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Abstract. We derive a macroscopic model for single phase, incompressible, viscous fluid flow in
a porous medium with small cavities called vugs. We model the vuggy medium on the microscopic
scale using Stokes equations within the vugular inclusions, Darcy’s law within the porous rock, and
a Beavers-Joseph-Saffman boundary condition on the interface between the two regions. We assume
periodicity of the medium, and obtain uniform energy estimates independent of the period. Through
a two-scale homogenization limit as the period tends to zero, we obtain a macroscopic Darcy’s law
governing the medium on larger scales. We also develop some needed generalizations of the two-scale
convergence theory needed for our bi-modal medium, including a two-scale convergence result on the
Darcy-Stokes interface. The macroscopic Darcy permeability is computable from the solution of a
cell problem. An analytic solution to this problem in a simple geometry suggests that: (1) flow along
vug channels is primarily Poiseuille with a small perturbation related to the Beavers-Joseph slip, and
(2) flow that alternates from vug to matrix behaves as if the vugs have infinite permeability.

Key words. Homogenization, two-scale convergence, Darcy-Stokes system, vuggy porous media,
Beavers-Joseph boundary condition

1. Introduction. A vug is a cavity in a porous medium that is relatively larger
than the intergranular pore space. Vugular inclusions are especially common in car-
bonate rocks, and are endemic to many of the world’s groundwater aquifers and
petroleum reservoirs. Although small, vugs can significantly increase both the effec-
tive porosity and permeability of the medium. We consider in this paper a porous
medium with many small vugs scattered throughout its extent.

It is well established, both empirically and theoretically, that Darcy’s law governs
fluid flow in a porous medium on scales above the pore diameter [6, 23, 27, 29]. Since
the flow is expected to have a relatively low Reynolds number, the Stokes equations
should adequately model fluid flow in the vugs.

In 1967, Beavers and Joseph [7] determined experimentally that a free fluid in
contact with a porous medium flows faster than a fluid in contact with a completely
solid surface. Although thin boundary layers arise in both cases, the latter case is
generally modeled by assuming that all components of the velocity vanish at the
solid contact surface. In the former case, the experiments of Beavers and Joseph
demonstrate that the tangential velocity of the fluid cannot vanish. They proposed
to account for this slippage by imposing a boundary condition of the form

∂Us

∂y
=

α√
K

(Us − Ud) ,

where ∂/∂y is the normal derivative, Us is the tangential component of the Stokes
velocity, Ud is the tangential component of the Darcy velocity, K is the permeability
of the porous medium, and α is the dimensionless Beavers-Joseph slippage coefficient.
Saffman [24] justified this law theoretically, and showed that the term involving Ud

could be dropped (see also [15, 16]). Jones [18] reinterpreted this law so that it applies
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to curved boundaries and nontangential flows by formulating the boundary condition
in terms of the tangential component of the fluid stress tensor (see (1.6) below).

We model the vuggy medium on the fine scale using Stokes equations in the vugs,
Darcy’s law in the porous rock, and the Beavers-Joseph-Saffman boundary condition
on the interface between the two. We assume periodicity of the medium, and obtain
as our homogenized limit a macroscopic Darcy’s law governing the system over large
scales. To illustrate the ideas, we first derive this macroscopic model formally in §2,
and then we derive it rigorously by the two-scale convergence method [22, 4, 1, 14] in
§5. In §3 we obtain the existence, uniqueness, and energy estimates results needed in
the analysis. In §4 we develop the needed generalizations of the two-scale convergence
theory needed for our bi-modal medium. The convergence of the homogenization is
demonstrated in §5. The final section presents a simple analytical solution to illustrate
the results.

Although our results would extend easily to R3, for ease of presentation we assume
that the domain Ω is Lipschitz and bounded in R2. We assume that the geometric
vug and pore structure of Ω is periodic of period εY , where Y is a reference cell for the
periodic tiling of unit volume |Y |. The portion of the domain consisting of the vugs
is denoted Ωε

s, and that consisting of the porous rock is Ωε
d. Let Γε be the interface

between the two regions. Let ηs be the outer unit normal to ∂Ωs, and let τ be a unit
tangent to Γε.

LetD be the symmetric gradient, i.e., D(ψ) is the matrix
1
2

(
∂ψi

∂xj
+
∂ψj

∂xi

)
. Denote

by µ > 0 the fluid viscosity; Kε = K(x/ε) the Y -periodic, bounded, symmetric and
uniformly positive definite permeability tensor of the porous rock matrix; and α > 0
the Beavers-Joseph slip coefficient. The fluid velocity and pressure in the Stokes
and Darcy regions are denoted uε

s, p
ε
s and uε

d, p
ε
d, respectively. These satisfy the

following set of equations (wherein q ∈ L2(Ω) is an external source or sink satisfying
the compatibility condition that its average over Ω vanishes, and f ∈

(
L2(Ω)

)2 is a
term related to body forces such as gravitation):
Vugular region (Stokes equations)

−2µε2∇ ·Duε
s +∇pε

s = f in Ωε
s , (1.1)

∇ · uε
s = q in Ωε

s , (1.2)

Rock matrix (Darcy equations)

µ(Kε)−1uε
d +∇pε

d = f in Ωε
d , (1.3)

∇ · uε
d = q in Ωε

d , (1.4)

Interface

uε
s · ηs = uε

d · ηs on Γε , (1.5)

2ηs ·Duε
s · τ = − α

ε
√
Kε

uε
s · τ on Γε , (1.6)

2µε2ηs ·Duε
s · ηs = pε

s − pε
d on Γε , (1.7)

Outer boundary

uε
s = 0 on ∂Ω ∩ ∂Ωε

s , (1.8)
uε

d · η = 0 on ∂Ω ∩ ∂Ωε
d . (1.9)
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The interface conditions represent continuity of mass flux (1.5), the Beavers-Joseph-
Saffman condition on the tangential stress (1.6), and the continuity of normal stress
(1.7). Examples of direct numerical simulation of these equations in a non-vuggy
context (i.e., in a medium with at most a few very large vugs) can be found in, e.g.,
[25, 13, 19]. In a vuggy context, see, e.g., [3].

The homogenization problem is to determine the behavior of the system as ε→ 0.
Note that in the equations we have scaled both the viscosity µ and the permeability
Kε by ε2. This is the usual scaling for deriving Darcy’s law from Stokes flow (see [27]),
since as ε→ 0, flow paths (in our case vugs) become constricted, so a corresponding
decrease in viscosity is required to maintain flow rates. Moreover, when homogenizing
heterogeneity (see, e.g., [8, 26]), the ratio of permeability to viscosity should be fixed,
forcing a similar scaling of the permeability. These considerations then imply the
stated scaling of the Beavers-Joseph boundary condition.

Below we will need to distinguish the geometry of the reference cell Y , so let Ys

denote the Stokes region, Yd the Darcy region, and Γ the interface between the two.
We assume that both Ys and Yd have positive measure, and thus also the 1-dimensional
measure of Γ is positive. As usual, x will represent a point in Ω and y a point in Y . In
the sequel, let ‖·‖ω and (·, ·)ω denote the L2(ω) norm and inner-product, respectively,
where we omit the domain ω if it is Ω.

2. Formal Homogenization. We proceed to formally homogenize our system
of equations in the usual manner [8, 14, 17, 26]. We make the ansatz that we can
expand uε

` and pε
` (for ` = s, d) as

uε
` =

∞∑
j=0

εju`,j

(
x,
x

ε

)
and pε

` =
∞∑

j=0

εjp`,j

(
x,
x

ε

)
,

where the u`,j(x, y) and p`,j(x, y) are Y -periodic functions in y.

Substituting the above expressions into our system of equations (1.1)–(1.7), and
recognizing that ∇ = ∇x + ε−1∇y, we obtain the following equations. From the ε−1

terms of (1.1) and (1.3), and the ε0 terms of (1.7), we see that

∇yp
0
s = 0 in Ω× Ys , (2.1)

∇yp
0
d = 0 in Ω× Yd , (2.2)

p0
s − p0

d = 0 on Ω× Γ . (2.3)

It follows immediately that p0
s and p0

d are independent of y and equal, so let

p0(x) = p0
s(x) = p0

d(x) on Ω .

Now the ε0 terms of (1.1), (1.3) and (1.5), the ε−1 terms of (1.2), (1.4) and (1.6),
3



and the ε1 terms of (1.7) imply

−2µ∇y ·Dyu
0
s +∇xp

0(x) +∇yp
1
s(x, y) = f in Ω× Ys ,

∇y · u0
s = 0 in Ω× Ys ,

µK(y)−1u0
d +∇xp

0(x) +∇yp
1
d(x, y) = f in Ω× Yd ,

∇y · u0
d = 0 in Ω× Yd ,

u0
s · ηs = u0

d · ηs on Ω× Γ ,

2ηs ·Dyu
0
s · τ = − α√

K(y)
u0

s · τ on Ω× Γ ,

2µηs ·Dyu
0
s · ηs = p1

s − p1
d on Ω× Γ .

With ej being the standard Cartesian basis vector in the jth direction, let (ωj ,Φj)
be the periodic solution of the following auxiliary or cell problem

−2∇ ·Dωs
j +∇Φs

j = ej in Ys , (2.4)

∇ · ωs
j = 0 in Ys , (2.5)

K−1ωd
j +∇Φd

j = ej in Yd , (2.6)

∇ · ωd
j = 0 in Yd , (2.7)

ωs
j · ηs = ωd

j · ηs on Γ , (2.8)

2ηs ·Dωs
j · τ = − α√

K
ωs

j · τ on Γ , (2.9)

2ηs ·Dωs
j · ηs = Φs

j − Φd
j on Γ . (2.10)

Then by linear algebra, we can express u0
s and u0

d as

u0
`(x, y) =

1
µ

∑
j

(
fj(x)−

∂p0

∂xj
(x)

)
ω`

j(y) , ` = s, d . (2.11)

Define the averaging operator v̄` by averaging v` in the following sense

v̄` =
1
|Y |

∫
Y`

v`(y) dy , (2.12)

so that

ū0(x) = ū0
s(x) + ū0

d(x) =
1
µ

∑
j

(
fj(x)− ∂jp

0(x)
)

(ω̄s
j + ω̄d

j ) .

Now let the matrix K̃ be defined by

K̃i,j = ω̄s
j,i + ω̄d

j,i =
1
|Y |

( ∫
Yd

(ωd
j )i dy +

∫
Ys

(ωs
j )i dy

)
. (2.13)

Then we see that

µK̃−1ū0 +∇p0 = f in Ω . (2.14)
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Finally, using the ε0 terms of (1.2) and (1.4), we obtain

∇x · u0
` +∇y · u1

` = q in Ω× Ys , ` = s, d ,

so that if we again average over Y and sum, we obtain

∇ · ū0 +
1
|Y |

∫
Ys

∇y · u1
s dy +

1
|Y |

∫
Yd

∇y · u1
d dy

= ∇ · ū0 +
1
|Y |

∫
∂Ys

u1
s · ηs dS +

1
|Y |

∫
∂Yd

u1
d · ηd dS

= q .

By the periodicity of u1
` in y, and the fact that u1

s · ηs = −u1
d · ηd on Γ, we see that

∇ · ū0 = q on Ω . (2.15)

Thus we conclude from the formal analysis that ū0 should satisfy a Darcy’s law on
all of Ω (2.14)–(2.15), with effective permeability matrix K̃, independent of the fluid
viscosity and given by (2.13).

Lemma 2.1. The tensor K̃, as defined by (2.13) and (2.4)–(2.10), is symmetric
and positive definite.

Proof. The existence and uniqueness of a weak solution to (2.4)–(2.10) follows
from an analysis similar to that given below for Theorem 3.1. Note that (2.4)–(2.10)
is equivalent to the variational equation

2(Dωs
i , Dψ)Ys +

(
α√
K
ωs

i · τ, ψ · τ
)

Γ

+
(
K−1ωd

i , ψ
)
Yd

= (ei, ψ)Y , (2.16)

for ψ an infinitely differentiable and periodic vector function in Y such that ∇·ψ = 0.
With ψ = ωs

j on Ys and ψ = ωd
j on Yd (actually a sequence approaching the same),

we obtain that

|Y | K̃i,j =
(
ei, ω

s
j

)
Ys

+
(
ei, ω

d
j

)
Yd

= 2(Dωs
i , Dω

s
j )Ys +

(
α√
K
ωs

i · τ, ωs
j · τ

)
Γ

+
(
K−1ωd

i , ω
d
j

)
Yd

,

and symmetry follows immediately.
To show that K̃ is positive definite, take any λ ∈ R2 and define

ξ`(y) =
∑

i

λiω
`
i for y ∈ Y` .

Then, from (2.16), we conclude that

|Y |λT K̃λ = 2(Dξs, Dξs)Ys +
(

α√
K
ξs · τ, ξs · τ

)
Γ

+
(
K−1ξd, ξd

)
Yd

,

and that K̃ is positive semi-definite. To see definiteness, suppose that λT K̃λ = 0 and
conclude that each integrand above vanishes. But now (2.16) implies that

0 = 2(Dξs, Dψ)Ys
+

(
α√
K
ξs · τ, ψ · τ

)
Γ

+
(
K−1ξd, ψ

)
Yd

= (λ, ψ)Y .

Since λ is constant, we can take ψ = λ and conclude that λ = 0 and, further, that K̃
is positive definite.
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3. Existence and A Priori Energy Estimates. In this section, we prove a
theorem which gives existence of solutions uε and pε to (1.1)–(1.9) for each ε and
energy estimates for uε and pε independent of ε. Let

V ε = V ε(Ω) = {v ∈ H(div,Ω) | vs = v|Ωε
s
∈ H1(Ωε

s)} ,
V ε

0 = V ε
0 (Ω) = {v ∈ V ε(Ω) | v · η = 0 on ∂Ω ∩ ∂Ωε

d and v = 0 on ∂Ω ∩ ∂Ωε
s},

where η is the outward unit normal to Ω, and let W = L2(Ω)/R .
We first recast the original problem (1.1)–(1.9) into a variational problem. Com-

bine equations (1.2) and (1.4), multiply by a test function w ∈ W , and integrate
over Ω. Then combine and multiply equations (1.1) and (1.3) by a test function
v ∈ V ε, integrate, integrate by parts, and manipulate the boundary terms to obtain
the variational form of the system for uε ∈ V ε

0 and pε ∈W satisfying

2µε2 (Duε
s, Dv)Ωε

s
+

(
εµα√
Kε

uε
s · τ, vs · τ

)
Γε

− (pε,∇ · v)Ω + µ
(
(Kε)−1uε

d, v
)
Ωε

d

= (f, v)Ω , v ∈ V ε
0 , (3.1)

(∇ · uε, w)Ω = (q, w)Ω , w ∈W , (3.2)

where uε
d = u|Ωε

d
and uε

s · ηs = uε
d · ηs on Γε is implicit from uε ∈ V ε

0 .
Theorem 3.1. For each ε, there exists (uε, pε) ∈ V ε

0 ×W satisfying (1.1)–(1.9)
weakly, i.e., (3.1)–(3.2), such that

ε‖∇uε
s‖Ωε

s
+
√
ε‖uε

s · τ‖Γε + ‖uε‖+ ‖∇ · uε‖+ ‖pε‖ ≤ C (‖f‖+ ‖q‖) , (3.3)

with C independent of ε.
In order to prove this result, we first prove a lemma related to Korn’s inequality.
Lemma 3.2. There exists C independent of ε such that for all v ∈ V ε

0 (Ω),

‖vs‖Ωε
s
+ ε‖∇vs‖Ωε

s
≤ C

(
ε‖Dvs‖Ωε

s
+
√
ε‖vs · τ‖Γε + ‖vd‖Ωε

d
+ ε‖∇ · v‖

)
.

If Ωd is not empty, the above inequality holds for v ∈ V ε(Ω).
Proof. First we show that a similar result holds for v̂ ∈ V (Y ) = {v ∈ H(div, Y ) |

vs = v|Ys
∈ H1(Ys)}, and then we use a translation and scaling argument to pass to

all of Ω. Suppose it is not true that there exists Ĉ such that

‖v̂s‖Ys + ‖∇v̂s‖Ys ≤ Ĉ (‖Dv̂s‖Ys + ‖v̂s · τ‖Γ + ‖v̂d‖Yd
+ ‖∇ · v̂‖Y ) . (3.4)

Then there exists a sequence {v̂n}∞n=1 ∈ V (Y ) such that

‖v̂n,s‖Ys + ‖∇v̂n,s‖Ys = 1 (3.5)

and

‖Dv̂n,s‖Ys + ‖v̂n,s · τ‖Γ + ‖v̂n,d‖Yd
+ ‖∇ · v̂n‖Y ≤ 1

n
. (3.6)

The last two terms on the left-hand side above tell us that v̂n,d → 0 in H(div, Yd),
and (3.5) implies that v̂n,s ⇀ v̂s weakly in H1(Ys) for some v̂s. Let v̂ be the extension
by zero of v̂s to Y . Since v̂n is bounded in H(div, Y ), it converges weakly, and we
conclude that in fact

v̂n ⇀ v̂ in H(div, Y ) .
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Since

‖v̂n,d · η‖(H1/2
00 (Γ))∗

≤ C‖v̂n,d‖H(div,Yd) → 0 ,

where the norm on the left-hand side is the norm of the dual space of H1/2
00 (Γ) (see

[20]), we conclude that v̂d · η = v̂s · η = 0 on Γ. On the other hand, ‖v̂n,s · τ‖Γ → 0,
so that v̂s · τ = 0 and further that v̂s = 0 on Γ. Now Korn’s inequality can be applied
on Ys to show that

‖v̂n,s‖Ys + ‖∇v̂n,s‖Ys ≤ C‖Dv̂n,s‖Ys .

But the left-hand side is one by (3.5) and the right-hand side tends to zero by (3.6),
contradicting the assumption that (3.4) fails to hold. Now we have inequality (3.4)
for any v̂ ∈ V (Y ), wherein Ĉ does not depend on ε.

We remark that we also have the inequality for functions defined only on an open
subset Yp ⊂ Y , as long as Yp ∩ Yd is not empty. When Yp ⊂ Ys, we can obtain the
same inequality provided that we have the boundary condition v̂ = 0 on some positive
measure subset of ∂Yp.

By the structure of Ω, we can write it as Ω =
⋃
i∈I

εY i, where εY i =
(
ε(Y +~ni)

)
∩Ω,

~ni is some vector whose components are integers, and I is some appropriate index
set. Let v ∈ V ε

0 (Ω) and define for y ∈ Y , v̂i(y) = v(ε(y + ~ni)) ∈ V (Y ). By our
remark above, if ∂Ω intersects the interior of a cell (i.e., Ω is not tiled exactly by
scaled translates of Y ), the inequality (3.4) still holds on that truncated cell since
v ∈ V ε

0 . Thus (3.4) holds on each Y i, so

‖v̂i
s‖Y i

s
+ ‖∇v̂i

s‖Y i
s
≤ Ĉ

(
‖Dv̂i

s‖Y i
s

+ ‖v̂i
s · τ‖Γi + ‖v̂i

d‖Y i
d

+ ‖∇ · v̂i‖Y i

)
,

and if we sum over all i and make the change of variables x = ε(y + ~ni) on each Y i,
we obtain

ε−1‖vs‖Ωε
s
+ ‖∇vs‖Ωε

s
≤ C

(
‖Dvs‖Ωε

s
+ ε−1/2‖vs · τ‖Γε + ε−1‖vd‖Ωε

d
+ ‖∇ · v‖

)
,

which gives the desired resultv ∈ V ε
0 .

For v ∈ V ε, as long as Ωd is not empty, we can adjoin any truncated cell to an
entire cell lying beside it (at least for ε small). Since there will be a portion of Γ within
this new composite cell, we have the inequality (3.4) on the composite cell regardless
of the outer boundary conditions. Hence, if Ωd is not empty, the theorem holds also
for all v ∈ V ε.

Proof. [Proof of Theorem 3.1] The theorem follows from the inf-sup theory of
saddle point problems [5, 10, 11, 12]. For u, v ∈ V ε

0 (Ω) and w ∈ W , we have the
bilinear forms

aε(u, v) = 2µε2(Dus, Dv)Ωε
s
+

(
εµα√
Kε

us · τ, vs · τ
)

Γε

+ (µ(Kε)−1ud, v)Ωε
d
,

b(v, w) = (w,∇ · v)Ω .

Then (3.1)–(3.2) can be rewritten as: Find (uε, pε) ∈ V ε
0 ×W such that

aε(uε, v)− b(v, pε) = (f, v), v ∈ V ε
0 , (3.7)

b(uε, w) = (q, w), w ∈W . (3.8)
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We endow V ε
0 (Ω) with the norm

|||u|||ε = (‖u‖2 + ‖∇ · u‖2 + ε2‖∇us‖2Ωε
s
)1/2 ,

for which it is complete. We claim that(
εµα√
Kε

us · τ, vs · τ
)

Γε

≤ Cε‖us · τ‖Γε‖vs · τ‖Γε ≤ C|||u|||ε|||v|||ε , (3.9)

so that that both aε and b are bounded (i.e., continuous) with constants independent
of ε. To see the claim, compute

ε‖us · τ‖2Γε = ε
∑
i∈I

‖us · τ‖2εΓi

= ε
∑
i∈I

ε‖ûs · τ̂‖2Γi

≤ ε2
∑
i∈I

Ĉ‖û‖Y i
s
‖û‖H1(Y i

s )

≤ Ĉε
∑
i∈I

‖u‖εY i
s
‖u‖H1(εY i

s )

≤ Ĉ

2

∑
i∈I

[
‖u‖2εY i

s
+ ε2‖u‖2H1(εY i

s )

]
=
Ĉ

2
[
‖u‖2Ωε

s
+ ε2‖u‖2H1(Ωε

s)

]
≤ C|||u|||2ε . (3.10)

Moreover, aε is coercive on V ε
0 ∩ {v ∈ V ε

0 : ∇ · v = 0} by Lemma 3.2, with bound
independent of ε.

It remains to show the inf-sup condition, but this follows from the corresponding
condition known for the Stokes system on Ω; that is,

inf
w∈W

sup
v∈V ε

0

(∇ · v, w)
|||v|||ε‖w‖

≥ inf
w∈W

sup
v∈(H1

0 )2

(∇ · v, w)
|||v|||ε‖w‖

≥ inf
w∈W

sup
v∈(H1

0 )2

(∇ · v, w)
2‖v‖(H1(Ω))2‖w‖

≥ γ > 0 ,

for some γ independent of ε, since (H1
0 )2 ⊂ V ε

0 and 2‖v‖(H1(Ω))2 ≥ |||v|||ε.
Now the inf-sup theory provides the existence and uniqueness of a solution to our

system (3.7)–(3.8) [12]. Moreover,

|||uε|||ε + ‖pε‖ ≤ C(‖f‖+ ‖q‖), (3.11)

where C depends on γ, the coercivity bound for aε, and the continuity bounds for aε

and b, each of which is independent of ε. Finally, (3.11) and (3.10) imply (3.3).

4. Two-Scale Convergence Results for Bimodal Media. In this section we
make note of some slight extensions of the two-scale convergence results of Allaire [1,
14]. Lemmas 4.1 and 4.4 can be deduced easily from the proof of Theorem 2.7 in
[1]. We include the following statements and proofs for clarity and completeness. We
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first recall that D(Ω;C∞# (Y )) is the set of infinitely differentiable functions in Ω× Y
that have compact support in Ω and are periodic in Y , and we recall the following
definition.

Definition 4.1. If {uε}ε ⊂ L2(Ω) and u0(x, y) ∈ L2(Ω× Y ) are such that

lim
ε→0

∫
Ω

uε(x)φ(x, x/ε) dx =
1
|Y |

∫
Ω

∫
Y

u0(x, y)φ(x, y) dy dx

for any function φ ∈ D(Ω;C∞# (Y )), then {uε}ε is said to two-scale converge in Ω×Y
to u0(x, y), and we write this as

uε ⇀⇀ u0 in Ω× Y as ε→ 0 .

Lemma 4.1. Let ` = s or d and χε
` be the characteristic function on Ωε

`. If uε is
such that ‖uε‖ ≤ C for some constant C independent of ε, then a subsequence of χε

`u
ε

two-scale converges to some ψ`
0 ∈ L2(Ω×Y ) such that supp(ψ`

0) ⊂ Ω× Ȳ`. Moreover,
if uε two-scale converges to u0 ∈ L2(Ω× Y ), then χε

`uε ⇀⇀ u0|Ω×Y`
in Ω× Y`.

Proof. Because ‖χε
`u

ε‖ ≤ ‖uε‖ ≤ C, a subsequence of χε
`u

ε two-scale converges to
some ψ`

0 ∈ L2(Ω×Y ) [1]. Take a test function φ ∈ D(Ω;C∞# (Y )) supported in Ω×Yk

where k 6= `. Then φε(x) = φ(x, x/ε) is supported in Ωε
k and

0 = lim
ε→0

∫
Ω

χε
`u

εφε dx =
1
|Y |

∫
Ω

∫
Y

ψ`
0φdy dx =

1
|Y |

∫
Ω

∫
Yk

ψ`
0φdy dx

This holds for all such φ, so ψ`
0 = 0 on Ω× Yk.

Now, take a test function φ ∈ D(Ω;C∞# (Y )) with support in Ω× Y`. Then∫
Ω

χε
`u

εφε dx =
∫

Ω

uεφε dx ,

so, taking the limit as ε→ 0,

1
|Y |

∫
Ω

∫
Y`

ψ`
0φdy dx =

1
|Y |

∫
Ω

∫
Y

u0φdy dx .

An application of Lusin’s Theorem completes the lemma.
Lemma 4.1 allows us to make the following definition and gives the following

corollary. Note that a function in D(Ω;C∞# (Y`)) is considered to be only Y -periodic
in y, with no condition imposed on Γ.

Definition 4.2. If ` = s or d and {uε
`}ε ⊂ L2(Ωε

`) is such that, for any function
φ(x, y) in D(Ω;C∞# (Y`)),

lim
ε→0

∫
Ωε

`

uε
`(x)φ(x, x/ε) dx =

1
|Y |

∫
Ω

∫
Y`

u0(x, y)φ(x, y) dy dx

for some u0(x, y) in L2(Ω×Y`), then {uε
`}ε is said to two-scale converge in Ω×Y` to

u0(x, y) as ε→ 0.
Corollary 4.2. If uε

` ∈ L2(Ωε
`) and there exists C > 0 such that ‖uε

`‖Ωε
`
≤ C

for all ε > 0, then there exists a subsequence which two-scale converges in Ω × Y` to
u0 ∈ L2(Ω× Y`).

The following lemma is immediate and illuminates the connection between weak
and two-scale convergence.

9



Lemma 4.3. If {uε
`}ε two-scale converges to u0(x, y) in Ω × Y`, and ûε

` denotes

the extension of uε
` by zero to Ω, then ûε

` converges weakly to
1
|Y |

∫
Y`

u0(x, y) dy in

L2(Ω).
The next results will be needed to prove our homogenization result. As usual,

H1
#(Y ) denotes the Y -periodic functions in H1(Y ).

Lemma 4.4. Fix ` = s or d.
(a) If ‖uε

`‖Ωε
`
≤ C and ‖ε∇uε

`‖Ωε
`
≤ C for some constant C, then there exists

u0,` ∈
(
L2(Ω;H1

#(Y`))
)2 such that some subsequence of {uε

`}ε two-scale con-
verges in Ω×Y` to u0,` and {ε∇uε

`}ε two-scale converges in Ω×Y` to ∇yu0,`.
(b) If ‖uε

`‖Ωε
`
≤ C and ‖∇ · uε

`‖Ωε
`
≤ C for some constant C, then there exists

u0,` ∈
(
L2(Ω;H(div, Y`))

)2 such that some subsequence of {uε
`}ε two-scale

converges in Ω × Y` to u0,` and {∇ · uε
`}ε, extended to Ω by zero, converges

weakly in L2(Ω) to
1
|Y |

∫
Y`

∇x · u0,` dy. Moreover, ∇y · u0,` = 0.

Proof. For result (a), by Corollary 4.2, we have for some subsequence both

uε
` ⇀⇀ u0,` in Ω× Y` ,

ε∇uε
` ⇀⇀ ψ0,` in Ω× Y` .

Let φ ∈
(
D(Ω;C∞# (Y`))

)2 be such that φ|Ω×Γ = 0, and let φε(x) = φ(x, x/ε). Compute

(ε∇uε
`, φ

ε)Ωε
`

= −(uε
`, ε∇x · φε +∇y · φε)Ωε

`
,

so that as ε→ 0,

(ψ0,`, φ)Ω×Y`
= −(u0,`,∇y · φ)Ω×Y`

= (∇yu0,`, φ)Ω×Y`
− (u0,` · η, φ)Ω×(∂Y`\Γ) .

With φ|Ω×∂Y`
= 0, we conclude that ψ0,` = ∇yu0,`. Then we further conclude that

u0,` is periodic in y ∈ Y`, i.e., that u0,` ∈
(
L2(Ω;H1

#(Y`))
)2.

For (b), Corollary 4.2 gives us two-scale convergence of uε
` to u0,`, and then weak

convergence of ∇ · uε
` to

1
|Y |

∫
Y`

∇x · u0,` dy follows easily. To obtain ∇y · u0,` = 0,

note that for φ ∈ D(Ω;C∞0 (Y )),∫
Ωε

`

∇ · uε
` φ

ε dx = −
∫

Ωε
`

uε
` ·

(
∇xφ

ε + ε−1∇yφ
ε
)
dx ,

By Corollary 4.2, the left-hand side and the first term on the right-hand side both
converge as ε→ 0. Thus we obtain

lim
ε→0

∫
Ωε

`

uε
` · ∇yφdx = 0 ,

which implies that ∇y · u0,` = 0.
Lemma 4.5. If uε

s is such that ‖uε
s‖Ωε

s
and ‖ε∇uε

s‖Ωε
s

are bounded independent of
ε and Γε is a smooth submanifold of Ωε, then for φ ∈ (D(Ω;C∞# (Ys)))2,

lim
ε→0

ε(uε
s · τ, φ · τ)Γε = |Y |−1(u0,s · τ, φ · τ)Ω×Γ ,

10



where u0,s is the two-scale limit of uε
s in Ω× Ys. Moreover,

lim
ε→0

ε(uε
s · ηs, φ · ηs)Γε = |Y |−1(u0,s · ηs, φ · ηs)Ω×Γ .

Proof. Let Let Φ ∈ (D(Ω;C∞# (Ys)))2×2 and Φε(x) = Φ(x, x/ε). Then

(ε∇uε
s,Φ

ε)Ωε
s

= −ε(uε
s,∇x · Φε)Ωε

s
− (uε

s,∇y · Φε)Ωε
s
+ ε(uε

s,Φ
ε · ηs)Γε .

Taking the limit of both sides as ε→ 0, we obtain from Lemma 4.4

|Y |−1(∇yu0,s,Φ)Ω×Ys = −|Y |−1(u0,s,∇y · Φ)Ω×Ys + lim
ε→0

ε(uε
s,Φ

ε · ηs)Γε .

This implies that

|Y |−1(u0,s,Φ · ηs)Ω×Γ = lim
ε→0

ε(uε
s,Φ

ε · ηs)Γε . (4.1)

Since Γ is smooth, the Tubular Neighborhood Theorem from topology allows us
to extend the normal vector field ηs on Γ to a smooth vector field N̂(y) on Y . If we
do this locally, and patch the results together using a partition of unity argument, we
can obtain smooth vector fields after periodic extension. We can then define N ε and
T ε on all of Ω by setting N ε(x) = N(x/ε) = N̂(y) and T ε(x) = T (x/ε) = T̂ (y).

Now take Φ = T ε(φ · T ε)(N ε)T in (4.1), where φ ∈ (D(Ω;C∞# (Ys)))2. This yields
the first result. Replacing T ε with N ε gives the second result.

In fact, the following more general definition makes sense and was previously
stated in [21], [2], and [9].

Definition 4.3. If ` = s or d and {uε
`}ε ⊂ L2(Γε) is such that, for any function

φ(x, y) in D(Ω;C∞# (Γ)) which is Y -periodic in y,

lim
ε→0

∫
Γε

uε
`(x)φ(x, x/ε) dx =

1
|Y |

∫
Ω

∫
Γ

u0(x, y)φ(x, y) dS dx

for some u0(x, y) in L2(Ω× Γ), then {uε
`}ε is said to two-scale converge on Ω× Γ to

u0(x, y) as ε→ 0.

5. Proof of the Homogenization Result. We now prove rigorously the ho-
mogenization results obtained formally in Section 2. In the first theorem, we obtain
only weak convergence in H(div,Ω)×W to the solution of the homogenized problem.
In the second theorem, we show that in fact we have strong convergence of (uε, pε) in
L2(Ω)×W .

Theorem 5.1. There exists (u, p) ∈ H(div,Ω) × W such that the velocity uε

converges weakly to u in H(div,Ω), pε converges weakly to p in W , and (u, p) is the
unique solution to the homogenized Darcy problem

µK̃−1u+∇p = f in Ω , (5.1)
∇ · u = q in Ω , (5.2)
u · η = 0 on ∂Ω , (5.3)

where the tensor K̃ is defined by (2.13) and (2.4)–(2.10).
Proof. By our energy estimates in Theorem 3.1 and the two-scale convergence

results of [1, 14], Corollary 4.2, and Lemma 4.4, for ` = s, d, there exists p0(x, y) ∈
11



L2(Ω × Y ) and u0(x, y) ∈ L2(Ω × Y ) such that the following two-scale convergences
hold:

pε ⇀⇀ p0 in Ω× Y , (5.4)
uε ⇀⇀ u0 in Ω× Y , (5.5)
uε

` ⇀⇀ u0,` in Ω× Y` , (5.6)
ε∇uε

s ⇀⇀ ∇yu0,s in Ω× Ys . (5.7)

Moreover, u0,s ∈
(
L2(Ω;H1

#(Ys))
)2,

∇ · uε = q , (5.8)

and

∇y · u0(x, y) = 0 . (5.9)

Let Ψ(x, y) ∈ C∞0 (Ω×Y ) be Y -periodic. Take v(x) = εΨ(x, x/ε) in the variational
problem (3.1), so that (

pε,∇y ·Ψ
)

+O(ε) = 0 .

As ε→ 0, we obtain (
p0,∇y ·Ψ

)
Ω×Y

= 0 .

This implies that ∇yp0 = 0, so that p0(x, y) = p0(x) only.
Next take Ψ ∈ (D(Ω;C∞# (Y )))2 with ∇y ·Ψ = 0, and let v(x) = Ψ(x, x/ε) in the

variational equation (3.1), so that

2µε2 (Duε
s, DΨε)Ωε

s
+

(
εµα√
Kε

uε
s · τ,Ψε · τ

)
Γε

+
(
µ(Kε)−1uε

d,Ψ
ε
)
Ωε

d

− (pε,∇x ·Ψε) = (f,Ψε) .

Using Lemma 4.5, passing to the two-scale limit gives

2µ(Dyu0,s, DyΨ)Ω×Ys +
(
µα√
K
u0,s · τ,Ψ · τ

)
Ω×Γ

+ (µK−1u0,d,Ψ)Ω×Yd

− (p0,∇x ·Ψ)Ω×Y = (f,Ψ)Ω×Y .

Integrating by parts and collecting terms, we obtain

(−2µ∇y ·Dyu0,s +∇xp0 − f,Ψ)Ω×Ys + (µK−1u0,d +∇xp0 − f,Ψ)Ω×Yd

+
(
µα√
K
u0,s · τ + 2µτ ·Dyu0,s · ηs,Ψ · τ

)
Ω×Γ

+ (2µηs ·Dyu0,s · ηs,Ψ · ηs)Ω×Γ = 0 .

(5.10)

It is a well-known result that if (Φ,Ψ)Ω×Y = 0, with ∇y · Ψ = 0 and Ψ ∈
D(Ω;C∞0 (Y ))2, then Φ = ∇yψ for some ψ ∈ L2(Ω;H1(Y )) [28]. Restrict to Ψ ∈
(D(Ω;C∞0 (Ys)))2 to obtain

(−2µ∇y ·Dyu0,s +∇xp0 − f,Ψ)Ω×Ys = 0 .
12



Thus, there exists p1,s(x, y) ∈ L2(Ω;H1(Ys)) such that in Ω× Ys,

−2µ∇y ·Dyu0,s +∇xp0 − f = −∇yp1,s .

Likewise, we obtain p1,d(x, y) ∈ L2(Ω;H1(Yd)) such that in Ω× Yd,

K−1u0,d +∇xp0 − f = −∇yp1,d .

Thus for all Ψ ∈ D(Ω;C∞# (Y ))2 satisfying the divergence constraint,

(−∇yp1,s,Ψ)Ω×Ys
+ (−∇yp1,d,Ψ)Ω×Yd

+
(
µα√
K
u0,s · τ + 2µτ ·Dyu0,s · ηs,Ψ · τ

)
Ω×Γ

+ (2µηs ·Dyu0,s · ηs,Ψ · ηs)Ω×Γ = 0 ,

so integrating by parts yields(
µα√
K
u0,s · τ + 2µτ ·Dyu0,s · ηs,Ψ · τ

)
Ω×Γ

+ (2µηs ·Dyu0,s · ηs − p1,s + p1,d,Ψ · ηs)Ω×Γ = 0 .
(5.11)

By noting for example that there exists a weak solution (see [28] or the proof of
Theorem 3.1) Ψ ∈ L2(Ω; (H1

# (Y ))2), w ∈ L2(Ω;L2(Y )/R) to

−∆yΨ +∇yw = 0 on Ω× Ys ,

∇y ·Ψ = 0 on Ω× Ys ,

Ψ · ηs = 0 on Ω× Γ ,

Ψ · τ =
µα√
K
u0,s · τ + 2µτ ·Dyu0,s · ηs on Ω× Γ ,

Ψ = 0 on Ω× (∂Ys \ Γ) ,

and by the fact that D(Ω;C∞# (Y )) is dense in L2(Ω;H1
#(Y )), we obtain that each in-

dividual term in (5.11) vanishes. We then finally obtain that the two-scale variational
equations (5.9) and (5.10) are equivalent to

−2µ∇y ·Dyu0,s +∇xp0(x) +∇yp1,s(x, y) = f in Ω× Ys , (5.12)
∇y · u0,s = 0 in Ω× Ys , (5.13)

µK−1u0,d +∇xp0(x) +∇yp1,d(x, y) = f in Ω× Yd , (5.14)
∇y · u0,d = 0 in Ω× Yd , (5.15)

2µ ηs ·Dyu0,s · ηs = p1,s − p1,d on Ω× Γ , (5.16)

2τ ·Dyu0,s · ηs = − α√
K
u0,s · τ on Ω× Γ . (5.17)

Let (ωs
j ,Φ

s
j) and (ωd

j ,Φ
d
j ) be Y -periodic solutions to the auxiliary problem on Ys

and Yd given in (2.4)–(2.10). Then, because the above problem has a unique solution,
it is clear that we can express u0,s and u0,d as in (2.11):

u0,`(x, y) =
1
µ

N∑
j=1

(
fj(x)−

∂p0

∂xj
(x)

)
ω`

j(y) ,
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where ` = s or d. Averaging over Ys and Yd as in (2.12), we get

ū0 = ū0,s + ū0,d

=
1

µ|Y |

N∑
j=1

(
fj(x)− ∂xj

p0(x)
)( ∫

Ys

ωs
j (y) +

∫
Yd

ωd
j (y)

)

=
K̃

µ
(f −∇p0) , (5.18)

where K̃ is as in (2.13).
By Lemma 4.3 and (5.8), we obtain the weak convergence results in L2(Ω)

pε ⇀
1
|Y |

∫
Y

p0(x, y) dy = p0(x) , (5.19)

uε ⇀
1
|Y |

∫
Y

u0(x, y) dy = ū0 , (5.20)

q = ∇ · uε ⇀ ∇ · ū0 = q . (5.21)

Setting p = p0 and u = ū0, (5.18)–(5.21) gives the theorem, since convergence on the
boundary of the domain is trivial.

Theorem 5.2. Let (u0, p0) ∈ L2(Ω× Y )×W be the two scale limit of (uε, pε) as
before. Then uε − uε

0 converges to 0 strongly in L2(Ω), where uε
0 = u(x, x/ε), and pε

converges strongly to p0(x) in W .
Proof. Since (ū0, p0) satisfies (5.1)–(5.2) and µ and K̃ are smooth, if f ∈ H1(Ω)

and q ∈ L2, then p0 ∈ H2(Ω). It follows that ū0 ∈ H1(Ω) and ∇xu0(x, y) ∈ L2(Ω).
We also know that ∇yu0(x, y) = 0 ∈ L2(Ω × Ys), so u0(x, x/ε) ∈ V ε. Since D(Ω) is
dense in V ε, we can use uε

0 as a two-scale test function. By two-scale convergence

lim
ε→0

aε(uε, uε
0) = ā(u0, u0) ,

where

ā(v, z) = 2µ (Dyv,Dyz)Ω×Ys
+

(
µα√
K
vs · τ, zs · τ

)
Ω×Γ

+
(
µK−1v, z

)
Ω×Yd

.

Similarly,

lim
ε→0

aε(uε
0, u

ε
0) = ā(u0, u0)

by two-scale convergence. Subtracting, we obtain lim
ε→0

aε(uε − uε
0, u

ε
0) = 0.

We can also show that lim
ε→0

aε(uε, uε) = ā(u0, u0). Since

aε(uε, uε)− b(uε, pε) = (f, uε) , (5.22)
b(uε, pε) = (q, pε) , (5.23)

we know that aε(uε, uε) = (f, uε)Ωε + (q, pε)Ωε . Taking the limit of both sides as
ε→ 0, by our weak convergence results in Theorem 5.1, the right hand side converges
to (f, ū0)Ω + (q, p0)Ω. By (5.2), q = ∇ · ū0, so integrating by parts gives that

lim
ε→0

aε(uε, uε) = ā(u0, u0) ,
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since ū0 satisfies the system of equations (5.12)–(5.17). Finally, by the symmetry of
aε(·, ·), we have

lim
ε→0

aε(uε − uε
0, u

ε − uε
0) = 0 ,

and by Lemma 3.2, we see that lim
ε→0

{
‖uε − uε

0‖L2(Ωε) + ε‖∇(uε
s − uε

0,s)‖L2(Ωs)

}
= 0.

Now we show the strong convergence of the pressure pε to p0 in W . By the inf-sup
condition for Stokes,

sup
v∈H1

0

(w,∇ · v)
‖v‖1

> γ‖w‖0 ,

there exists a sequence vε such that ‖vε‖1 = 1 and

(pε − p0,∇ · vε)Ωε >
γ

2
‖pε − p0‖0 . (5.24)

By Theorem 3.5 in Appendix A of [14], there exists v0(x) ∈ H1(Ω) and v1(x, y) ∈
L2(Ω;H1

#(Y )/R) such that (possibly after passing to a subsequence)

vε ⇀⇀ v0 and ∇vε ⇀⇀ ∇xv0(x) +∇yv1(x, y) .

Note that we can assume v1 is such that its average over Y is zero. It follows that

lim
ε→0

(p0,∇ · vε)Ωε =
(
p0,∇ · v0 +

∫
Y

∇v1 dy
)

Ω

= (p0,∇ · v0)Ω ,

by the periodicity of v1. Now,

lim
ε→0

(pε,∇ · vε)Ωε = lim
ε→0

(pε,∇ · (vε − v0))Ωε + (p0,∇ · v0)Ω
= lim

ε→0
aε(uε, vε − v0) + (p0,∇ · v0)Ω .

Finally, we can show

lim
ε→0

aε(uε, vε − v0)

= lim
ε→0

{
2µ

(
εDuε, εD(vε − v0)

)
Ωε

s

+
(
µα

√
ε

K
uε

s · τ,
√
ε(vε − v0)s · τ

)
Γε

+
(
µK−1uε, vε − v0

)
Ωε

d

}
= lim

ε→0

{
2µ

(
εD(uε − uε

0), εD(vε − v0)
)
Ωε

s

+
(
µα

√
ε

K
(uε − uε

0)s · τ,
√
ε(vε − v0)s · τ

)
Γε

+
(
µK−1(uε − u0), vε − v0

)
Ωε

d

+ 2µ (εDuε
0, εD(vε − v0))Ωε

s

+
(
µα

√
ε

K
uε

0,s · τ,
√
ε(vε − v0)s · τ

)
Γε

+ (µK−1uε
0, v

ε − v0)Ωε
d

}
= 0 ,
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where the first three terms above converge to zero because lim
ε→0

‖uε − u0‖0 = 0,

lim
ε→0

ε‖∇(uε − uε
0)‖0 = 0, and because vε − v0 is bounded in H1. The final three

terms above converge to zero by the two-scale convergence results for vε (and because
one term has an extra factor of ε). Putting everything together, we have that

lim
ε→0

(pε − p0,∇ · vε) = 0

as ε→ 0. By (5.24), pε → p0 as ε→ 0 strongly in W .

6. A Simple Analytical Solution of the Auxiliary Problem. It is not so
easy to construct analytical solutions to the auxiliary problem (2.4)–(2.10), except at
least in the following case. Let Y = (0, `) × (0, `) be a square of side length ` > 0.
With Ys = (0, `) × (0, h) and Yd = (0, `) × (h, `) repeated periodically, we have a
horizontally layered medium. Note that Γ consists of two segments, y2 = h and, by
periodicity, y2 = 0 ⇐⇒ y2 = `.

When j = 1, it is easy to verify that the solution is

ωs
1(y) =

1
2

(
− y2

2 + hy2 +
√
K

α
h

)
e1 , (6.1)

ωd
1(y) = Ke1 , (6.2)

Φ1(y) = 0 , (6.3)

which has flow in the y1-direction only. It follows from (2.13) that K̃21 = 0 (so K̃ is
diagonal), and

K̃11 =
1
`

(
1
12
h3 +

√
K

2α
h2 +K(`− h)

)
. (6.4)

This should be contrasted to the situation in which the porous matrix is replaced
by an impermeable medium. Then ωs

j = 0 on Γ, and we have the well-known problem
of Poiseuille flow in a pipe. The solution is

ω̌s
1(y) = −1

2
y2(h− y2)e1 , (6.5)

Φ̌1(y) = 0 . (6.6)

In this case, we would compute the effective permeability for a unit pressure drop in
the y1-direction (which corresponds to the forcing function e1) as

K̃11,Poiseuille =
h3

12`
, (6.7)

which is the first term on the right side of (6.4).
If instead we assume the vugular region is impermeable, the bulk flow would be

reduced from the porous medium case by the geometric factor (`− h)/`:

K̃11,Darcy =
`− h

`
K . (6.8)

This is the last term on the right side of (6.4). Thus, when considering flow in the
direction of the vugular channel, we have the representation

K̃11 = K̃11,Poiseuille + K̃11,Beavers-Joseph + K̃11,Darcy , (6.9)
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where

K̃11,Beavers-Joseph =
√
K

2α`
h2 (6.10)

represents the Beavers-Joseph interface effect of fluid slippage. This term increases
the Darcy-Stokes flow from the arithmetic average of the pure Stokes “pipe flow” and
the pure Darcy flow. Note that we generally have K � h2 and α = O(1). Thus
K̃11,Poiseuille is the leading term and K̃11,Beavers-Joseph is the next order term in the
expansion.

When j = 2 in the auxiliary problem (2.4)–(2.10), it is easy to verify that the
solution is

ω2(y) =
`

`− h
Ke2 , (6.11)

Φs
2(y) = y2 , (6.12)

Φd
2(y) =

h

`− h
(`− y2) . (6.13)

Again K̃12 = K̃21 = 0 and

K̃22 =
`

`− h
K . (6.14)

In this case, the flow is entirely in the y2-direction.
It is well known and easily verified that one dimensional flow across a porous

medium of permeability k1 for distance h and k2 for distance `−h results in a flow rate

that is the same as that in a uniform medium of permeability k =
`k1k2

hk2 + (`− h)k1
,

which is the harmonic average permeability. If we apply this result to our case,
assuming that the vugular channel has infinite permeability, we obtain exactly (6.14).

In conclusion, this example suggests that the effective permeability represents
an average of two extremes. When the vugs are interconnected in some direction,
we have primarily Poiseuille flow behavior, with a low order correction term for the
effective permeability related to the Beavers-Joseph slip (and an even lower order
correction related to flow entirely in the porous matrix). When the flow is along
paths that alternate from vug to matrix, the fluid behaves as if it were flowing in a
porous medium with the vugs having infinite permeability.
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