
SIAM J. NUMER. ANAL. c© 2018 Society for Industrial and Applied Mathematics
Vol. 56, No. 3, pp. 1818–1847

ACCURACY OF WENO AND
ADAPTIVE ORDER WENO RECONSTRUCTIONS

FOR SOLVING CONSERVATION LAWS∗

TODD ARBOGAST† , CHIEH-SEN HUANG‡ , AND XIKAI ZHAO§

Abstract. In this paper, we analyze standard weighted essentially nonoscillatory (WENO)
reconstructions and multilevel WENO reconstructions with adaptive order (WENO-AO) using both
WENO-JS and WENO-Z weighting. We also present a new WENO-AO reconstruction. We give
conditions under which the reconstructions achieve optimal order accuracy for both smooth solutions
and solutions with discontinuities. The old WENO-AO reconstruction drops to a fixed, base level
of approximation when there are discontinuities in the solution, but the new one maintains the
accuracy of the largest stencil over which the solution is smooth. Our analysis in the discontinuous
case requires that the smoothness indicators do not approach zero as the grid is refined. We provide
a condition to ensure this result, but we also show an example where this can fail to occur. That
is, we show that WENO reconstructions can fail to maintain the order of approximation of the
smallest stencil over which the solution is smooth. We also present numerical results confirming the
convergence theory of the old and new WENO-AO reconstructions and compare their performance
in solving conservation laws.
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1. Introduction. For solving a system of hyperbolic conservation laws,

(1.1) ut + f(u)x = 0, t > 0, x ∈ R, u ∈ Rd, d ≥ 1,

weighted essentially nonoscillatory (WENO) schemes [8, 14, 13] are a popular choice.
They allow one to reconstruct a high order version of the solution merely from approx-
imations of cell averages (in finite volume schemes) or point values (in finite difference
schemes). The key is to average approximations defined on various stencils and to
weight them so as to avoid stencils containing a discontinuity in the solution. The
idea is that high order accuracy may be achieved by the approximation on the big
stencil where the solution is smooth and yet reduce to the order of the smaller stencils
when there is a shock or contact discontinuity to avoid.

It appears that standard WENO reconstructions were not proved to have this
property until 2011, when Aràndiga et al. gave a proof [1]. They clarified the delicate
nature of the parameters used in the standard nonlinear weighting procedure, WENO-
JS, of Jiang and Shu [10]. The parameters are ε and η, where ε is a factor to avoid
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division by zero and η is an exponent in the weight design (see (2.7)). In particular,
ε needs to be proportional to h2, where h is the the grid spacing, and η > s/2,
where the low order polynomials approximate to order s. Kolb [11] later analyzed the
CWENO3 scheme of Levy, Puppo, and Russo [12]. This latter paper provided a new
way to obtain WENO reconstructions involving combining polynomials of different
degrees, e.g., as done by Cravero et al. [5]. The idea was further generalized by Zhu
and Qiu [16] and Balsara, Garain, and Shu [2] to define the class of multilevel WENO
reconstructions with adaptive order (WENO-AO).

In this paper, we analyze the accuracy of the standard WENO and WENO-AO
reconstructions. We include results for when the WENO-Z weighting procedure of
Castro, Costa, and Don [4, 3, 6] is used. Our results are summarized in sections 4.3.5
and 5.3. The standard WENO reconstruction behaves as desired, even with WENO-
Z weights [6]. It is high order accurate when the solution is smooth, and it drops
to low order s when there is a discontinuity (not on the central cell), provided only
that η ≥ s/2. We show that this condition is sharp. The two-level WENO-AO(r, s)
reconstructions behave similarly. They can achieve higher order r accuracy in the
smooth case and otherwise maintain at least order s accuracy, provided that when
using WENO-JS weights, r ≤ 2s − 1 and η ≥ s/2. WENO-Z weights are more
complex, because the accuracy of the reconstruction depends more strongly on the
choice of η, as we will show.

Multilevel WENO-AOs(r`, . . . , r1, s) reconstructions [2] are based on a base state
with approximation order s. When the solution is smooth the approximation attains
the highest order r`, but when it is discontinuous, it usually drops to the base level
s. When using WENO-JS weights, one requires r` ≤ 2s − 1 and η ≥ s/2, which is
equivalent to the two-level case. That is, from the point of view of approximation or-
der, there is no point in using the multilevel reconstruction. Again, WENO-Z weights
are more complex. There is a restriction on the size of the gap between successive
approximation levels, but a careful choice of η can allow any order. However, the
accuracy almost always drops to order s when the solution is discontinuous.

We present a new multilevel WENO-AO(r`, . . . , r1, r0) reconstruction that has no
base level. When the solution is smooth the approximation attains the highest order
r`, but when it is discontinuous, it drops to the order of the largest stencil that does
not contain the discontinuity.

When the solution has a discontinuity, our convergence results require the smooth-
ness indicators σ 9 0 as the grid is refined, as is the case in [1, 11, 5]. We show that
this hypothesis can fail, and we replace it by the hypothesis that the discontinuity is
bounded away from the gridpoints as the grid is refined (Definition 5.1). We further
show that there are sequences of grids for which even this hypothesis fails. In that
case, it is possible that a WENO reconstruction fails to maintain the lowest order
of approximation. This seems contrary to the prevailing understanding of WENO
reconstructions appearing in the literature.

The paper is structured as follows. In the next section, we give the background
needed to understand WENO reconstruction techniques. For the knowledgable reader,
this section, and the next, set our notation. In section 3, we define the various WENO
reconstructions and define our new one. Section 4 presents a rigorous analysis of the
errors in the reconstructions when the solution is smooth. We provide conditions
needed to ensure that the reconstruction achieves the order of accuracy of the big
stencil. In section 5, we give our analysis for the case when the solution has a discon-
tinuity. Our cautionary example of a situation where a WENO reconstruction fails to
maintain the lowest order of approximation appears in section 6. Finally, numerical
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results comparing the old and new WENO-AO reconstructions are given in the last
section.

2. Background on WENO reconstructions. We first review the background
setting required for WENO reconstructions. For simplicity of exposition, we consider
the finite volume framework. The finite difference reconstruction is similar.

Partition space by gridpoints · · · < x−1 < x0 < x1 < · · · . Define the cell
Ii = [xi, xi+1], its length ∆xi = xi+1− xi, and its midpoint xi+ 1

2
= 1

2 (xi + xi+1). Let

h = maxi ∆xi and assume that the grid is quasi-uniform (i.e., there is some ρ > 0
such that ρh ≤ mini ∆xi, so ρh ≤ ∆xi ≤ h for all i). Let ūi be the average of u(x)
on the cell Ii, i.e.,

(2.1) ūi =
1

∆xi

∫
Ii

u(x) dx.

2.1. Polynomial approximation on stencils. Now assume that u is smooth.
For an rth order approximation of u on a given cell Ii, we consider the ordered stencil
Srj (i), which contains r cells, including Ii, and is defined by

(2.2) Srj (i) =
{
Ii+j−b r2 c, . . . , Ii, . . . , Ii+j+b r−1

2 c

}
,

where−
⌊
r−1
2

⌋
≤ j ≤

⌊
r
2

⌋
. Moreover, Sr0 denotes the central stencil. For the remainder

of the paper, we fix a value of i and drop it from the notation. For each Srj , we obtain
the rth order stencil polynomial P rj (a polynomial of degree r − 1) by imposing the
interpolation conditions

(2.3)
1

∆xk

∫
Ik

P rj (x) dx = ūk ∀Ik ∈ Srj .

2.2. Smoothness indicators. The smoothness indicator σ defined by Jiang
and Shu in [10] is normally used to measure the smoothness of stencil polynomials on
the cell Ii. For the stencil Srj , it is given by

(2.4) σrj =

r−1∑
`=1

∫
Ii

(∆xi)
2`−1

(
d`P rj (x)

dx`

)2
dx.

Since the grid is quasi-uniform, in regions where u is smooth, the Taylor expansion of
(2.4) gives

(2.5) σrj = (u′h)2 +O(h4),

which is O(h2) or O(h4) at a critical point. If there are discontinuities in u within
the stencil Srj , then σrj = O(1). It is not clear to the authors that a proof of this fact
appears in the literature. One way to see it is to note that σrj is a continuous function
of ūk ∈ [−‖u‖L∞ , ‖u‖L∞ ] and ∆xk/h ∈ [ρ, 1] for a finite set of k; that is, σrj is a
continuous function on a fixed, compact set as h → 0 and so attains its maximum,
which is therefore bounded. Summarizing,

σrj =

{
O(h2) if u is smooth on Srj ,

O(1) if u has a jump discontinuity on Srj .
(2.6)
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2.3. Nonlinear weights. A WENO reconstruction is a weighted sum of stencil
polynomials. For the stencil Srj , let us denote its (constant) weight as αrj . We refer
to this weight as a linear weight. For the linear weight αrj , we define its nonlinear
weight α̃rj , as discussed below.

For some collection of distinct stencils Sr`j` , ` = 1, 2, . . . , L, we merely require that
the linear weights sum to one, i.e.,

∑
` α

r`
j`

= 1. (We also desire that αr`j` > 0.) When
the solution u is smooth, the linear weights should be chosen so as to give a high order
WENO reconstruction. However, when there are discontinuities in the data over some
stencils, we want to bias the weighted sum so as to exclude those stencils. The idea
is to make α̃r`j` ' αr`j` when u is smooth on Sr`j` and to make α̃r`j` ' 0 when u is not
smooth on Sr`j` .

2.3.1. WENO-JS weights. For complete generality, let the linear weights be
αr`j` for various `. To define the nonlinear weights, Jiang and Shu [10] scale each linear
weight αr`j` as

(2.7) α̂r`j` =
αr`j`

(σr`j` + εh)η
,

and then normalize to define

(2.8) α̃rj = α̃rmkm =
α̂rmkm∑
` α̂

r`
j`

,

for some exponent η ≥ 1 and εh > 0, which avoids any possibility of division by zero.
Usually, one takes η = 2 and εh = ε ' 10−6. Aràndiga et al. [1] show that, in fact,
η must be chosen carefully and that it is valuable to take εh = Kh2 for some fixed
K > 0. We will see this in sections 4–5.

2.3.2. WENO-Z weights. For standard WENO, Castro, Costa, and Don give
the general formula for the WENO-Z reconstruction in [4] for r ≥ 3. First let m =

⌊
r
2

⌋
and use the smoothness indicators to define

(2.9) τ =

{
|σr−m − σrm| if r is odd,

|σr−m+1 − σr−m+2 − σrm−1 + σrm| if r is even.

Then the unnormalized nonlinear weights are, for η ≥ 1,

(2.10) α̂rj = αrj

(
1 +

( τ

σrj + εh

)η)
,

and the normalized weights are given by (2.8).

3. WENO reconstructions. In this section, we review the standard and adap-
tive order WENO reconstructions. We also present our new adaptive order WENO re-
construction. Within the notation for the reconstructions, we use r or r`, r`−1, . . . , r1
to denote the size of the bigger stencils and s or s = r0 to denote the size of the
smallest stencils.

3.1. Standard WENO reconstruction. Suppose we are interested in an r =
(2s − 1)st order standard WENO reconstruction for s ≥ 2. First consider all the
small stencils with s cells containing the given cell Ii. For each Ssj , we construct
P sj . Moreover, we define the big stencil Sr0 =

⋃
j S

s
j and construct a higher order
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polynomial P r0 on it. At a fixed point x∗, the polynomial P r0 can often be written as
a convex combination of P sj , so

(3.1) P r0 (x∗) =
∑
j

αsjP
s
j (x∗),

where
∑
j α

s
j = 1. We refer to αsj as an exact linear weight. These weights can be

precomputed for the given x∗ (if they do indeed exist).
When there are discontinuities in the data over the big stencil Sr0 , we want to

make use of the relatively small stencils on which u is smooth in order to achieve the
essentially nonoscillatory property. The standard WENO reconstruction, valid only
for x = x∗, is

(3.2) Rr(x
∗) =

∑
j

α̃sjP
s
j (x∗).

3.2. WENO reconstructions with adaptive order (WENO-AO). In [12],
Levy, Puppo, and Russo describe a third order compact, central WENO scheme
(CWENO). They use a somewhat different WENO reconstruction than the standard
one (3.2), because the linear weights in (3.1) fail to exist when r = 2 (2r − 1 = 3)
and x∗ = xi+ 1

2
. For the given cell Ii, they combine the optimal quadratic polynomial

P 3
0 and two linear polynomials P 2

0 and P 2
1 . Three advantages of their approach are

that exact linear weights are not required, the weights can be taken to be positive,
and the reconstruction holds for any point x ∈ Ii. The disadvantage is that the big
stencil polynomial must be computed. Cravero et al. [5] generalized the approach to
any order.

Zhu and Qiu describe a fifth order WENO reconstruction in [16], where they
combined the fifth order stencil polynomial with two linear stencil polynomials. Later,
Balsara, Garain, and Shu introduced a new class of WENO reconstructions with
adaptive order in [2], which we will briefly recall below. The idea is to combine the
three quadratic stencil polynomials with some higher order stencil polynomials.

3.2.1. Two-level WENO-AO reconstruction. The fifth order reconstruction
WENO-AO(5,3) is based on the large stencil S5

0 = {Ii−2, Ii−1, Ii, Ii+1, Ii+2} and the
three small stencils S3

−1 = {Ii−2, Ii−1, Ii}, S3
0 = {Ii−1, Ii, Ii+1}, S3

1 = {Ii, Ii+1, Ii+2},
from which we obtain the stencil polynomials P 5

0 , P 3
−1, P 3

0 , and, P 3
1 , respectively. The

reconstruction is given by

(3.3) R5,3(x) =
α̃5
0

α5
0

[
P 5
0 (x)−

1∑
j=−1

α3
jP

3
j (x)

]
+

1∑
j=−1

α̃3
jP

3
j (x),

where α5
0 and α3

j , j = −1, 0, 1, are arbitrary positive linear weights such that α5
0 +∑

j α
3
j = 1. The linear weights can literally be chosen arbitrarily, subject only to

positivity and sum constraints. The specific choice will have some subtle effect on the
value of the reconstruction but not on its order of accuracy. In practice, one often
takes the weights to be on the order of 1 and takes a somewhat larger weight for the
big stencil.

Using the same idea, WENO-AO(7,3) is defined on the big stencil S7
0 and the

same small stencils S3
−1, S3

0 , S3
1 , and WENO-AO(9,3) is given on S9

0 , S3
−1, S3

0 , S3
1 .

In analogy with (3.3), the general formulation of WENO-AO(r, s) reconstruction,
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r > s ≥ 2, can be written as

(3.4) Rr,s(x) = Rr,ss (x) =
α̃r0
αr0

[
P r0 (x)−

∑
j

αsjP
s
j (x)

]
+
∑
j

α̃sjP
s
j (x),

where Sr0 ⊇ ∪jSsj 6= ∅. The positive linear weights αr0 and αsj can be chosen arbitrarily
up to requiring αr0 +

∑
αsj = 1. If WENO-Z weights are used, following [2], the

definition of τ is generalized to

(3.5) τ =
1

|# of j|
∑
j

|σr0 − σsj |.

We remark that in [5], the smoothness indicator σr0 is based on the modified
polynomial 1

αr
0

[
P r0 (x)−

∑
j α

s
jP

s
j (x)

]
. This minor difference does not seem to matter

much in either the theory or the computations.

3.2.2. Multilevel WENO-AOs reconstruction. It is possible that the solu-
tion on S7

0 is nonsmooth but S5
0 gives a smooth solution, so Balsara, Garain, and Shu

[2] combine R7,3
3 and R5,3

3 . The algorithm is given by

(3.6) R7,5,3
3 (x) =

γ̃7,3

γ7,3
[
R7,3

3 (x)− γ5,3R5,3
3 (x)

]
+ γ̃5,3R5,3

3 (x),

where γ7,3+γ5,3 = 1 and γ7,3 > 0, γ5,3 > 0 are arbitrary, and the nonlinear weighting
is given below in (3.8)–(3.9).

Similarly, WENO-AO3(9,5,3) is defined by R9,3
3 and R5,3

3 . Using this recursive

process WENO-AO3(9,7,5,3) combines R9,3
3 and R7,5,3

3 [2], where each reconstruction
includes the base order 3 polynomials. The generalized recursion formula of multilevel
WENO-AOs(r`, r`−1, . . . , r1, s), ` ≥ 1, for approximation levels r` > r`−1 > · · · >
r1 > s ≥ 2 and base level s, is (3.4) for Rrk,ss (x) for all 1 ≤ k ≤ ` and

Rr`,r`−1,...,r1,s
s (x) =

γ̃r`,s

γr`,s
[
Rr`,ss (x)− γr`−1,...,r1,sRr`−1,...,r1,s

s (x)
]

+ γ̃r`−1,...,r1,s
s Rr`−1,...,r1,s

s (x), ` ≥ 2,

(3.7)

where Sr`0 ⊃ S
r`−1

0 ⊃ · · · ⊃ Sr10 ⊇ ∪jSsj 6= ∅. We could further generalize (3.7) to
include all pertinent stencils, i.e., all Srmj ⊂ Sr`0 , but we omit the details.

The linear weights γr`,s > 0 and γr`−1,...,r1,s > 0 are arbitrary such that γr`,s +
γr`−1,...,r1,s = 1. We define the WENO-JS nonlinear weights through the unnormal-
ized weighting

(3.8) γ̂r`,s =
γr`,s

(σr`0 + εh)η
, γ̂r`−1,...,r1,s =

γr`−1,...,r1,s

(σ
r`−1

0 + εh)η
,

and the normalized nonlinear weights are then

(3.9) γ̃r`,s =
γ̂r`,s

γ̂r`,s + γ̂r`−1,...,r1,s
, γ̃r`−1,...,r1,s =

γ̂r`−1,...,r1,s

γ̂r`,s + γ̂r`−1,...,r1,s
= 1− γ̃r`,s.

For WENO-Z weights, when ` ≥ 2, define

(3.10) τ = |σr`0 − σ
r`−1

0 |,
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the unnormalized weights

γ̂r`,s = γr`,s
(

1 +
( τ

σr`0 + εh

)η)
,

γ̂r`−1,...,r1,s = γr`−1,...,r1,s
(

1 +
( τ

σ
r`−1

0 + εh

)η)
,

(3.11)

and the normalized nonlinear weights by (3.9). Note that σr`0 and σr`−10 from the
larger stencils are used in (3.8) and (3.11).

We can certainly use different values of η at each stage of the reconstruction. We
will find this useful for the WENO-Z weights. In this case, we use η0,k in the initial
stage (3.4) for Rrk,ss (x), and we use η` in (3.11).

3.2.3. A new multilevel WENO-AO reconstruction. The original multi-
level WENO-AOs reconstructions R

r`,r`−1,...,r1,s
s in (3.7) are based on Rrk,ss , 1 ≤ k ≤

`; that is, at each level, the reconstructions may revert back to the base level s. As we
will see, for each k, when u is smooth on Srk0 , rk and s need to satisfy Theorem 4.4
below to have order rk accuracy. Moreover, when u has a discontinuity on the two
biggest stencils, Theorem 5.7 below shows that the order of accuracy is at best the
base level s. Our goal is to define a new reconstruction that has no base level and
thereby has relaxed constraints on the levels needed for accuracy and achieves a higher
order of accuracy near discontinuities.

Define Rr1,r0 as in (3.4), which uses the stencils Sr10 and Sr0j for several j. The new
multilevel WENO-AO reconstruction has no base level, and it is denoted Rr`,r`−1,...,r0 ,
where r` > r`−1 > · · · > r0 ≥ 2. It is given recursively for ` ≥ 2 by

Rr`,r`−1,...,r0(x) =
α̃r`0
αr`0

[
P r`0 (x)−

(∑
j

αr0j

)
Rr`−1,...,r0(x)

]
+
(∑

j

α̃r0j

)
Rr`−1,...,r0(x),

(3.12)

where Sr`0 ⊃ S
r`−1

0 ⊃ · · · ⊃ Sr10 ⊇ ∪jSsj 6= ∅. Again, we could generalize this to include
all pertinent stencils, but we do not pursue this here. The linear weights αr`0 > 0 and
αr0j > 0, for all j, are arbitrary such that αr`0 +

∑
j α

r0
j = 1. For WENO-Z weights,

we define τ by (3.10). Compared to (3.7), note that here we use P r`0 instead of Rr`,r0

and we use the smoothness indicators σr` and σr0j for the nonlinear weighting. For
example, the new multilevel WENO-AO(7,5,3) is defined as

R7,5,3(x) =
α̃7
0

α7
0

[
P 7
0 (x)−

( 1∑
j=−1

α3
j

)
R5,3(x)

]
+
( 1∑
j=−1

α̃3
j

)
R5,3(x),(3.13)

where α̃7
0 +

∑
j α̃

3
j = 1 and R5,3(x) is given by (3.3).

4. Accuracy analysis when u is smooth. In this section, we give a rigorous
analysis of the accuracy of WENO reconstructions in the case where u is smooth on
the large stencil. We show under what conditions they give the desired accuracy. Our
results can be viewed as generalizations of those in [1], where the authors analyzed
standard WENO reconstructions, in [11], where the author proved the accuracy for
the compact CWENO3 scheme and its reconstruction, and in [5], where two-level
WENO reconstructions were analyzed. All three papers considered only WENO-JS
weights. WENO-Z weights are considered in [6] for finite difference WENO.
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At times, we require a tight assessment of asymptotic behavior. Recall that for a
function f(h),

(4.1) f = O(hr) ⇐⇒ |h−rf | ≤ C as h→ 0

for some constant C > 0. The notation f = Θ(h) provides upper and lower bounds:

(4.2) f = Θ(hr) ⇐⇒ C1h
r ≤ |f | ≤ C2h

r as h→ 0

for some positive constants C1 and C2. In this notation, quasi uniformity of the grid
means that ∆xi = Θ(h) for all i.

4.1. Smoothness indicators. We begin by looking at the smoothness indica-
tors. The following lemma appears in [1] when comparing smoothness indicators on
the same size stencils. When the stencil sizes differ, we have the result of Kolb [11],
which deals only with the compact CWENO3 reconstruction, and [5]. We provide a
simple proof that covers all cases.

Lemma 4.1. Let cell Ii and any stencils Sr 3 Ii and Ss 3 Ii be given (actually
Srj and Ssk, but the offsets j and k are immaterial). For r ≥ s ≥ 2, assume P r and
P s are stencil polynomials from Sr and Ss, respectively. If the smoothness indicators
σs and σr are given by (2.4), then

(4.3) σr − σs = O(hs+1),

provided that u is smooth on Sr ∪ Ss.

Proof. First we have that, for any ` = 0, 1, . . .,

(4.4)
d`

dx`
(
P r − P s

)
=

d`

dx`
(
P r − u

)
− d`

dx`
(
P s − u

)
= O(hmax(0,s−`)).

Since ( d`
dx`

P r
)2

=
( d`
dx`

P s +
d`

dx`
(P r − P s)

)2
=
( d`
dx`

P s
)2

+
( d`
dx`

(P r − P s)
)2

+ 2
d`

dx`
P s

d`

dx`
(P r − P s),

we have that

σr − σs =

r−1∑
`=1

∆x2`−1i

∫
Ii

[( d`
dx`

P r
)2
−
( d`
dx`

P s
)2]

dx

=

r−1∑
`=1

∆x2`−1i

∫
Ii

[( d`
dx`

(P r − P s)
)2

+ 2
d`

dx`
P s

d`

dx`
(P r − P s)

]
dx

=

r−1∑
`=1

∆x2`−1i

∫
Ii

[
O(hmax(0,s−`))2 + 2O(1)O(hmax(0,s−`))

]
dx

= O(hs+1).
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4.2. Nonlinear weights. The following theorem quantifies the perturbation of
the nonlinear weights from the linear ones.

Theorem 4.2. Let η ≥ 1, ε > 0, and K > 0. Let cell Ii and ` ≥ 1 be given. For
a collection of `+ 1 stencils Srk 3 Ii, k = 0, 1, . . . , `, where 2 ≤ r0 ≤ r1 ≤ · · · ≤ r`, let
αrk be positive linear weights such that

∑
k α

rk = 1, and let σrk be the corresponding

smoothness indicators. If u is smooth on
⋃`
k=0 S

rk , then the following hold:
1. WENO-JS weights satisfy, for all k = 0, 1, . . . , `,

(4.5) α̃rk = αrk +

{
O(hr0+1) if εh = ε,

O(hr0−1) if εh = Kh2.

2. WENO-Z weights satisfy, for all k = 0, 1, . . . , `,

(4.6) α̃rk = αrk +

{
O(hr0+1+(rm+1)η) if εh = ε,

O(hr0−1+(rm−1)η) if εh = Kh2,

where τ = |σr` − σrm | = O(hrm+1) for some 0 ≤ m ≤ `.
Proof. We first prove the results for the WENO-JS weights. For any k, we have

(4.7) α̃rk =

αrk

(σrk + εh)η∑̀
j=0

αrj

(σrj + εh)η

=
αrk∑̀

j=0

αrj
(σrk + εh)η

(σrj + εh)η

=
αrk∑̀

j=0

αrj
(

1 +
σrk − σrj
σrj + εh

)η.

Now by (2.6),

(4.8) σrj + εh =

{
Θ(1) if εh = ε,

Θ(h2) if εh = Kh2,

and by Lemma 4.1, we have

(4.9) σrk − σrj = O(hmin(rk,rj)+1).

Hence

(4.10)
∑̀
j=0

αrj
(

1 +
σrk − σrj
σrj + εh

)η
=

{
1 +O(hr0+1) if εh = ε,

1 +O(hr0−1) if εh = Kh2.

Combining this with (4.7) and recalling that r0 ≥ 2 shows that the result (4.5) holds
for the WENO-JS weights.

Now for the WENO-Z weights, let ρrj = τ/(σrj + εh) and write

α̃rk =
αrk(1 + ρηrk)∑
j

αrj (1 + ρηrj )
=

αrk(1 + ρηrk)

1 +
∑
j

αrjρηrj
.(4.11)

For any j, since τ = |σr` − σrm | = O(hrm+1),

(4.12) ρrj =
τ

σrj + εh
=

{
O(hrm+1) if εh = ε,

O(hrm−1) if εh = Kh2,
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by (4.8)–(4.9). Since r0 ≥ 2, ρrj → 0 as h→ 0, and so

α̃rk ∼ αrk(1 + ρηrk)
(

1−
∑
j

αrjρηrj

)
∼ αrk

(
1 + ρηrk −

∑
j

αrjρηrj

)
= αrk

(
1 +

∑
j

αrj (ρηrk − ρ
η
rj )
)
.

(4.13)

The mean value theorem shows that

ρηrk − ρ
η
rj = η ξη−1 (ρrk − ρrj )(4.14)

for some ξ between ρrk and ρrj . Furthermore, by (4.8)–(4.9) and (4.12), for all k
and j,

ρrk − ρrj = τ
( 1

σrk + εh
− 1

σrj + εh

)
= τ

σrk − σrj
(σrk + εh)(σrj + εh)

=

{
O(hrm+r0+2) if εh = ε,

O(hrm+r0−2) if εh = Kh2.

(4.15)

Combining (4.12)–(4.15) gives the conclusion (4.6).

4.3. Accuracy. We now present our results on the accuracy of the various
WENO reconstructions when u is smooth. After this presentation, we provide a
discussion of the results.

4.3.1. Standard WENO. For standard WENO, we generalize the results in
[1, 6] as follows.

Theorem 4.3. Let η ≥ 1, ε > 0, and K > 0. When u is smooth on Sr0 , r = 2s−1,
s ≥ 2, the standard WENO reconstruction Rr(x) is order r accurate at the point x∗

defined in (3.2), using εh = ε or Kh2 and either WENO-JS or WENO-Z weights.

Proof. We consider only the case of WENO-Z weights, since the case of WENO-
JS weights is similar and can be found in [1]. By Lemma 4.1, τ = O(hs+1), so (4.6)
is valid. We compute that

Rr(x
∗)− u(x∗) =

∑
j

α̃sj(P
s
j (x∗)− u(x∗))

=
∑
j

αsj(P
s
j (x∗)− u(x∗)) +

∑
j

(α̃sj − αsj)(P sj (x∗)− u(x∗))

= (P r0 (x∗)− u(x∗)) +
∑
j

(α̃sj − αsj)(P sj (x∗)− u(x∗))

= O(hr) +O(h(s−1)(η+1))O(hs),

(4.16)

using (4.6) with rj = rm = r0 = s.
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4.3.2. WENO-AO(r, s). The next theorem gives the accuracy of convergence
of two-level WENO-AO(r, s) given in (3.4).

Theorem 4.4. Let η ≥ 1, ε > 0, and K > 0. For r > s ≥ 2, WENO-AO(r, s)
has order of accuracy min(r, rmax) on Ii if u is smooth on Sr0 , where for WENO-JS
weights,

(4.17) rmax =

{
2s+ 1 if εh = ε,

2s− 1 if εh = Kh2,

and for WENO-Z weights,

(4.18) rmax = rmax(η) =

{
2s+ 1 + (s+ 1)η if εh = ε,

2s− 1 + (s− 1)η if εh = Kh2.

Proof. Because αr0 +
∑
j α

s
j = α̃r0 +

∑
j α̃

s
j = 1, we have on Ii that

(4.19)

Rr,s − u =
α̃r0
αr0

[
(P r0 − u)−

∑
j

αsj(P
s
j − u)

]
+
∑
j

α̃sj(P
s
j − u)

=
α̃r0
αr0

(P r0 − u)−
∑
j

[ α̃r0 − αr0
αr0

αsj − (α̃sj − αsj)
]
(P sj − u)

= O(hr) +
∑
j

[
O(α̃r0 − αr0) +O(α̃sj − αsj)

]
O(hs).

Applying Theorem 4.2, we determine the value of rmax.

4.3.3. WENO-AOs(r`, r`−1, . . . , r1, s). We can extend the above theorem to
the multilevel WENO-AOs(r`, r`−1, . . . , r1, s) given in (3.7).

Theorem 4.5. Let η ≥ 1, ε > 0, K > 0, and ` ≥ 1. Let r` > r`−1 > · · · > r1 >
s ≥ 2, and assume that u is smooth on Sr`0 . Then WENO-AOs(r`, . . . , r1, s) has order
of accuracy min(r`, rmax) on Ii, where rmax is given by (4.17) for WENO-JS weights
and (4.18) for WENO-Z weights when using a constant value for η.

Moreover, if WENO-Z weights are used with variable η (i.e., η0,k is used in the ini-
tial stage (3.4) for Rrk,ss (x) and η` is used in (3.11)), then the reconstruction WENO-
AOs(r`, . . . , r1, s) has order of accuracy r` on Ii, provided that

rk ≤ rmax(η0,k) ∀1 ≤ k ≤ `,(4.20)

and, for all 2 ≤ k ≤ `,

rk ≤

{
s+ 1 + rk−1 + (rk−1 + 1)ηk if εh = ε,

s− 1 + rk−1 + (rk−1 − 1)ηk if εh = Kh2,
(4.21)

rk ≤

{
3s+ 2 + (rk−1 + 1)ηk + (s+ 1)η`−1 if εh = ε,

3s− 2 + (rk−1 − 1)ηk + (s− 1)η`−1 if εh = Kh2,
(4.22)

where r0 = s and η1 = η0,1.

Proof. For fixed s ≥ 2, the proof proceeds by induction on ` ≥ 1. The result
holds for ` = 1 by Theorem 4.4. Assume the result holds for ` − 1 ≥ 1. We write
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the argument for variable η, since we can simply fix the value for the first part of the
theorem. We compute on Ii that

Rr`,r`−1,...,r1,s
s − u

=
γ̃r`,s

γr`,s
[
(Rr`,s − u)− γr`−1,...,r1,s(Rr`−1,...,r1,s − u)

]
+ γ̃r`−1,...,r1,s(Rr`−1,...,r1,s − u)

=
γ̃r`,s

γr`,s
(
Rr`,s − u

)
−
[ γ̃r`,s − γr`,s

γr`,s
γr`−1,...,r1,s

− (γ̃r`−1,...,r1,s − γr`−1,...,r1,s)
]
(Rr`−1,...,r1,s − u)

= O(hmin(r`,rmax(η0,`))) +
[
O(γ̃r`,s − γr`,s)

+O(γ̃r`−1,...,r1,s − γr`−1,...,r1,s)
]
O(hmin(r`−1,rmax(η`−1))),

(4.23)

using Theorem 4.4 and induction. The linear and nonlinear weights sum to one, so
γ̃r`−1,...,r1,s − γr`−1,...,r1,s = γr`,s − γ̃r`,s. If this perturbation of the linear weights is
written as O(hw`), then we have

(4.24) Rr`,r`−1,...,r1,s
s − u = O

(
hmin(r`,rmax(η0,`),w`+r`−1,w`+rmax(η`−1))

)
,

where w` is given in Theorem 4.2 with rm = r`−1, r0 = s, and η = η` as

w` =

{
s± 1 for WENO-JS weights,

s± 1 + (r`−1 ± 1)η` for WENO-Z weights,

respectively, for εh = ε (+ sign) and εh = Kh2 (− sign).
For the first part of the theorem, WENO-Z weights use a constant η, and so both

types of weights lead to w` + r`−1 ≥ w` + s ≥ rmax(η). Thus,

min(r`, rmax(η), w` + r`−1, w` + rmax(η)) = min(r`, rmax(η)).

For the second part of the theorem, i.e., when WENO-Z weights are used with variable
η, note that

w` + r`−1 = s± 1 + (r`−1 ± 1)η` + r`−1 ≥ r`
by (4.21). Moreover, (4.22) shows that

w` + rmax(η`−1) = 3s± 2 + (r`−1 ± 1)η` + (s± 1)η`−1 ≥ r`,

so, with (4.20)

min(r`, rmax(η0,`), w` + r`−1, w` + rmax(η`−1)) = r`,

and the proof is complete.

4.3.4. WENO-AO(r`, r`−1, . . . , r0). The following theorem discusses the new
reconstruction (3.12).

Theorem 4.6. Let ε > 0, K > 0, and ` ≥ 1. Let r` > r`−1 > · · · > r0 ≥ 2, and
assume that u is smooth on Sr`0 . Let WENO-JS weights or WENO-Z weights be used
with parameter ηk ≥ 1 on level rk, and define rmax,0 = r0 and, for 1 ≤ k ≤ `,

(4.25) rmax,k = min(rk−1, rmax,k−1) +

{
r0 ± 1 for WENO-JS weights,

(r0 ± 1)(ηk + 1) for WENO-Z weights,
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respectively, for εh = ε (+ sign) and εh = Kh2 (− sign). Then WENO-AO(r`, . . . , r0)
has order of accuracy min(r`, rmax,`) on Ii.

Moreover, WENO-AO(r`, . . . , r0) has order of accuracy r` on Ii if, for all 1 ≤
k ≤ `,

(4.26) rk ≤

{
rk−1 + r0 ± 1 for WENO-JS weights,

rk−1 + (r0 ± 1)(ηk + 1) for WENO-Z weights.

Proof. The proof is similar to the inductive proof of Theorem 4.5. The result
holds for ` = 1 by Theorem 4.4, so assume the result holds for `− 1. We compute on
Ii that

Rr`,...,r0 − u

=
α̃r`0
αr`0

[
(P r`0 − u)−

(∑
j

αr0j

)
(Rr`−1,...,r0 − u)

]
+
(∑

j

α̃r0j

)
(Rr`−1,...,r0 − u)

=
α̃r`0
αr`0

(P r`0 − u)−
[ α̃r`0 − αr`0

αr`0

(∑
j

αr0j

)
−
∑
j

(α̃r0j − α
r0
j )
]
(Rr`−1,...,r0 − u).

(4.27)

By Theorem 4.4 and induction, we have

Rr`,...,r0 − u = O(hr`) +
[
O(α̃r`0 − α

r`
0 ) +

∑
j

O(α̃r0j − α
r0
j )
]
O(hmin(r`−1,rmax,`−1)).

The perturbation of nonlinear weights is given by Theorem 4.2 with rm = r0, and the
main result follows. The result (4.26) is given by requiring rk ≤ rmax,k for all k.

4.3.5. Discussion. Standard WENO reconstructions have a simple convergence
theory. They give the optimal high order convergence rate whenever u is smooth.

The two-level WENO-AO(r, s) achieves the optimal convergence O(hr) when the
base level s is sufficiently high. In terms of the gap r − s between levels, one needs

(4.28) r − s ≤

{
s± 1 for WENO-JS weights,

(s± 1)(η + 1) for WENO-Z weights,

respectively, for εh = ε (+ sign) and εh = Kh2 (− sign). The WENO-Z weights are
interesting in that one can adjust the value of η to reduce the constraint.

For the multilevel WENO reconstructions with adaptive order, the weights used
have a marked effect on the results. The WENO-JS weights have a simple convergence
theory. The optimal convergence O(hr`) is attained by WENO-AOs(r`, . . . , r1, s) with
base level s when

r` − s ≤ s± 1,(4.29)

but the new WENO-AO(r`, . . . , r1, r0) requires only that

rk − rk−1 ≤ r0 ± 1 ∀ 1 ≤ k ≤ `.(4.30)

The condition for WENO-AOs is that the largest gap r` − s must be bounded by
s±1, independent of the intermediate levels. In contrast, the new WENO-AO merely
requires that each intermediate gap be bounded by this number, i.e., r0 ± 1.
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Obtaining optimal accuracy with WENO-Z weights is a much more complex
proposition. WENO-AOs(r`, . . . , r1, s) has the three conditions (4.20)–(4.22). The
first condition is

rk − s ≤ (s± 1)(η0,k + 1) ∀ 1 ≤ k ≤ `.(4.31)

That is, each two-level approximation must be accurate, and then the gaps in the
levels must satisfy the two relatively relaxed bounds (4.21)–(4.22). The new WENO-
AO(r`, . . . , r1, r0) has only the condition (4.26), i.e.,

rk − rk−1 ≤ (r0 ± 1)(ηk ± 1) ∀ 1 ≤ k ≤ `.(4.32)

This condition is worse than (4.21)–(4.22), but the very stringent condition (4.31) is
removed.

A careful choice of η’s can recover the full accuracy when using WENO-Z weights
for any chosen approximation levels. As (4.32) shows, the new WENO-AO can use a
bounded set of η’s, whatever value for r` is taken. The condition (4.31) for WENO-
AOs requires very large values of η when r` is taken very large.

While large values of η improve the convergence rates, they do so by strongly
biasing the values of the nonlinear weights to that of the linear ones. This has a
tendency to diminish the essentially nonoscillatory property of WENO schemes for
solving problems with shocks and contact discontinuities. This was noticed in [2]: the
authors remarked that WENO-JS weights were more stable, while WENO-Z weights
gave better convergence results in the smooth case.

5. Accuracy analysis in the discontinuous case. We now consider the case
when u is not smooth over the big stencil, but u is smooth on some of the smaller
stencils. We consider only the case that u is smooth on a stencil or has a jump
discontinuity somewhere in its interior. That is, we do not consider the intermediate
case where u is continuous but pertinent derivatives are discontinuous, nor the case
of multiple discontinuities, because we are interested in reconstructions involving a
single shock or contact discontinuity.

5.1. Smoothness indicators in the discontinuous case. In general, when
there is an actual discontinuity, it is true that the smoothness indicator is O(1), as
noted in (2.6). However, it is far from obvious that σ = Θ(1), and this is in general
not true, as we will see in Example 5.3 below. The result σ = Θ(1) holds for some
particular sequences of grids.

Definition 5.1. Let h > 0 and xhn be the gridpoints with maximal spacing h. For
x∗ fixed, let m be defined so xhm ≤ x∗ < xhm+1. We say that x∗ is bounded away from
the gridpoints as h→ 0 if there exists a constant c∗ ∈ (0, 1) such that

0 < c∗∆xm ≤ x∗ − xhm and 0 < c∗∆xm ≤ xhm+1 − x∗

for all h. We also say that the grids are bounded away from x∗ as h→ 0.

Lemma 5.2. Let cell Ii and the stencil Sr 3 Ii, where r ≥ 2, be given. Assume
that u is smooth except for a jump discontinuity at x∗ ∈ Im ∈ Sr. If x∗ is bounded
away from the gridpoints as h→ 0, then the smoothness indicator

(5.1) σr = Θ(1) as h→ 0.
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Proof. As noted after (2.5), σr is a continuous function of ūk ∈ [−‖u‖L∞ , ‖u‖L∞ ]
and ∆xk/h ∈ [ρ, 1] for a finite set of k. Therefore σr attains its finite maximum and
its minimum on the fixed, compact set [−‖u‖L∞ , ‖u‖L∞ ]r × [ρ, 1]r as h→ 0, where ρ
is the quasi-uniformity constant for the grid. The minimum value of σr > 0 for each
fixed h, and the claim is that it remains strictly positive as h→ 0.

As h→ 0, if σr → 0, then all the derivatives of P r converge to 0 near Ii, i.e., P r

converges to some constant. However, as h→ 0,

ūj = O(h) +


u(x−∗ ) if j < m,

c(h) if j = m,

u(x+∗ ) if j > m,

(5.2)

where c(h) is between c∗u(x−∗ ) + (1− c∗)u(x+∗ ) and (1− c∗)u(x−∗ ) + c∗u(x+∗ ). Since
r ≥ 2, the lim-inf of the cell averages converge to at least two distinct values. So
P r cannot converge to a constant, which is a contradiction. Thus there exists some
positive constant C such that σr ≥ C > 0.

We remark that for a specific stencil (actually a specific sequence of stencils), the
proof shows that the smoothness indicator σr → 0 only if x∗ is near the endpoints of
the stencil. That is, x∗ must be in the leftmost or rightmost cell of the stencil. This
is the only case in which as h → 0, if we allowed c∗ → 0, then we would have only
a single value for the cell averages arising in (5.2). However, WENO reconstruction
involves a combination of substencils. So if the discontinuity is near the gridpoints
anywhere in the big stencil, some small substencil will have this endpoint property.
We thus make Definition 5.1 apply to all the gridpoints.

The above lemma does not hold for all sequences of grids, as shown in the next
example, where c∗ = h.

Example 5.3. Given cell Ii = [h− h2, 2h− h2] and

u(x) = H(−x) =

{
1, x ≤ 0,

0, x > 0,
(5.3)

where H is the Heaviside function, consider the stencil S2
0 = {[−h2, h − h2], Ii}, for

which the average of u on each cell is h and 0, respectively. The stencil polynomial is

P 2
0 (x) =

3h

2
− h2 − x,

and the smoothness indicator (2.4) is

σ2
0 = h2 = Θ(h2) 6= Θ(1).

The literature is fraught with the belief that σ 9 0 as h → 0 when there is a
discontinuity (e.g., in [1], this is assumed as a hypothesis, and in [11, 5], this belief is
stated as being obvious).

5.2. WENO approximation on grids bounded away from the disconti-
nuity. In [1], the authors showed that in the discontinuous case when the smoothness
indicator σ 9 0, WENO approximations are expected to converge only if εh = o(h),
so we only consider the case εh = Kh2, K > 0 in this section. The next theorem
gives the magnitude of WENO weights as h→ 0. The results for WENO-JS weights
appear in [1] for standard WENO and in [11, 5] for two-level WENO-AO.



ACCURACY OF WENO AND ADAPTIVE ORDER WENO 1833

Theorem 5.4. Let η ≥ 1, K > 0, and εh = Kh2. Given cell Ii, let Srj 3 Ii be
a stencil of size rj ≥ 2 for j = 0, 1, . . . , `. Assume that r0 ≤ r1 ≤ · · · ≤ r`. Let αrj

be the positive linear weights such that
∑
j α

rj = 1, and let σrj be the corresponding
smoothness indicators. If u is smooth except for a single discontinuity, and if u is
smooth on at least one stencil, then for grids bounded away from the discontinuity,

α̃rj =

{
Θ(1) if u is smooth on Srj ,

Θ(h2η) if u has a jump discontinuity on Srj
(5.4)

for all j = 0, 1, . . . , `, for both WENO-JS and WENO-Z weights provided τ = Θ(1).

We remark that the WENO-Z weights defined in (2.9) for standard WENO require
r ≥ 3. When r is odd, τ = Θ(1), since τ = |σ−k−σk|, k =

⌊
r
2

⌋
, compares the leftmost

and rightmost stencils, only one of which contains the discontinuity. It is not clear
whether τ = Θ(1) when r is even in (2.9).

Proof. First consider the WENO-JS weights. By (2.6), Lemmas 4.1 and 5.2, for
any j 6= k,

σrj − σrk
σrk + εh

=


O(hmin(rj ,rk)−1) if u is smooth on Srj and Srk ,

Θ(1) if u is smooth on Srj , but jumps on Srk ,

Θ(h−2) if u jumps on Srj , but is smooth on Srk ,

O(1) if u jumps on Srj and Srk .

Hence we obtain

(5.5)

`∑
k=0

αrk
(

1 +
σrj − σrk
σrk + εh

)η
=

{
Θ(1) if u is smooth on Srj ,

Θ(h−2η) if u jumps on Srj ,

and so (4.7) and (5.5) imply the result (5.4).
For the WENO-Z weights, since τ = Θ(1), (4.8) shows

ρrj =
τ

σrj + εh
=

{
Θ(h−2) if u is smooth on Srj ,

Θ(1) if u jumps on Srj .
(5.6)

Thus the denominator in (4.11) is dominated by Θ(h−2), and the result follows.

We present in the next theorems the accuracy of the WENO reconstructions. The
first theorem is a generalization of a result in [1].

5.2.1. Standard WENO and WENO-AO(r, s).

Theorem 5.5. Let K > 0 and εh = Kh2. Given cell Ii, let u be smooth except for
a jump discontinuity x∗ ∈ Im, m 6= i. Assume that the grids are bounded away from
the discontinuity and that WENO-JS weights or WENO-Z weights are used, where in
the latter case τ = Θ(1). For the standard WENO reconstruction Rr, r = 2s − 1,
s ≥ 2, for the point x∗ in (3.1), where Im ∈ S2s−1

0 ,

(5.7) |Rr(x∗)− u(x∗)| = O(hs) if η ≥ s/2.

For the WENO-AO(r, s) reconstruction Rr,s, r > s ≥ 2, where Im ∈ Sr0 and Ii ∈
Ssj ⊆ Sr0 , for all j, on Ii,

(5.8) |Rr,s(x)− u(x)| = O(hs) ∀x ∈ Ii if η ≥ s/2.
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Proof. For either weights, we have

|Rr(x∗)− u(x∗)| =
∣∣∣∣∑
j

α̃sj(P
s
j (x∗)− u(x∗))

∣∣∣∣
≤

∑
u discontin-
uous on Ss

j

α̃sj
∣∣P sj (x∗)− u(x∗)

∣∣+
∑

u smooth
on Ss

j

α̃sj
∣∣P sj (x∗)− u(x∗)

∣∣
= Θ(h2η)O(1) + Θ(1)O(hs).

by Theorem 5.4, and (5.7) follows. Again using Theorem 5.4, we also compute

|Rr,s(x)− u(x)|

≤
∣∣∣∣ α̃r0αr0

[
(P r0 (x)− u(x))−

∑
j

αsj(P
s
j (x)− u(x))

]∣∣∣∣+
∑
j

α̃sj
∣∣P sj (x)− u(x)

∣∣

≤ O(α̃r0) [O(1) +O(hs)] +


∑

u discontin-
uous on Ss

j

O(α̃sj)O(1) +
∑

u smooth
on Ss

j

O(α̃sj)O(hs)


= Θ(h2η) [O(1) +O(hs)] +


∑

u discontin-
uous on Ss

j

Θ(h2η)O(1) +
∑

u smooth
on Ss

j

Θ(1)O(hs)

 .

Therefore we conclude the result (5.8).
The example below shows that when there is a jump discontinuity bounded away

from the gridpoint on the big stencil, the standard WENO reconstruction Rr and the
WENO-AO(r, s) reconstruction may not drop to order s when η < s/2. That is, the
requirement that η ≥ s/2 is sharp.

Example 5.6. Given cell Ii =
[
h
2 ,

3h
2

]
and u defined by (5.3), consider the stencil

S5
0 =

{
[−3h2 , −h2 ], [−h2 ,

h
2 ], Ii, [

3h
2 ,

5h
2 ], [ 5h2 ,

7h
2 ]
}

. The average of u on each cell is 1, 1/2,
0, 0, and 0, respectively. Consider the standard WENO reconstruction R3 and the
WENO-AO(5, 3) reconstruction with εh = h2. The stencil polynomials are

P 3
−1(x) =

1

2
− x

2h
, P 3

0 =
23

48
− 3x

4h
+

x2

4h2
, P 3

1 = 0,

P 5
0 (x) =

317

640
− 17x

24h
+

x2

16h2
+

x3

6h3
− x4

24h4
.

Therefore, the errors at x = h/2 (the leftmost point of Ii) are

P 3
−1

(h
2

)
− u
(h

2

)
=

1

4
= Θ(1), P 3

0

(h
2

)
− u
(h

2

)
=

1

6
= Θ(1),

P 3
1

(h
2

)
− u
(h

2

)
= 0, P 5

0

(h
2

)
− u
(h

2

)
=

7

40
= Θ(1),

and the smoothness indicators are

σ3
−1 =

1

4
= Θ(1), σ3

0 =
1

3
= Θ(1), σ3

1 = 0, σ5
0 =

30593

20160
= Θ(1).

By Theorem 5.4, since τ = Θ(1), for both weights, we have
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Table 5.1
Example 5.6, Standard WENO R3 and WENO-AO(5, 3) error and convergence rate at x = h/2.

The convergence rates are indeed Θ(h2η).

η = 1 η = 1.5 η = 2 η = 3
n Error Order Error Order Error Order Error Order

Standard WENO R3, WENO-JS
6 1.45E-3 1.97 4.26E-5 2.99 1.25E-6 3.99 1.09E-9 5.99
7 3.65E-4 1.99 5.34E-6 3.00 7.82E-8 4.00 1.70E-11 6.00
8 9.15E-5 2.00 6.67E-7 3.00 4.89E-9 4.00 2.66E-13 6.00
9 2.29E-5 2.00 8.34E-8 3.00 3.06E-10 4.00 4.16E-15 6.00

Standard WENO R3, WENO-Z
6 3.12E-3 1.93 9.60E-5 2.99 2.92E-6 4.00 2.72E-9 6.00
7 7.90E-4 1.98 1.20E-5 3.00 1.83E-7 4.00 4.25E-11 6.00
8 1.98E-4 2.00 1.50E-6 3.00 1.14E-8 4.00 6.64E-13 6.00
9 4.96E-5 2.00 1.88E-7 3.00 7.13E-10 4.00 1.04E-14 6.00

WENO-AO(5, 3), WENO-JS
6 8.58E-4 1.98 1.72E-5 3.00 4.07E-7 3.99 3.10E-10 5.99
7 2.15E-4 1.99 2.15E-6 3.00 2.55E-8 4.00 4.86E-12 6.00
8 5.39E-5 2.00 2.69E-7 3.00 1.59E-9 4.00 7.60E-14 6.00
9 1.35E-5 2.00 3.36E-8 3.00 9.95E-11 4.00 1.19E-15 6.00

WENO-AO(5, 3), WENO-Z
6 1.50E-3 1.96 2.60E-5 3.00 5.26E-7 3.99 3.32E-10 5.99
7 3.76E-4 1.99 3.25E-6 3.00 3.29E-8 4.00 5.20E-12 6.00
8 9.42E-5 2.00 4.06E-7 3.00 2.06E-9 4.00 8.13E-14 6.00
9 2.36E-5 2.00 5.08E-8 3.00 1.29E-10 4.00 1.27E-15 6.00

α̃3
−1 = Θ(h2η), α̃3

0 = Θ(h2η), α̃5
0 = Θ(h2η).

So the error of the reconstruction R3 at x = h/2 is

R3

(h
2

)
− u
(h

2

)
=

1∑
j=−1

α̃3
j

[
P 3
j

(h
2

)
− u
(h

2

)]
= O(h2η) ≤ Θ(h2η).

On the other hand, for R5,3 at x = h/2,

R5,3
(h

2

)
− u
(h

2

)
=
α̃5
0

α5
0

{[
P 5
0

(h
2

)
− u
(h

2

)]
−

1∑
j=−1

α3
j

[
P 3
j

(h
2

)
− u
(h

2

)]}

+

1∑
j=−1

α̃3
j

[
P 3
j

(h
2

)
− u
(h

2

)]
= O(h2η) ≤ Θ(h2η).

Numerical results in Table 5.1 show that we can achieve Θ(h2η) convergence for R3

and WENO-AO(5, 3) for η = 1, 1.5, 2, 3. When η = 1, both of the reconstructions are
only second order accurate instead of third for either WENO-JS or WENO-Z weights.
We used the sequence of grid spacings {hn = 2−n}∞n=0 and α5

0 = 0.85, α3
j = 0.05 for

these results.

5.2.2. Multilevel WENO-AOs(r`, . . . , r1, s). We have the following result
for the multilevel WENO-AOs(r`, . . . , r0, s) reconstructions.

Theorem 5.7. Let K > 0 and εh = Kh2. Let cell Ii be given, ` ≥ 2, r` > r`−1 >
· · · > r0 = s ≥ 2, and Ii ∈ Sr0j ⊆ S

r1
0 ⊆ · · · ⊆ S

r`
0 for all j. Let u be smooth except for

a jump discontinuity at x∗ ∈ Im ∈ Sr`0 , m 6= i. Assume that x∗ ∈ Srn+1

0 but x∗ /∈ Srnj ,
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0 ≤ n < ` (j = 0 if rn ≥ 1) and that WENO-JS weights or WENO-Z weights are used
with variable ηk. Then for the WENO-AOs(r`, . . . , r1, s) reconstruction, the following
hold on grids bounded away from the discontinuity:

1. If n = ` − 1, let q = min(r`−1, rmax(η`−1)), where rmax is given in Theo-
rem 4.4. If η` ≥ (q − s)/2, η0,` ≥ s/2, and (4.20)–(4.22) hold with ` replaced
by `− 1, then on Ii,

|Rr`,...,r1,ss (x)− u(x)| = O(hq) ∀x ∈ Ii.(5.9)

2. If n < `− 1 and η0,k ≥ s/2, 1 ≤ k ≤ `, then on Ii,

(5.10) |Rr`,...,r1,ss (x)− u(x)| = O(hs) ∀x ∈ Ii.

Note that WENO-AOs(r`, . . . , r1, s) drops to the base order s when u has a jump
discontinuity on the two biggest stencils.

Proof. If n = ` − 1, then τ = |σr` − σr`−1 | = Θ(1) by (2.6) and Lemma 5.2. By
Theorem 5.4, γ̃r`,s = Θ(h2η`) and γ̃r`−1,...,r1,s = Θ(1). Following (4.23) and using
Theorems 4.5 and 5.5,

|Rr`,...,r1,ss (x)− u(x)|

≤
∣∣∣∣ γ̃r`,sγr`,s

[
(Rr`,ss (x)− u(x))− γr`−1,...,r1,s(Rr`−1,...,r1,s

s (x)− u(x))
]∣∣∣∣

+
∣∣γ̃r`−1,...,r1,s(Rr`−1,...,r1,s

s (x)− u(x))
∣∣

≤ Θ(γ̃r`,s) [O(hs) +O(hq)] + Θ(γ̃r`−1,...,r1,s)O(hq)

= Θ(h2η`)O(hs) + Θ(1)O(hq).

(5.11)

Since q ≥ s, we conclude (5.9).
When 0 ≤ n < `−1, u is smooth neither on Sr`0 nor on S

r`−1

0 , so Lemma 5.2 shows
σr` = Θ(1) and σr`−1 = Θ(1). Hence, following (3.8), (3.11), and (3.9), γ̃r`,s = Θ(1)
and γ̃r`−1,...,r1,s = Θ(1). Since Rr`,ss (x) and R

r`−1,...,r1,s
s (x) is at least order s accurate

when η0,k ≥ s/2, 1 ≤ k ≤ `, then an argument similar to (5.11) shows (5.10).

5.2.3. The new multilevel WENO-AO(r`, . . . , r0). When u is smooth only
on some substencils of Sr`0 , we have the following result for the new reconstruction.

Theorem 5.8. Let K > 0 and εh = Kh2. Let cell Ii be given, ` ≥ 2, r` >
r`−1 > · · · > r0 ≥ 2, and Ii ∈ Sr0j ⊆ Sr10 ⊆ · · · ⊆ Sr`0 for all j. Let u be smooth

except for a jump discontinuity at x∗ ∈ Im ∈ Sr`0 , m 6= i. Assume that x∗ ∈ Srn+1

0

but x∗ /∈ Srnj , 0 ≤ n < ` (j = 0 if rn ≥ 1) and that WENO-JS weights or WENO-Z
weights are used with variable ηk. Then on grids bounded away from the discontinuity,
the WENO-AO(r`, . . . , r0) reconstruction satisfies on Ii,

(5.12) |Rr`,...,r0(x)− u(x)| = O(hp) if ηk ≥ p/2, n+ 1 ≤ k ≤ `,

where p = min(rn, rmax,n) with rmax,n being given in (4.25). Moreover, if rk ≤ rmax,k

for each 1 ≤ k ≤ n and q > 0 is fixed, then on Ii,

(5.13) |Rr`,...,r0(x)− u(x)| = O(hmin (q,rn)) if ηk ≥ q/2, n+ 1 ≤ k ≤ `.

Thus, if q = r`−1, the reconstruction drops to the best order possible. A smaller
value of q may be chosen to keep the collection of ηk from becoming too large.
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Proof. Following (4.27),

|Rr`,...,r0(x)− u(x)|

≤ α̃r`0
αr`0

[
|P r`0 (x)− u(x)|+

(∑
j

αr0j

)
|Rr`−1,...,r0(x)− u(x)|

]
+
(∑

j

α̃r0j

)
|Rr`−1,...,r0(x)− u(x)|.

(5.14)

We will prove the result by induction on ` ≥ n+ 1. When ` = n+ 1, by Theorems 4.6
and 5.4, we have

|Rr`,...,r0(x)− u(x)|

≤ Θ(α̃r`0 )
[
O(1) +O(hmin(r`−1,rmax,`−1))

]
+
(∑

j

Θ(α̃r0j )
)
O(hmin(r`−1,rmax,`−1))

= Θ(h2η`)O(1) + Θ(1)O(hp).

(5.15)

So the result holds when ` = n + 1. Assume by induction that the result holds for
some `− 1 ≥ n+ 1. Then |Rr`−1,...,r0(x)− u(x)| = O(hp), so by an argument similar
to (5.15), we conclude the result (5.12) holds for `. Result (5.13) is shown in a similar
way.

5.3. Discussion. WENO philosophy desires that our reconstructions be high
order accurate when the solution is smooth and yet maintain low order accuracy
when there is a discontinuity not in the central cell Ii. For the latter, it is required
that εh = Kh2 [1]. We summarize and discuss the results when either the solution
is smooth or there is a discontinuity not in the central cell Ii, but the grids are then
bounded away from the discontinuity.

Theorems 5.5 and 4.3 together show that, given any s, the standard WENO
reconstruction Rr, r = 2s − 1, behaves as desired. It is high order accurate, i.e.,
order r = 2s− 1, when the solution is smooth, and it drops to low order, i.e., order s,
when there is a discontinuity not on Ii, provided only that we satisfy a condition on η.
This condition, given originally in [1], is that η ≥ s/2. We showed that this condition
is sharp.

Theorems 5.5 and 4.4 together show that the two-level WENO-AO(r, s) recon-
structions can achieve higher order r accuracy in the smooth case and otherwise
maintain at least order s accuracy. For WENO-JS weights, we simply require that
r ≤ 2s − 1 and η ≥ s/2. WENO-Z weights are more complex, and we require that
τ be chosen so as to have τ = Θ(1) in the discontinuous case. Now, we require that
r ≤ 2s − 1 + (s − 1)η and η ≥ s/2, so any r and s can be used, at the expense of
requiring η to be very large.

For the multilevel WENO-AOs(r`, . . . , r1, s), we have Theorems 4.5 and 5.7. The
latter theorem tells us that in the discontinuous case, when the discontinuity lies
within the two biggest stencils, the multilevel reconstruction reduces to the base order
s, independently of how the multiple levels are treated. For WENO-JS weights, we
require r` ≤ 2s−1 and all the base reconstructions WENO-AOs(rk, s) to be accurate,
so we are required to take η0,k ≥ s/2. The multilevel reconstruction is no better
than the two-level one when WENO-JS weights are used. When WENO-Z weights
are used, the accuracy in the smooth case can be as high as we like, provided enough
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intermediate levels or large enough η are taken to satisfy (4.21)–(4.22), and provided
η0,k are taken so very large that (4.20) holds.

The new multilevel WENO-AO(r`, . . . , r1, s) behaves better. In the smooth case,
we have order r` accuracy provided that the levels satisfy (4.26). Moreover, in the
nonsmooth case, the reconstruction drops to a lower order depending on exactly where
the discontinuity lies. So if the discontinuity is in stencil S

rn+1

0 but not in Srn0 (or
some Sr0j when n = 0), then we drop to order rn, provided that ηk ≥ r`/2 for each k.
Since this latter condition forces large values of η (which may be undesirable as noted
at the end of section 4.3.5), one can make the reconstruction drop to order min(s, rn)
for any s provided only that ηk ≥ s/2 for each k.

6. A cautionary example of a discontinuity not bounded away from the
gridpoints. Now we consider grids for which the discontinuity x∗ is not bounded
away from the gridpoints. The following example shows that, in exact arithmetic, the
WENO reconstruction may not drop to the accuracy of the smallest stencil, as the
philosophy of WENO expects.

Let u(x) = H(x∗−x) be a simple step function with a discontinuity at x∗, where

(6.1) x∗ =

∞∑
k=0

2−2
k

= 0.110
k=2
1 000︸︷︷︸

3

k=3
1 0000000︸ ︷︷ ︸

7

k=4
1 000000000000000︸ ︷︷ ︸

15

k=5
1 000 · · ·

in binary. We use the sequence of grid spacings {hn}∞n=1, where h = hn = 2−n, and
grids {xhk = kh}∞k=−∞. Let x∗ ∈ [xhm, x

h
m+1) and define c(h) so x∗ = xhm + c(h)h, i.e.,

c(h) =
x∗ − xhm

h
= 2nx∗ −m =

∞∑
k=0

2n−2
k

−m.

The gridpoints have only n digits after the binary point, so lim infh→0 c(h) = 0 and
the gridpoints are not bounded away from the discontinuity. Our sequence of grids
gives rise to three subsequences as follows:

(1) For the subsequence {hn : n = 2`, ` = 0, . . . ,∞}, we have c(hn) = Θ(hn) as
`→∞. That is, x∗ gets closer to the gridpoints when the grid is refined.

(2) For the subsequence {hn : 2` < n < 2`+1, ` = 2, . . . ,∞}, we have 2−2
`+1 ≤

c(hn)hn ≤ 2−2
`

. For each n between its limits 2` and 2`+1, we abuse notation
by writing c(hn) = Θ(h−1n ), but this holds only for finite, contiguous segments
of the subsequence.

(3) For the subsequence {hn : n = 2`−1, ` = 2, . . . ,∞}, we have c(hn) = Θ(1) as
n→∞. This subsequence of grids has x∗ bounded away from the gridpoints.

We consider the WENO-AO(3,2) reconstruction with WENO-JS weights and εh =
h2. Let

S3
0 = {[xhm, xhm+1], [xhm+1, x

h
m+2], [xhm+2, x

h
m+3]},

that is, the jump discontinuity lies in the leftmost cell of S3
0 . The average on each cell

is c(h), 0, and 0, respectively. Then the stencil polynomials are

P 2
0 (x) = −c(h)

h

(
x− xhm −

3h

2

)
, P 2

1 (x) = 0,

P 3
0 (x) = −c(h)

24
− c(h)

2h

(
x− xhm −

3h

2

)
+
c(h)

2h2

(
x− xhm −

3h

2

)2
.



ACCURACY OF WENO AND ADAPTIVE ORDER WENO 1839

Therefore, the errors at, say, x = xhm + h = xhm+1 are

(6.2)
P 2
0 (xhm+1)− u(xhm+1) = Θ(c(h)), P 2

1 (xhm+1)− u(xhm+1) = 0,

P 3
0 (xhm+1)− u(xhm+1) = Θ(c(h)),

and the smoothness indicators are

(6.3) σ2
0 = c(h)2 = Θ(c(h))2, σ2

1 = 0, σ3
0 =

4

3
c(h)2 = Θ(c(h))2.

Using (2.7) and (2.8), we compute that

α̃2
0 and α̃3

0 =


Θ(1) if c(h) = Θ(h),

Θ(h4η) if c(h) = Θ(h−1),

Θ(h2η) if c(h) = Θ(1).

So the error of the reconstruction R3,2 at xhm+1 is

(6.4)

R3,2(xhm+1)− u(xhm+1)

=
α̃3
0

α3
0

[(
P 3
0 (xhm+1)− u(xhm+1)

)
−

1∑
j=0

α2
j

(
P 2
j (xhm+1)− u(xhm+1)

)]

+

1∑
j=0

α̃2
j

(
P 2
j (xhm+1)− u(xhm+1)

)

=


O(h) if c(h) = Θ(h),

O(h4η−1) if c(h) = Θ(h−1),

O(h2η) if c(h) = Θ(1).

We illustrate the results (6.2)–(6.4) numerically, using high-precision arithmetic.
In Figures 6.1–6.3, the black dots are the logarithm of the smoothness indicators and
errors to base 2, respectively. The red, green, and blue dashed lines connect the grids
in subsequences (1), (2), and (3), where c(h) = Θ(h), Θ(h−1), and Θ(1), respectively.
The negative value of the slope is the convergence rate, computed over the subsequence
for subsequences (1) and (3) and the contiguous segments of the subsequences (2).
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Fig. 6.1. Log-log plot of smoothness indicators.
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Fig. 6.2. Log-log plot of the polynomial approximation error.
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Fig. 6.3. Log-log plot of the R3,2 reconstruction error.

Figure 6.1 shows that the smoothness indicators of σ2
0 and σ3

0 indeed have order 2
in subsequence (1), order −2 in subsequence (2), and order 0 in subsequence (3).
Figure 6.2 shows the stencil polynomials P 2

0 and P 3
0 approximate to order 1, −1, and

0 in subsequences (1), (2), and (3), respectively. Figure 6.3 shows the reconstruction
R3,2 approximates to only first order in subsequence (1), and this is the best we can
guarantee in general. The rate improves in subsequence (2) to order 3 when η = 1 and
order 7 when η = 2. As expected for subsequence (3), when the grids are bounded
away from the discontinuity, we see order 2 when η = 1, and we see the improved
order 4 when η = 2.

We have shown there exist sequences of grids for which the results in section 5.2
are violated. We are concerned with how often this situation arises. Without loss of
generality, consider the same grid spacings h = hn = 2−n, n = 0, 1, . . . ,∞. We assume
that x∗ lies at an arbitrary position within its grid cell, so it is uniformly distributed
within this cell in the sense of probability. We need only compute the probability that
x∗ is like the point in (6.1), i.e., c(h) is not uniformly bounded below by some positive
number. If x∗ is written in binary, then we need the number to have an increasing
maximum number of consecutive zero digits. We compute the probability
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Prob(x∗ has increasing maximum number of consecutive 0’s)

= 1− Prob(x∗ has fixed maximum number of consecutive 0’s)

= 1−
∞∑
`=0

Prob(x∗ has maximum number ` of consecutive 0’s) = 1.

This shows that almost surely the gridpoints are not bounded away from the discon-
tinuity, if exact arithmetic is used, as we refine the grid.

This result is not particularly disconcerting for WENO schemes for solving (1.1),
however. Trivially, we use finite precision arithmetic, which sets an artificial lower
bound on how close x∗ can be to the gridpoints. More importantly, however, we solve
a given problem on only one or perhaps a few grids, but consider the solution in time.
Suppose we arbitrarily set c∗ = 0.001. As the shock or contact discontinuity moves in
time, assuming a uniform probability for its position with respect to the grid, there
is a 99.8% chance that the discontinuity x∗ is bounded away from the gridpoints
(independently of h). That is, within a WENO scheme, the situation described in
this cautionary example does not arise often. It is already clear that there is a single
big stencil with center cell Ii containing x∗ for which u is not smooth on any small
stencil, so WENO reconstruction does not give a good result on that cell. The example
shows that there may be a few other cells arising from time to time that have poor
approximation.

WENO reconstruction still captures the discontinuity, as is well known from nu-
merical tests. In fact, we saw above that as h → 0, if σ → 0 on some stencil Sr,
then P r converges smoothly to a constant. WENO reconstruction will include this
stencil, but picking it up will give a good reconstruction, albeit not to the order we
had desired.

7. Numerical results in one space dimension. In our one-dimensional tests
of the conservation law (1.1), the L1 and L∞ errors are computed, respectively, by∑

i

∣∣∣∣ 1

∆xi

∫
Ii

u(x, tn) dx− ūni
∣∣∣∣∆xi and max

i

∣∣∣∣ 1

∆xi

∫
Ii

u(x, tn) dx− ūni
∣∣∣∣ .

7.1. Reconstruction near jump discontinuities. Our first test case is from
[9, 1, 11]. Recall that H is the Heaviside function. For x∗ fixed, let

u(x) = g(x) +H(x∗ − x).

Consider the grid spacings {hn}∞n=0, where hn = 0.1/2n, and fix Ii = [0, hn]. We
test the accuracy of WENO-AO3(9, 7, 5, 3) and WENO-AO(9, 7, 5, 3) reconstructions
at x = 0 when x∗ = −4h,−3h,−2h, and −h. That is, u is smooth only on S9

0 , S7
0 ,

S5
0 , and S3

j , respectively, where j = 0, 1.

We first take g(x) = x3 + sin(x), so g′(0) 6= 0. The results are shown in Table 7.1
for WENO-JS weights and Table 7.2 for WENO-Z weights. We set our algorithm
parameters based on Theorems 5.5 and 5.7 (see also the discussion in section 5.3).
We take εh = h2 for both of WENO-JS and WENO-Z weights.

For WENO-AO3(9, 7, 5, 3), we use in the two-level base reconstructions the linear
weights 0.85 for the big stencil and 0.05 for the three small stencils, and η0,k = 2 >
s/2 = 3/2. For the recursive levels, the higher order linear weight is 0.85 and 0.15 is
the other weight. For the recursive level r2 = 7, η2 = 1 = (r1 − s)/2, where r1 = 5.
For level r3 = 9, η3 = 2 = (r2 − s)/2.
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Table 7.1
Example 7.1 with g(x) = x3 + sin(x). WENO-JS weights with εh = h2. Error and convergence

rate at x = 0.

x∗ = −4h x∗ = −3h x∗ = −2h x∗ = −h
n Error Order Error Order Error Order Error Order

WENO3(9, 7, 5, 3)
6 2.91E-15 5.00 2.91E-15 5.00 4.25E-12 3.04 1.58E-9 3.00
7 9.09E-17 5.00 9.10E-17 5.00 5.27E-13 3.01 1.98E-10 3.00
8 2.84E-18 5.00 2.84E-18 5.00 6.58E-14 3.00 2.48E-11 3.00
9 8.88E-20 5.00 8.88E-20 5.00 8.22E-15 3.00 3.10E-12 3.00

WENO(9, 7, 5, 3)
6 3.57E-27 9.00 2.89E-21 7.00 3.07E-15 5.00 1.58E-9 2.99
7 6.97E-30 9.00 2.26E-23 7.00 9.58E-17 5.00 1.98E-10 3.00
8 1.36E-32 9.00 1.76E-25 7.00 2.99E-18 5.00 2.48E-11 3.00
9 2.66E-35 9.00 1.38E-27 7.00 9.36E-20 5.00 3.10E-12 3.00

Table 7.2
Example 7.1 with g(x) = x3 + sin(x). WENO-Z weights with εh = h2. Error and convergence

rate at x = 0.

x∗ = −4h x∗ = −3h x∗ = −2h x∗ = −h
n Error Order Error Order Error Order Error Order

WENO3(9, 7, 5, 3)
6 3.35E-26 9.00 2.38E-19 7.00 8.64E-12 3.04 1.58E-9 2.99
7 6.54E-29 9.00 1.86E-21 7.00 1.07E-12 3.01 1.98E-10 2.99
8 1.28E-31 9.00 1.45E-23 7.00 1.34E-13 3.00 2.48E-11 3.00
9 2.50E-34 9.00 1.14E-25 7.00 1.67E-14 3.00 3.10E-12 3.00

WENO(9, 7, 5, 3)
6 4.41E-29 9.00 7.79E-23 6.94 1.61E-16 5.05 1.57E-9 2.98
7 8.60E-32 9.00 6.21E-25 6.97 4.93E-18 5.02 1.97E-10 2.99
8 1.68E-34 9.00 4.91E-27 6.98 1.53E-19 5.01 2.48E-11 3.00
9 3.28E-37 9.00 3.85E-29 6.99 4.76E-21 5.01 3.10E-12 3.00

WENO-AO3(9, 7, 5, 3) drops to the accuracy of the base level 3 when u is not
smooth on S7

0 , i.e., for the latter two values of x∗. Since rmax = 2s − 1 = 5 in
Theorem 4.4, we conclude that WENO-AO3(9, 7, 5, 3) is only O(h5) for WENO-JS
weights when u is smooth on S7

0 or the biggest stencil S9
0 . For WENO-Z weights,

hypotheses (4.20)–(4.22) are satisfied, so the reconstruction achieves optimal order if
u is smooth on S7

0 or S9
0 . We see exactly these results in Tables 7.1–7.2.

For the new WENO-AO(9, 7, 5, 3), we take α3
j = 0.05, αrk0 = 0.85, and ηk =

⌈
rk
2

⌉
,

k = 1, 2, 3. Since (4.26) holds, the new reconstruction has the optimal order rk,
k ≥ 1, for each recursive level if u is smooth on Srk0 , for both WENO-JS and WENO-
Z weights. Again, we see these results in Tables 7.1–7.2.

For direct comparison to [9, 1, 11], we also show the results for g(x) = x3 +cos(x)
in Tables 7.3–7.4. Note that g′(0) = 0, so we are at a critical point and (2.5) shows
that we may have somewhat better results, depending on how the WENO weighting
is done. Indeed, we see some improvement in the order of accuracy. This example is
actually quite special, and the improvement observed is due to superconvergence of
the stencil polynomial approximations. The improvement is not due to a change in
the order of the smoothness indicators, because εh = h2, and so the nomalizing factor
εh + σ = Θ(h2) whether σ = O(h2) or O(h4). We can explain our observations by
our theoretical results.

Apart from the discontinuity, the true solution g(x) is a cubic plus the even
function cos(x). The base level polynomials P 3

j are degree 2 and so can approximate

g to at best third order, because the x3 term limits the approximation. However, the
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Table 7.3
Example 7.1 with g(x) = x3 + cos(x). WENO-JS weights with εh = h2. Error and convergence

rate at x = 0.

x∗ = −4h x∗ = −3h x∗ = −2h x∗ = −h
n Error Order Error Order Error Order Error Order

WENO3(9, 7, 5, 3)
6 1.23E-17 5.99 1.23E-17 5.99 5.08E-12 3.02 1.91E-9 3.00
7 1.92E-19 5.99 1.93E-19 6.00 6.32E-13 3.00 2.38E-10 3.00
8 3.01E-21 6.00 3.02E-21 6.00 7.90E-14 3.00 2.98E-11 3.00
9 4.71E-23 6.00 4.71E-23 6.00 9.87E-15 3.00 3.73E-12 3.00

WENO(9, 7, 5, 3)
6 3.11E-32 9.99 1.81E-25 8.15 1.25E-17 5.99 1.91E-9 3.00
7 3.05E-35 10.00 6.68E-28 8.08 1.96E-19 5.99 2.38E-10 3.00
8 2.98E-38 10.00 2.53E-30 8.04 3.07E-21 6.00 2.98E-11 3.00
9 2.91E-41 10.00 9.74E-33 8.02 4.80E-23 6.00 3.73E-12 3.00

Table 7.4
Example 7.1 with g(x) = x3 + cos(x). WENO-Z weights with εh = h2. Error and convergence

rate at x = 0.

x∗ = −4h x∗ = −3h x∗ = −2h x∗ = −h
n Error Order Error Order Error Order Error Order

WENO3(9, 7, 5, 3)
6 1.69E-32 10.60 7.14E-20 7.00 1.03E-11 3.02 1.90E-9 3.00
7 2.70E-35 9.29 5.58E-22 7.00 1.29E-12 3.00 2.38E-10 3.00
8 2.90E-38 9.87 4.36E-24 7.00 1.61E-13 3.00 2.98E-11 3.00
9 2.89E-41 9.97 3.41E-26 7.00 2.01E-14 3.00 3.72E-12 3.00

WENO(9, 7, 5, 3)
6 3.13E-32 10.00 2.65E-25 8.00 5.64E-19 6.00 1.90E-9 3.00
7 3.06E-35 10.00 1.04E-27 8.00 8.81E-21 6.00 2.38E-10 3.00
8 2.98E-38 10.00 4.05E-30 8.00 1.38E-22 6.00 2.98E-11 3.00
9 2.91E-41 10.00 1.58E-32 8.00 2.15E-24 6.00 3.72E-12 3.00

polynomials P rk0 , rk = 9, 7, 5, approximate x3 perfectly. They also approximate the
even cos(x) term to one better power, to O(hrk+1), due to the fact that rk is always
odd in our tests and the grid is uniform. That is, these polynomials are of even degree
and approximate an even function as well as a polynomial of one degree higher on a
uniform grid. When the stencils avoid the discontinuity, we see superconvergence for
these polynomials.

The new WENO-AO reconstructions will maintain accuracy when dropping or-
der due to a discontinuity in the solution when ηk ≥ rk/2, according to (5.12) in
Theorem 5.8. However, to see superconvergence, we need ηk ≥ (rk + 1)/2. Since we
took the integral value ηk =

⌈
rk
2

⌉
= (rk + 1)/2, we had a large enough value to see

superconvergence in the results shown in Tables 7.3–7.4, when x∗ 6= −h. The latter
case is limited by the base polynomial approximation to order 3. In fact, if we replace
x3 by x2 in the solution g(x), we recover superconvergent order 4 for this location of
the discontinuity.

In Tables 7.3–7.4, the original WENO-AO3 reconstructions show no superconver-
gence in the four cases that drop to the base level, i.e., they maintain order 3, as
expected (moreover, they show order 4 if x3 is replaced by x2 in the solution g(x)).
The largest stencil (x∗ = −4h) also shows superconvergence for either weighting, since
there is no discontinuity. When x∗ = −3h, so the discontinuity is only on the largest
stencil, WENO-JS weighting gives superconvergent order 6, but WENO-Z maintains
order 7 rather than achieving superconvergent order 8. The reason is that we used
η3 = 2. Theorem 5.7 requires η3 ≥ (6 − 3)/2 = 3/2 to see superconvergence for
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Table 7.5
Burger’s equation. WENO-JS weights with εh = h2. Error and convergence rate on uniform

grids at time T = 0.25.

N

40
80
160
320

L1 L∞

Error Order Error Order
WENO-AO3(7, 5, 3)

3.90E-06 5.05 1.91E-05 4.45
1.09E-07 5.16 5.48E-07 5.12
3.24E-09 5.07 1.53E-08 5.16
9.95E-11 5.02 4.59E-10 5.06

L1 L∞

Error Order Error Order
WENO-AO(7, 5, 3)

1.92E-06 5.59 9.34E-06 5.01
2.21E-08 6.44 1.23E-07 6.24
1.95E-10 6.82 1.12E-09 6.78
1.57E-12 6.96 9.11E-12 6.95

WENO-AO3(9, 5, 3) WENO-AO(9, 5, 3)
40
80
160
320

2.50E-06 5.34 1.24E-05 4.69
9.41E-08 4.73 4.36E-07 4.83
3.11E-09 4.92 1.43E-08 4.93
9.85E-11 4.98 4.51E-10 4.99

4.78E-07 6.94 2.78E-06 6.11
1.82E-09 8.04 1.04E-08 8.06
4.96E-12 8.52 3.15E-11 8.37
5.75E-14 6.43 3.46E-13 6.50

WENO-AO3(9, 7, 5, 3) WENO-AO(9, 7, 5, 3)
40
80
160
320

2.50E-06 5.32 1.23E-05 4.65
9.41E-08 4.73 4.36E-07 4.82
3.11E-09 4.92 1.43E-08 4.93
9.85E-11 4.98 4.51E-10 4.99

5.14E-07 6.69 3.07E-06 5.74
2.40E-09 7.74 1.50E-08 7.68
6.06E-12 8.63 4.23E-11 8.46
1.41E-14 8.75 9.97E-14 8.73

Table 7.6
Burger’s equation. WENO-Z weights with εh = h2. Error and convergence rate on uniform

grids at time T = 0.25.

N

40
80
160
320

L1 L∞

Error Order Error Order
WENO-AO3(7, 5, 3)

1.97E-06 5.52 9.66E-06 4.91
2.29E-08 6.43 1.29E-07 6.23
2.03E-10 6.82 1.18E-09 6.78
1.63E-12 6.96 9.53E-12 6.95

L1 L∞

Error Order Error Order
WENO-AO(7, 5, 3)

1.97E-06 5.52 9.65E-06 4.91
2.29E-08 6.43 1.29E-07 6.23
2.03E-10 6.82 1.18E-09 6.78
1.63E-12 6.96 9.53E-12 6.95

WENO-AO3(9, 5, 3) WENO-AO(9, 5, 3)
40
80
160
320

5.20E-07 6.60 3.12E-06 5.69
2.45E-09 7.73 1.53E-08 7.67
6.19E-12 8.63 4.34E-11 8.46
1.44E-14 8.75 1.02E-13 8.73

5.19E-07 6.50 3.11E-06 5.54
2.45E-09 7.73 1.53E-08 7.67
6.18E-12 8.63 4.33E-11 8.46
1.44E-14 8.75 1.02E-13 8.73

WENO-AO3(9, 7, 5, 3) WENO-AO(9, 7, 5, 3)
40
80
160
320

5.20E-07 6.59 3.12E-06 5.67
2.45E-09 7.73 1.53E-08 7.67
6.19E-12 8.63 4.34E-11 8.46
1.44E-14 8.75 1.02E-13 8.73

5.19E-07 6.49 3.11E-06 5.53
2.45E-09 7.73 1.53E-08 7.67
6.18E-12 8.63 4.33E-11 8.46
1.44E-14 8.75 1.02E-13 8.73

WENO-JS weights, but we need η2 ≥ (8 − 3)/2 = 5/2 > 2 for WENO-Z weights.
Indeed, if we increase η3 = 3, we see superconvergence order 8 for WENO-Z weights.

7.2. Burgers’ equation. We next solve Burgers’ equation ut + (u2/2)x = 0
with the initial condition u0(x) = 0.25 + 0.5 sin(πx) on [−1, 1] to the time T = 0.25.
A shock forms in the solution after this time, but the solution sharpens up to time
T so as to have a very steep front. The exact solution can be determined, and the
convergence results are shown in Tables 7.5 and 7.6. We use the same parameters as
in Example 7.1. Some of the computations use the long double data type to achieve
the extreme accuracy reported.

Because Theorem 4.5 caps the order of accuracy at 2s−1 = 5 when using WENO-
JS weights, we see that the old WENO-AO3 reconstruction is only fifth order accurate.
It is nearly optimal using WENO-Z weights. The new WENO-AO reconstruction
performs similarly using WENO-Z weights but improves the solution with WENO-JS



ACCURACY OF WENO AND ADAPTIVE ORDER WENO 1845

weights. With these weights, we see nearly optimal results for WENO-AO(7, 5, 3) and
WENO-AO(9, 7, 5, 3), but WENO-AO(9, 5, 3) seems to be only perhaps seventh order
accurate. This is predicted by the condition (4.25) of Theorem 4.6, i.e., the maximum
rate is capped at 5 + 3− 1 = 7.

7.3. The one-dimensional Euler system. The one-dimensional Euler system
of gas dynamics is given by

∂

∂t

 ρ
m
E

+
∂

∂x

 m
ρu2 + p
u(E + p)

 = 0,(7.1)

where m = ρu, E = p/(γ− 1) + ρu2/2 and ρ, u, m, p, and E are the density, velocity,
momentum, pressure, and energy, respectively, and γ = 1.4. We compare the two
WENO-AO reconstructions on two of the more challenging standard test problems.

Following [2], let γHi = γLo = 0.85. For WENO-AO3(7, 5, 3), take

α5
0 = γHi, α3

−1 = α3
1 = (1− γHi)(1− γLo)/2, α3

0 = (1− γHi)γLo;

γ7,3 = γHi, γ5,3 = 1− γHi;

η0,1 = η0,2 = 2, η2 = 1.

For WENO-AO(7, 5, 3), take

α7
0 = α5

0 = γHi, α3
−1 = α3

1 = (1− γHi)(1− γLo)/2, α3
0 = (1− γHi)γLo;

η1 = 2, η2 = 3.

For both reconstructions, we use ε = h2. We use the HLL numerical flux [7].

7.3.1. Shu and Osher’s shock interaction with entropy waves. The shock
interaction with entropy waves problem given in [15] has a moving Mach 3 shock
interacting with sine waves in the density. The initial condition is

(ρ, u, p) =

{
ρl = 3.857143, ul = 2.629396, pl = 10.333333, for 0 < x < 0.1,

ρr = 1 + 0.2sin(5(10x− 5)), ur = 0, pr = 1, for 0.1 < x < 1.

We compute the density at T = 0.16 using ∆t = 0.1∆x and N = 400 cells. The results
are shown in Figure 7.1. We see little difference between the two reconstructions,
although perhaps the new one reaches the peaks of the sine waves slightly better.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

0.5 0.55 0.6 0.65 0.7

3

4

Zoom

Fig. 7.1. Shu and Osher’s shock interaction. The density at T = 0.16 using N = 400 cells.
The plots are the reference solution (green line), WENO-AO3(7, 5, 3) (blue squares), and WENO-
AO(7, 5, 3) (red circles) with WENO-Z weights.
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Zoom

Fig. 7.2. Woodward and Colella’s double blast test. The density at T = 0.038 using N = 399
cells. The plots are the reference solution (green line), WENO-AO3(7, 5, 3) (blue squares), and
WENO-AO(7, 5, 3) (red circles) with WENO-Z weights.

7.3.2. Woodward and Colella’s double blast test. The last test uses the
initial condition

(ρ,m,E) =


ρl = 1, ml = 0, El = 1000/(γ − 1), for 0 < x < 0.1,

ρm = 1, mm = 0, Em = 0.01/(γ − 1), for 0.1 < x < 0.9,

ρr = 1, mr = 0, Er = 100/(γ − 1), for 0.9 < x < 1.

Two shock waves form and interact before time T = 0.038, so this is a particularly
challenging example. The density at time T = 0.038 is shown in Figure 7.2. The new
reconstruction captures the solution a bit better.
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