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§1. Introduction

1.1. Naturally fractured reservoirs.

Within a naturally fractured reservoir there is an interconnected system of fracture
planes dividing the porous rock, which will be called the matriz, into a collection of blocks.
This is somewhat of an idealization, but it is sufficient for the simulation of naturally
fractured reservoirs. The fractures, while very thin, have a profound effect on the flow
of fluids within the reservoir. Most of the fluid resides in the matrix, where it moves
very slowly. When fluid reaches the surface of a matrix block and enters the fractures, it
flows comparatively quickly, since the fractures form paths of high permeability. Thus, a
naturally fractured reservoir has not two but three important scales of length. The smallest
scale, on the order of millimeters, is that of the pores. The intermediate and new scale is
that of the fracture spacing, which is on the order of meters. Finally, the reservoir length
is on the order of kilometers.

In any practical spatial discretization of the reservoir, there will be at least a few
matrix blocks in every grid cell and usually many. We cannot and, fortunately, we need
not compute the flow of fluids within the individual fractures. We consider dual-porosity
models which enable us to simulate the flow in naturally fractured reservoirs in a fashion
that is both computationally tractable and sufficiently precise for practical purposes.

We begin by recalling some ideas related to single porosity models.

1.2. A single porosity model.

In a porous medium, define the rock properties porosity and permeability at each point,
as usual, as the pore void space per unit bulk volume and the coefficient in Darcy’s law
(see (2.1.2) below) describing the rock’s resistance to flow, respectively; see [10], [14], [15],
[25], and [30] as general references on porous media flow. A fractured reservoir could be
modeled by allowing the porosity and permeability to vary rapidly and discontinuously
over the reservoir; both of these quantities are dramatically greater in the fractures than
in the porous rock. However, the computational and data requirements of treating such a
model would be too great to approximate the flow in the entire reservoir, and this model
must be rejected for practical simulation.

1.3. A dual-porosity model.

As an alternative, one might try to avoid the discontinuous nature of the porosity and
permeability by replacing them locally by their average values. While such a simulation
could be done as in the unfractured case, the result would be unsatisfactory, in that cor-
relation to physical observations would not be obtained. The interchange of fluid between
the matrix and the fractures must be modeled. The usual technique, due to [26], [9], and
[36], is described below.

It has been observed that naturally fractured reservoirs behave as if they possessed two
porous structures rather than one [9], [26], [36]. The system of fractures is on a much finer
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scale than the reservoir as a whole; hence, it can be viewed as a porous structure itself (see
Figure 1). The fractures form the “void spaces” while the matrix blocks play the role of
the “solid rock”. Of course, there is a difference from the usual porous system: the “solid
part” is in itself permeable.

FI1G. 1. Cross section of a naturally fractured porous medium,
depicting the fracture planes.

On the finest scale, the matrix porous structure has a porosity ¢ and a (tensor) per-
meability k defined in the usual way, and they are on the order of a tenth and a few
millidarcies to a darcy, respectively. On the scale of the fracture system, we can define a
fracture porosity & as the fracture void space per unit bulk volume, so that & is quite small,
perhaps on the order of a hundredth. We can also define a fracture permeability tensor K
as the coefficient in the Darcy law that represents resistance to fluid flow completely within
the fracture system; that is, K is defined by considering the matrix to be impermeable [9],
[36]. It is quite large in magnitude, perhaps on the order of several darcies [22], [34], [36].

It is well known how to model the flow of fluids in a single porous structure; a dual-
porosity model is much more complicated. The main conceptual difficulty lies in the fact
that, since the fracture system is viewed as a porous medium, both matrix and fracture flow
are defined at each point of the matrix. Consequently, we see fluid flow as a combination of
general macroscopic motion over the reservoir and flow within matrix blocks, not as actual
motion around the matrix blocks (Figure 2). Since flow in the fractures is much more
rapid than in the matrix, we shall assume that fluid does not flow directly from one matrix
block to another. Rather, it first flows into the fracture system, and then it can pass into
another block or remain in the fractures. We shall determine whether any element of fluid
belongs to the matrix or to the fractures by considering the reservoir to consist of two
“sheets”. One sheet, which we call 2, contains the fracture flow. The matrix flow is on
the other sheet, called 2,,,; we denote the sth matrix block by £2; and assume them to be
disjoint, so that Uf2; = £2,, C 2. As a consequence of the assumption that fluid flows
from the matrix into the fracture system and vice versa, fluid flows from one “sheet” to
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the other. It is this matrix-fracture interaction on the scale of the fracture spacing that
must be carefully modeled. Its effect on the fracture system will be averaged over the size
of an individual matrix block, which is comparable to the fracture spacing; however, the
interaction must be treated on a smaller scale as far as the matrix is concerned.

F1G. 2. The macroscopic fracture flow.

The equations that describe the flow in the fracture system will contain a source
term that represents the flow of fluid from the matrix to the fractures; this term will be
macroscopically distributed over the entire reservoir, as is the fracture flow itself. The
definition of the term will be in terms of quantities that are on the scale of the matrix
blocks.

The matrix equations will be effected on the scale of the fracture spacing. In particular,
fluid flows into or out of an individual matrix block only through its surface. Such an
interaction should be modeled as a boundary condition on the flow equation; fracture
quantities will be used to define these boundary conditions.

1.4. Some remarks on the derivation of dual-porosity models.

The models presented in this paper will be derived first on the basis of physical intuition
by applying the dual-porosity idea of the previous subsection to define the equations of
flow and then by the mathematical theory of homogenization [11], [29]. This will give us
both greater confidence that our physical intuition of the model is correct and a better
understanding of the resulting model; in particular, we shall derive an explicit expression
for the fracture system’s permeability tensor K. Homogenization will be used only in a
formal sense herein; that is, a rigorous convergence argument will not be carried out.

1.5. A summary of the results.

_ In §2 we model single-phase flow of a liquid of constant compressibility in a naturally
fractured reservoir intuitively by incorporating the physics of such flow into the dual-
porosity concept. After giving some general background on homogenization theory, we
rederive the model. There are some subtle differences in the models obtained through
the two derivations, but none of any real practical concern. We conclude the section by
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mentioning some of the mathematical properties of the model, including existence and
uniqueness of the solution of the differential system.

In §3, we take up a study of the flow of two immiscible fluids, such as oil and water,
under the assumption of incompressibility. Again, we first derive a model on physical
grounds and then rederive it from homogenization. Actually, we present three models for
immiscible flow, varying in physical and mathematical complexity and therefore in the
amount of computational effort needed to approximate the solution of them.

We present in §4 some relatively simple finite difference discretization procedures in a
computationally tractable form achieved by separating the matrix calculations from those
of the fracture system. Both the single phase and immiscible cases are discussed. In §5
we present the results of some simulations of immiscible flow based on implementing the
algorithms of the fourth section which compare and contrast the predictions of the three
immiscible models and an unfractured reservoir model. Finally, in §6, we consider briefly
some models generalizing those presented herein.

§2. Single Phase Flow

2.1. Introduction.

Consider the flow of a fluid of constant compressibility ¢ in the reservoir; that is, a
fluid that satisfies the equation of state

(2.1.1) dp = cp dp,

where p is the density of the fluid and p is the pressure. Let u be its viscosity. Since p is
an exponential function of p, flow can be modeled in terms of either variable, but density
is the more convenient choice. Let ps(z,t) denote the density of the fluid in the fracture
system and p.,(z,t) that in the matrix.

For expositional and computational convenience, we shall represent wells as external
source terms of the form gext(z,t); they could also be represented by a boundary condition.

The equations describing single phase flow in a single porosity system are well under-
stood. Darcy’s law relates the macroscopic Darcy velocity v(z,t) to the pressure:

(2.1.2) v= -%(Vp - 9p),

where ¢ is the gravitational, downward-pointing, constant vector and where notation is

simplified a bit by writing —k as o Conservation of mass states that

(213) ¢ pt + V.- (Pv) = Qext,
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where the subscript ¢ denotes partial differentiation with respect to time. Then, the equa-
tion of state (2.1.1) implies that

(2.1.4) ¢p—V- [%(Vp - cgpz)] = Qext-

The first successful attempts at modeling single phase flow in naturally fractured reser-
voirs took place in the early 1960’s [9], [36]; in each of these models a “quasi-steady state”
assumption was made about the matrix-fracture interaction. Models that avoided this
assumption were presented later [22], [34]; unfortunately, these new models were not truly
of the dual-porosity type, so that they were difficult to manage computationally. Recently,
a general form of the single phase model has appeared [5], [19]; it is this model that we
consider below.

2.2. Modeling by physical arguments.

Equation (2.1.4) is the starting point for describing the flow in both the fracture and
matrix systems, since each is considered to be a porous medium. As mentioned in the
introduction, the equations for the fracture system require a macroscopically distributed
matrix source term ¢, (z,t) to represent flow from the matrix to the fractures; it is defined
below in (2.2.5). Hence, flow in the fractures is described by

K
(221) épf,t - V. [;—L—C—(fo — cgp?)] = Qext + qm for z € \Q, t > 0.
The matrix equations are not special. On each block §2;,
k
(2.2.2) ¢ Ppms— V- [E(me — cgp?n)} =0 forze 2; t>0.

We have assumed that the wells interact only with the fracture system; this assumption is
based on the fact that flow is much more rapid in the fracture system than in the matrix.
Numerical experiments have shown that this assumption is reasonable [22].

Recall that the matrix sees the fractures only at the surfaces of the blocks. There,
we must enforce continuity of pressure (or density) in some way. It is not immediately
obvious how to do this, since the fracture system has been macroscopically averaged on
a scale comparable to the size of the matrix blocks, but the flow in the fractures around
an individual matrix block being much faster than the internal matrix flow allows us to
assume that the fracture flow essentially reaches equilibrium with respect to the matrix
flow. Then, at each time our boundary condition is that the matrix pressure is constant
over the surface of the block; which pressure value to take in the differential model is not
uniquely determined, though almost any reasonable choice will yield the same value in
discrete form. It is mathematically convenient to take, for each z, the boundary condition

1
(2.2.3) P&, 1] = |_f?_|/ pr(€,t)dé for z € 082;, t > 0,
i| J 92
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where §2; is §2; together with half of the surrounding fractures, |f2,| denotes the volume of
§2;, and “0” denotes the boundary of the set.

The matrix source term can be defined as follows. The total mass of fluid leaving the
tth matrix block per unit time is

_/an.- [%(me - cgp?n)] -vda(z),

where v is the outer normal unit-vector to the surface. The divergence theorem then
implies that

- [ [ - carty)| - vaato

pe
k 2
= — V. ——(me - cgpm) dz = _/ ¢Pm,t d:l:,
ni HC .Q.'

where the last equality follows from (2.2.2). This fluid must be distributed into the fracture
system in the vicinity of the block. Again, the exact way this is done will have little effect
on the computations. It is reasonable to spread it out evenly over 2i; hence, let

1
(224) qm,,-(t) = —'A—/ (}Spm,t(&,t) df,
Igil £2;

and let x;(z) be the characteristic function of 0;:

1 forz e

xilz) = .

0 forz ¢ £2;.
Finally, let
(2.2.5) gm(z,t) = Z gm,i(t) xi(z) forz e 2, t>0.

The model is completed by specifying an outer boundary condition and the initial
densities. For example, we might assume that there is no flow across 92. Then,

(2.2.6) [—IS (fo — cgp?)] -v=0 forzedf2, t>0.
pe
Let the initial values be
(2.2.7) ps(2,0) = pinit,s(z) for z € £,
(2.2.8) Pl 2,0) = pigie.m(x) for z € 02,
Most likely,
1
(229) Pinit,m = .\—/ Pinit,f(é.) df for z € .Q,',
I'Qil £2;

so that the fluids are in equilibrium initially. For consistency, assume that (2.2.3) and
(2.2.6) hold for t = 0.



2.3. A brief description of homogenization.

In order to rederive the model by homogenization let us recall some of the main ideas
of this theory [11], [20], [29]. Suppose that we are given a physical system with a periodic
fine structure. In theory, the governing equations, called the microscopic model, of that
system can be derived from physics; however the model will capture far more detailed
information than we care to know (or far more than we care to pay for in computation).
Let us represent this schematically. If §(x) is some quantity of physical relevance, it may
have a graph such as that shown in Figure 3, with 8 oscillating about some average value
as it varies from point to point within the fine structure. It may suffice to know only this
general trend (or “local average”) of 6; homogenization is a mathematical procedure that
seeks to derive an equation (or set of equations) for the general trend of 6 by constructing a
limit of the microscopic model as the period in the periodic structure tends to zero. These
equations are then called the macroscopic model. Since this model is less detailed, it is
usually the case that it is easier to approximate numerically than the original microscopic
model for 6. -

“local average”

- e

0(z)

x

FIG. 3. The “local average” of a function 6.

2.4. Modeling by homogenization.

The model of §§2.2 will be rederived by homogenization, following [7]. Darcy’s law is
assumed to hold on the smallest (i.e., pore) scale. It is at the scale of the fracture spacing
that the problem needs explanation.

Idealize the reservoir by assuming that the fractures form three sets of parallel, equally-
spaced planes (see Figure 4), so that all matrix blocks are identical and the reservoir has a
periodic structure. Let Q be a period, or cell, of this structure, containing a matrix block
Qm and half of the surrounding fractures Q¢ (Figure 5). Each £2; is then some translate
of 0.

The microscopic model, which for simplicity will be taken to have all physical param-
eters as constants, is given by a single porosity system with discontinuous porosity and
permeability as described in §§1.2 above and contains all of the relevant physics, and it
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FiG. 4. The periodic reservoir f2. FI1G. 5. The reservoir cell Q.

does so without requiring any intuition about the dual-porosity concept. Let &* be the
“porosity” of an individual fracture; that is, the fracture porosity defined on a finer scale
than the fracture width. It is a little less than one, since there is always rock detritus
in the fracture. The permeability of an individual fracture is very large and should be
a scalar, denoted by K*; it is defined on the scale of the pores, not on the scale of the
fracture spacing, as is K. From §§2.1 above, (2.1.4) is posed over §2; however, for clarity
we write this on the two parts of the domain separately:

K*

(2.4.1) " pse— V- [ (Vps — cgpf)] = gext forz € 25, t>0,

(242) ¢Pm,t - V. [E(me —Ccg P,2n)] = (ext for z € -Qm, t>0.

On the interface 82, between the two domains, impose continuity of pressure (i.e., density)
and continuity of mass flux between the two domains. Hence,

(2.4.3) pm = py forz € 0, t>0,
. k
(2.4.4) [I:c 2 ] v = [I-E(me - cgpfn)] -v forz € 02, t> 0.

The fine structure that must be homogenized is the nearly periodic behavior of the
system on the scale of the fracture spacing. Since this behavior is irrelevant in the evalua-
tion of the overall flow in the reservoir, we consider the limit as the matrix blocks become
small. To quantify this shrinkage, let € be a parameter such that 0 < ¢ < 1. When ¢ =1,
we have the original microscopic model. For € < 1, we pose a fractured reservoir that is
identical to the original one except that the fracture planes are assumed located at € times
the original distance apart. More explicitly, let the reservoir be composed of cells of size eQ
(Figure 6), and embed the microscopic model (e = 1) into a family of models (for € < 1).
To this end, for each ¢, let 25, be the matrix part of the reservoir and 2% the fracture
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Fi1G. 6. The reservoir 2¢ for € = %

part. (Ignore the outer boundary of the reservoir; a rigorous homogenization could not,
but the point here is to understand the flow in the interior of the reservoir, since (2.2.6)
holds on the outer boundary.)

Then, (2.4.1)—(2.4.4) should hold, though it is necessary to scale the physical parame-
ters in the equations in terms of ¢, as can be seen in two different ways. First, if no scaling
were done, the homogenization process would produce a single porosity model with aver-
aged coefficients, which has already been pointed out to be inadequate. Second, proper
scaling can in some sense preserve matrix-to-fracture mass flow as € — 0. This mass flux
is

/‘,m:” [I%(me - cgp,zn)] ‘vds(z) = /":,. v- [%(me —cgp?n)] dz.

On an individual e-matrix block £2; = € @, a change of variables shows that

k k
V. |—(Vpm —c i]dz:/ e_IV-[—e—IVm—cg 3,,]63(1.1.
/egm [ﬂc( Pm = €9Pm) pc( p Prm)

m

Adding these over the matrix blocks (e-cells) leads to the total matrix-fracture flow

k
1o, 1 S 3
E / ey [c(e Vpm cgpm)]e dz.

e-cells

(In the above the notation has been abused slightly; the e-cells should have been translated
over the reservoir). Since there are on the order of =3 cells in §2¢,, this quantity will diverge
as € — 0 unless k is scaled by €2. It also appears that gravity should be compensated by
e~ !, though this is not essential.

This scaling has the effect of making the matrix progressively less permeable as € — 0.
However, the blocks being smaller implies that more of the fluid in the block is near the
surface, so that the scaling prevents the model from reducing the time needed for fluid
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within the matrix to reach the fractures (as e — 0). This is the crucial physical process
that must be modeled carefully.

Thus, modulo scale factors, each of the e-models is identical to that in (2.4.1)—(2.4.4)
above. To avoid confusion as to the value of €, let ps and p;, denote the solution to the
e-model:

*

* € K €. € €
(2.4.1/¢) " ps:— V- [ (fo — cg(pf)z)] = gext forz € 2%, t>0,

pe
€2k

e (Vps, — e—lcg(pﬁn)Z)J =(gext forz € £27, t>0,

04219 $pe= V" |
(2.4.3/¢) pm = ps forz e dfly,, t>0,
e’k

as19 [ (95 —eaos)| v = | SE (T - Heatr?)| v

forz € 0027, t > 0.

We now perform homogenization heuristically. Assume that any point is described by
two variables: z € 2 giving the general location of the point and y € Q the location of
the point within the e-cell €Q. Clearly, z and y are related by the scale e:

€y ~

(up to translation). As a consequence, the gradient operator becomes

1
(2.4.5) Ve~ =V, + V.,

with V, and V, being the gradient operators with respect to y and z, respectively.
Assume that the solution behaves as if it were a function of these two space variables

(and time) and that it can be expanded in a power series in the scale parameter ¢; that is,

assume that the oscillations in the solution have wavelengths given by powers of e. Hence,

o0

(2.4.6) p5(z,t) ~ > e phi(z,y,t) forze R, ye Qs t>0,
k=0

(2.4.7) Pon(z,t) ~ D € pk(z,y,t) forz€ 2, y€ Qm, t>0.
k=0

Also, assume explicitly that the p'} are Qy-periodic in y.
If we substitute the series (2.4.6)—(2.4.7) into the equations of our model (2.4.1/¢)-
(2.4.4./¢), expand the gradient according to (2.4.5), and collect terms with like powers
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of €, then from (2.4.1/€) we obtain three equations for the €72, €71, and € terms when

r€f, ye Qs andt>0:

K*
(2.4.1/-2) ~ V- [—vy pg] =0,

pe

K* K*
(2.41/-1) —Vy- ,:#C (Vy P} +Vq P(} - cg(p_(;y)jl - V- [#c Vy P(}] =0,

* K*
(2.4.1/0) *phi—Vy- [u_c (Vy %+ VY pf — 2cg 0§ p})]
-7, - K* (V 1 \V/ 0 _ 042 _
z e ypf+ zPf Cg(Pf) ) = (ext-

The first equations, for €%, from (2.4.2/¢) and (2.4.3/¢) are

k
(24.2/0) G pp:—Vy- [E (Vy ol — cg(p?n)z)] =gext forz €92, y € Qm, t>0,
(2.4.3/0) pon =p} forz €N, y€dQm, t>0,

since points on 9§2¢, are described globally by z € 2 and locally by y € 9Q,,,. The 71, €°,

and €' equations of (2.4.4/¢) for z € 2, y € 0Q,, and t > 0 are

K
(2.4.4/-1) . v, pf] v =0,
(2.4.4/0) ” (Vy o} + Va 05 — cg(,,t})z)] -

-I{* 2 1 0 1 k 0 0 \2
(2.4.4/1) e (Vyp% + Vi py — 2cq p3p}) | - v = T (Vy 0% —cg(p2)) | - v.

No other equations need be considered. As e — 0, p§ — pof and p&, — p2 . These limits
are the “locally averaged” functions and the equations above combine to give a system in
them. Equations (2.4.1/-2) and (2.4.4/-1) together form an elliptic system for p% in terms
of the y-variable; since its solution vanishes as a function of y, it follows that

(2.4.8) p(} = p(} (z,t) only.

This corresponds to our intuition: the local average of py does not oscillate. Thus, all
terms containing Vyp(} vanish.

Next, the equations (2.4.1/-1) and (2.4.4/0) form an elliptic system in y for p} that can
be solved for p} in terms of p}. To this end, define w;(y) for j = 1,2,3 as the Q-periodic
solution of

(2.4.9) Vz wj=0 forye€ Qy,
2.4.10 Vywi-v=—e;-v=—-v; fory€ 0Qm,
y Wi J j
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where e; is the unit vector in the jth direction. Then, by (2.4.8),

3
ap
(2411) Py (@ y 1) =3 wi(v) [ (@ t) - cgj(pﬁ’f)?] .
=1

(Actually (2.4.11) holds up to an arbitrary, additive function of z and ¢. Since only Vyplf
occurs below, this ambiguity is unimportant.)

We analyze (2.4.1/0) next. Locally average it by integrating it over Q; and dividing
the result by |Q| to remove the y-variable; then

Dfl
(2.4.12) I|Qf||45 Pfi |Q|/ [ (Vy o5+ Vapy— 2cgp‘}p})]dy

K 1951
V [ A\ + Vv = iC ] dy = ex
IQI L ( fo fo g(Pf) ) y= |Q[ Qext-
Apply the divergence theorem to the first integral above, use (2.4.4/1), make a second
application of the divergence theorem, and use (2.4.2/0) to see that

K*
ee1) - [ Ve [ Vs 200y oh)|
!

__/ [K*
a0, L K

= /an [;c (Vy pon — cg(ppn) )] -vds(y)

v P} + Vz pf — 29 5 p})] +vds(y)

k
= V_,, : [— (Vy p?n - Cg(P?n)z)] d
Qs pec

= / (¢ p?n,t - Qext) dy.
Qm

We have used periodicity to see that no contribution arises from the integral over 99,
the outer boundary of Qf, and the fact that the outer normal to 0Qy is opposite to
that of 0Q,,. Since (2.4.4/1) established the continuity of the mass flux, we have found
the matrix source term. The second integral in (2.4.12) is evaluated using (2.4.11); its

integrand becomes

y P+ Vo — cg(p(})z)]

3 . . .
_ 0 |K* ow; (0p} 0) 0% -
__kz::la_xk. ;ayk(amj_cgjpf +5m-—k-—cgk(pf)

ue
3 3 0
0 |K* [Ow; _ apf 0
Zza_m;[ <%+5ﬂc) (5;;—091% )

k=1 j=1

(2.4.14) V.- [K
e
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where 61 is the kronecker symbol. We can now define the fracture permeability tensor

K= {I(,‘j}:

1 dw;
(2.4.15) Kij=@{/g 6—;:'dy+|Qf|5ij}-
s

Note that K reflects the geometry of the fracture system through the functions w;.

Finally, we have the equation for pof:

K
(2.4.16) B0}, — V- [u_c (V20§ - cg(p‘})z)] = gext + Gm,

where & = |Q | P* /| Q] is clearly the macroscopic fracture porosity and
1 / "
—— dy.
IQI O ¢ pm,t Y

With (2.4.2/0) and (2.4.3/0) (and the outer boundary condition (2.2.6) and the initial
conditions (2.2.7)—(2.2.8)), we have a complete model for the flow.

We should make a few brief remarks. First, the necessary requirement for physical
relevance that K be symmetric and positive definite can be demonstrated [6]. Second, the
formal arguments leading to convergence of the model as ¢ —» 0 can be made rigorous,
at least if the gravity term is linearized as described in §§2.6 below. See [6] for details.
The argument there gives a somewhat less physically clear picture than that given by the
formalism here, but the mathematical proof confirms that the formal picture is correct.

2.5. A comparison of the two versions of the model.

The only noticeable difference between the two versions of the model is that the external
source term appears in the matrix equations of the homogenized model but not in the
physically defined one. This term was left out of the latter version deliberately; it is not
very significant and it would be appropriate to delete it from the homogenized version.

The other differences are subtler. The physically defined version of the model has a
finite number of finite-sized matrix blocks, whereas the homogenized version has an infinite
number of infinitely small matrix blocks, one for each 2 € §2. As a consequence, the matrix
source term is defined in the former version by a finite sum; it is an integral in the latter
version. This difference has no consequence in practice, as we must restrict to a finite
number of blocks to approximate the solution numerically.

What should be emphasized is that the form of the equations is the same. In particular,
the matrix source term is defined to be the total amount of fluid leaving the matrix blocks
per unit volume. Also, the boundary value on each block is constant in space, being
explicitly a local average when the block has some size and being simply the value at the
point where the block is when it is infinitely small. Again, in practice, these conditions

are the same.
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2.6. Some mathematical properties of the model.

The single phase model is mathematically relatively simple. Further, the system of
differential equations can be made linear by an approximation of the terms that contain
the gravitational vector. This is frequently done, since the densities of the fluids do not
change greatly in any reasonable simulation. So, let p;ef be a constant reference density,
and approximate p? by

(261) 2 = [(,0 - Pref) + Pref]2 ~ Pref(2P - Pref)

in (2.2.1), (2.2.2), and (2.2.6), and also in (2.4.2/0) and (2.4.16).

With this modification (and with (2.2.9)), it has been shown [5], [6] that there exists
a unique solution psy and p, to the differential system of either version of the model.
Moreover, the solution depends continuously on the data gext, pinit,f, and prer. Thus,
a small change (or error) in the data produces only a small change in the solution, as
measured in appropriate Sobolev spaces.

§3. Two-phase Immiscible Flow

3.1. Introduction.

We consider saturated, two-phase, incompressible, immiscible flow, the phases being o
(oil) and w (water), with densities and viscosities po and pq, @ = 0,w, respectively. We
begin by recalling the equations that govern such flow in a single porosity system. Let
s(z,t) denote the w-saturation, so that the o-phase has saturation 1 —s. Let pa(z,t), a =
o, w, represent the pressure in the a-phase, and denote the capillary pressure between the

two phases by
(311) pc(s) = Po — Pw,

where, as usual, p.(s) is assumed to be a function of s only. With w being the wetting
phase, pc(s) typically is a decreasing function of s, as shown in Figure 7. It becomes infinite
as the saturation tends to the residual water saturation spmj,, and it is zero at the residual
oil saturation corresponding to s = Smax.

The presence of one phase interferes with the flow of the other. This is quantified by
defining relative permeability functions kr«(s), @ = o,w, as functions of the saturation
(see Figure 8 for typical examples). Usually, kry(Smin) = kro(Smax) = 0. Finally, let k(z)
be the absolute permeability, so that kk,, is the permeability of the rock to the a-phase

at the point z with saturation s.

It is more convenient to work with the potentials

(312) 'L/)a = Pa — Pa9Z?, a4 =o0,w,

15



61+ 1
|
I
| .
4+ |
i a=o
pc(_g) : kra(s) il
(psi) 2+ I a=uw
I
! 4
|
| | |
0 | : | L 0 [T T T
Smin .5 Smax 1 0 Smin 5 Smax 1
S s
F1G. 7. A typical capillary pressure function. F1G. 8. Typical relative permeability functions.

than pressures; from here on g is the gravitational constant (not vector) and z(z) is the
depth. Darcy’s law for the volumetric flow rates in two-phase flow takes the form

(3.1.3) Vo = —Aa(8) Vb, a=o,w,

where the phase mobilities are defined by

(3.1.4) Na(s) = KErals) .

a

Incompressibility and conservation of mass (or, equivalently, volume) imply that

(315) ¢3t + V., = Qext,wy
(316) —45 $t+V-v,= Qext,o0)

where gext,o is the external volumetric a-source.

It is convenient to define a “capillary potential”,
(3.1.7) e = Yo — bw = Pe(8) — (po — Pw)92,
and to use it and v, as the primary dependent variables. Then,
(3.1.8) s = p; (Yo + (Po — Puw)g2)
is defined from . and

(3.1.9) Vo = —Ao(8)V (Y + ).
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It is frequently useful to define a total volumetric flow rate and a total mobility by

(3.1.10) V= Vo + Vp = —A(S) Vb — Ao(8) Ve,
(3.1.11) A(s) = Aw(s) + Ao(s),

respectively, and to add (3.1.5) and (3.1.6) to obtain a pressure equation,
(3.1.12) Vv = gext,

where gext = Gext,o + Gext,w 18 the total external volumetric source. Then, (3.1.5) is called
the saturation equation.

In summary, the basic equations for describing two-phase, incompressible, immiscible
flow in a single porosity system are given by (3.1.3), (3.1.5), (3.1.8), and either (3.1.6) and
(3.1.9) or (3.1.10)<(3.1.12).

3.2. Modeling by physical arguments.

There exists an extensive literature on the modeling of immiscible flow in naturally
fractured reservoirs; among them, we cite [21], [23], [24], [31], [33], [35]. Most of these pa-
pers consider models that effectively define the matrix-fracture interaction by introducing
various ad hoc parameters; the rest do not incorporate the matrix boundary condition in
any general way. Herein we consider models [7], [8], [16], [17], [19] that treat the interaction
explicitly through boundary conditions on the matrix blocks.

We denote fracture quantities by upper case letters and matrix quantities by corre-
sponding lower case letters.

Capillary pressure and relative permeability functions are somewhat different in the
fractures than in the matrix blocks. Generally, one assumes that the fractures are essen-
tially like spaces between two parallel planes and that Spi, = 0 and Spa.x = 1. Typical
examples are shown in Figure 9.

There are matrix source terms ¢n, o, @ = 0,w, for each of the phases. The saturation,

pressure, and capillary equations in the fracture system can be written as

(3.2.1) @S —V - [Ap(S)V¥y] = Gext,w + Imw Torz € 2, t>0,

(3.2.2)
—V - [A(S)VE, + A,(S)VP,] = gexy forz € 2, t>0,

(3.2.3) S=p (WC + (po — Pw)gz),

since incompressibility requires that ¢m,o + ¢m,» = 0. The equations on the block §2; are

(3.2.4) dst— V- -[Au(s)Vipy] =0 forz € £2;, t >0,
(3.2.5) —V - [AM8)V%w + Ao(s)Vepe] =0 forz € §2;, t > 0,
(326) s = P;l (",bc + (po - pw)gz)a
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F1G. 9. Typical fracture functions.

where again we assume that the external sources affect the fracture system only. The
boundary conditions for the matrix problems are given by requiring continuity of the

potentials:

(3.2.7) Yulz,t) = U}?_:I /fl.- Uy(€,t)dE for z € 852, t> 0,
and

(3.2.8) (3, t) = I_f%—l /,«; BN forz 0, >0

The matrix source terms are defined in a fashion analogous to the single phase case. The
volume of the w-fluid leaving the ¢th block is :

/ vw-uds(:v)=/ V . vy,dr=— ¢s; dz;
092 §2; £2;

so, let
1
(3-2~9) ' qm,w,i(t) = e ¢s. dz
I'Qil £2;
and
(3.2.10) Imw =Y dmuw,i(t) xi(z) forz e 2, t>0.
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We complete the model by specifying the external boundary conditions and the initial
conditions for the system. For the case of no flow across the external boundary,

(3.2.11) Aa(8) VU, -v=0 forzedf, t>0, a=o,w,c
Initial saturations (i.e., capillary potentials) must be specified:

(3.2.12) Ye(z,0) = Winit,c(z) for z € £2,
(3.2.13) 1e(2,0) = Yinir(z) for 2 € £2,,.

To be consistent, (3.2.7), (3.2.8), and (3.2.11) should hold when ¢ = 0.

3.3. Modeling by homogenization.

Recall that * and K™* are the porosity and absolute permeability of the fractures on the
scale of the pores, and let A%(S) = K*K;o(S)/pa, @ = 0,w, and A*(S) = A%(S) + A%L(S).
Again for simplicity, assume that the coefficients do not depend explicitly on space and
time. We do not, however, assume them independent of saturation; this dependence is a
crucial aspect of immiscible flow.

The scaled microscopic model for each € > 0 is best defined in terms of (3.1.6) and

(3.1.9), rather than (3.1.10)—(3.1.12). To exploit the natural symmetry of the equations,
let 0, = 1 and 0, = —1. Recall that ¥, = ¥, + ¥,, and 9, = ¥, + ¥, and note that

g;c t 1/)0 t .
= —— and s; = ——. Then, in the fract S
A PI(S) and s¢ () en, in the fractures
* !p(f,t * € €
(3.3.1) 0P PIS) — V- [A4(S)VTL] = gexta forz € 2%, >0, a = o,w,
(3.3.2) S=pP" (!pce + (po — Pw)gz),
and, in the matrix,
(3.3.3) oad IE::) — €V - Ma(8)VeE] = gextya forz € 27, t>0, a=o,w,
Pc
(3.3.4) s=p;’ (¢c€: + (po — Pw)gz)'

On the matrix-fracture interface, we require continuity of the pressures and the phase

volumetric fluxes; that is,

(3.3.5) e (z,t) = Ti(z,t) forz € 082;,, t >0, a=o,w,
(3.3.6) [AL(S)VEE] - v = € [Mo(s)VYe] - v forz € 812, t >0, a =o,w.
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The correctness of the scaling follows as in the previous section. Again, were it absent,
a single porosity model would result from homogenization [1], [12]. Also, the total matrix-
fracture w-flow is

Z / -vds(z) = Z / Vv, dz

e-cells €99, e-cells €O

/ V- [Mw(s)VyE]dz = Z / €2V - Dw(8) Vol ] € dur;

e-cells e-cells o

since there are on the order of €73 cells, A, (s) must be scaled by €? to preserve the flow from
matrix to fractures as e — 0. Similarly, A,(s) (and hence A(s)) must be scaled by €. The
definition of the potentials (3.1.2) implies that gravity has been scaled by ¢! implicitly.
If we had chosen to use the pressure variables, we would have to do this explicitly.

We again assume that every point in the reservoir is described by the general location
z € §2 and by the specific location y € Q and that the solution can be expanded in power

series in € for a = w,c:

(3.3.7) Ti(z,t) ~ Y eFTE(z,y,1),
k=0

(3.3.8) Ye(z,t) ~ Y e pk(z,y,1).
k=0

As before, ¥f and ¥} are taken to be Qy-periodic in y. If we set UF = ¥F 4+ ¥F and
vk = % 4 bk then (3.3.7)—(3.3.8) hold with a = o.

We shall expand saturation-dependent quantities in powers of €. If 8 is such a quantity,
then, with “o” denoting composition of functions,

6(s) = 6 (p;" (%5 + (Po — Puw)g2))
= (600 p;1)(¥E + (po — pu)92)
= (60p7") (¥ + (po — pu)gz) + (60 p71) (o) (9 — ¥0)
= 0 (p7 (Y2 + (po — pw)g?)) + €' + €262 + - -

for some o and 1, 62,.... Set

(3.3.9) ° = pt (¥2 + (o — pw)92),

so that

(3.3.10) 6(s) = 6(s°) + i kg
k=1
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Similarly, let
(3.3.11) S° =P (wco + (po — Pw)gz)§

analogous expansions to those of (3.3.10) hold for functions of S.

Now substitute (3.3.7) and (3.3.8) into the microscopic model and expand the gradient
according to (2.4.5) and the functions of saturations by (3.3.10) and collect terms by powers
ofe. Forz € 2,y € @y, and t > 0, it follows from (3.3.1) for a@ = o, w, that

(3.3.1/-2) — V- [44(8)V, 2] =0,
(3.3.1/-1) -V, [A;;(SO) (Vy 02+ V. 90) + 451V, 22| =0,
w? .
(3.3.1/0) 0o P Tétt)) —V, - [A5(8°)(V, P2 4+ V,¥1)
+ _/iz,l(vygp; + V. 00) + /i;ﬂvygpg]
- V- [A;(SO)(VyWolt + VI!I/(S) + /i:’lvy Spoo(] = {ext,a-

Also, from (3.3.3) and (3.3.5),

0

c,t
(3.3.3/0) 709 =Ty ()Y 2] = dexe
fOI‘.’DE.Q, NS Qm, t>0> a = o,w,
(3.3.5/0) P2 =@ forze 2, yec0@m, t>0, a =o,w.

From (3.3.6) for z € 2, y € 0Qm, t > 0, a = 0, w, we obtain the relations

(3.3.6/-1) [4%(SO)V, T3] -v =0,
(3.3.6/0) |45(S°)(Vy BL + V. 82) + 457, wg) v =0,
(3.3.6/1) [45(8°)(Vy 22 + V. 2) + A5 (V25 + V. 00) + A, @8] v

= [Aa(so)vyzl)g] - V.

The analysis of these equations is similar to that in §§2.4 above. First, (3.3.1/-2) and
(3.3.6/-1) give homogeneous elliptic systems for the ¥J, from which we can conclude that

?? is independent of y:

(3.3.12) w2 =0l(z,t) only, a =o,w.
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This is not as easy to see as in §§2.4; the system is degenerate, since A,(S°) is zero if
S% = Spin and 4,(S°) is zero if S° = Spax. Multiply (3.3.1/-2) by @2 and integrate over
y € Qy; then the divergence theorem, (3.3.6/-1), and periodicity in y over 8Q show that
[ vy vl ey = [ a8V e =0
Qs Qs
Since the integrand is nonnegative, it must be zero; consequently, one of the following must
hold:

i) S°=Smn and U0 =¥(z,t) only;
i) S%= Smax and WY =¥l(z,t) only;
iii)  (3.3.12) holds.
But, (3.3.11) implies that, if any two of S°, W2, and ¥ are independent of y, so is the
other one. Thus, (3.3.12) holds and
(3.3.13) S = S%z,t) only.
Now, all terms containing V4% or V,5° drop out.

Next, (3.3.1/-1) and (3.3.6/0) can be used to write ¥} in terms of 2. If A%(S°%) # 0,
- ol
(3.3.14) Ul(z,y,t) =) wi(y) 5-= (:v t),
j=1
up to an additive function of z and t; the functions w](y) are those defined in (2.4.9)-
(2.4.10). Since only A%(S°)V, ¥l is used below, the ambiguities in the value of ¥, are

irrelevant.
If equation (3 3 1/0) is locally averaged, it follows that

(3.3.15) aadsp,(so IQI/ (50)(vysI/§+vzw;)+/i;ﬂ(vyw;+Vzw3)] dy
ALYV, T+ V00 dy = 2 g
IQI/ 2SNV L + VB9 dy = T e

with the fracture porosity @ being correctly defined earlier. Transform the first integral
by use of the divergence theorem (twice) and (3.3.6/1); then,

(3.3.16)  — / v, - [A;(SO)(V,,!P?, + V0L + AR (VL + vzu‘fii)] dy
Qy

= [ (AT + VL) B (T, + V)] v dse)
ox

[ A8 Vg 1,1)0] v ds(y)
09m

-,
- J..
Js

m

Vy a(so)vy ¢g] dy
= Oa ext,o d )
[ ¢pc( 0y dext } Y
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again the part of the second integral above over Q vanishes, and the outer normal to 8Q;
is opposite of that to Q,; (3.3.3/0) has been used in the last equality above.

The second integrand in (3.3.15) is simplified with (3.3.14) as follows:
Ow; 02 Wl
A* SO J a
< Oz, [ a (Z Oyr Oz; 8zk)}

0 ¥ 0 Bw]- ) 85[/2
oo 456 (3 + ) 222

I
NE
Q

|Q>

(8.3.17) Vs [A3(S%) (V22 + V2 22)]

o~
I

I
Mw
M

k=1 j=1
Define K as in (2.4.15) and let
K Ky (S°
(3.3.18) A:(8%) = —u(f—) a=o,w.
Finally, set
o o
3.3.19 me = —T ¢ ———dy = —— ¢s? d
. me = Q] Jo, $ 7w Y T TR o, Y

and combine (3.3.11) and (3.3.15)—(3.3.17) to obtain the equations
(3.3.20) 0, PS5 -V [Aa(SO)VWS] = Qext,a + dm,a forz € 2, t>0, a =o0,w.

The homogenized version consists of equations (3.3.19)—(3.3.20), (3.3.11), (3.3.3/0),
(3.3.9), and (3.3.5/0), together with the initial and boundary conditions corresponding
to (3.2.11)—(3.2.13). We prefer to write the model in terms of pressure and saturation
equations. Add the equations (3.3.20) for & = o,w to obtain the pressure equation

(3.3.21) —V, - [A(SO)V 8 + Ao(S°)VoB)] = gext forz € 2, £>0,

where A(S°) = 4,(S°) + A4,(S°), to replace (3.3.20) for @ = o; the remaining equation
(3.3.20) for @ = w is the saturation equation. Similarly, replace (3.3.3/0) for a = o by

(3.3.22) Vy - MOVl + Xo(s°)Vy9pd] =0 forz € 2, y € Qm, t >0,

where A(s%) = A,(5°) + A (s°). (We take (3.3.5/0) to hold for a = ¢, also.)

The two versions of the model again have subtle differences, but none of any practical
concern. The key features are reflected in both; namely, that the boundary conditions on
the matrix problems are constant in space (with respect to the matrix variables) and that
the matrix source term is defined as the average total flow out of the matrix blocks.
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3.4. Neglecting gravity in the matrix.

When the matrix blocks are quite small, it seems reasonable for some simulations to
neglect gravity in the matrix. In that case, the amount of computation required to simulate
the flow can be significantly reduced, since the matrix pressure equations drop out. To see
this, write the matrix equations in terms of a so-called “global pressure” variable [2], [13]

defined by

(3.4.1) ple,t) = %(po +pw) + %/OMS) (5;—’\“’> (21(8)) dé
rot [ (%) 6@ et

so that
(3.4.2) A(8)Vp = A(s)Vpw + Ao(s)Vpe.

If the gravity terms are deleted in the matrix equations, matrix potentials are the same
as matrix pressures, so that A(s)Vp is the total volumetric flow rate v (see (3.1.10)), and
(3.2.5) becomes

(3.4.3) V- (A(s)Vp) =0.

The boundary conditions (3.2.7)—(3.2.8) state that the pressures p,, and p. are constant
over 082; for each i; consequently, the same is true of p. Hence, (3.4.3) is an elliptic problem
with constant boundary values, so that p is this constant. Then (3.4.2) implies that

(3.4.4) Aw(8)Vpw = —&% Vpe,

and (3.2.4) can be rewritten in terms of s to obtain

Auw($)Ao(s)
A(s)

For emphasis, we record the boundary condition below:

(3.4.5) ¢s¢— V- [ p'c(s)Vs] =0 forze s, t>0.

1
(3.4.6) s(z,t) = p;t (ﬁ/ U (&,t)dE+ (pw — Po)gz) for z € 042;, t > 0.
i Y92
These two equations and a setting of the initial saturations replace the matrix equations
of the previous model.
This model can be derived from homogenization theory by not compensating gravity,

so that the matrix gravity terms tend to zero with e.
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F1G. 10. A typical matrix-fracture capillary pressure relation.

3.5. A limit model.

Sometimes the fracturing is sufficiently extensive that the matrix blocks can be con-
sidered to be small enough that the fluid pressures throughout a block can be assumed in
equilibrium with those in the surrounding fractures; thus, the time taken by matrix fluids
to flow to the surfaces of the blocks is completely neglected. In this case the dual-porosity
model can be treated as a single porosity model derivable as a simple (not homogenization)
limit of the model of the previous subsection as the fracture spacing € — 0. The validity
of the limit model is not limited to fractures having the regular geometric form assumed
in the models discussed so far; the size alone of the blocks is the determining factor.

As € — 0, the boundary conditions (3.4.6) dominate the differential equations (3.4.5)
in a block, and (3.4.6) holds in the limit on the block located at each z € £2:

(3.5.1) s(z,t) = p;* (Te(z,t) + (pw — po)gz) for z€ R, >0,

where we use Lebesgue’s theorem on the differentiation of the integral [32] to see that, for
fixed z € ef2;,

lim — U.(€,1)dE = U (z,t).
lim ol S (&,t)d¢ (z,t)

Thus, the entire matrix problem is replaced by (3.4.6). A typical example of this very
important relation is given in Figure 10. The matrix source term (3.2.9)—(3.2.10) becomes

(3.5.2) e, t) = ~lim (= [ dsul6 046 )xito)

G——'O ' Iefz’| Cn‘

= —(l—lggll’¢) s¢(z,t) forze 2, t>0,

again by Lebesgue’s theorem.
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Then, (3.2.1) reduces to

(3.5.3) BS; + ¢st — V- [Au(S)VE,] = gextw forz € 2, t>0,
with
7 |Qm|
3.5.4) =100,
( 2

This model can be interpreted as a single porosity system with a saturation-dependent
porosity for computational purposes; however, physically there remains a block associated
with each point z.

§4. Some Discretization Techniques

4.1. General remarks.

Finite difference procedures for approximating the solutions to the models for single-
phase or two-phase flow will be discussed, with emphasis placed on solving the matrix
equations independently of the fracture equations. This is important practically, for, if
only one matrix block per fracture node were employed in the computational model and
if each matrix block were simulated using only one node, the size of the algebraic system
would double over that in an unfractured reservoir simulation. If Gaussian elimination is
used to solve any resulting large linear system, the number of arithmetic operations needed
would be four to eight times that of the unfractured situation. Normally, there will be
more than one matrix node per fracture node.

The simplest way to treat the fracture and matrix systems separately is to consider
them sequentially. Solve first, say, for the state in the matrix blocks at the next time level,
taking the matrix boundary values to be defined by the fracture data at the current time
level. Then advance the fracture solution, using the new matrix data to define the matrix
source term. Unfortunately, such a procedure is doomed to failure, since a small change
in the boundary values can cause flow of a significant volume of fluid in comparison to
the volume of the fractures. Consequently, it is easy to set up numerical oscillations: the
matrix absorbs more fluid from the surrounding fractures on one step than can be resident
there and then returns more to the fractures on the next step than their total volume.
The matrix-fracture interaction must be handled implicitly, which normally would imply
simultaneous solution. However, this interaction can be computed implicitly and separately
by a particular linearization of the matrix problems to be made precise below. The final
procedure requires solution of a large linear or nonlinear system, corresponding to the
fracture equations, and many small linear systems, each corresponding to a matrix block
approximated by one to a few dozen nodes. The fracture system involves about as many

nodes as are used in simulation of an unfractured reservoir.
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However the algebraic equations generated on each time step are solved, the separation
procedure detailed below will lead to more eflicient computation, but there is an added
advantage of the separation when it is carried out on a parallel computing device, since
matrix blocks interact only through the fracture system and do not directly affect each
other. As a consequence, it is natural to solve the matrix problems in parallel, and little
communication of data between processors is required. The (nonlinear) algebraic equations
in the fractures can be treated either by domain decomposition techniques to solve the
fracture equations in parallel or on a large vector processor. An additional possibility is to
use a network consisting of a large vector computer and a set of smaller workstations. The
fracture calculation can be performed on the large computer, and the matrix problems can
be apportioned over the entire network [5], [19].

4.2. Some finite difference notation.

Discretize the time variable by choosing t°,#!,¢2,...,¢" such that 0 = t® < #! < 2 <
o<tV andset At" =t —t" ! forn=1,2,...,N.

We shall discretize the space variables by defining grids over {2 and over each matrix
block £2;. In a finite difference context, it is simplest to consider {2 and each {2; to be
rectangular parallelepipeds; more general domains can be treated by either finite difference
or finite element techniques quite analogous to the finite difference methods to be described
herein. Suppose that 2 = [0, D;]x [0, D2]x [0, D3]. Then, divide each D; into N; intervals,
which for simplicity we take to be of equal size H; = D;/N;, j = 1,2,3. Thus, the fracture
grid is the lattice of points

Gs = {z1 : L = (L1, La, L3), xr = (L1Hy, Ly H,, L3 Hy),
and L; =0,1,2,...,N;, §=1,2,3}.

We shall assume for notational convenience that the matrix blocks are all of the same
size and consider a grid defined on the representative matrix block Q,,. Let h; and n; be
analogous to H; and N; and set

gm = {yl P = (£1a£2,£3), Ye = (Elhl,£2h2ae3h3)’ and e] = 0’ 172" <y Ny, J = 1)273}
Also, let

gm = {yg . €= (21,22,&),), Ye = (£1h1,£2h2,£3h3), a,nd EJ = 1,2,...,nj —_ 1, ]= 1,2,3}

indicate the interior nodes and 8Gm = Gm \ G the boundary nodes. (In practice the
matrix grid should be graded to place more nodes near the surface of the block [17]. Also,

advantage should be taken of the symmetry of the solution on a matrix block to allow the
solution to be computed only at necessary nodes.)
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We wish to approximate the solutions to the models at the time levels t". A function
© related to the the fracture system will be approximated at each point z; € Gy; this
approximation will be denoted by

o ~ O(zr,t").

Each H; will be larger than the spacing of the fracture planes. Only those blocks which
sit over the points of Gy will enter the discretization process. For a function 6 associated
with the block at the point z;, € G, we denote the approximation to 8 at y, € G,, by

0Le~ 0(zp e, t"),

where z1,¢ = 1, — y¢ (We assume that a top corner of the block is z ).

Time derivatives will be discretized by backward Euler approximations and spatial
derivatives by standard 7-point differences. Grid points adjacent to a given point zj, are
denoted by zr+.;, where e; = (1,0,0), e2 = (0,1,0), and e3 = (0,0,1). Points half-way
between 1 and zpt.; are denoted by z Lkke; . A similar notation will be employed for

points adjacent to xr ¢.

4.3. Single phase flow.

The discretization of either version of the single phase model produces the same dis-
crete model. Though it could easily be included using the linearization (2.6.1) [5], [19],
gravity will be neglected both in the matrix blocks and in the fractures; moreover, the
permeabilities will be taken to be scalar.

Let the spatial derivatives in (4.3.2) be approximated by a standard 7-point difference
operator,

k
Vh,L,e- [M_ Vh,L,epZ]

1 k(xL H+% 1 €5 ) n n k(xL’t_%ej) n n
= Z E? I (pm,L,l+ej - pm,L,f) - ——,UC— (pm,L,l B pm,L,[—q) ’

Jj=1

and the spatial operator in (4.3.5) analogously. The numerical algorithm will be described

below in four parts:

i) Initialization at time ¢°. For each L and £, let
(4.3.1) p?,L = pinit,f(r1) and p(v)n,L,l = Pinit,m (T L,¢)-

ii) A time step in the matrix system. For each L, ¢, and n > 1,

Pr.Lt = Pm, k n : .
(4.3.2) é(zL,e) ot T L £ —Vh,rLe- [E ViLe Pm] =0 ifys€Gm,

(433) pm,L,Z = pf,L if Yp € 8gm
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iii) The matrix source term. For each L and n > 1,

(4.3.4)

m,

1 Pt = Pl
- Ql E ¢($L,£) o ’Atn s h1h2h3.
£

iv) A time step in the fracture system. For each L and n >1,

(4.3.5) &(zr) f’—f’ VL - [E Vh,LPf:I = gext(TL,t") + 4 1,
where p’f‘, Lte; is defined outside of G by reflection:
(4.3.6) PiLte; = PfLge; 0T TLie; & Gy

The algorithm is completely implicit, and (4.3.3) as stated requires the simultaneous
solution of ii)-iv). This can be rectified by changing the way in which it is implemented.
The key idea is to recognize that (4.3.2) is linear in pJ}, ; , and can be solved by finding any
particular solution of (4.3.2) without requiring satisfaction of (4.3.3) and adding a solution
to the problem not containing the term p%TLl, ¢ but satisfying proper boundary values. The
simplest way to do this is to solve for p, ; , such that

pm pm k b~ 2 3
(4.3.7) #(zre) il T Lt — Vh,Le: [Evh,L,H’m] =0 ify,€Gm,

(438) pm,L,Z — Pf’zl if Ye € agm)

and then to solve for g7, | , satisfying

Prm,L¢ k . ) °
i y &y — . —_— n e f -
(4.3 9) ¢(:L'L’g) An Vh,L,t l:,u.th’L’[ pm] 0 ifyee g
(4.3.10) 5?n,L,£ =1 ify € 0Gm.

Both of these problems can be solved without knowing p7 ;. Clearly,

(4.3.11) Priie = Pmre+ (PFL— P51 )P L6

however, pJ, | , cannot be evaluated until p¥ 1 is obtained from iv).

Step iii) can be implemented so as to define gy, ; implicitly in terms of p% /-

n _ mel me[
(4312) dm,L = IQI § :¢( L() Atn hyhyhg
PYL —pr on
= e E hihohg.
Atn IQI - ¢(2L,0)Pm,L,e hrhahs
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Now, pf 1, can be found from iv), and the matrix solution can be updated using (4.3.11).
The time step is finished. (Note that in this linear problem it is necessary to find p7 ¢
only once and not on each time step; the last sum in (4.3.12) need be evaluated just once,
as well.)

The modified algorithm can be understood in physical terms. The problem (4.3.7)-
(4.3.8) determines the flow of matrix fluid that results when a fracture system response
is temporarily suspended; that is, when the boundary values on 8G,, remain unchanged
during the time step. The next relations, (4.3.9)—(4.4.10), determine the matrix flow that
results from a unit change in the fracture density. The proper multiple of the latter solution
added to the former is the complete solution to (4.3.2)—(4.3.3), as given in (4.3.11).

A finite element version of this algorithm appears in [5] and [19]. It was also shown
in [5] that the solutions of the finite element scheme converge at the optimal rate as the
At™’s and the grid spacings on Gy and G, tend to zero to the solution of the differential
model.

4.4. Immiscible flow.

The discretization of the model of §§3.2 and §§3.3 leads to an algorithm that is no-
ticeably more complicated than the one above; however, the main ideas are quite similar.
The matrix equations will be completely linearized, but not the fracture equations. A
Newton iteration will be used to solve the nonlinear equations of the discretized fracture
system; the discrete matrix system is directly solvable. The five parts of the algorithm
again uncouple the calculations related to the matrix blocks from those of the fracture

calculation:

i) Initialization. For each L and I,

(4.4.1) B2 1, = Tinit,e(21),

(4.4.2) $2 1.0 = Pinitye,L,6(TL,0),

(4.4.3) S? = P71 (801 + (po — pu)g 2(21))
(4.4.4) 9.0 =p-" (¥2 1.0+ (Po — Pw)g 2(L,0)) -

The initial water potentials can be determined by solving (4.4.22) and (4.4.29) below. The
Newton procedure will require an initial guess at the solution, so that it is convenient that
P2 | be found; the initial matrix water potential is of little interest.

ii) Matrix system. For each L, £, and for n > 1, find {¢?, ,, ¥ ; ,} by solving

Yore— VoL, e ~ : °
(4.4.5) #(zL.e) ,’L’l_ St N A" Vi re¥n] =0 if ys € Grm,
pc(sn I)Atn
(4.4.6) — Ve A" )Va et + Ao(s" Vi) =0 if yo € G,
(4.4.7) Prpe=9rp i ye € 0Gm,
(448) I/—)LL),L,Z = !pg’—Ll if Ye € agm,
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and determine W’?,L,e, %/’:L,L,e} and {'J)ZL,D "/;Z;,L,l} by solving

QZ:L,[ n— v . o

(4.4.9) #(zre) DA VL, [/\w(S VL, 1/)3,] =0 ifye€Gn,
(4.4.10) ~VhLe [/\(S"—I)Vh,L,e P+ Xo(s" )V e 1/;?] =0 ify,€ éma
(4.4.11) Yrpe=1 if yo € 9Gm,
(4.4.12) Vo1,e=0 ifye€ Gm,

and
4.4.13 _ Vine Pt jn i ;
(4.4.13) #(zre) 1Al VL, [/\w(s YVh,Le wa] =0 ifye€Gm,
(4.4.14) ~ VLt [A(S"_I)Vh,L,e P2+ Xo(8" ) Va1, %5?} =0 ifye€ ém;
(4.4.15) pjrpe=0 ifye € Gm,
(4.4.16) pnpe=1 if yo € OGm,

where

n—1 n—1
. " 1 SL,e+e; TSI, n "
(4.4.17) Vihre- [)\a(s l)vh,L,NJ’ ] = Z ) {/\a< B )(¢L,£+e,~ - "»Z’L,E)
J

=1
n—1 n—1
Spe tSL e, n n
—)\a< 5 - )(¢L,£ - ¢L,£—e,~)} ;

Note that these equations are indeed linear, since the mobilities and p; are evaluated
at the previous time level. The matrix potentials ¢7  , and ¢y 1 , are defined below in
(4.4.25)-(4.4.26); they satisfy the expected equations, namely (4.4.2,8)—(4.4.31). Equations
(4.4.5)—(4.4.8) define a particular solution to the linear equations, while (4.4.9)~(4.4.12) and
(4.4.13)(4.4.16) give solutions to the homogeneous problem which describe unit changes

in the boundary conditions.

iii) The matrix source term. For each L and n > 1,

(4.4.18) J)Z,L,e = %ZZ,L,[ + (!pan - J’Z’Zl) 'ZZ:,L,K + (W;)L - !‘ps_Ll) J’Z),L,l’
(4.4.19) 5 0= 25" (B0, (o — pu)oz(er,)) s
~ =1
1 §1,6— 5L
4.4.20 n L= —ie wp¢) 25— hihyhs.
( ) A IQIZ;QS( L,t) AT 1hahs
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The quantity gy, ,, 1, is given implicitly in terms of the fracture potentials at the nth time
level; however, in view of (4.4.26) and (4.4.27) below, (4.4.20) is clearly a discretization of
(3.2.9).

iv) Fracture system. (This is the most critical system to solve well.) For each L
and n 2> 1, solve the following nonlinear system of equations for ¥';, ¥ ;, ST and

n .
qm,w,L'

Sn -1 3
(4.4.21) @(xL) Z { Z,L,j (qul,Lﬂ,- - 3,L>

= q6Xt,w($L, tn) + qm,w,L7

3

1 n n n n
(4422) e Z ..H_? {Az,j ( w,L+e; — !p:;,L) — 4‘L—ej,J ( w,L T w,L-—e,-)
=1

+45 1 ; (ng-e,- - chL) s (W?L - ’»bZL—e,-)}
= Qext(l'L,tn)a

(4.4.23) St =P (u—/cT:L + (po — pw)gz(:vL)) )

where again the no-flow boundary conditions (3.2.11) are imposed by reflection:

n — n —
Wa,L:l:e,' - !pa,L:Fe," a=w,¢c,

if £1+; is outside the reservoir. The mobilities should be upstream weighted:

Ao(ST4e;)s  HYLL <¥3p4e;

4.4.24 AgL;=
( ) a,L,j {Aa(SZ)’ otherwise,

for a = o,w (where 5[’;‘, 7 = !'Jc" L+ !If;‘,, 1)- This is intended to prevent numerical
instabilities [17], [25].

Note that (4.4.18)—(4.4.24) form a completely implicit procedure for the fracture quan-
tities and the boundary values on the blocks. As previously mentioned, a variant of New-
ton’s method should be used to obtain the solution; this is not completely straightforward,
because of sharp corners at Spax OF Smax in the graphs of the capillary functions (Figures
7 and 9). Since the rate of convergence of Newton iteration is related to the value of the
second derivatives, it is necessary to aid the convergence by, for example, requiring the
solution ¥, to take at least two iterations to cross a value slightly above the critical value
¥, 1 = Po(Smax) — (Po — Pw)9%2 = —(po — pw)gz at any applicable point. It is also necessary
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to recognize that P;(Smax) = P¢(Smax) = —oo (or a large negative number in practice).

See [17] for details.
v) Matrix update. For each L,4, and n > 1, let

(4.4.25) ZL,g = J’ZL,( + (WcT:L,Z - ngf,lz) VZ:I,L,Z + (W&L,z o WZ}}J) QﬁzL,f’
(4.4.26) wie=%wre+ (WSLJ - W;Z,lz) boLe+ (%,L,e - I’Jfll,e) DL,
(4.4.27) ste=p" (V21 e+ (po — puw)gz(zLe))

and the time step is done.

The above algorithm can be implemented sequentially. The following discrete matrix
problem has been solved:

Yere— @[’ZI_J,lz

ARG

(4.4.28) é(zr,0) —Vire [Ao(s" )Vhrevn] =0 if yo € Gm,

(4.4.29) —Vire [AS" ) VaL,e¥n + Ao(s" Vi 2] =0 if ye € G,
(4.430) ZL,l = WZL if Ye € agm,
(4431) Z),L,l = SPZ,L if Ye € agm

Assuming that the wetting fluid is the denser, it should be noted that the block associated
with the fracture point zy is interpreted to lie below z; for imbibition and above for
drainage; otherwise, fluid is trapped by the numerical simulation as P, tends to zero. We
have considered the case of imbibition.

It should be remarked that the discretization of the fracture system conserves mass,
except for inexactness caused by not carrying out the Newton iteration to complete con-
vergence. The linearized matrix problems do not; however, there is no net mass balance
error, as any fluid that leaves the matrix is transmitted to the fracture system. There is a
small error in the time at which fluid is transferred from one system to the other.

4.5. Simplified models for immiscible flow.

A similar procedure to that presented in the last subsection can be given for the models
of §83.4 and §§3.5. We describe the discretization of the model that neglects gravity in the
matrix first; the limit model requires only a simple modification of this algorithm.

The initialization and fracture system steps (i.e., i) and iv)) of the previous algorithm
remain unchanged; steps ii), iii), and v) become:

ii) Matrix system. For each L, £, and n > 1, determine 5} , and §7 , by solving

57— 510
(4.5.1) ¢(zL,e) =

/\w gn—1 /\o g1 e n . o
— VLt [ ( ,\(321-1() )P'c(s Vh,L,e3 ] =0 ify,€Gm,

(45:2) 53,0=p5" (2271 + (po = pu)9=(z1,0))  if e € OGm,
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and

52,[ /\w(sn—l))\o(sn—l) n— un : p
(4.5.3) ¢($L,[) Atn - vh,L,t : A(sn_l) p’c('s l)vh,L,l S = 0 lf Ye = gm,

(4.5.4) §L,g =1 ifye€ [,

Here, the spatial derivatives are approximated as in (4.4.17) above.

iii) The matrix source term. For each L and n > 1, evaluate the matrix source
term gy, ,, ;. by (4.4.20), where now

(45.5) &5 ,=
5o+ [Pt (B21 + (po = pu)gz(en)) = 7 (2271 + (b — pu)ga(z1)) | 8.

v) Matrix update. The matrix saturation s} , is equal to §7 , given by (4.5.5).
It should be clear that the matrix problem has solved the equations
(456) dlon,0 TEE
.J. L,[ Atn
/\w(sn—l)/\o(sn—l)
)\(sn—-l)
(4.5.7) st p=p;" (TL + (po — pw)gz(zr)) if Yo € G

—Vire: pe(s" DVires™ =0 ify, € G,

A finite element algorithm similar to the one above has been shown [8] to be convergent
under the assumption that the mobilities do not degenerate to zero.

The limit model is the restriction of the above algorithm that results from not allowing

any of the matrix nodes to lie inside the blocks; that is, ém = (. Then (4.5.7) holds for
all matrix nodes, and a single linear system must be solved (the one of iv)).

§5. Some Computational Results

We present recovery curves for some simulations of petroleum reservoir waterflooding.
Though these curves give only a gross indication of the flow of fluids within the reser-
voir, they are sufficient to illustrate important features of naturally fractured reservoir
simulation.

In all cases, the reservoir is assumed horizontal and rectangular, with height 10 meters
and length 300 meters. For computational simplicity, the reservoir is assumed to be uniform
in the other direction; consequently, the fracture calculations are two-dimensional over 2,
though the matrix calculations must remain three-dimensional over Q. Fracture porosity
and permeability are assumed to be .01 and 1 darcy, respectively. The corresponding
quantities for the matrix are .2 and 5 millidarcies. Initially, the reservoir contains 76% oil
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(ko = .5¢cp and p, = .7g/cm®) and 24% water (py = 2cp and p, = lg/cm®). Water is
injected uniformly into the reservoir along one end at a constant rate of one pore-volume
every five years. Oil and water are produced at the top of the other end. The recovery
curve is given as the graph of the cumulative amount of oil produced versus the cumulative
amount of water injected. The residual water level in the matrix is .20, while the residual
oil level is .15; hence, there is a maximum recovery of .62 pore-volumes. In our simulations,
the only reservoir parameter that is varied is the size of the matrix blocks, which we take
to be cubes.

For the spatial discretization, we took 40 nodes in the horizontal direction and 10 in
the vertical direction over §2. In the matrix block Q, we took the equivalent of 16 interior
nodes in the full model (§§3.2-§§3.3) simulations (four nodes on each of four horizontal
planes), and we took the equivalent of 27 interior nodes in the simulations using the model
that neglects gravity in the matrix (§§3.4). The time step varied from one day initially to
twenty days near the end of the simulations. (Each entire simulation was for about twenty

years.)
.6 +
0il 4 -
Produced —— Unfractured reservoir
(lp e — — Fractured reservoir

volumes)
.2
0 } | i | s : g

0 1 2 3 4

Water injected (pore-volumes)

FiG. 11. A comparison of the production data for an unfractured reservoir and for
a naturally fractured reservoir with matrix blocks of sidelength 200 cm.

First we compare a fractured reservoir to an unfractured one, with the unfractured one
possessing the matrix properties of the fractured one, except for some minor modifications
to account for the fracture space. The numerical procedure for the unfractured case is
a straightforward modification (consisting of deletions) of the procedure for the fractures
presented in §§4.4. The fractured reservoir has blocks of sidelength 200 cm, and the
simulation is given for the full model. From Figure 11, we see that indeed there is a
significant difference in response between the two reservoirs. Better sweep efficiency results
in the unfractured reservoir, though it takes a much higher pressure gradient across the
reservoir to obtain this recovery. The curve for the unfractured reservoir has a fairly
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obvious “break-through” at about .5 pore-volumes injected, beyond which recovery drops
dramatically; on the other hand, the recovery curve for the fractured reservoir varies much
more gently.

.6 1 ______ _____
Oil 4 4 —— Model with gravity
Produced
(pore- — — Model without gravity
volumes)
294 /7 0 e Limit model
0 $ | } | } | :

Water injected (pore-volumes)

FIG. 12. A comparison of the production data for the various immiscible models
for a reservoir with matrix blocks of sidelength 200 cm.

Next, we look at the three immiscible models of this presentation. As can be seen in
Figure 12, these models predict significantly different recoveries. The full model predicts
the greatest sweep efficiency. Surprisingly, in this series of simulations the limit model
(883.5) seems to give a better prediction than the model which simply neglects gravity in
the matrix. See [17] for additional simulations of the simplified models.

6 1 Z= =T T
Oil

Produced —— Sidelength 400 cm.
(pore- 44+ LA e Sidelength 200 cm.
gelumes) - -- Sidelength 100 cm.
Sidelength 50 cm.
— — Sidelength 0 cm.

2 —— i

0 1 2 3

Water injected (pore-volumes)

F1G. 13. The effect of matrix block size on the production data,
and convergence to the limit model.
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Finally, the effect of matrix block size on the full model is considered in Figure 13.
Sweep efficiency increases with increasing block size. It can also be seen that, as the block
size tends to zero, the recovery curves of the simulations tend to that of the limit model
(where the block size is 0 cm). If we continue reducing the block size below 50 cm, the
recovery curves become almost indistinguishable from that for the limit model at about
10 cm.

§6. Some Other Models

Many other dual-porosity models can be defined to incorporate various physical phe-
nomena. We briefly mention a few of these in this section.

Miscible flows can be considered; a simple dual-porosity model for such appears in
[7]. It is similar to the models presented above. A new feature is that a continuity of
component mass concentration is imposed at the surfaces of each matrix block in addition
to the imposition of continuity of pressure. This model is not completely satisfactory for
simulating miscible displacement; the “first-order” model discussed below provides a much
more realistic simulation of that physical process [4].

The immiscible waterflooding problem is sensitive to gravitational segregation of water
and oil. If the matrix block height is large, it may be important to model this effect. It was
incorporated somewhat crudely in the model of §3, since the block height was considered
to be small (infinitely so, in the homogenized version). We assumed that at each time a
potential equilibrium exists from the top to the bottom of the block at its surface. The
block height can be considered to be large and only the width and depth to be small.
Homogenization will produce a model in which the blocks have the original height but
no width or depth. Then, the full vertical variation in the potentials is reflected in the
boundary condition for the matrix problems. See [7] and [16] for more detail.

In the models treated in this presentation, the matrix boundary conditions have always
imposed continuity between matrix and fracture pressures. This means that the “capillary
end effect” of [27], [18], and [15] has been imposed without exception in the waterflooding
models. Russell [28] has considered the possibility that flow in the fractures is sufficiently
rapid that there is not enough time for equilibrium to be reached between the matrix
and fracture potentials, and he has proposed replacing the strict continuity of oil pressure
between the matrix and fracture systems by a “third-type” or Robin boundary condition.
In our notation (see §3), this would take the form

—Xolpl(8)|Vs v = C(pc(s) — réj/n, PC(S(f,t)) d§> forz € 842;, t > 0,

where C is some empirical constant. The effect of such a boundary condition is to permit
a delay in the imbibition of water into the matrix blocks.

Finally, we mention a class of models that might be referred to as “first-order” mod-
els. These models are not strictly derived from homogenization theory, since that theory
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assumes that the matrix block size tends to zero. The leading terms in these models are
derived from homogenization (giving the “zeroth-order” model), but an attempt is made to
take into account the actual finite size of the matrix blocks by assuming that the boundary
values on each matrix block vary linearly in space at any given time, rather than being
constant in space. Such a model has been considered for single-component, single-phase
flow [3] and for two-component miscible flow [4].
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