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Abstract. A dual-porosity model for saturated, two-phase, incompressible, immiscible flow in a natu-
rally fractured petroleum reservoir is formulated and then approximated by a finite difference procedure.
Calculations are presented to indicate the behavior of the model as a function of several parameters, in-
cluding the size and shape of the matrix blocks, the form of the relative permeability curves in the blocks,
the inclination of the reservoir, the absolute permeabilities, and the fluid viscosities.



1. Introduction

A naturally fractured reservoir can be simulated as an interconnected system of fracture
planes dividing the porous rock, which will be called the matriz, into a collection of blocks.
The fractures, though very thin, have a profound effect on the flow of fluids within the
reservoir. Most of the fluid resides in the matrix, where it moves very slowly. Fluid reaching
the surface of a matrix block and entering the fractures flows comparatively quickly, since
the fractures form paths of high permeability. Thus, a naturally fractured reservoir has an
additional scale over the two occurring in a standard, unfractured reservoir. The smallest
scale, on the order of millimeters, is that of the pores. The intermediate and new scale is
that of the fracture spacing, which is on the order of meters. Finally, the reservoir length
is on the order of kilometers.

In any practical spatial discretization of the reservoir, there will be many matrix blocks
in every grid cell and we cannot and need not compute the flow of fluids within each of the
individual fractures and blocks. We shall consider a dual-porosity formulation to enable
us to simulate the flow in a fashion that is both computationally tractable and sufficiently
precise for practical purposes. A fractured reservoir could be modeled by allowing the
porosity and permeability to vary rapidly and discontinuously over the reservoir; see [5],
(6], [7], [14], and [16] for a general description of flow in porous media. Both of these
quantities are dramatically greater in the fractures than in the porous rock. Since the
computational and data requirements for such a model would be totally impractical, this
model must be rejected for practical simulation. As an alternative, one might try to avoid
the discontinuous nature of the porosity and permeability by replacing them locally by
their average values. While such a simulation could be done as in the unfractured case,
the result would be unsatisfactory, in that correlation to physical observations would not be
obtained. The interchange of fluid between the matrix and the fractures must be modeled
[15], [4], [20] by treating them as if the reservoir possesses two porous structures rather
than one. Since the system of fractures is on a much finer scale than the reservoir as a
whole, it can be viewed as a porous structure itself (see Fig. 1). The fractures form the
“void spaces” while the matrix blocks play the role of the “solid rock”; note that the “solid
part” is in itself permeable.

It is well known how to model the flow of fluids in a single porous structure; a dual-
porosity model is much more complicated. Derivations of models to simulate several vari-
eties of flows in fractured reservoirs can be found in recent papers of Arbogast, Douglas,
and Hornung. In this paper, we shall be concerned with two-phase, immiscible, incom-
pressible flow; this is the type of flow related to the secondary recovery process known
for some decades as waterflooding. See [1], [2], and [8] for models derived on the basis of
either physical intuition or on homogenization, with the latter derivation beginning from
the rapidly varying porosity and permeability description of fractured reservoirs mentioned
above. The resulting model is presented on a double covering of the reservoir, with one
cover, which we call {2, containing the fracture flow. The homogenization derivation of
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the model attaches a matrix block to each point in {2, with these blocks being topologi-
cally disconnected, so that flow between a matrix block and its representative point in the
fracture cover is permitted, while flow between individual blocks is not. We shall denote
the matrix block over the point z € 2 by {2, and set U2, = £2,,, which is the second
cover of the reservoir. The matrix-fracture interaction on the scale of the fracture spacing
must be carefully modeled. Its effect on the fracture system will be averaged over the size
of an individual matrix block, which is comparable to the fracture spacing; however, the
interaction must be treated on a smaller scale as far as the matrix blocks are concerned,

2. The Model

We consider saturated, two-phase, incompressible, immiscible flow, the phases being o
(oil or nonwetting phase) and w (water or wetting phase), with densities and viscosities
Po and pq, o = o,w, respectively. Let us recall the equations that govern such flow in
a single porosity system. Let s(z,t) denote the w-saturation, so that the o-phase has
saturation 1 —s. Let p,(z,t), a = o, w, represent the pressure in the a-phase, and denote
the capillary pressure between the two phases by

Pe(S) = Po — Pu; (2.1)
Pc(s) is assumed to be a function of s only and typically is a decreasing function of s, as
shown in Fig. 7. It becomes infinite as the saturation tends to the residual water saturation
Smin, and 1t is zero at the residual oil saturation corresponding to s = Spax.

Relative permeability functions, k.«(s), a = o, w, quantify the interference to flow in
each phase caused by the presence of the other. Usually, krw(Smin) = kro(Smax) = 0. If
k(z) is the absolute permeability, then kk,,, is the permeability of the rock to the a-phase
at the point z with saturation s.

Potentials are more convenient to work with than pressures; denote them by

wa = Pa — Pag?z, @ =o,w, (22)

where g is the gravitational constant (not vector) and z(z) is the depth. Darcy’s law for
the volumetric flow rates in two-phase flow takes the form

Va = —As(s) Vibe, a=o,w, (2.3)
where the phase mobilities are defined by
Aals) = M, a = o,w. (2.4)
lg
Incompressibility and conservation of mass (or, equivalently, volume) imply that

0s
¢ 'a? +V. Vw = Gext,w; (25)

0s
—Q 5T V. o — (ext,o, 2.6
¢ at =+ v q t, ( )
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where gext,o i1s the external volumetric a-source.

Define a “capillary potential” by

"/)c — wo - d’w = pc(s) - (po - Pw)gZ, (27)

and use it and ¥, as the primary dependent variables. Then,

s =p. (Ve + (po — puw)gz) (2.8)

is defined from 1. and
Vo = —Ao($)V(Yw + 1c). (2.9)

Finally, define a total volumetric flow rate and a total mobility by

V=0, + Uy = —A(S) Vihy — Ao(5) Vb, (2.10)
A(s) = Au(s) + Ao(s), (2.11)

respectively, and add (2.5) and (2.6) to obtain a pressure equation,
V.v= Jext, (212)

where gext = Gext,o + Gext,w 1S the total external volumetric source. Then, (2.5) is called
the saturation equation.

In summary, the basic equations for describing two-phase, incompressible, immiscible
flow in a single porosity system are given by (2.3), (2.5), (2.8), and either (2.6) and (2.9)
or (2.10)-(2.12).

There exists an extensive literature on the modeling of immiscible flow in naturally
fractured reservoirs, including [11], [12], [13], [17], [18], and [19]. Most of these papers
consider models that effectively define the matrix-fracture interaction by introducing var-
lous ad hoc parameters; the others do not incorporate the matrix boundary condition in
any general way. We consider here a model that treats the interaction explicitly through
boundary conditions on the matrix blocks [1], [2], [8], [3].

We denote fracture quantities by upper case letters and matrix quantities by corre-
sponding lower case letters.

Capillary pressure and relative permeability functions are somewhat different in the
fractures than in the matrix blocks. Generally, one assumes that the fractures are essen-
tially like spaces between two parallel planes and that Spin = 0 and Spax = 1. Typical
examples are shown in Fig. 9.



There are matrix source terms dm,as @ = 0,w, for each of the phases. The saturation,
pressure, and capillary equations in the fracture system can be written as

oS
e 5 " V [Au(8)VPy] = gextow + gmw forz € 2, >0, (2.13)

—V  [A(S)VTy + A,(S)VE] = gt forz € 2, t >0, (2.14)
S =P T+ (po — pu)gz), (2.15)

since incompressibility requires that ¢m o + ¢mw = 0. The equations on the block £2, are

8_5 — V- [Au(s)Vy

¢8t w]=0 forye 2, t>0, (2.16)
=V [ A(8)VYy 4+ Ao(s)Vi ] =0 fory e 2,, t >0, (2.17)
3=P;l(¢c+(Po—Pw)92); (218)

we have assumed that the external sources affect the fracture system only. The boundary
conditions for the matrix problems are given by requiring continuity of the potentials:

Yuw(T,y,t) = ¥y(z,t) foryedf, €2, t>0, (2.19)
and

VYe(z,y,t) = P(z,t) foryecdf,, z€ 2, t>0. (2.20)
The matrix source terms are defined as follows. The volume of the w-fluid leaving the
block 2, is

/ vw-nda(y):/ V vy dy:—/ qﬁ?idy; (2.21)

02, 2. n, Ot
consequently, let

1 0s
maulz )=~y [ 0Grdy frae s (229

We complete the model by specifying the external boundary conditions and the initial
conditions for the system. For the case of no flow across the external boundary,

Ae(8) VU, -n=0 forzed2, t>0, a=o,w,c. (2.23)
Initial saturations (i.e., capillary potentials) must be specified:

Pe(z,0) = Winit,c(z) for z € 02, (2.24)
'(,Z)C(I, 0) = "/’init,c(z) for z € '-Qm- (225)
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To be consistent, (2.19), (2.20), and (2.23) should hold when ¢ = 0.

3. A Finite Difference Discretization Technique

A finite difference procedure for approximating the solution to the model will be intro-
duced, with an emphasis being placed on solving the matrix equations essentially indepen-
dently of the fracture equations. It is important practically to solve the matrix equations in
a manner that allows an implicit treatment of the overall system, while confining the non-
linearities of the algebraic problem at each time step to the fracture system. The fracture
and matrix systems cannot be handled sequentially, since a small change in the boundary
values on each matrix block can cause flow of a volume of fluid that is large in compar-
ison to the volume of the fractures, causing numerical oscillations to occur as a result of
the matrix absorbing more fluid from the surrounding fractures on one step than can be
resident there and then returning more to the fractures on the next step than their total
volume. The matrix-fracture interaction must be handled smplicitly; we shall compute
this interaction by a particular linearization of the matrix problems to be made precise
below. The final procedure requires solution of a large nonlinear system, corresponding
to the fracture equations, and many small linear systems, each corresponding to a matrix
block approximated by a modest number of nodes. The fracture system typically involves
about as many nodes as are used in simulation of an unfractured reservoir. However the
algebraic equations generated on each time step are solved, the separation procedure de-
tailed below will lead to more efficient computation, but there is an added advantage of
the separation when it is carried out on a parallel computer, since matrix blocks interact
only through the fracture system and do not directly affect each other. As a consequence,
it 1s natural to solve the matrix problems in parallel, and little communication of data
between processors is required. The algebraic equations in the fractures can be treated
either by domain decomposition techniques to solve the fracture equations in parallel or
On a vector processor.

Let us introduce some notation. Discretize the time variable by choosing ¢°, 1,2, ..., ¢V
such that 0 = ¢ < #1 < 2 < .-+ < tN and set At" = t" — "1, Discretize the space
variables by defining grids over 2 and over each matrix block 2,. In a finite difference
context, it is simplest to consider {2 and 2,,z € {2, to be rectangular parallelepipeds;
more general domains can be treated by either finite difference or finite element techniques
quite analogous to the finite difference methods to be described herein. Suppose that
2 = [0, D] x [0, D3] x [0, D3]. Then, divide each D; into N; intervals, which for simplicity
we take to be of equal size H; = D;/Nj, j = 1,2,3. Thus, the fracture grid is the lattice
of points

gf = {IL e L = (Ll,Lz,Lg), T = (L]H],L2H2,L3H3),
and L; =0,1,2,...,N;, j=1,2,3}.

Again for notational convenience assume that the matrix blocks are all of the same

6



size and consider a grid defined on the representative matrix block Q,,. Let h; and n; be
analogous to H; and N; and set

Om ={ye: £ = (l1,62,03), yo = (L1hy, Laha, l3hs), and £; = 0,1,2,.. .41, 3=1,2, 8].

Also, let

(o]

Om ={ye: {=(b,62,83), ye = (Lrh1, o ha, Lshs), and £; =1,2,... . n; — 1, j = 1,2,3)}

indicate the interior nodes and 8G,, = G, \ém the boundary nodes. (In practice the matrix
grid should be graded to place more nodes near the surface of the block. Advantage should
be taken of the symmetry of the solution on a matrix block to allow the solution to be
computed only at necessary nodes.)

We wish to approximate solutions at time levels t*. An approkimation to a function
© related to the the fracture system at a point z; € Gy will be denoted by

07 ~ O(zy, t").

Each H; will normally be considerably larger than the spacing of the fracture planes. Only
those blocks which sit over the points of G; will enter the discretization process. For a
function 6 associated with the block at the point z € G denote the approximation to 4

at yo € Gm by
07,0~ 6(zL,e,t"),

where z1 ¢ = £ — y¢ (we assume that a top corner of the block is TL).

Time derivatives will be discretized by backward Euler approximations. Grid points
spatially adjacent to a given point z; are denoted by TLte;, Where e; = (1,0,0), e; =
(0,1,0), and e3 = (0,0,1). Points half-way between z and TLze; are denoted by zp4 4, .
A similar notation will be employed for points adjacent to zp .

The matrix equations will be completely linearized, but not the fracture equations.
A Newton-like iteration will be used to solve the nonlinear equations of the discretized
fracture system; the discrete matrix system is directly solvable. The five parts of the
algorithm below uncouple the calculations related to the matrix blocks from those of the

fracture calculation:

i) Initialization. For each L and [,

71 = Pinire(2L), (3.1)
¥o 1, = Yinit,e,L,e(TL,¢)5 (3.2)
St =P (oL + (po — pu)g 2(z1)) , (3.3)
s3.e= e (Y r,e+ (o — Puw)g 2(zLe)) - (3.4)



The initial water potentials can be determined by solving (3.22) and (3.30) below. The
Newton procedure will require an initial guess at the solution, so that SPS,'L should be

found; the initial matrix water potential is not needed.

ii) Matrix system. For each L, ¢, and for n > 1, find {IZ’S,L,Z’ ’vZZ;,L,e} by solving

Y= Yere
c, L, C,L,
Aend emnae
— VL A" Va L edn + Xo(s" Vi1 Pr] =0 if ys € G,
be L= it if ye € 0Gm,
bo Le= o7 if ye € 0Gm,

~Vire: [/\w(S"—l)Vh,L,e Y] =0 ify,€Cn,

and determine {J;L’[, @ZZ;,L,(} and {IZ)?,LJ, ‘ﬁg,L,z} by solving

VL
Hend) ennyaw

= Vazer M) VheBh + (" )WV ed?] =0 ifye € G,

— Ve [ Ae(s" HDVhre 1;:2] =0 ifys€Gm,

152,1,,5 =1 ify; € 0Gnm,
Yore=0 if ys € 9Gm,

and
é(zL,e) ;ﬁ? ~ VhLe [Au(s" )V 1&{2] =0 ifys€Gm,

= Vazer A TIVaLe 9l + A" )Varedr] =0 iy € G,

b2 e=0 if yo € 0Gn,
TZ)Z,,L,[ =1 ifys € OGm,

where

3 n—1 n-—1

_ n 1 SL.ete; TSLe n n
Vi Lt [Pa(s" DVhret"] =) 51 {)\a( 5 >(¢L,z+e,- — VL)
— J

j=1

n—1 n—1
Spe tSpe—e;\, . n
—Aa ( 5 = )(WL,z — VL e, )} :

(3.9)

(3.10)
(3.11)
(3.12)

(3.13)
(3.14)

(3.15)
(3.16)

(3.17)



Note that these equations are indeed linear, since the mobilities and p, are evaluated at the
previous time level. The matrix potentials ¥ peand ] |, are defined below in (3.26) and
(3.27); they satisfy the expected equations, namely (3.29)-(3.32). Equations (3.5)-(3.8)
define a particular solution to the linear equations, while (3.9)-(3.12) and (3.13)-(3.16)
give solutions to the homogeneous problems which describe unit changes in the boundary
conditions.

iii) The matrix source term. For each L and n > 1,

iz,L,t =P+ (Wc"L - W:ZI) Yu,Le+ (%,L - SZ’ZZ_LI) AZ;,L,K, (3.18)
8Te=pc" (&Z,L,e +(po = pw)QZ(wL,z)> , (3.19)
ol (] n—1
% _ 1 SrLe—SL.e
9mw,L = ‘m z[: ¢($L,e) T hihyhg. (3.20)

The quantity 9m w1 1S gven implicitly in terms of the fracture potentials at the nth time
level; however, in view of (3.27) and (3.28) below, (3.20) is clearly a discretization of (2.22).

iv) Fracture system. (This is the most critical system to solve well.) For each L

and n > 1, solve the following nonlinear system of equations for v, Yy 1y ST and
q:Tll,w,L:
B8 —jgu=l o i, .
&(zy) #— -y 77 {AZ,L,J' ( w,Liey = pr,L) (3.21)
Ay (Tor—200,))
= Qext,w(mLa tn) I qrr;z,w,[n
1
=Y g (P —an) — A3, (T2 -00.-,)  (322)
j=1""J
+ AZ,L,j ( :L-{-e,‘ - :L) —AZ,L-—e,-,j (!p:L - cn,L—ej)}
= Qext(xlntn)v
St =P (P01 + (po — pu)g=(zL)) (3.23)

where the no-flow boundary conditions of (2.23) are imposed by reflection:
c'!l,L:tej = :,L:Fej’ o =w,c, (324)
if 4., is outside the reservoir. The mobilities should be upstream weighted:

n { Aa(52+€j)’ if W:,L < g}g,L-{-eJ”

.= 3.25
a,L,j A58, otherwise, ( )



for o = o,w (where ¥}, = @7, + ¥, ). This is intended to prevent numerical

instabilities; see [9], [14].
Note that (3.18)-(3.25) form a completely implicit procedure for the fracture quantities
and the boundary values on the blocks. Indeed, the equations can be interpreted as a
system of nonlinear equations in the fracture quantities alone, and a variant of Newton’s
method can be used to obtain the solution; this is not completely straightforward, because
of sharp corners at Sp,,x or Smay in the graphs of the capillary functions (Figs. 7 and 9).
Since the rate of convergence in a Newton iteration is related to the value of the second
derivatives (which fail to exist at the corners of the capillary curves), it is necessary to
modify the algorithm so as to aid the convergence by, for example, requiring the solution
¥, to take at least two iterations to cross a value slightly above the critical value W, =
Pe(Smax) = (Po — pw)9z = —(po — pw)gz at any applicable point. It is also necessary to
require that P (Smax) = pt(Smax) = —00 (or a large negative number in practice).

v) Matrix update. For each L,¢, and n > 1, let

Yore=vlre+ (g’cn,u = WC",Z,Ie) Dlre+ <4"$,L,e = WS,_Ll,e) W Le (3.26)
Yu.Le=Vur.et (ch,L,e - W:Zi) b Lt + (WZ,L,e = W,L',_Ll,e) Yo.L,e

(3.27)
SLe= P} (¢ZL,£ + o — Pw)gz(xl,,f)) . (3.28)

This completes the time step.

The above algorithm can be implemented sequentially. The following discrete matrix
problem has been solved:

X ? - 1,1)"_1 o
¢(zr.e) ,'L’i_l 2l Ve Auw(s™ Vi rev2] =0 if yo € Gom,
pL(s""1)Atn
(3.29)
— Vhze A" VhLedn + Xo(s" T D)Var,e ¥ =0 if yo € Gom, (3.30)
ere=Yy ifye€ Gn, (3.31)
wre=Y51 ifye€0Gn. (3.82)

Assuming that the wetting fluid is the denser, it should be noted that the block associated
with the fracture point z is interpreted to lie below z; for imbibition and above for
drainage; otherwise, fluid is trapped by the numerical simulation as P, tends to zero. We
have considered the case of imbibition.

It should be remarked that the discretization of the fracture system conserves mass,
except for inexactness caused by not carrying out the Newton iteration to complete con-
vergence. The linearized matrix problems do not; however, there is no net mass balance
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error, as any fluid that leaves the matrix is transmitted to the fracture system. There is a
small error in the time at which fluid is transferred from one system to the other.

4. Results of Experimental Calculations

We consider some simulations of waterflooding and present the results of the exper-
imental calculations. Recovery curves will be shown to indicate the dependence of the
solution on a variety of parameters including the block size and shape, the form of the
relative permeability curves in the blocks, the inclination of the reservoir, the absolute
permeabilities, and the fluid viscosities. Though these curves give only a gross 1ndication
of the flow of fluids within the reservoir, they are sufficient to illustrate important features
of the simulations. (A recovery curve is the graph of the cumulative amount of oil produced
versus the cumulative amount of water injected.)

The reservoir is assumed rectangular, with height 10 meters and length 300 meters. For
computational simplicity, the reservoir is assumed to be uniform in the other direction;
consequently, the fracture calculations are two-dimensional over 2, though the matrix
calculations must remain three-dimensional over each £2,. Initially, the reservoir contains
75% oil and 25% water. Water is injected uniformly into the reservoir along one end at a
constant rate of one pore-volume every five years; calculations not reported here indicated
that the qualitative behavior of the system is relatively independent of the injection rate.
Oil and water are produced at the top of the other end. Given the porosities assumed
below, there is a maximum recovery of about .65 pore-volumes.

The following data are held fixed for most of the computational results exhibited below:

Fluid properties:

Viscosity gy = 0 €P thy =2 cP

Density pw=1g/cm? po=.7 g/ cm?
Absolute Permeabilities K = 1 darcy k = 0.05 darcy
Porosities: ¢ = .01 o =.2
Residual Saturations (matrix) Sron = .15 S = .2
Residual Saturations (fractures) See =10 Sey =0

The capillary pressure functions were assumed in the form
P(S)=(1-8){~(57" - 1)+ 06},
pe(s) = a({so — s+ ﬂ}l/z - ﬁlﬂ)(s — Srw) ™2,
D TS . Yo
v = 2.0 x 10*dynes /cm?, © = 100dynes / cm?,
a = 3.0 x 10® dynes / cm?.
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The relative permeabilty functions in the fractures were chosen to be linear, with the
residual saturations taken to be zero:

Ke(S)=1=8, Kyw(8)= 8.
Several forms were assumed for the relative permeability functions in the matrix blocks:

S — Srw

Cw
) kro(s) = A= Se)caa krw(s) = ( > v Ca =2,3,4,

1—5;0

S — Srw

i) keo(s) = (1—s.)%(1 - s?), k,w(s)=< ) , se(s) =5/(1 = sr0).

1—srw

For the finite difference procedure described above, earlier tests [8] [9] demonstrated
that the relatively coarse discretization of 40 horizontal nodes and 10 vertical nodes in the
fracture domain provides accurate recovery curves. In each matrix block over a fracture
grid point, we took the equivalent of 16 interior nodes (four nodes on each of four horizontal
planes). The time step varied from one-fourth day to one day initially to a maximum of ten
days near the end of the simulations. (An entire simulation was for about twenty years.)

The first figure indicates a significant dependence of the recovery on the form of the
relative permeability functions in the matrix blocks, with an apparent greater dependence
on the relative permeability to the oil phase than to that for the water phase. The most
rapid recovery was obtained for the choices {, = ¢, = 2 in the forms ¢) above. Shifting
(w to four, while holding (, at two, had a negligible effect on recovery. Increasing both
exponents to three reduced the recovery rate strongly. Recovery for relative permeabilities
in the forms 2:) fell between these curves. These results agree with the physical intuition
that recovery should be slowed by increasing resistance to flow.

Block size also affects recovery rates significantly. Figures 2, 3, and 4 indicate that, as
the side length of cubic blocks tends to zero, the recovery curves converge upwards to the
corresponding recovery curve given by a limit model [8] [9] [10] derived by taking a formal
limit of this model (and one in which gravity is neglected in the blocks [3] [8] [9]); this
behavior holds for relative permeability curves of either of the above forms. Including the
effect of gravity in the blocks is important; the model of [3] and [8] ignored it. In Figure
5 it 1s clear that a much better recovery is predicted when the gravitational effects in the
blocks are included; the recovery curves labelled “no gravity” were computed using the
full model with the gravitational constant set to zero just in the blocks. When gravity
1s omitted in the blocks, it is possible to reduce the differential equations in a block to a
single equation for the saturation; this was done in [3] and [9] and called the “small block
model” [8]. Figure 6 shows that the the models are consistent; the small variance in the
recovery rates are due to a difference in the spatial discretizations in the two codes.

In Figures 7 and 8 we see the importance of block geometry on production. For the
relatively tall block of height 200 cm, recovery is improved as the horizontal cross-section
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is reduced; clearly, a smaller cross-section allows imbibition to be more dominant in the
displacement process in the blocks. For a somewhat shorter block of height 100 cm,
changing the cross-section seems less important.

In Figure 9 the effect of inclining the reservoir by an angle 6 is studied (6 > 0 indicates
that the production corner is above the injection side of the reservoir). Increasing the angle
improves oil production. Figure 10 shows the effect of increasing oil viscosity; oil recovery
is significantly slowed by increasing oil viscosity. Figure 11 presents the effect of changing
fracture permeability. Higher fracture permeability allows water more easily to bypass
the matrix blocks, resulting in earlier water production. Conversely, increasing the matrix
block permeability would delay water production, thereby increasing early recovery.
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QOil recovered (pore volumes)

Dependence on Block Size

Type (i) relative permeabilities curves
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QOil recovered (pore volumes)

Dependence on Block Size
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QOil recovered (pore volumes)

Dependence on Block Size
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Qil recovered (pore volumes)

Effect of gravity in the blocks
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Consistency with Small Block Model

QOil recovered (pore volumes)

0.4 | e
/""/”
s
.".///
7, — 100 cm g=0
------- 100 cm small block
----- 200 cm g=0
—— 200 c¢m small block
0.2
0.0 ' | l
0.0 1.0 28 >0

Water injected (pore volumes)

Figure 6




QOil recovered (pore volumes)

Dependence on Block Geometry

Type (ii) relative permeabilities
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QOil recovered (pore volumes)
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Oil recovered (pore volumes)
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Dependence on the Angle of Inclination

Type (i) relative permeability curves
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Oil recovered (pore volumes)

Dependence on Oil Viscosity

Type (ii) permeability curves
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Qil recovered (pore volumes)
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