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Abstract. The Earth’s mantle (or, e.g., a glacier) involves a deformable solid matrix phase
within which a second phase, a fluid, may form due to melting processes. The system is modeled as
a dual-continuum mixture, with at each point of space the solid matrix being governed by a Stokes
flow and the fluid melt, if it exists, being governed by a Darcy law. This system is mathematically
degenerate when the porosity (volume fraction of fluid) vanishes. Assuming the porosity is given,
we develop a mixed variational framework for the mechanics of the system by carefully scaling the
Darcy variables by powers of the porosity. We prove that the variational problem is well-posed, even
when there are regions of one and two phases. We then develop an accurate mixed finite element
method for solving this Darcy-Stokes system and prove a convergence result. Numerical results are
presented that illustrate and verify the convergence of the method.
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1. Introduction. The equations of mantle dynamics introduced by McKen-
zie [28] have a wide range of applications in Earth physics [2, 27, 26, 25], such as
in modeling mid-ocean ridges, subduction zones, and hot-spot volcanism, as well as
to glacier dynamics [22, 9, 37] and other two-phase flows in porous media [13, 18]. For
example, at a mid-ocean ridge, melt is believed to migrate upward until it reaches the
lithospheric “tent” where it then moves toward the ridge within a high porosity band.
Simulation of this phenomenon requires numerical methods that accurately handle
highly heterogeneous porosity and the single-phase to two-phase transition.

The model assumes a dual-continuum mixture of solid matrix and fluid melt. The
mixing parameter is the porosity φ, i.e., the volume fraction of fluid melt, which is
assumed to be much smaller than one, but it may be zero in parts of the domain
where there is no fluid melt.

We use subscripts f , s, and r to refer to a quantity associated with the fluid melt,
the matrix solid, or the relative fluid minus solid, respectively. Fluid melt forms at
the boundaries of rock crystals and so obeys a Darcy’s law for fluid flow around solid
matrix “grains,” which is

u = φvr = φ(vf − vs) = −k0φ
2+2Θ

µf
(∇pf − ρfg), (1.1)

where u is the Darcy velocity, v and p are the velocity and pressure, µ is the viscosity,
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k(φ) = k0φ
2+2Θ is the porosity dependent permeability with Θ a constant between

0 and 1/2 (see, e.g., [13, 38]), ρ is the density, and g is the downwards pointing
gravitational vector.

As the two phases melt or solidify, total mass is conserved. After applying a
Boussinsq approximation [35] (constant and equal densities for non-buoyancy terms),
this is expressed as

∇ · (u + vs) = 0. (1.2)

Conservation of momentum for the slowly creeping mixture obeys the Stokes
equation. In terms of the deviatoric stress of the mixture

σ̂σσ = σ̂σσ(vs) = 2µs(1− φ)
(
Dvs − 1

3∇ · vsI
)
, (1.3)

wherein Dvs = 1
2 (∇vs +∇vTs ) is the symmetric gradient, we have that

−∇p̄+∇ · σ̂σσ(vs) = −(ρs + φρr) g, (1.4)

where p̄ = φpf + (1− φ)pm = ps + φpr is the mixture pressure.
The mechanical system is closed by relating the solid and fluid pressures through

a compaction relation [34]

ps − pf = −µs
φ
∇ · vs, (1.5)

where µs/φ is the solid matrix bulk viscosity.
When coupled with solute transport and thermal evolution, the model transitions

dynamically in time from a non-porous single phase Stokes solid to a two-phase porous
medium. Because the model is based on mixture theory, it has the advantage that
the free boundary between the one and two-phase regions need not be determined
explicitly in the numerical approximation. Unfortunately, the disadvantage is that
the Darcy part of the equations is mathematically degenerate in regions where the
porosity is zero, since then there is only the one solid phase, even though the model
equations continue to describe both phases over the entire domain Ω. In this paper we
assume that φ(x) is given at some instant of time, and we discuss only the mechanics
part of the full model.

A mixed finite element method (MFEM) is a good candidate for a computational
approximation of the mechanics part of this model. MFEMs have an extensive theory
for both Darcy and Stokes flow. Moreover, velocity fields computed using MFEM are
continuous on each element and have a continuous normal component across element
boundaries. This allows coupling with the transport equations of solute and thermal
evolution, since the velocities unambiguously determine particle trajectories.

The Stokes part of the system is well-behaved, but the Darcy part has difficulties
when φ vanishes. Later, we will see (2.26) and (2.27), which imply that

‖φ−1−Θu‖+ ‖φ−1/2∇ · u‖+ ‖φ1/2pf‖ ≤ C (1.6)

for some constant C, where ‖ · ‖ is the L2(Ω)-norm. These estimates suggest that the
fluid pressure pf may be unbounded where porosity vanishes. Indeed, the fluid pressure
is no longer a physical variable when there is no fluid. Moreover, any numerical
method that does not take into account the degeneracy of φ, say by instead imposing
a small nonzero porosity φ0 everywhere, is sure to have a condition number that grows
as φ0 → 0. Our numerical results will show these issues.
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Recently, two of the current authors [6, 5] developed a MFEM and cell-centered
finite difference method for a single Darcy system with a similar degeneracy as appears
in (2.4)–(2.5). The key is to follow the hint in the stability estimates and scale the
fluid pressure and velocity to avoid problems with vanishing porosity. In this paper
we apply this idea to the full set of mantle mechanics equations (1.1)–(1.5).

In the rest of the paper, we present in Section 2 our scaled formulation that di-
rectly resolves the issue of degenerate porosity. We prove the existence and uniqueness
of a solution to the scaled variational formulation. In Section 3 we define our MFEM
for the numerical approximation of the scaled variational formulation and prove its
convergence. In Section 4, we present a modification of the MFEM that is locally mass
conservative. In Section 5, we discuss implementation and give a mass lumping mod-
ification that results in a relatively simple solution procedure on rectangular meshes.
Numerical results illustrating and evaluating the effects of degenerate porosity are
given in Sections 6–7. We include tests of a one-dimensional compacting column with
various porosity functions, and a two-dimensional test example akin to a mid ocean
ridge. We conclude the paper in Section 8.

2. A Scaled Mixed Variational Formulation. Define the pressure potentials

qf = pf − ρfgz and qs = ps − ρfgz, (2.1)

where z is depth and indeed qs is defined using the fluid density ρf . Also let

q = φqf + (1− φ)qs = qs + φ(qf − qs), (2.2)

be the mixture potential and note that

pf − ps = qf − qs =
1

1− φ
(qf − q). (2.3)

We find it convenient to remove qs from the equations (1.1)–(1.5). We obtain

u +
k0φ

2+2Θ

µf
∇qf = 0, (2.4)

µs∇ · u +
φ

1− φ
(qf − q) = 0, (2.5)

∇q −∇ · σ̂σσ(vs) = −(1− φ) ρr g, (2.6)

µs∇ · vs −
φ

1− φ
(qf − q) = 0, (2.7)

where the deviatoric stress of the mixture given in (1.3). For simplicity, the model
parameters are assumed to be constant. Equation (2.4) represents Darcy’s law for an
incompressible fluid, (2.6)–(2.7), (1.3) is a Stokes system for a highly viscous, com-
pressible material (matrix plus fluid), and (2.5) plus (2.7) enforces mass conservation.

We suppose that the spatial domain Ω is a bounded, simply connected, Lipschitz
domain in Rd, d = 1, 2, or 3, with outward pointing unit normal vector ν. We impose
boundary conditions on the fluid and solid velocity of the form

u · ν = gr and vs = gs on ∂Ω. (2.8)

We need the compatibility condition∫
∂Ω

(gr + gs · ν) ds = 0. (2.9)
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2.1. Standard function spaces. The space L2(Ω) consists of all square inte-
grable, real-valued functions on Ω. It is equipped with the inner product (u, v) =
(u, v)Ω =

∫
Ω
uv dx and associated norm ‖u‖ = (u, u)1/2. Denote by H1(Ω) all square

integrable functions with square integrable weak derivatives. This space has the

norm ‖u‖1 =
{
‖u‖2 + ‖∇u‖2

}1/2
. Let H(div; Ω) denote all square integrable vector-

valued functions with square integrable weak divergence, and equip it with the norm

‖u‖H(div) =
{
‖u‖2 + ‖∇ · u‖2

}1/2
.

We can restrict functions in H1(Ω) to the boundary ∂Ω using the trace lemma [1,
24]. The space of these restrictions is H1/2(∂Ω) ⊂ L2(∂Ω), and we have the bound

‖u‖1/2,∂Ω ≤ CΩ‖u‖1. (2.10)

A similar lemma holds for functions in H(div; Ω) [17], and

‖u · ν‖−1/2,∂Ω ≤ CΩ‖u‖H(div;Ω), (2.11)

where ‖ · ‖−1/2,∂Ω is the norm of the dual space of H1/2(∂Ω).
The space L∞(Ω) consists of all essentially bounded functions on Ω equipped with

the essential supremum norm ‖·‖L∞(Ω). The space W 1,∞(Ω) consists of the functions
in L∞(Ω) that have weak derivatives also in L∞(Ω), and the norm is ‖ · ‖W 1,∞(Ω) =
‖ · ‖L∞(Ω) + ‖∇(·)‖(L∞(Ω))d .

2.2. The scaled formulation. Following [6], we define the scaled relative ve-
locity and scaled fluid potential

ṽr = φ−1−Θu and q̃f = φ1/2qf , (2.12)

respectively, and we reformulate the problem (2.4)–(2.7) as

ṽr +
k0φ

1+Θ

µf
∇(φ−1/2q̃f ) = 0, (2.13)

µsφ
−1/2∇ · (φ1+Θṽr) +

1

1− φ
(
q̃f − φ1/2q

)
= 0, (2.14)

∇q −∇ · σ̂σσ(vs) = −(1− φ) ρr g, (2.15)

µs∇ · vs −
φ1/2

1− φ
(
q̃f − φ1/2q

)
= 0, (2.16)

wherein we have scaled the entire second equation by φ−1/2. The boundary condition
on u in (2.8) rescales to φ1+Θṽr · ν = gr on ∂Ω.

The scaled equations make sense provided that the gradient and divergence terms
are well-defined when φ = 0. The divergence term in (2.14) expands to

φ−1/2∇ · (φ1+Θṽr) = φ1/2+Θ∇ · ṽr + φΘ−1/2∇φ · ṽr, (2.17)

and it is well defined provided that, for example,

φΘ−1/2∇φ ∈ (L∞(Ω))d. (2.18)

The gradient terms in (2.13) make sense under the same condition. The porosity φ
in the physical model satisfies the full set of equations, including solute and thermal
transport equations. It is not clear if we should expect that this porosity satisfies
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our condition. Nevertheless, we will assume that the condition holds. Our numerical
results suggest that it is not strictly necessary, and perhaps can be weakened (see
also [6] for a discussion of the necessity of this condition).

We should not expect the scaled velocity ṽr to lie in H(div; Ω); rather, ṽr should
lie in the space

Ṽr = Hφ(div; Ω) =
{
v ∈ (L2(Ω))d : φ−1/2∇ · (φ1+Θv) ∈ L2(Ω)

}
.

As discussed in [6], this is a Hilbert space with the inner product

(ũ, ṽ)Ṽr
= (ũ, ṽ) +

(
φ−1/2∇ · (φ1+Θũ), φ−1/2∇ · (φ1+Θṽ)

)
.

Moreover, these vector functions have a well-defined normal trace on ∂Ω, and, similar
to (2.11),

‖φ1/2+Θṽ · ν‖−1/2,∂Ω ≤ CΩ

{
‖ṽ‖+ ‖φ−1/2∇ · (φ1+Θṽ)‖

}
. (2.19)

We also have the space H
−1/2
φ (∂Ω), which is the image of this normal trace operator

on Ṽr = Hφ(div; Ω).

2.3. The scaled weak formulation. Define the function spaces

Ṽr,0 =
{
v ∈ Hφ(div; Ω) : φ1/2+Θv · ν = 0 on ∂Ω

}
,

Wf = L2(Ω),

Vs,0 = (H1
0 (Ω))d =

{
v ∈ (H1(Ω))d : v = 0 on ∂Ω

}
,

W0 = L2(Ω)/R =
{
w ∈ L2(Ω) :

∫
Ω

w dx = 0
}
,

each with its natural norm.
To impose essential boundary conditions (2.8), we assume that gs ∈ (H1/2(∂Ω))d

and extend it continuously from the boundary into the domain, so that the extension
gs ∈ Vs = (H1(Ω))d and ‖gs‖1 ≤ C‖gs‖1/2,∂Ω. In a similar way, following [6], we

assume that φ−1/2gr ∈ H−1/2
φ (∂Ω), the image of the scaled normal trace operator on

Ṽr = Hφ(div; Ω) which appears in (2.19). Then φ−1/2gr has a bounded extension

gr ∈ Ṽr on Ω such that

φ1/2+Θgr · ν = φ1/2+Θṽr · ν = φ−1/2gr on ∂Ω. (2.20)

We require the scaled compatibility condition∫
∂Ω

(gr + gs) · ds = 0. (2.21)

Scaled formulation. Find ṽr ∈ Ṽr,0 + gr, q̃f ∈ Wf , vs ∈ Vs,0 + gs, and q ∈ W0

such that(µf
k0

ṽr,ψψψr

)
−
(
q̃f , φ

−1/2∇ · (φ1+Θψψψr)
)

= 0 ∀ψψψr ∈ Ṽr,0, (2.22)(
φ−1/2∇ · (φ1+Θṽr), wf

)
+
( 1

µs(1− φ)
(q̃f − φ1/2q), wf

)
= 0 ∀wf ∈Wf , (2.23)

−(q,∇ ·ψψψs) + (σ̂σσ(vs),∇ψψψs) = −
(
(1− φ)ρrg,ψψψs

)
∀ψψψs ∈ Vs,0, (2.24)

(∇ · vs, w)−
( φ1/2

µs(1− φ)
(q̃f − φ1/2q), w

)
= 0 ∀w ∈W0. (2.25)
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2.4. Existence and uniqueness of the solution. The following theorem
shows that the scaled model is well posed. (See also [4] for treatment of the Dirichlet
condition on the Darcy system.)

Theorem 1. Assume that (2.18) holds on the porosity, 0 ≤ φ ≤ φ∗ < 1, and the
extensions gr ∈ Ṽr and gs ∈ Vs satisfy (2.21). Then there exists a unique solution to
the scaled formulation (2.22)–(2.25), (1.3), and it satisfies

‖ṽr‖+ ‖φ−1/2∇ · (φ1+Θṽr)‖+ ‖q̃f‖+ ‖vs‖1 + ‖q‖
≤ C

{
|ρr|+ ‖gr‖+ ‖φ−1/2∇ · (φ1+Θgr)‖+ ‖gs‖1

}
. (2.26)

The unscaled equations (2.4)–(2.7) are ill-posed where φ = 0. If we restrict
φ ≥ φ∗ > 0, the equations are well-posed, and we can unscale the variables in (2.26)
to show the bound

‖φ−1−Θu‖+ ‖φ−1/2∇ · u‖+ ‖φ1/2qf‖+ ‖vs‖1 + ‖q‖ ≤ C (2.27)

(i.e., (1.6)). We conclude that the two velocities and the solid matrix pressure remain
stable, i.e., they are bounded, as φ∗ → 0, but the fluid potential may become un-
bounded. This potential loss of stability is a significant issue for numerical modeling.
We remark that the correct scaling (2.12) is found by restricting φ ≥ φ∗ > 0 and
showing directly the bound (2.27) (see also [6, 4]).

Before proving the theorem, we state a well-known result [10, 11, 30] that we
need.

Theorem 2 (Babuška-Lax-Milgram). Let U and V be two real Hilbert spaces.
Suppose that a : U × V → R is a continuous bilinear functional such that for some
constant γ > 0 and all u ∈ U and v ∈ V , v 6= 0,

sup
‖v‖=1

|a(u, v)| ≥ γ‖u‖ and sup
‖u‖=1

|a(u, v)| > 0. (2.28)

Then, for all f ∈ V ∗, there exists a unique solution u ∈ U to

a(u, v) = f(v) ∀v ∈ V,

and

‖u‖ ≤ 1

γ
‖f‖. (2.29)

Proof of Theorem 1. Let

X = Ṽr,0 ×Wf × Vs,0 ×W0,

and take U = V = X, which is indeed a real Hilbert space. The bilinear form is
defined by the equations (2.22)–(2.25) for any U = (ṽr,0, q̃f ,vs,0, q) ∈ X and ΨΨΨ =
(ψψψr, wf ,ψψψs, w) ∈ X as

a(U,ΨΨΨ) =
(µf
k0

ṽr,0,ψψψr

)
−
(
q̃f , φ

−1/2∇ · (φ1+Θψψψr)
)

+
(
φ−1/2∇ · (φ1+Θṽr,0), wf

)
+
( 1

µs(1− φ)
(q̃f − φ1/2q), wf − φ1/2w

)
− (q,∇ ·ψψψs) + (σ̂σσ(vs,0),∇ψψψs) + (∇ · vs,0, w).
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The linear functional is

f(ΨΨΨ) = −
(
(1− φ)ρrg,ψψψs

)
−
(µf
k0

gr,ψψψr

)
−
(
φ−1/2∇ · (φ1+Θgr), wf

)
− (σ̂σσ(gs),∇ψψψs)− (∇ · gs, w).

Clearly we have continuity (boundedness) of a on X× X and f on X.
Our scaled formulation is written in the context of the Babuška-Lax-Milgram

Theorem as follows. We find U ∈ X such that

a(U,ΨΨΨ) = f(ΨΨΨ) ∀ΨΨΨ ∈ X, (2.30)

and then set ṽr = ṽr,0 + gr and vs = vs,0 + gs.
We will need an estimate of the term (σ̂σσ(vs),∇vs). Using the definition (1.3),

(σ̂σσ(vs),∇vs) =
(
2µs(1− φ)(Dvs − 1

3∇ · vsI),∇vs
)

= 2µs
{(

(1− φ)Dvs,Dvs
)
− 1

3 ((1− φ)∇ · vs,∇ · vs)
}
.

We conclude that

(σ̂σσ(vs),∇vs) ≥ C‖Dvs‖2,

for some positive constant C. An application on Korn’s inequality [23, 16] results in

(σ̂σσ(vs),∇vs) ≥ C‖Dvs‖2 ≥ C1‖vs‖21. (2.31)

We turn attention to the inf-sup condition, the first condition in (2.28). We recall
the inf-sup condition for the Stokes problem [23, 17, 16, 15]. There exists γS > 0 such
that for any w ∈W0 = L2(Ω)/R,

sup
ψψψs∈Vs,0

(w,∇ ·ψψψs)
‖ψψψs‖1

≥ γS‖w‖. (2.32)

We conclude that there is vq ∈ Vs,0 normalized so that ‖vq‖1 = ‖q‖ and satisfying

−(q,∇ · vq) ≥ 1
2γS‖q‖2. (2.33)

For any U = (ṽr,0, q̃f ,vs,0, q) ∈ X, we take the test function in (2.30) to be
ΨΨΨ = (ψψψr, wf ,ψψψs, w) ∈ X defined by

ψψψr = ṽr,0, wf = q̃f + δ1φ
−1/2∇ · (φ1+Θṽr,0),

ψψψs = vs,0 + δ2vq, and w = q,
(2.34)

where δ1 > 0 and δ2 > 0 will be determined below. After combining and canceling
some terms,

a(U,ΨΨΨ) =
µf
k0
‖ṽr,0‖2 + δ1

∥∥φ−1/2∇ · (φ1+Θṽr,0)
∥∥2

+
1

µs

∥∥∥ 1√
1− φ

(
q̃f − φ1/2q

)∥∥∥2

+ (σ̂σσ(vs,0),∇vs,0)− δ2(q,∇ · vq)

+ δ1

( 1

µs(1− φ)
(q̃f − φ1/2q), φ−1/2∇ · (φ1+Θṽr,0)

)
+ δ2(σ̂σσ(vs,0),∇vq).
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There is some C2 > 0 such that

(σ̂σσ(vs,0),∇vq) ≤ C2‖vs,0‖1‖vq‖1 = C2‖vs,0‖1‖q‖,

so using (2.31) with its constant C1 > 0 and (2.33), we see that

a(U,ΨΨΨ) ≥ µf
k0
‖ṽr,0‖2 + δ1

∥∥φ−1/2∇ · (φ1+Θṽr,0)
∥∥2

+
1

µs
‖q̃f − φ1/2q‖2

+ C1‖vs,0‖21 + 1
2δ2γS‖q‖2

+ δ1

( 1

µs(1− φ)
(q̃f − φ1/2q), φ−1/2∇ · (φ1+Θṽr,0)

)
+ δ2(σ̂σσ(vs,0),∇vq)

≥ µf
k0
‖ṽr,0‖2 + 1

2δ1
∥∥φ−1/2∇ · (φ1+Θṽr,0)

∥∥2
+ 1

4δ2γS‖q‖2

+
1

µs

(
1− δ1

2µs(1− φ∗)2

)
‖q̃f − φ1/2q‖2 +

(
C1 − δ2

C2
2

γS

)
‖vs,0‖21.

Taking δ1 and δ2 positive but sufficiently small shows that for some c > 0,

a(U,ΨΨΨ) ≥ c
{
‖ṽr,0‖2 +

∥∥φ−1/2∇ · (φ1+Θṽr,0)
∥∥2

+ ‖vs,0‖21
+ ‖q̃f − φ1/2q‖2 + ‖q‖2 + ‖φ1/2+Θq̃f‖2

}
.

Moreover,

‖q̃f‖ ≤ ‖q̃f − φ1/2q‖+ ‖q‖,

and we have shown the first condition in (2.28). The second follows by symmetry.
We have thus met the conditions of the Babuška-Lax-Milgram Theorem, and we

conclude that the problem (2.22)–(2.25), (1.3) has a unique solution. Moreover, the
bound (2.29) is what is written in Theorem 1. �

3. The Mixed Finite Element Method. Assume Ω is a polygonal domain in
one, two, or three dimensions. Let Th be a conforming finite element mesh of simplices
or rectangular parallelepipeds covering Ω with maximal spacing h, and let Eh denote
the set of element endpoints, edges, or faces.

To continue the exposition, we will restrict to two dimensions. Extension to one
and three dimensions should be clear. Let Pn denote the space of polynomials of
degree n and Pn1,n2 denote the polynomials of degree n1 in x and n2 in z (taking the
second coordinate to be the depth z).

3.1. Finite element spaces. For the Darcy part of the system, we choose the
lowest order Raviart-Thomas (RT0) finite element space VRT×WRT [31, 17, 33]. On

an element E ∈ Th, VRT(E) = (P0 × P0)⊕
(x
z

)
P0 if E is a triangle and P1,0 × P0,1 if

E is a rectangle, and WRT(E) = P0. The degrees of freedom are the normal fluxes on
the edges for VRT, and the average values over the elements for WRT, i.e.,

VRT = span
{

ve :

∫
f

ve · νf ds = δe,f ∀e, f ∈ Eh
}
, (3.1)

WRT = span{wE : wE |F = δE,F ∀E,F ∈ Th}, (3.2)

where δi,j is the Kronecker delta function for indices i and j. RT0 is first order
accurate in H(div; Ω)×L2(Ω) ⊃ VRT×WRT. We could use quadrilateral elements as
well, as long as we substitute the Arbogast-Correa (AC0) space [3] for RT0.
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For the Stokes part of the system, we could choose any inf-sup stable finite element
space VS × WS ⊂ (H1

0 (Ω))2 × (L2(Ω)/R). A good choice on rectangular meshes
is the Bernardi-Raugel (BR) space VBR ×WBR [14, 7]. On a rectangular element
E ∈ Th, VBR(E) = P1,2 × P2,1 and WBR(E) = WRT(E). BR is first order accurate in
(H1(Ω))2 × (L2(Ω)/R). The space was first introduced to solve the Stokes equation,
and it has been used to solve Darcy problems with continuous velocities [7]. It is a
natural choice for our coupled Darcy-Stokes system, since the convergence rates of
the two spaces match.

We could also use standard Taylor-Hood (TH) elements [23, 17, 21]. If E ∈ Th is
triangular, VTH(E) = P2×P2 and WTH(E) = P1 and, if E is rectangular, VTH(E) =
P2,2 × P2,2 and WTH(E) = P1,1. On rectangular meshes, TH is more accurate than
BR, but TH has more degrees of freedom. However, we would not gain any additional
overall convergence within the coupled system because of the Darcy part.

3.2. The scaled mixed finite element method. To impose the essential
boundary conditions, the extensions gr and gs are projected into the finite element
spaces as ĝr ∈ VRT and ĝs ∈ VS (VBR or VTH) in such a way that the following two
compatibility conditions hold:∫

∂Ω

(ĝs − gs) · ν ds = 0 and

∫
∂Ω

(φ1+Θĝr + ĝs) · ν ds = 0. (3.3)

We also need to define

VRT,0 = {v ∈ VRT : v · ν = 0 on ∂Ω},
VS,0 = {v ∈ VS : v = 0 on ∂Ω},

WS,0 =
{
w ∈WS :

∫
Ω

w dx = 0
}
.

Scaled mixed finite element method. Find ṽr,h ∈ VRT,0 + ĝr, q̃f,h ∈WRT, vs,h ∈
VS,0 + ĝs, and qh ∈WS,0 such that(µf

k0
ṽr,h,ψψψr

)
−
(
q̃f,h, φ

−1/2∇ · (φ1+Θψψψr)
)

= 0 ∀ψψψr ∈ VRT,0, (3.4)(
φ−1/2∇ · (φ1+Θṽr,h), wf

)
+
( 1

µs(1− φ)
(q̃f,h − φ1/2qh), wf

)
= 0

∀wf ∈WRT, (3.5)

−(qh,∇ ·ψψψs) + (σ̂σσ(vs,h),∇ψψψs) = −
(
(1− φ)ρrg,ψψψs

)
∀ψψψs ∈ VS,0, (3.6)

(∇ · vs,h, w)−
( φ1/2

µs(1− φ)
(q̃f,h − φ1/2qh), w

)
= 0 ∀w ∈WS,0, (3.7)

where the term σ̂σσ is defined by (1.3). While the scaled finite element method is
well defined when φ vanishes due to the condition (2.18), it is important to avoid
division by zero in the implementation. One must evaluate the two divergence terms
containing φ to a negative power in (3.4)–(3.5) at quadrature points. Because the
divergence terms scale with φ to the overall power 1/2 + Θ > 0, these terms should
be set to zero when φ vanishes. That is, at a quadrature point where φ = 0, take the
value of the entire term to be zero at that point.

Lemma 3. If (2.18) holds, then there exists a unique solution to the scaled mixed
finite element method (3.4)–(3.7).
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Proof. The scaled method gives rise to a square linear system when restricted to
bases for the finite element spaces, so existence of a solution is equivalent to unique-
ness. To show uniqueness, set to zero the quantities ĝr, ĝs, and g. The test functions

ψψψr = ṽr,h ∈ VRT,0, wf = q̃f,h ∈WRT, ψψψs = vs,h ∈ VS,0 and w = qh ∈WS,0,

when substituted into (3.4)–(3.7) and after the equations are added, imply that

µf
k0
‖ṽr,h‖2 +

( 1

µs(1− φ)
(q̃f,h − φ1/2qh), q̃f,h − φ1/2qh

)
+ (σ̂σσ(vs,h),∇vs,h) = 0.

Thus ṽr,h = 0, the estimate (2.31) shows vs,h = 0, and q̃f,h = φ1/2qh.
The discrete version of the inf-sup condition (2.32) holds for BR and TH Stokes

elements with a possibly smaller constant 0 < γ∗S ≤ γS independent of h. Therefore
there is some vq,h ∈ VS,0 such that ‖vq,h‖1 = ‖qh‖ and

−(qh,∇ · vq,h) ≥ 1
2γ
∗
S‖qh‖2. (3.8)

The choice ψψψs = vq,h in (3.6) shows that qh = 0, and so also q̃h,f = φ1/2qh = 0.

3.3. Convergence of the scaled method. To derive a bound for the error,
we first take the difference of (2.22)–(2.25) and (3.4)–(3.7) and add the resulting
equations to see that(µf

k0
(ṽr − ṽr,h),ψψψr

)
−
(
q̃f − q̃f,h, φ−1/2∇ · (φ1+Θψψψr)

)
+
(
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h)), wf

)
+
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), wf − φ1/2w

)
− (q − qh,∇ ·ψψψs) + (σ̂σσ(vs − vs,h),∇ψψψs) + (∇ · (vs − vs,h), w) = 0 (3.9)

for any ψψψr ∈ VRT,0, wf ∈WRT, ψψψs ∈ VS,0, and w ∈WS,0.
Before defining our choice of test functions, we need the usual projection operators

associated with RT0 (or AC0). Let PWRT
: L2(Ω)→WRT denote the L2(Ω)-projection

operator mapping onto the space of piecewise constant functions WRT. Let πRT :
H(div; Ω) ∩ L2+ε(Ω) → VRT (any ε > 0) denote the standard Raviart-Thomas or
Fortin operator that preserves element average divergence and average edge normal
fluxes [31, 17, 33, 3]. We also need the usual H1(Ω)-projection πS : H1(Ω)→ VS and
the L2(Ω)-projection PWS

: L2(Ω)→WS.
Let the function vq,h ∈ VS,0 arise from the discrete version of the inf-sup condition

for Stokes (2.33) (as in (3.8)), normalized so that ‖vq,h‖1 = ‖PWSq−qh‖ and satisfying

−(PWS
q − qh,∇ · vq,h) ≥ 1

2γ
∗
S‖PWS

q − qh‖2. (3.10)

Similar to the test functions taken in (2.34), we take

ψψψr = (ṽr − ṽr,h)− (ṽr − πRTṽr)− (πRTgr − ĝr) ∈ VRT,0,

wf = PWRT
q̃f − q̃f,h + δ1PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]
∈WRT,

ψψψs = (vs − vs,h)− (vs − πSvs)− (πSgs − ĝs) + δ2vq,h ∈ VS,0,

w = PWS
q − qh ∈WS,0,
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where δ1 > 0 and δ2 > 0 will be determined below. We remark that the term
multiplying δ1 must be projected back into the discrete space, and so our derivation
is not completely straightforward.

Introducing PWRT thrice into (3.9) yields(µf
k0

(ṽr − ṽr,h),ψψψr

)
−
(
PWRT

q̃f − q̃f,h,PWRT

[
φ−1/2∇ · (φ1+Θψψψr)

])
+
(
PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]
, wf

)
−
(
q̃f − PWRT q̃f , φ

−1/2∇ · (φ1+Θψψψr)
)

+
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), wf − φ1/2w

)
− (q − qh,∇ ·ψψψs) + (σ̂σσ(vs − vs,h),∇ψψψs) + (∇ · (vs − vs,h), w)

= T1 + · · ·+ T8 (respectively) = 0. (3.11)

For the first term in (3.11), we deduce that for some generic constant C > 0,

T1 =
(µf
k0

(ṽr − ṽr,h),ψψψr

)
=
µf
k0
‖ṽr − ṽr,h‖2 −

(µf
k0

(ṽr − ṽr,h), ṽr − πRTṽr + πRTgr − ĝr

)
≥ µf

2k0
‖ṽr − ṽr,h‖2 − C

{
‖ṽr − πRTṽr‖2 + ‖πRTgr − ĝr‖2

}
.

For the next two terms, for any ε > 0,

T2 + T3 = −
(
PWRT

q̃f − q̃f,h,PWRT

[
φ−1/2∇ · (φ1+Θψψψr)

])
+
(
PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]
, wf

)
=
(
PWRT

q̃f − q̃f,h,PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − πRTṽr + πRTgr − ĝr)

])
+ δ1

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2

≥ δ1
∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2 − ε‖PWRT q̃f − q̃f,h‖2

− C
{∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − πRTṽr))

]∥∥2

+
∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(πRTgr − ĝr))

]∥∥2}
.

Skipping T4 for the moment, the next term is

T5 =
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), wf − φ1/2w

)
=
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), q̃f − q̃f,h − φ1/2(q − qh)

)
−
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), q̃f − PWRT

q̃f − φ1/2(q − PWS
q)
)

+ δ1

( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)),PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

])
≥ 1

2µs(1− φ∗)
‖q̃f − q̃f,h − φ1/2(q − qh)‖2 − C

{
‖q̃f − PWRT q̃f‖2

+ ‖q − PWSq‖2 + δ2
1

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2}
.
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Noting that w = q − qh − (q − PWS
q), the sixth and eighth terms satisfy

T6 + T8 = −(q − qh,∇ ·ψψψs) + (∇ · (vs − vs,h), w)

= (q − qh,∇ · (vs − πSvs + πSgs − ĝs))− (∇ · (vs − vs,h), q − PWS
q)

− δ2
[
(PWSq − qh,∇ · vq,h) + (q − PWSq,∇ · vq,h)

]
.

Recalling (3.10) and that ‖vq,h‖1 = ‖PWSq − qh‖, we have

T6 + T8 ≥ 1
4δ2γ

∗
S‖PWSq − qh‖2 − 1

8δ2γ
∗
S‖q − qh‖2 − ε‖∇ · (vs − vs,h)‖2

− C
{
‖q − PWS

q‖2 + ‖∇ · (vs − πSvs)‖2 + ‖∇ · (πSgs − ĝs)‖2
}

≥ 1
8δ2γ

∗
S‖q − qh‖2 − ε‖∇ · (vs − vs,h)‖2

− C
{
‖q − PWSq‖2 + ‖∇ · (vs − πSvs)‖2 + ‖∇ · (πSgs − ĝs)‖2

}
.

Finally, for the next to last term, note that ψψψs = πSvs−vs,h−πSgs+ ĝs+δ2vq,h,
so we have from (2.31) that

T7 = (σ̂σσ(vs − vs,h),∇ψψψs)
= (σ̂σσ(πSvs − vs,h − πSgs + ĝs),∇ψψψs) + (σ̂σσ(vs − πSvs + πSgs − ĝs),∇ψψψs)
≥ C1‖πSvs − vs,h − πSgs + ĝs‖21 − 1

2C1‖πSvs − vs,h‖21
− C

{
‖vs − πSvs‖21 + ‖πSgs − ĝs‖21 + δ2

2‖vq,h‖21
}

≥ 1
2C1‖vs − vs,h‖21 − C

{
‖vs − πSvs‖21 + ‖πSgs − ĝs‖21 + δ2

2‖PWS
q − qh‖2

}
.

We turn now to the fourth term T4 in (3.11), which we estimate similarly to a
term in [6, Section 7] for the degenerate Darcy system. That is, we introduce the
projection I − PWRT

and compute as follows:

−T4 =
(
q̃f − PWRT

q̃f , φ
−1/2∇ · (φ1+Θψψψr)

)
=
(
q̃f − PWRT q̃f , (I − PWRT)φ−1/2∇ · (φ1+Θψψψr)

)
=
(
q̃f − PWRT

q̃f , (I − PWRT
)φ1/2+Θ∇ ·ψψψr + (I − PWRT

)(1 + Θ)φΘ−1/2∇φ ·ψψψr
)

≤ C‖q̃f − PWRT q̃f‖
{
‖(I − PWRT)φ1/2+Θ∇ ·ψψψr‖+ ‖ψψψr‖

}
,

since we have assumed the bound (2.18) on the term φΘ−1/2∇φ. Because ∇ · ψψψr is
piecewise constant, we have that

‖(I − PWRT
)φ1/2+Θ∇ ·ψψψr‖ ≤ ‖(I − PWRT

)φ1/2+Θ‖L∞(Ω)‖∇ ·ψψψr‖
≤ Ch ‖φ1/2+Θ‖W 1,∞(Ω)‖∇ ·ψψψr‖
≤ Ch ‖∇ ·ψψψr‖,

using [20] for the approximation of the L2-projection in L∞ and (2.18) again. If we
assume that the mesh is quasiuniform, then we can remove the divergence operator
in the final expression at the expense of a power of the mesh spacing h. Thus we have

−T4 ≤ C‖q̃f − PWRT q̃f‖ ‖ψψψr‖
≤ ε‖ṽr − ṽr,h‖2 + C{‖q̃f − PWRT

q̃f‖2 + ‖ṽr − πRTṽr‖2 + ‖πRTgr − ĝr‖2
}
.
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Combining these estimates results in

µf
2k0
‖ṽr − ṽr,h‖2 + δ1

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2
+ 1

2C1‖vs − vs,h‖21

+
1

2µs(1− φ∗)
‖q̃f − q̃f,h − φ1/2(q − qh)‖2 + 1

4δ2γ
∗
S‖q − qh‖2

≤ ε
{
‖PWRT

q̃f − q̃f,h‖2 + ‖∇ · (vs − vs,h)‖2 + ‖ṽr − ṽr,h‖2
}

+ C
{
‖ṽr − πRTṽr‖2 +

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − πRTṽr))

]∥∥2

+ ‖πRTgr − ĝr‖2 +
∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(πRTgr − ĝr))

]∥∥2

+ ‖q̃f − PWRT
q̃f‖2 + ‖q − PWS

q‖2 + δ2
1

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2

+ ‖vs − πSvs‖21 + ‖πSgs − ĝs‖21 + δ2
2‖PWS

q − qh‖2
}
. (3.12)

Note that

‖q̃f − q̃f,h‖2 ≤ ‖q̃f − q̃f,h − φ1/2(q − qh)‖2 + ‖q − qh‖2.

Therefore, if we take ε, δ1, and δ2 small enough, we have proven the following theorem.
Theorem 4. Assume that (2.18) holds on the porosity, 0 ≤ φ ≤ φ∗ < 1, the

mesh is quasiuniform, and the extensions gr ∈ Ṽr and gs ∈ Vs satisfy (2.21) and
their approximations satisfy (3.3). Then the difference of the solution to the scaled
formulation (2.22)–(2.25), (1.3), and its finite element approximation satisfy

‖ṽr − ṽr,h‖+
∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥+ ‖vs − vs,h‖1
+ ‖q̃f − q̃f,h‖+ ‖q − qh‖
≤ C

{
‖ṽr − πRTṽr‖+

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − πRTṽr))

]∥∥
+ ‖πRTgr − ĝr‖+

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(πRTgr − ĝr))

]∥∥
+ ‖q̃f − PWRT

q̃f‖+ ‖q − PWS
q‖+ ‖vs − πSvs‖1 + ‖πSgs − ĝs‖1

}
. (3.13)

If the solution is sufficiently smooth, this bound implies first order convergence.
It also implies stability of the scheme even when the solution is not very smooth.

4. A Modification for Local Mass Conservation. As in [5], we define a
locally mass conservative implementation of the scaled method by using the quantity
φ̂ = PWRT

φ ∈WRT given by taking the average over each element E ∈ Th, i.e.,

for x ∈ E, φ̂(x) = φ̂E =
1

|E|

∫
E

φdx, (4.1)

where |E| is the area of E. When φ̂|E = φ̂E = 0 vanishes on an element E, φ is
identically zero on E. We modify the two divergence terms in the scaled MFEM
(3.4)–(3.7) by replacing

φ−1/2∇·(φ1+Θv)
∣∣
E

by

{
φ̂
−1/2
E ∇ · (φ1+Θv) if φ̂E 6= 0,

0 if φ̂E = 0.

We also modify the two terms in (3.5) and (3.7) involving the pressure potentials.
These changes make the method locally mass conservative, as we show later.
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Locally conservative scaled mixed finite element method. Find ṽr,h ∈ VRT,0 + ĝr,
q̃f,h ∈WRT, vs,h ∈ VS,0 + ĝs, and qh ∈WS,0 such that(µf

k0
ṽr,h,ψψψr

)
−
(
q̃f,h, φ̂

−1/2∇ · (φ1+Θψψψr)
)

= 0 ∀ψψψr ∈ VRT,0, (4.2)

(
φ̂−1/2∇ · (φ1+Θṽr,h), wf

)
+
( φφ̂−1

µs(1− φ)
(q̃f,h − φ̂1/2qh), wf

)
= 0

∀wf ∈WRT, (4.3)

−(qh,∇ ·ψψψs) + (σ̂σσ(vs,h),∇ψψψs) = −
(
(1− φ)ρrg,ψψψs

)
∀ψψψs ∈ VS,0, (4.4)

(∇ · vs,h, w)−
( φφ̂−1/2

µs(1− φ)
(q̃f,h − φ̂1/2qh), w

)
= 0 ∀w ∈WS,0, (4.5)

where the term σ̂σσ is defined by (1.3). On an element E ∈ Th where φ̂E = 0, the three

terms in (4.2)–(4.3), (4.5) involving φ̂−1/2 are set to zero, and in the second term in

(4.3), we interpret φφ̂−1 as one. Furthermore, we define the discrete Darcy velocity
uh ∈ VRT and fluid potential qf,h ∈WRT by their degrees of freedom:

uh · ν|e =
1

|e|

∫
e

φ1+Θ ds ṽr,h · ν|e ∀e ∈ Eh, (4.6)

qf,h|E = φ̂
−1/2
E q̃f,h|E ∀E ∈ Th, (4.7)

wherein we arbitrarily set qf,h|E = 0 if φ̂E = 0.
The existence of a unique solution can be shown in a way completely analogous

to that for the nonconservative scaled MFEM in Section 3. Moreover, one can show
that the locally conservative MFEM is stable. We have no proof of convergence of
the locally conservative method at this time, but the numerical results show optimal
convergence and even superconvergence.

To see local mass conservation of the fluid, let E ∈ Th be any element. With wE
defined in (3.2), the test function wf = φ̂

1/2
E wE ∈WRT in (4.3) gives

µs

∫
E

∇ · (φ1+Θṽr,h) dx+

∫
E

φ

1− φ
(
φ̂−1/2q̃f,h − qh

)
dx = 0.

Since ṽr · ν and uh · ν are constant on each edge e ⊂ ∂E, we see from (4.6) that∫
E

∇ · (φ1+Θṽr,h) dx =

∫
∂E

φ1+Θṽr,h · ν ds =

∫
∂E

uh · ν ds =

∫
E

∇ · uh dx.

The definition of qf,h (4.7) gives

µs

∫
E

∇ · uh dx+

∫
E

φ

1− φ
(qf,h − qh) dx = 0, (4.8)

which is local mass conservation, i.e., (2.5) holds locally.
We obtain local mass conservation of the solid matrix if we use BR spaces. In

that case, we can take the test function w = wE ∈WBR in (4.5) to see

µs

∫
E

∇ · vs,h dx−
∫
E

φ

1− φ
(
qf,h − qs,h

)
dx = 0,

which is (2.7) holding locally.
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5. Implementation of the Methods on Rectangular Meshes. The linear
system corresponding to either of the methods (3.4)–(3.7) or (4.2)–(4.5) has the form

A −Bφ 0 0
BTφ Cf,φ 0 −Cf,s,φ
0 0 Dφ −B
0 −CTf,s,φ BT Cs,φ



ṽr
q̃f
vs
q

 =


aφ
0
bφ
0

 , (5.1)

wherein the solution represents the degrees of freedom of ṽr,h, q̃f,h, vs,h, and qh with
respect to the bases of the finite element spaces. We remark only on the evaluation
of Bφ and Dφ. To avoid approximating derivatives of φ, the matrix Bφ should be
computed using the divergence theorem. For the locally conservative method, for any
element E ∈ Th and edge e ∈ Eh,

Bφ,e,E =
(
φ̂−1/2∇ · (φ1+Θve), wE

)
=

φ̂
−1/2
E

∫
e

φ1+Θ dsve · νE if e ⊂ ∂E and φ̂E 6= 0,

0 if e 6⊂ ∂E or φ̂E = 0.

A similar expression is used for the nonconservative scaled MFEM of Section 3. The
matrix Dφ is symmetric, and the (k, `) entry is computed using (1.3) as

Dφ,k,` = (σ̂σσ(vs,k),∇ψψψs,`) = 2µs
[(

(1− φ)Dvs,k,Dψψψs,`
)
− 1

3

(
(1− φ)∇ · vs,k,∇ ·ψψψs,`

)]
.

We can simplify the implementation when Ω is a union of rectangular subdomains
in one, two, or three dimensions, and Th is a rectangular finite element mesh. We
modify either method by approximating the first integral in (3.4) or (4.2) using what
is known as mass lumping. The integral is approximated by a trapezoidal quadrature
rule (·, ·)Q, so that for any two edges e, f ∈ Eh,

Ae,f =
(µf
k0

ve,vf

)
Q

=
µf
2k0
|Ee|δe,f , (5.2)

where Ee is the one element or union of two elements that have e as an edge. This
approximation diagonalizes A and enables us to eliminate the scaled relative velocity
using the Schur complement from the first row of (5.1),

ṽr = A−1(Bφq̃f + aφ).

What remains is a Stokes-like system with two pressure potentials. One can further
eliminate vs = D−1

φ (Bq + bφ) to obtain(
BTφA

−1Bφ + Cf,φ −Cf,s,φ
−CTf,s,φ BTD−1

φ B + Cs,φ

)(
q̃f
q

)
=

(
−BTφA−1aφ
−BTD−1

φ bφ

)
, (5.3)

but the matrix BTD−1
φ B is not easily formed. Nevertheless, one can apply this matrix

and therefore solve a Schur complement system for the two pressure potentials. The
system can be preconditioned by a diagonal preconditioner, using any good precondi-
tioners for the two diagonal blocks, and solved by conjugate gradients. See, e.g., the
block preconditioner defined in [32].



16 ARBOGAST, HESSE, and TAICHER

6. Numerical Results in One Dimension. In this section we simulate a com-
pacting column in one dimension [29]. The column extends over z ∈ [−L,L] and has
no flow through the top and bottom boundaries, i.e.,

vs(−L) = vs(L) = u(−L) = u(L) = 0; (6.1)

moreover, the fluid potential scale is set so that

qf (0) = 0. (6.2)

We non-dimensionalize using the compaction length scale [27]

Lc =

(
k0µs
µf

)1/2

(6.3)

by defining the dimensionless variables

x = Lc x̌, qf = |ρr|gLc q̌f , qs = |ρr|gLc q̌s, u =
k0|ρr|g
µf

ǔ, vs =
k0|ρr|g
µf

v̌s.

After dropping the check accent marks, (1.1)–(1.5) become

u+ φ2+2Θq′f = 0, (6.4)

u′ + φ(qf − qs) = 0, (6.5)

[qs − 1
3 (1− 4φ)v′s]

′ = 1− φ, (6.6)

v′s − φ(qf − qs) = 0. (6.7)

Where φ > 0, we can reduce the system to a single equation in terms of u as
follows. First, (6.5) and (6.7) imply that v′s = −u′ and qs = u′/φ+qf . Equation (6.4)
gives q′f = −φ−2−2Θu. Finally, (6.6) reduces to

φ2+2Θ
(3 + φ− 4φ2

3φ
u′
)′
− u = φ2+2Θ(1− φ). (6.8)

On an open interval where φ = 0, the equations reduce to u = 0, q′s = 1, and v′s = 0.

6.1. Closed form solutions. We consider the three porosity functions

φ0(z) = φ0, (6.9)

φJ(z) =

{
φ− if z ≤ 0,

φ+ if z > 0,
(6.10)

φ2(z) =

{
0 if z ≤ 0,

φ+z
2 if z > 0,

(6.11)

where φ0 > 0 and φ− 6= φ+ gives a discontinuous jump in φJ. Note that φ0 and φ2

satisfy the condition (2.18), since in fact φ
Θ−1/2
2 ∇φ2 = 2φ+z

2Θ for z > 0 is indeed in
L∞(Ω). However, φJ does not satisfy this condition.
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6.1.1. Constant porosity. Taking φ(z) = φ0 > 0, (6.8) reduces to

R−2u′′ − u = φ2+2Θ
0 (1− φ0), R = R(φ0) =

(3 + φ0 − 4φ2
0

3
φ1+2Θ

0

)−1/2

.

Solving the differential equation with the potential scale condition (6.2) gives the full
solution in terms of the constants a and b as

u = −φ2+2Θ
0 (1− φ0)

[
1 + a cosh(Rz) + b sinh(Rz)

]
, (6.12)

qf = (1− φ0)

{
z − b

R
+

1

R

[
a sinh(Rz) + b cosh(Rz)

]}
, (6.13)

qs = (1− φ0)

{
z − b

R
+

1− 4φ0

3 + φ0 − 4φ2
0

φ0

R

[
a sinh(Rz) + b cosh(Rz)

]}
. (6.14)

The boundary conditions (6.1) imply that

vs = −u, a = − 1

cosh(RL)
, and b = 0. (6.15)

6.1.2. Discontinuous porosity. For φ = φJ in (6.10), we can solve (6.8) on
each subdomain where φ is constant. If both φ+ and φ− are positive, the result is
(6.12)–(6.14), i.e.,

u± = φ2+2Θ
± (1− φ±)

[
1 + a± cosh(R±z) + b± sinh(R±z)

]
. (6.16)

For (6.4)–(6.7) to make sense at the interface z = 0, the functions that are
differentiated must be continuous. The scale condition (6.2) enforces continuity of
qf . We must impose continuity at z = 0 on u (and thereby on vs) and on

qs(0)− 1

3
(1− 4φ) v′s(0) =

( 1

φ
+

1

3
(1− 4φ)

)
u′(0) = R−2φ−2−2Θ u′(0). (6.17)

With the boundary condition (6.1), i.e., u±(±L) = 0, we have four conditions that
determine a± and b±. Letting F± = φ2+2Θ

± (1 − φ±), the coefficients are determined
by solving the relatively simple linear system

cosh(R+L) 0 sinh(R+L) 0
0 cosh(R−L) 0 − sinh(R−L)
F+ −F− 0 0
0 0 R−(1− φ+) −R+(1− φ−)



a+

a−
b+
b−

=


−1
−1

F− −F+

0

. (6.18)

In the case that φ− = 0 but φ+ > 0, the solution to (6.8) is (6.12)–(6.14) for
z > 0, but for z < 0, u = vs = 0 (i.e., a− = b− = 0) and qs = z + c−. The interface
conditions imply that

a+ = −1, b+ =
cosh(R+L)− 1

sinh(R+L)
, and c− = −b+(1− φ+)/R+. (6.19)

Finally, if φ− > 0 and φ+ = 0, then

a− = −1 b− =
1− cosh(R−L)

sinh(R−L)
and c+ = −b−(1− φ−)/R−, (6.20)

where (6.12)–(6.14) gives the solution for z < 0 and for z > 0, u = vs = 0 (i.e.,
a+ = b+ = 0) and qs = z + c+.
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6.1.3. Quadratic porosity approximation. The final closed form solution is
an approximation to the system. Set Θ = 0 and take φ(z) = φ2(z) from (6.11).
Working on z > 0, the differential equation (6.8) reduces to

φ2
+z

4
(3 + φ+z

2 − 4φ2
+z

4

3φ+z2
u′
)′
− u = φ2

+z
4(1− φ+z

2).

Assuming that φ = φ+z
2 � 1, we retain only the lowest order terms, i.e.,

φ+z
4(z−2u′)′ − u = φ2

+z
4,

which reduces to the Euler equation φ+z
2 u′′ − 2φ+z u

′ − u = φ2
+z

4. The Euler
exponents are

r1 =
3 +

√
9 + 4/φ+

2
> 3 and r2 =

3−
√

9 + 4/φ+

2
< 0,

and, if φ+ 6= 1/4, the solution for z > 0 is

u = −vs =
φ2

+

1− 4φ+

(
L4−r1 zr1 − z4

)
, (6.21)

qf =
1

1− 4φ+

(
z − L4−r1 zr1−3

r1 − 3

)
, (6.22)

qs = z. (6.23)

For z < 0 where φ = 0, the solution is u = vs = 0 and qs = z.

6.2. Verification of the scaled method. We now present numerical results for
the locally conservative scaled mixed method (4.2)–(4.5) and its mass lumped approx-
imation using (5.2). We use the BR spaces for the Stokes part of the system. In one
dimension, the velocity part of the RT and BR spaces reduce to piecewise continuous
linear functions, and the pressure part is the set of piecewise discontinuous constant
functions. The theoretical bound in Theorem 4 would guarantee a convergence rate
of O(h) for the potentials and velocities, provided φ satisfies (2.18).

In all tests, we take L = 2, so that the domain extends four compaction lengths,
and we fix Θ = 0. Each problem is solved on a uniform mesh of n cells. Our computer
code is based on the deal.II software library [12].

We chose above to fix the pressure scale of q̃f by imposing (6.2) in the interior
of the domain. This works well for the closed form solution. However, it does not set
the scale properly in our numerical implementation of the problems. Instead, we set
the pressure scale of q at the point where it achieves its maximum value. Moreover,
in the two cases where the porosity degenerates, we also set the scale of q at the point
where it achieves its minimum value.

6.2.1. Constant porosity tests. For the first set of tests, φ(z) = φ0 = 0.04.
This problem tests the overall performance of the code when there is no degeneracy
in the porosity. The computed and closed form solutions using n = 80 are shown in
Fig. 6.1, although the former is so accurate that it obscures the latter.

In Table 6.1 we give the relative errors of the potentials as measured in the
L2-norm for both the scaled mixed method and its mass lumped approximation.
The optimal rates of convergence O(h) are observed for q̃f , qf , and q. We also
measured the errors in the discrete L2 norm, which is the usual L2-norm but evaluated
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Fig. 6.1. Constant porosity (6.9) with φ0 = 0.04. The computed solution as thick dashed
lines, and the closed form solution as thin, solid dark lines. Shown are the porosity φ (phi), u,
vs = −u, qf , and qs, as well as the scaled ṽr and q̃f .

Table 6.1
Constant porosity potential errors. Relative L2 errors and convergence rates for the

potentials. We show results for the scaled mixed method, the mass lumped approximation, and the
scaled mixed method but using the discrete L2-norm given by using the midpoint rule.

q̃f qf q

n L2 error rate L2 error rate L2 error rate
Scaled mixed method

20 1.428e-02 1.00 3.237e-02 1.00 3.435e-02 1.00
40 7.139e-03 1.00 1.618e-02 1.00 1.717e-02 1.00
80 3.569e-03 1.00 8.090e-03 1.00 8.581e-03 1.00

160 1.784e-03 1.00 4.044e-03 1.00 4.290e-03 1.00
Mass lumped method

20 1.427e-02 1.00 3.236e-02 1.00 3.434e-02 1.00
40 7.139e-03 1.00 1.618e-02 1.00 1.717e-02 1.00
80 3.569e-03 1.00 8.090e-03 1.00 8.581e-03 1.00

160 1.784e-03 1.00 4.044e-03 1.00 4.290e-03 1.00
Scaled mixed method, discrete norm (midpoint rule)

20 8.597e-04 1.46 1.949e-03 1.46 1.411e-03 0.91
40 2.794e-04 1.62 6.334e-04 1.62 5.422e-04 1.38
80 8.263e-05 1.76 1.873e-04 1.76 1.708e-04 1.67

160 2.271e-05 1.86 5.149e-05 1.86 4.813e-05 1.83
320 5.972e-06 1.93 1.354e-05 1.93 1.279e-05 1.91

using the midpoint quadrature rule. This is a norm for which one might expect to
see superconvergence. Indeed, we see superconvergence for all three potentials. On
coarser meshes we see O(h3/2) for the fluid potentials and O(h) for the mixture, but
on fine meshes the rates rise to O(h2) for all three variables. Similar superconvergence
results hold for the mass lumped approximation.

In Table 6.2 we give the relative errors of the velocities in the L2-norm for both
the scaled mixed method and its mass lumped approximation. The velocities are
approximated by piecewise linears, so the optimal rates of convergence would be
O(h2). This is precisely what is observed for each of the velocities ṽf , u, and vs.
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Table 6.2
Constant porosity velocity errors. Relative L2 errors and convergence rates for the veloc-

ities using the scaled mixed method and the mass lumped approximation.

ṽf u vs
n L2 error rate L2 error rate L2 error rate

Scaled mixed method
20 1.147e-03 1.82 4.897e-05 1.82 4.897e-05 1.82
40 2.972e-04 1.95 1.269e-05 1.95 1.269e-05 1.95
80 7.500e-05 1.99 3.203e-06 1.99 3.203e-06 1.99

160 1.879e-05 2.00 8.027e-07 2.00 8.027e-07 2.00
Mass lumped method

20 1.650e-03 1.72 7.047e-05 1.72 7.047e-05 1.72
40 4.381e-04 1.91 1.871e-05 1.91 1.871e-05 1.91
80 1.113e-04 1.98 4.753e-06 1.98 4.753e-06 1.98

160 2.794e-05 1.99 1.193e-06 1.99 1.193e-06 1.99
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Fig. 6.2. Discontinuous porosity (6.10) with φ− = 0 and φ+ = 0.04. The computed solution
as thick dashed lines, and the closed form solution as thin, solid dark lines. Shown are the porosity
φ (phi), u, vs = −u, qf , and qs, as well as the scaled ṽr and q̃f .

6.2.2. Discontinuous porosity tests. For the next set of tests, we use the
discontinuous porosity function (6.10) with φ− = 0 and φ+ = 0.04. Not only is there
a jump in porosity, but it is also degenerate for z < 0. The discontinuity will land on
a mesh point if n is even, and it will land in the center of a cell if n is odd.

The computed and closed form solutions using n = 80 are shown in Figure 6.2.
The discontinuity in qs is clearly evident. Note that the computation of ṽr has some
difficulty near z = 0 where the porosity is discontinuous. This difficulty is not seen
in u and vs, since compared to ṽr, these velocities are multiplied by φ. Overall, the
computed solution is an excellent match to the closed form one.

In Table 6.3 we give convergence results for the potentials using the scaled mixed
method. The mass lumped approximation has nearly identical results. Even though
φ does not satisfy the condition (2.18) and is in fact discontinuous, we see good
convergence results. When n is even and the grid resolves the discontinuity in φ,
we see optimal convergence rates O(h) for all three potentials and superconvergence
O(h2) when using the discrete norm.

When n is odd and the discontinuity in φ is not resolved, we see some degradation
in the convergence rate for q. Not shown is that superconvergence is not seen in the
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Table 6.3
Discontinuous porosity potential errors. Relative L2 errors and convergence rates for

the potentials. We show results for the scaled mixed method, including one case using the discrete
L2-norm given by using the midpoint rule, and one case with the L2-norm restricted to the interior
(i.e., away from the discontinuity). When n is even, the discontinuity is at a computational mesh
point, but not when n is odd.

q̃f qf q

n L2 error rate L2 error rate L2 error rate
Scaled mixed method, n even

20 1.040e-02 1.00 2.852e-02 1.00 3.622e-02 1.00
40 5.202e-03 1.00 1.426e-02 1.00 1.811e-02 1.00
80 2.601e-03 1.00 7.133e-03 1.00 9.055e-03 1.00

160 1.301e-03 1.00 3.567e-03 1.00 4.527e-03 1.00
Scaled mixed method, n odd

21 9.961e-03 0.98 2.744e-02 0.98 3.955e-02 0.87
41 5.140e-03 0.99 1.416e-02 0.99 2.321e-02 0.80
81 2.611e-03 0.99 7.184e-03 1.00 1.428e-02 0.71

161 1.316e-03 1.00 3.615e-03 1.00 9.218e-03 0.64
Scaled mixed method, n even, discrete norm (midpoint rule)
20 9.536e-04 1.64 2.615e-03 1.64 1.231e-04 1.46
40 2.529e-04 1.91 6.935e-04 1.91 3.860e-05 1.67
80 6.225e-05 2.02 1.707e-04 2.02 1.102e-05 1.81

160 1.505e-05 2.05 4.128e-05 2.05 2.964e-06 1.89
Scaled mixed method, n odd, interior

21 9.126e-03 0.68 2.502e-02 0.68 3.016e-02 0.74
41 4.983e-03 0.90 1.367e-02 0.90 1.658e-02 0.89
81 2.572e-03 0.97 7.052e-03 0.97 8.670e-03 0.95

161 1.304e-03 0.99 3.576e-03 0.99 4.431e-03 0.98

discrete norm. To test whether the error near the discontinuity pollutes the solution,
we computed the interior errors, given by computing the error in all cells of the mesh
except the five near the discontinuity. That is, we restrict the domain of integration of
the L2-norm to be interior to where φ is smooth by removing the center cell and its two
neighbors on each side. This mesh dependent norm shows good O(h) convergence,
and so indeed the error is localized to the region of the discontinuity. We do not,
however, observe superconvergence in the discrete interior norm when n is odd.

The errors in the velocities are given in Table 6.4. We see good rates of conver-
gence when n is even, being O(h2) for all cases except the scaled method’s ṽf , which is
still O(h3/2). When n is odd, we observe O(h) convergence (we show only the scaled
method, but the mass lumped approximation is similar).

6.2.3. Quadratic porosity tests. For the final set of tests, we use the quadratic
porosity (6.11) with φ+ = 0.001, i.e., φ2(z) = 0.001 z2 for z > 0 and φ2(z) = 0 for
z ≤ 0. The maximal value of φ is φ(2) = 0.004, so the analytic solution (6.21)–(6.23)
should approximate the true solution reasonably well, at least if n is not too large.

The computed and closed form solutions agree quite well, as shown in Figure 6.3
using n = 80, even though there is a boundary layer near z = 2 in the velocities that
is difficult to resolve. Convergence results for the potentials and velocities are given
in Tables 6.5 and 6.6 using the scaled method (the mass lumped approximation gives
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Table 6.4
Discontinuous porosity velocity errors. Relative L2 errors and convergence rates for the

velocities. We show results for the scaled mixed method and the mass lumped approximation using
(5.2). When n is even, the discontinuity is at a computational mesh point, but not when n is odd.

ṽf u vs
n L2 error rate L2 error rate L2 error rate

Scaled mixed method, n even
20 2.929e-03 1.33 4.714e-05 1.85 4.714e-05 1.85
40 1.116e-03 1.39 1.213e-05 1.96 1.213e-05 1.96
80 4.120e-04 1.44 3.090e-06 1.97 3.090e-06 1.97

160 1.491e-04 1.47 7.850e-07 1.98 7.850e-07 1.98
Mass lumped method, n even

20 1.695e-03 1.73 7.076e-05 1.73 7.076e-05 1.73
40 4.499e-04 1.91 1.878e-05 1.91 1.878e-05 1.91
80 1.143e-04 1.98 4.770e-06 1.98 4.770e-06 1.98

160 2.869e-05 1.99 1.197e-06 1.99 1.197e-06 1.99
Scaled mixed method, n odd

21 2.027e-03 1.20 9.004e-05 1.25 9.004e-05 1.25
41 1.055e-03 0.98 4.524e-05 1.03 4.524e-05 1.03
81 5.614e-04 0.93 2.368e-05 0.95 2.368e-05 0.95

161 2.925e-04 0.95 1.227e-05 0.96 1.227e-05 0.96
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Fig. 6.3. Quadratic porosity (6.11) with φ+ = 0.001. The computed solution as thick dashed
lines, and the closed form solution as thin, solid dark lines. Shown are the porosity φ (phi), u,
vs = −u, qf , and qs, as well as the scaled ṽr and q̃f .

nearly identical results). We expect convergence only if the approximate true solution
is adequate. Indeed, we see some degradation of the results as n becomes large,
because the numerical solution does not converge to the closed form solution (6.21)–
(6.23). When the approximation is adequate, we see that the potentials converge to
O(h). (The discrete norm does not display superconvergence for this test problem,
but the errors are much smaller.) The velocities converge to at least O(h), and may
approach O(h2) before the grid becomes too fine.

6.3. Condition number as positive φ tends to zero. We now turn our
attention to the nondegenerate problem, so that we can solve the system of equations
using other mixed formulations. We compare to a relatively standard MFEM and
to the expanded MFEM [8]. We also compare to a symmetry preserving formulation
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Table 6.5
Quadratic porosity potential errors. Relative L2 errors and convergence rates for the

potentials for the scaled mixed method. When n is even, the transition to positive porosity is at a
computational mesh point, but not when n is odd.

q̃f qf q

n L2 error rate L2 error rate L2 error rate
Scaled mixed method, n even

20 5.326e-03 1.01 3.037e-02 1.01 3.490e-02 1.00
40 2.656e-03 1.00 1.520e-02 1.00 1.747e-02 1.00
80 1.329e-03 1.00 7.667e-03 0.99 8.768e-03 0.99

160 6.675e-04 0.99 3.963e-03 0.95 4.457e-03 0.98
Scaled mixed method, n odd

21 5.070e-03 1.01 2.893e-02 1.01 3.324e-02 1.00
41 2.592e-03 1.00 1.484e-02 1.00 1.704e-02 1.00
81 1.313e-03 1.00 7.575e-03 0.99 8.660e-03 0.99

161 6.634e-04 0.99 3.940e-03 0.95 4.430e-03 0.98

Table 6.6
Quadratic porosity velocity errors. Relative L2 errors and convergence rates for the ve-

locities for the scaled mixed method. When n is even, the transition to positive porosity is at a
computational mesh point, but not when n is odd.

ṽf u vs
n L2 error rate L2 error rate L2 error rate

Scaled mixed method, n even
20 3.663e-04 1.23 1.546e-06 1.14 1.546e-06 1.14
40 1.166e-04 1.65 5.104e-07 1.60 5.104e-07 1.60
80 3.252e-05 1.84 1.429e-07 1.84 1.429e-07 1.84

160 1.079e-05 1.59 4.342e-08 1.72 4.342e-08 1.72
Scaled mixed method, n odd

21 3.408e-04 1.27 1.444e-06 1.19 1.444e-06 1.19
41 1.115e-04 1.67 4.886e-07 1.62 4.886e-07 1.62
81 3.179e-05 1.84 1.397e-07 1.84 1.397e-07 1.84

161 1.071e-05 1.58 4.304e-08 1.71 4.304e-08 1.71

in which we balance the degeneracy by using a square-root scaling of the coefficient
φ2+2Θ in (2.4) and modify (2.5), as was done in, e.g., [19]. However, we would still
need to divide by φ in a standard approach, so we modify the test function as was
done in our scaled method and in [6]. (See [4] for explicit definitions of the three
methods.) We consider the two nonconstant porosities (6.10)–(6.11) (φ− = 0), but
add a small positive constant φε > 0 to each. We take φε → 0+ and observe the
condition number of the linear system that is solved by each method.

In Fig. 6.4 we see that the condition number increases rapidly as φε → 0 except
for the scaled method, which remains stable. Indeed, as we saw already, the scaled
method works well even when the porosity is identically zero in parts of the domain.

7. Numerical Results in Two Dimensions. Finally, we present numerical
results for the mass lumped approximation of the scaled method (4.2)–(4.5), (5.2)
using the TH Stokes spaces and the deal.II software library [12]. Our two-dimensional
problem is related to simulation of the mantle near a mid-ocean ridge (MOR).
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Fig. 6.4. Compacting column. Condition numbers for the standard, expanded, symmetric, and
scaled formulations as φε → 0+, for the porosities defined in (6.9)–(6.11) plus φε.
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Fig. 7.1. MOR-like example with zero porosity. We show the solid matrix potential qs as a
contour in Kg/(m·s2) and the velocity vs as streamlines.

If porosity is constant, φ = φ0, and one sets ∇ · u = ∇ · vs = 0, then (1.1)–(1.5)
can be solved in an infinite quarter-plane {x > 0, z > 0} [36]. This problem describes
viscous corner flow if, at the top of the mantle {z = 0}, one sets the MOR spreading
rate as a boundary condition vs · τ = vs · x̂ = U0, and on the ridge axis {x = 0}, one
sets the symmetry condition vf · ν = vf · ẑ = 0 and ∂vs/∂x = 0. The solution is

q = qs = qf = (1− φ0)
( 4µsU0

π(x2 + z2)
+ |ρr| g

)
z, (7.1)

vs =
2U0

π(x2 + z2)

(tan−1(x/z) (x2 + z2)− xz
−z2

)
, (7.2)

u =
k0(1− φ0)φ2+2Θ

0

µf

{ 4µsU0

π(x2 + z2)2

(
2xz

z2 − x2

)
+ ρrg

}
. (7.3)

We solve the full system of equations on the rectangular domain −160 km < x <
160 km, 0 < z < 160 km. The MOR is at (0, 0). We take µs = 1019 Pa·s, µf = 1 Pa·s,
ρs = 3300 kg/m3, ρf = 2800 kg/m3, k0 = 10−8 m2, Θ = 0, and U0 = 10−9 m/s
= 3.1536 cm/yr. The boundary conditions are defined by imposing (7.2) on the Stokes
velocity vs and (7.1) on the potential q = qf . However, to avoid the singularity at the
corner, we translate x to x − ` when x < 0 and x + ` when x > 0 before evaluating
(7.1)–(7.2), where we arbitrarily set ` = 20 m. We use a mesh of 160× 80 elements.

In Fig. 7.1 we show the Stokes solution using φ = 0. Note that the mantle flows
up to the MOR and outward from there. There is no fluid melt in this computation,
although our code solves for the Darcy system as well as the Stokes system. Rather
than normalizing the average of q to zero, we set a single point to zero.
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Fig. 7.2. MOR-like example. We show the porosity and the solutions (vs, qs), (ṽr, q̃f ), and
(u, qf ). The porosity and potentials in Kg/(m·s2) are shown as contours, the relative velocity ṽr as
arrows, and the other velocities as streamlines.

We then set a a not identically vanishing porosity by the formula

φ(x, z) =

0.05
(120 km− z

120 km

)2(
1− |x|

z + `

)
if z ≤ 120 km and |x| ≤ z + `,

0 otherwise,
(7.4)

wherein we could offset by any value of `, but we simply chose to use the previously
chosen value ` = 20 m. In Fig. 7.2, we show the porosity and the solutions (vs, qs)
to the Stokes system, (ṽr, q̃f ) to the scaled Darcy system, and (u, qf ) to the Darcy
system. The form of the solution is dictated by our (arbitrary) choice of φ. The
scaled and unscaled Darcy solution shows fluid melt rising and focusing into the
MOR, and some melt leaving the domain to form new crust. The Stokes solution
varies significantly from the case in Fig. 7.1 where there is no melt. The solid matrix
rises at the bottom, but it falls at the top near the MOR to compensate for the rise of
fluid melt to the surface. The scaled potential q̃f is much smoother than qf , and so the
former is much easier to approximate. The porosity vanishes in a significant portion
of the domain; nevertheless, there is no difficulty solving the system accurately.

8. Conclusions. We developed a mathematically well-posed, mixed variational
framework for McKenzie’s equations governing the mechanics of a mixture of molten
and solid materials [28], assuming that the porosity φ is given and satisfies the hy-
pothesis (2.18). Our formulation handles the regions where there are two phases (i.e.,
the mixture variable φ > 0) as well as the mathematically degenerate regions where
there is only the single solid matrix phase (i.e., φ = 0). The formulation is based on
a careful scaling of the Darcy variables by powers of the porosity [6].

We defined a mixed finite element method (MFEM) based on our scaled varia-
tional formulation and proved its optimal-order convergence. We also presented two
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modifications, one that is locally mass conservative, and the other involving mass
lumping (5.2) to simplify and increase solver efficiency on rectangular meshes.

Numerical results of a one-dimensional compacting column with various porosity
functions (6.9)–(6.11) showed an excellent match to the closed form solutions for φ0

and φJ, as well as a good match to the approximate solution for φ2. Degeneracies in
the porosity posed no difficulties for the simulations; in fact, the condition number
of the linear system is nearly insensitive to degeneracies in φ. The results showed
that the method indeed achieves optimal convergence and that the mass lumping
approximation does not degrade the results in any way.

The nondegenerate constant porosity example showed O(h) convergence for the
potentials and superconvergence of order O(h2) when measured in the discrete mid-
point rule norm. The velocity achieved the optimal O(h2) convergence for this one-
dimensional problem. The degenerate, quadratic porosity example also showed op-
timal O(h) convergence of the potentials and perhaps O(h2) convergence of the ve-
locities, regardless of whether the computational mesh resolved the point where φ
transitions from zero to positive.

The degenerate and discontinuous porosity example had an interesting set of
results. Even though the porosity does not satisfy (2.18), the MFEM achieved good,
but not necessarily optimal, convergence in all cases. When the computational mesh
resolved the transition point of φ, we saw O(h) convergence for the potentials and
superconvergence of order O(h2) when measured in the discrete midpoint rule norm.
We also saw O(h3/2) convergence for ṽr and O(h2) convergence for u and vs. The
mass lumped approximation actually improved the convergence to O(h2) for all three
velocities. However, when the computational mesh did not resolve the transition
point in φ, we saw O(h) convergence for the potentials q̃f and qf , but only O(h1/2)
for q. The discrete norm did not help, but we did verify that the main errors were
localized to a region near the transition point, since removing the error there led to
O(h) convergence for all three potentials. The velocities converged to order O(h).
This example suggests that the condition (2.18) may not be strictly necessary.

In the full model of mantle dynamics, the porosity evolves and so must be approx-
imated. In a finite element or discontinuous Galerkin method, one would naturally
approximate φ by continuous or discontinuous polynomials on each element of the
computational mesh. Any jumps in the porosity will then naturally lie on the bound-
aries of the elements, and so we would expect our method to perform well.

A two-dimensional test example akin to a mid ocean ridge showed the strong
effect that melt can have on the velocity field. Even though the porosity vanished
in much of the domain, our locally conservative scaled finite element method showed
good results. Using the mass lumped approximation, the method easily reduces to
a single Stokes system with two potentials, and the efficiency of the linear solver is
fairly insensitive to the absence of melt. We believe that our method is highly suited
to realistic problems of the mechanics of mantle dynamics, and that it can be used
effectively as a component of the full mantle dynamics problem.
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