 2

1

method, and O(h2) for the RT0 method was proved in [16, Corollary 6.2]. Finally, we see that the
condition numbers of our method are a little better than the RT0 method on uniform meshes, and
significantly so on unstructured meshes. This implies that our method will be more efficient in its
solution time when an iterative solver is used, and less subject to rounding error when a direct
solver is used.

Table 12: Comparison of p between P1 × P 2
1 and RT0 on uniform triangular grids

L∞ error at the barycenter Condition number

Mesh size P1 × P 2
1 method RT0 method P1 × P 2

1 method RT0 method
4 × 4 3.7894E-2 8.8204E-3 72.68 71.14
8 × 8 1.0206E-2 2.8443E-3 158.37 198.52

16 × 16 2.6405E-3 7.8486E-4 326.84 465.93
32 × 32 6.7103E-4 2.0904E-4 659.69 1073.19

Table 13: Comparison of p between P1 × P 2
1 and RT0 on unstructured triangular grids

L∞ error at the barycenter Condition number

Number of elements P1 × P 2
1 method RT0 method P1 × P 2

1 method RT0 method
48 1.6892E-2 6.8893E-3 44.16 139.97
212 3.9573E-3 1.7953E-3 90.45 337.01
872 1.0476E-3 1.0483E-3 257.26 786.95
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6 Conclusions

In this paper, we investigated the mixed finite element method for a second order elliptic problem
with a uniformly positive zeroth order term (e.g., single phase flow in porous media with a reaction
term), and found that specially designed mixed finite element spaces satisfying the inf-sup condition
are not needed. Instead, in d dimensions, we can use the standard nodal-based finite element spaces
Qk × (Qk)

d on rectangles or Pk × (Pk)
d on simplices to solve for both the scalar (e.g., pressure) and

flux (e.g., velocity) field. The price we pay for violating the inf-sup condition is that we only have
sub-optimal order error estimates, losing a single power of the mesh parameter h in the estimate.
Moreover, the bounding constant degenerates as the infimum of the lowest order term tends to
zero.

We also noted a locally conservative variant, defined simply by approximating the scalar variable
in a discontinuous space of piecewise polynomials. On simplicial meshes, the continuous spaces
for all k ≥ 1 and the discontinuous spaces for k > 1 have fewer degrees of freedom than the
Raviart-Thomas spaces giving similar accuracy. On rectangular meshes, these proposed spaces are
slightly larger than the Raviart-Thomas spaces, however the former are much simpler to implement,
especially when higher order spaces are desired, or when an hp-adaptive refinement procedure is
implemented.

With a delicate superconvergence analysis, we found that we could improve the error estimates
by one-half power of h provided the solution has one extra order of regularity and we use either
Qk × (Qk)

d on a uniform rectangular grid or P1 × (P1)
d on a uniform simplicial mesh. Moreover,

we recover a full power of h when the problem has periodic boundary conditions.
We extended our results to time-dependent parabolic and hyperbolic problems. These problems

do not require a positive zeroth order term. For sufficiently small time steps, the Gronwall inequality
enables us to prove that standard nodal-based finite element spaces give results similar to the elliptic
case.

Finally, numerical results supporting our analysis were presented using the most popular spaces
Q1×(Q1)

2 and P1×(P1)
2. Although much simpler to use, the rectangular elements use exactly three

more degrees of freedom as the Raviart-Thomas spaces. Moreover, mainly because the scalar space
is continuous, our triangular and tetrahedral element spaces have many fewer degrees of freedom
than the Raviart-Thomas spaces, and are more easily implemented, especially in an hp-adaptive
procedure. At least in some cases, our method produces linear systems that have smaller condition
numbers than corresponding standard RT0 spaces.

In certain cases, the standard spaces are competitive with, and perhaps superior to, standard
mixed spaces satisfying the inf-sup condition. Because of their simplicity and convergence proper-
ties, the standard spaces are especially attractive when (1) simplicial meshes are used, (2) problems
with periodic boundary conditions (such as cell problems in homogenization) are approximated with
uniform rectangular grids, (3) higher order approximations are desired, and (4) when an hp-adaptive
refinement procedure is implemented.
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7 Appendix

In this appendix, we provide a proof of Lemma 2.1 in the case of k = 1 for Q1 elements.
Proof of (17) for Q1 elements. We assume for simplicity of exposition that Ω ⊂ R2. Take a

typical rectangular element τ ∈ Th with center at (xτ , yτ ) and lengths 2hτ and 2kτ in the x- and
y-directions, respectively. Note that for any v ∈ Q1(τ), we can expand it as

v(x, y) = v(xτ , yτ ) + (x − xτ )vx(yτ ) + (y − yτ )vy(xτ ) + (x − xτ )(y − yτ )vxy,

from which we see that evaluation of
∫

τ (w − wI)x v dx dy requires evaluating the four terms
∫

τ
(w − wI)x dx dy,

∫

τ
(w − wI)x(x − xτ ) dx dy,

∫

τ
(w − wI)x(y − yτ ) dx dy,

∫

τ
(w − wI)x(x − xτ )(y − yτ ) dx dy.

We need two special functions:

E(x) =
1

2
((x − xτ )

2 − h2
τ ) and F (y) =

1

2
((y − yτ )

2 − k2
τ ).

Using the fact that F ′′(y) = 1 and integration by parts, we have
∫

τ
(w − wI)x dx dy =

∫

τ
(w − wI)xF ′′(y) dy dx

=

∫ xτ+hτ

xτ−hτ

(w − wI)xF ′(y)

∣

∣

∣

∣

yτ+kτ

y=yτ−kτ

dx −
∫

τ
(w − wI)xyF

′(y) dx dy

=

∫

τ
(w − wI)xyyF (y) dx dy =

∫

τ
wxyyF (y) dx dy,

where in the above we used the facts that w − wI = 0 at the vertices of τ , F (y) = 0 at edges
y = yτ ± kτ , and wI,yy = 0.

Using the identity x − xτ = E′(x) and integration by parts, we obtain
∫

τ
(w − wI)x(x − xτ ) dx dy =

∫

τ
(w − wI)xE′(x) dx dy

=

∫ yτ+hτ

yτ−kτ

(w − wI)xE(x)

∣

∣

∣

∣

xτ+hτ

x=xτ−hτ

dy −
∫

τ
(w − wI)xxE(x) dx dy

= −
∫

τ
wxxE(x) dx dy, (55)

where we used the facts that E(x) = 0 at edges x = xτ ± hτ , and wI,xx = 0. Furthermore, using
the identity E(x) = 1

6(E2(x))′′ − 1
3h2

τ in (55) and integrating by parts, we have
∫

τ
(w − wI)x(x − xτ ) dx dy = −

∫

τ
wxx

[

1

6
(E2(x))′′ − 1

3
h2

τ

]

dx dy

=

∫

τ
wxxx

1

6
(E2(x))′ dx dy +

1

3
h2

τ

∫

τ
wxx dx dy

=
1

3

∫

τ
wxxxE(x) (x − xτ ) dx dy +

1

3
h2

τ

∫

τ
wxx dx dy,
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wherein we used that (E2(x))′ = 0 and E(x) = 0 at edges x = xτ ± hτ .
Using the identity y − yτ = 1

6(F 2(y))′′′, we have
∫

τ
(w − wI)x(y − yτ ) dx dy =

∫

τ
(w − wI)x

1

6
(F 2(y))′′′ dx dy

= −
∫

τ
(w − wI)xy

1

6
(F 2(y))′′ dx dy

=

∫

τ
(w − wI)xyy

1

6
(F 2(y))′ dx dy

=

∫

τ
wxyy

1

6
(F 2(y))′ dx dy =

∫

τ
wxyy

1

3
F (y)(y − yτ ) dx dy,

where we used the facts that w − wI = 0 at the vertices of τ , (F 2(y))′ = 0 at edges y = yτ ± kτ ,
and wI,yy = 0.

Finally, using the identities x − xτ = E′(x) and y − yτ = F ′(y), we obtain
∫

τ
(w − wI)x(x − xτ )(y − yτ ) dx dy =

∫

τ
(w − wI)xE′(x)F ′(y) dx dy

= −
∫

τ
(w − wI)xxE(x)F ′(y) dx dy

=

∫

τ
wxxyE(x)F (y) dx dy,

where we used the facts that E(x) = 0 at edges x = xτ ± hτ and F (y) = 0 at edges y = yτ ± kτ .
Combining the above four estimates yields

∫

τ
(w − wI)x v dx dy =

∫

τ
wxyyF (y) v(xτ , yτ ) dx dy +

1

3

∫

τ
wxxxE(x)(x − xτ )vx(yτ ) dx dy

+
1

3
h2

τ

∫

τ
wxxvx(yτ ) dx dy +

1

3

∫

τ
wxyyF (y)(y − yτ )vy(xτ ) dx dy

+

∫

τ
wxxyE(x)F (y)vxy dx dy. (56)

Expanding the functions v, vx, vy, and vxy in terms of general point (x, y), as in

v(xτ , yτ ) = v(x, y) + (xτ − x)vx(y) + (yτ − y)vy(x) + (xτ − x)(yτ − y)vxy,

noting that E is O(h2
τ ) = O(h2), F is O(k2

τ ) = O(h2), x − xτ and y − yτ are O(h), and using the
Cauchy-Schwarz inequality and the inverse estimate (10), we see that

∫

τ
(w − wI)x v dx dy = O(h2)||w||3,τ ||v||0,τ +

1

3
h2

τ

∫

τ
wxxvx(yτ ) dx dy. (57)

But integration by parts gives us

1

3
h2

τ

∫

τ
wxxvx(yτ ) dx dy

=
1

3
h2

τ

∫

τ
wxx[vx(y) + F ′(y)vxy] dx dy

=
1

3
h2

τ

∫ yτ+kτ

yτ−kτ

wxxv

∣

∣

∣

∣

xτ+hτ

x=xτ−hτ

dy − 1

3
h2

τ

∫

τ
wxxxv dx dy − 1

3
h2

τ

∫

τ
wxxyF (y)vxy dx dy, (58)
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where we used the fact that F (y) = 0 at edges y = yτ ± kτ .
Hence if v ∈ W 1

h,0 and the grid is uniform (hτ = h and kτ = k for all τ), summing up all the
element edges will eliminate the boundary integral in (58), which combining with (57) yields

|((w − wI)x, v)| ≤ Ch2||w||3||v||0. (59)

Results for the other Cartesian directions are obtained by symmetry.
Finally, we note that we could have optimal error estimates for some special cases. The final

statement in Lemma 2.1 is the case where w is periodic (actually, we only need that wxx is periodic
in x and wyy is periodic in y). The boundary integral in (58) will vanish for any vh ∈ W k

h , and we
recover the optimal error estimate.
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