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We consider the approximation of second order elliptic equations on do-
mains that can be described as a union of sub-domains or blocks. We
assume that a grid is defined on each block independently, so that the re-
sulting grid over the entire domain need not be conforming (i.e., match)
across the block boundaries. Several techniques have been developed to
approximate elliptic equations on multiblock grids that utilize a mortar
finite element space defined on the block boundary interface itself. We de-
fine a mixed finite element method that does not use such a mortar space.
The method has an advantage in the case where adaptive local refinement
techniques will be used, in that there is no mortar grid to refine. As is
typical of mixed methods, our method is locally conservative element-
by-element; it is also globally conservative across the block boundaries.
Theoretical results show that the approximate solution converges at the
optimal rate to the true solution. We present computational results to
illustrate and confirm the theory.
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1 Introduction

It is often advantageous to approximate second order elliptic and parabolic
equations by mixed finite element methods because of their local conservation
property and their direct approximation of the vector flux variable. In many
applications the complexity of the domain geometry or the solution itself war-
rants using a multiblock domain structure, wherein the domain Q ¢ IR?, d = 2
or 3, is decomposed into non-overlapping blocks or subdomains Q;,1 =1, ..., n,
with grids defined independently on each block. On the (d — 1)-dimensional
interface I' between subdomain blocks, the traces of the grids need not coin-
cide. Two typical examples in subsurface porous medium applications are the
modeling of faults, which are natural discontinuities in material properties,
and the modeling of wells, the solution’s response to which can be resolved
often only by using locally refined grids.

We use notation appropriate for applications to porous media, and we consider
a model problem. For the unknown pressure scalar function p(x) and Darcy
velocity vector function u(x), we consider the partial differential boundary
value problem

u=-K(Vp—yp) inQ, (1)
cp+V-u=gq in €, (2)
u-v=>0 on 0f), (3)

where K(x) is a symmetric, uniformly positive definite tensor representing
the permeability divided by the viscosity, v(x) is a vector representing gravity
effects, ¢(x) > 0 represents the compressibility of the medium (after time
discretization), and ¢(x) represents the sources (and information from the
previous time step). We assume that ¢ and each component of K" and ~ is in
L>(Q), and that ¢ € L*(Q). We will assume that ¢ is uniformly positive, and
that v is sufficiently small so as to give coercivity (as defined later in (17)). The
homogeneous Neumann condition imposed is appropriate for this application;
however, other boundary conditions can be handled easily.

A number of papers deal with the analysis and the implementation of mixed
methods for our problem on conforming grids (see, e.g., [19], [21], [18], [4], [8],
[6], [7], [11], [17], [22], [10], [12], [14], [3], [2] and the general references [9],
[20]). Mixed methods on nested locally refined grids are considered in [13],
[15], but these techniques rely heavily on the fact that the grids are nested
and cannot be extended directly to arbitrary non-matching grids.

Techniques have been developed to approximate the problem on non-matching
multiblock grids using Galerkin and spectral approximations in the blocks
and tying these together through an approximation of the pressure on I'. This



interface pressure resides in a special finite element space called a mortar
space (see [5] and the references cited therein). Recently, using similar ideas,
the authors with Cowsar and Wheeler defined and analyzed a mixed finite
element approximation to the problem that incorporates a mortar pressure
approximation on these interfaces [23], [1].

In this work we define and analyze a mixed method that uses no mortar space.
One advantage of this approach is that if one desires to adaptively refine grids
locally, then there is no need to refine the interface mortar grid on I'. Such
refinement could be difficult to implement, especially in parallel, since accuracy
depends subtly on the relations between the mortar grid and the traces of the

grids of the subdomain blocks [1].

We assume that €2 is a union of non-overlapping polygonal blocks, each covered
by a conforming, affine finite element partition. On each block, we employ a
standard, partially hybridized mixed method. Lagrange multiplier pressures
are introduced on the faces (or edges) of the elements lying on the block
interfaces I', as in [4], [9], [16]. Since the grids are different on the two sides of T,
these Lagrange multiplier pressures are doubly valued. Robin type conditions
are imposed on I' to unite the subdomain problems. As we show later in the
analysis, our method is optimally convergent.

The scheme can be implemented efficiently in parallel using non-overlapping
domain decomposition techniques (see, e.g., [16]). If ¥ = 0, the problem is
symmetric; nevertheless, our scheme will be nonsymmetric. We comment later
on a symmetric variant.

The rest of the paper is organized as follows. An appropriate variational form of
the problem is defined in the next section. This form respects the multiblock
structure of the domain. The mixed finite element method is presented in
Section 3. In Section 4 the scheme is shown to be uniquely solvable and stable.
Section 5 is devoted to the error analysis. Finally in the last section, we define
the symmetric variant of our scheme and use it to obtain numerical results
that illustrate the performance of our scheme.

2 A multiblock variational form

Let ©Q be decomposed into non-overlapping subdomain blocks Q;, ¢ =1, ..., n;
that is, Q is the interior of J_, @ C R, where §; is the closure of the open
set Q;. Let I'; be the interior of 0€; \ 2. Then we can define the interface
between blocks ¢ and j as I';; = I, NI for ¢ # j and T';; = (. The entire
interface is I' = U; ; I';;.



Let v; denote the outer unit normal to 0€);. Define

Ho(div; Q) = {v € (LQ(Qi))d Vv e L*(Q)and v-v; =0 on 90}

We denote the L2(€;) (or (L2(%))?) inner product by (-, - );. In these nota-
tions, we may omit the subscript 7 to refer to the entire domain 2. Let the
interface inner product on L*(T;) be denoted by (-, -);, and on L*(T;;) be
denoted by (-, -);;. (Note that this latter inner product is zero if T';; = (). In
some cases it will be more generally a duality pairing.)

We first cast our problem (1)—(3) in a multiblock form. We need to choose a
parameter o > 0. Then we define

u=—-K(Vp—~p) inQy, i=1,...n, (4)
cp+V-u=gq inQ;, 1=1,...,n, (5)
u-v=>0 on 0f), (6)

together with the interface conditions
ap,—w; -y, =ap;+u;-v; only, 1,7=1,..n, (7)
where for any function f defined on ©, we denote both f|q, and its trace f|r,

by fx.

The Robin type interface condition (7) is imposed twice on each T'y: once for
k=1 and { = j and once for £ =1 and k = j. Thus, for each ¢ and j, on I';;,

ap;— ;v =ap;+u; - v,
apj—Uj-vp=ap;+u; v,
so the difference implies that p; = p;, i.e., p is continuous, and the sum implies

that

llZ"I/Z'—I-ll]"I/]‘:O7

i.e., flux is continuous (since v; = —v; on I';;).

Clearly the solution to (1)—(3) satisfies (4)—(7). By elliptic regularity, the solu-
tion to (4)—(7) also necessarily satisfies (1)—(3), so the two forms are equivalent.

We now define our multiblock variational form. A weak solution of (4)—(7) is
a pair of functions p € L2(Q2) and u € (L2(02))? such that for each i = 1,...,n,



p; € L*(T}), u; € Ho(div; ;) with u; - ; € L*(T;), and

(K~™'u,v)i = (p,V-v); + (vp,v)i

— <p2',V . Vi>i7 VvV E Hg(div; Qz), (8)

(ep,w)i + (V- u,w); = (q,w);, w e L), (9)

(ap; — W viy i)y = D _{ap; +uj - vj, pi)ij, wi € L3(Ty), (10)
7=1

The derivation of (8) involves multiplying (4) by the test function K~'v,
integrating over §2;, and integrating the term involving Vp by parts.

For later purposes, it is important to note that (10) can be replaced by the

condition that for each 2 = 1,...,n,

Z — Pj)s Hi)ij :Z ERZE R VRN ZNTIE MZELQ(F) (11)

=1 =1

which relates interface pressure and flux discrepancies on I;.

3 Formulation of the mixed method

For h > 0, choose a conforming finite element partition of ;, 1 < 1 < n,
where the maximal element diameter is bounded by h and the interior of each
element face (or edge) lies entirely in I'; or in 99 N €. Let

Vi X Wi x Ay © Ho(div; Q) x L*(Q;) x L*(Ty)
be any of the usual affine mixed finite element spaces (e.g., the RTN spaces
[19], [21], [18]; BDM spaces [8]; BDDF spaces [6]; BDFM spaces [7]; or CD

spaces [10]), with the hybrid Lagrange multiplier spaces Ay, on I'; [4], [9].
Recall that

V-V, =W, Vii-vi= A,

Let

Vi = {v € (L*(Q))"
Wy, ={w e L*(N) : w; =

We assume that the order of approximation of the spaces is the same on
every €);.



In the mixed finite element approximation of (8)—(10), we seek u, € Vj,
pn € Wh, and, for each 1, A\ ; € Ay, such that fori=1,...)n

([(_luhvv)i = (ph7 V- V)i + (7 ph,V)i
— (Mnis V- V)i v E Vi, (12)
(cpr ) —I_(v Up, w ) (Q7 )“ (CAS Whvi’ (13)

<a )\h,i — Uy, sz,uz % Z Oé)\h,j + Up,; * I/]‘,Mi>2’]‘, i € Ah,ﬁ (14)

=1

We can replace (14) by the condition that for each i = 1,...,n

Y Y

Z (Mni — Ang), fhi)ij Z (Wi~ Vi +Upy - vy, fi)ijs i € Apge (15)
7=1

=1

We comment on the mass conservation properties of our scheme. Because
W), is discontinuous from element to element, (13) implies local conservation
of mass over every element. More generally, there is continuity of the normal
component of flux u-v across every element face (or edge) that does not lie on
I'. We must pay a price for the non-matching grids on I': We do not necessarily
conserve flux across any fixed local portion of T'. Since y; =1 € Ay, we
continue to conserve mass globally, however.

4 Energy estimates and solvability

In this and the next section, we will make repeated use of the following easily
verified result.

Lemma 1 If ay,...a, and by, ..., b, are sequences, then

Z(aﬁr%)bi:—z (a; + a;) (bi + b)),

Y] Y]
> (e —ag)bi = 5 Z(ai — ;) (bi = bj).
1,7 2

In (12)—(13), take the test functions v = u; and w = ps. Sum the two equa-
tions, cancel two terms, and sum on ¢ to obtain that

n

(eprspn) + (K ap,un) = (Yprywn) + (¢, 00) — D (Anis tny - 1)

=1



Next divide (15) by 2, take pu; = Ap;, sum on i, and use Lemma 1 to obtain

1 1
Za ZO\M = Ay i = Anj)ij = B Z<uh,i Vit Wh Vg A )i
1,7 2
Similarly, divide (15) by 2«, take g; = —uy,; - v;, sum on ¢, and use Lemma 1

three times to obtain that

1
—3 Z<)\h,i7 Uy, Vi — Upj - Vi)ij
7]

1
= = 2 (Wi v g g v g )i
i

(The previous two estimates arise from the single Robin type test function
pi = 5(Ani = SUni - vi).)

If we now sum these three equations and cancel terms, we see that
-1 1
(epns ) + (K7 unswn) + 20 (M = Angs Ai = Mg i

0]

+ 1o Z<uh,i Vi Upy Vi Wy Vs Ut V) (16)
0]

= (vpn,un) + (¢: pn)-
To control the term containing ~, we make the following assumption of coer-
civity:

There is some constant v, > 0 such that
for any w € L*(Q) and v € (L*(Q))?, (17)
Pt llwl? + VP < (cw,w) + (K71, v) = (yw, v).

Herein, || - || is either the L*(Q)-norm or the (L%*())%norm. Since in general,
for any € > 0,

1 1
(1:9) < 5el 71 + -l (18)

we can control the term (¢, pn), and so we have shown the following energy
estimate giving stability of the scheme, wherein we use the notation

LA = (Fof)i and (I = (F. Fis-



Theorem 2 [f (17), then there is some constant C, independent of h, such
that

1/2
Ioall + haall + Lo S M = Ml }
27]

1 1/2
S S vl < Cllal
27]

Because the scheme results in a square linear system, existence of a solution
is equivalent to uniqueness. For uniqueness, the homogeneous equation (i.e.,
g = 0) has immediately that p, and uj, are zero. Then (12) implies that
)\h,i == 0, since Vhﬂ' V= Ahﬂ'.

Corollary 3 [f (17), then there exists a unique solution to the scheme.

5 Error estimates

Each of the usual mixed spaces that we consider in this paper has a projection
operator Il ; onto V,; satisfying amongst other properties that for any v €

(HY2+(Q:))% 0 Ho(div; Q),

(v : (V — H}M'V), w)i =
<(V - Hh,iV) : Viv/h’>i =

0, w € Wi, (19)
0, Wi € Ah,i- (20)
We define the L*-projection of a function f € L*(Q) by f € W), satisfying
((f — f),w)i =0, we Whﬂ' =V Vhﬂ'. (21)
Similarly we define the L2-projection of a function f € L*(T;) by fi € Ans

satisfying

(f = f)ypi)i =0, pi € Apy= Vi (22)

In these definitions, we have suppressed the subscripts h, as this should cause
no confusion below.

For the analysis, let us define the errors as

©=p—pn, Y=u-—u,, and ¢;=p;— A,



again suppressing the subscripts h. Subtract from the variational problem

(8)—(9), (11) the mixed method (12)—(13), (15) to obtain for i = 1,...,n,

(K7, v)i = (4. V- V)i + (v, v);

— (i V- V)i, v eV, (23)
(co,w)i + (V- My, w); =0, w € W, (24)
SHaldi — &), i)y = > (i vi + U - vy pidij, i € A, (25)
Jj=1 7=1

wherein we have used properties of the projections to replace two terms.
Take w = ¢ and v = 11, ;% in (23)—(24), sum, and sum on 7 to obtain that

(CS‘Q?S‘Q) ( /7_17#) ¢) - (7 ¢7¢)

= (cp,p—p) +Z “lpu—Tlu) — > (v, u—Mu); (26)
=1 =1

— > (i, Ty iths - v

=1

Now we need to take p; = %(QBZ — iHh,ﬂ/}i - ;) in (25). We break this into two
steps so that it is easier to describe our manipulation of the expressions. First
take p; = %qbZ Summing on ¢ and using Lemma 1 results in

EZW% Uiy & D)ij (27)

1 I
1 %x% — &, i — Dj)i; = 2 2-

Using (20) and (22),

S i v d)ip = Y Mty - viy i)

i, i,
Therefore (27) can be manipulated into

1

70 2 b — 4, 6 — S5y

i\j
1 1 _ _
=3 Z<Hh,ﬂ/% iy bidij + 0 3 (b = @i (P = pi) = (P=Pi))is (28)
i\j

+ = Z Vi 1))



Now we take p; = _%Hh,ﬂbi - v; in (25). Summing on 7 and using Lemma 1
results in

27]
1 (29)
= T la ZW% i by v W b v+ Tl jaby - v

27]

_ %Z<¢Z — &j, Uy ithi - vi)ij

Using (20) and (22), we note that
(s My itby - )iy = (i - viy by )iy — ((u — Mpu) - viy ;)i
+ (Wpithi - vip — Pj)i
= <77Z)i sV, ¢j>z’j + <(u - Hh,iu) iy sz' - ¢j>z’j
A (Mt - v + T b - visp — Py)ijs

so that (29) can be manipulated into

LZW% R R I L VA S R Y

o 5=
27]
1
=3 Z<Hh,¢¢i Vi, Di)ij
i

1

+ 1 2 (vt vy (w = M) - vi 4 (u = Thgu) - v5)is(30)
1 - 1 _ ,
35 ZW% Uiy Q)ij — 3 Z<(U — ) - v, i — &5)ij

1 _
—3 S (Mpitdi - v + Ty by - vy p— By )i

0]

We now sum (26), (28), and (30), cancel five terms, manipulate a bit further
the last two terms of (30), and invoke (17) and (18) to control the terms. The
result is

1
ol 161+ 32 [l = S5l + Il - v + 8 -l
27]
< {312+ 32 [l — w2 4l il 31
=1

1
=l = ) sl 2]
a
Each of these bounding terms is optimal in its approximation properties.

10



Theorem 4 [f (17), then there is some constant C, independent of h, such
that

1/2
o= pall = el + oSl — Mgl

]

1 1/2
‘|'{EZHWh,r%’—I—uh,j'l/j|||?]} < ChF,
0]

where k is the minimum order of approximation of the scalar and vector vari-
ables of the mixed finite element space. Moreover,

{iﬂv«u—mnwF”scm. (33)

The latter estimate comes from taking w = V-1l ;40 in (24). We note that for
the RTN spaces [19], [21], [18] and BDFM spaces [7], pressure and velocity are
approximated to the same order, so the scheme is indeed optimal in practice.
For the BDM spaces [8] and BDDF spaces [6], pressure is approximated to
one power of h less than velocity. If ¥ = 0, one can easily modify (26) as

(e, @)+ (K71, 0)

= —(c(p—p)¢)+ > (K", u—=Tu); — > (¢, it - vi)i,

and then estimate, for ¢ equal to the piece-wise constant projection of ¢,

—(c(p=p),¢) = —((c=2¢)(p—p), @) < Cllcllwr hlp—p

@
to recover the missing power of h for the velocity and interface pressure and

flux errors in (32).

6 Numerical results

In this section we present some numerical tests to illustrate our method in
practice. Actually, we test the symmetric variant of our method. This is defined
by replacing (12) with

(K ap, v)i = (o, V- V)i + (Y 1y V)i

1 el
— 5 Z<)\hvi —|— )‘hJ?V . Vi>ij7 VvV E Vh,i' (34)
7=1

11



If v = 0, then it is easy to verify that (34), (13), and either (14) or (15)
is symmetric. An analysis of this modification will be presented elsewhere.
Interestingly, a straightforward analysis shows a stability estimate similar to
that in Theorem 2, except that there is no bound on the flux discrepancy
term. Moreover, a straightforward analysis of the approximation errors fails
to show convergence (although a nontrivial modification gives at least some
suboptimal convergence).

We choose the symmetric modification because, with v = 0, we can then
use the Glowinski-Wheeler domain decomposition solution algorithm [16] for
symmetric problems. Since this algorithm already uses Lagrange multipliers on
the interface, the only additional cost is computing certain projections on I'.

We use the lowest order Raviart-Thomas spaces on rectangles [19]. These
spaces approximate arbitrary smooth functions as O(h) (i.e., to order 1). We
consider three different problems on the unit square, and we take ¢ = 0, v = 0,
and a = 1. For each test case, we establish rates of convergence by solving
problems on several levels of grid refinement and computing a least squares
fit to the error.

In the first example, we solve a problem with the given solution

p(z,y) = 2°y* + sin(zy)

and coefficient

10 + 5eos(zy) 0
0 1

Dirichlet conditions are imposed on the exterior boundary. The domain is
divided into four subdomains covered with grids that do not match on the
interface I'. The domain decomposition and the grids on the coarsest level
are shown in Figure 1. Numerical errors and convergence rates are presented
in Table 1. Herein || - ||m is the discrete L?-norm induced by the midpoint
quadrature rule on the finite element partition (or its trace on I') and || - || is
the discrete L%-norm in the vector space based on function evaluations at the
nodal points of Vj,. We note that super-convergence O(h?) is observed for py,
at the midpoints, while only optimal convergence O(h) occurs for u, and Aj.
Plots of the computed solution and the numerical error are shown in Figure 2.

In the second example, we test a problem with a discontinuous coefficient

12



Fig. 1. Initial non-matching grids for test case 1.

Uh | llp = palm | llu =gl | [[p = Anflu
8 1.58E-03 1.05E-01 4.47E-02
16 4.03E-04 4.98E-02 2.00E-02
32 9.62E-05 2.29E-02 9.21E-03
64 2.27E-05 1.01E-02 4.45E-03

128 | 5.72E-06 4.62E-03 2.21E-03

rate | O(h*%) O(h'1?) O(h'9%)

Table 1

Discrete norm errors and convergence rates for test case 1.
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Fig. 2. Solution and error (magnified) for test case 1.

K=1for0<z<1/2and K =10 [ for 1/2 < 2 < 1. The solution

(2.1) 2%y® + cos(zy), 0<ax<1/2,
P \x,Y) =
(3522) 9" + cos (3552y), 1/2<a <,

13



Uh | llp = palm | llu =gl | [[p = Anflu
8 2.89E-04 1.77E-02 3.93E-03
16 7.60E-05 4.48E-03 1.79E-03
32 2.00E-05 1.19E-03 9.00E-04
64 5.24E-06 3.78E-04 4.80E-04

128 | 1.40E-06 1.73E-04 2.58E-04

rate | O(h'9?) O(h'59) O(h°9%)

Table 2
Discrete norm errors and convergence rates for test case 2.

is continuous and has continuous normal flux at @ = 1/2. The boundary
conditions are Dirichlet on the left and right sides and Neumann on the other
two sides. The domain is divided into two subdomains with interface I' along
x = 1/2. The initial grids are 4 x 7 on the left and 4 x 10 on the right.
Convergence rates for the test case are given in Table 2. Note that in this
example velocity super-convergence is observed at the nodal points.

In the third and last example we solve a problem with the solution

p(z,y) = 2°y" + 2® + sin(ay)cos(y)

and coefficient

(x+1)*+y*> 0
0 (v + 1)

K =

on locally refined (i.e., nested) grids. The domain is divided by four, and the
grid on the upper-right subdomain is four times finer than the rest of the grids.
The convergence rates are given in Table 3, and the numerical solution and
error are plotted in Figure 3.
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