ON THE IMPLEMENTATION OF MIXED METHODS
AS NONCONFORMING METHODS
FOR SECOND ORDER ELLIPTIC PROBLEMS

TODD ARBOGAST anp ZHANGXIN CHEN

ABSTRACT. In this paper we show that mixed finite element methods for a fairly
general second order elliptic problem with variable coefficients can be given a non-
mixed formulation. (Lower order terms are treated, so our results apply also to
parabolic equations.) We define an approximation method by incorporating some
projection operators within a standard Galerkin method, which we call a projection
finite element method. It is shown that for a given mixed method, if the projection
method’s finite element space M}, satisfies three conditions, then the two approxi-
mation methods are equivalent. These three conditions can be simplified for a single
element in the case of mixed spaces possessing the usual vector projection operator.
We then construct appropriate nonconforming spaces Mp, for the known triangu-
lar and rectangular elements. The lowest-order Raviart-Thomas mixed solution on
rectangular finite elements in IR? and IR3, on simplices, or on prisms, is then imple-
mented as a nonconforming method modified in a simple and computationally trivial
manner. This new nonconforming solution is actually equivalent to a postprocessed
version of the mixed solution. A rearrangement of the computation of the mixed
method solution through this equivalence allows us to design simple and optimal
order multigrid methods for the solution of the linear system.

1. Introduction. We consider the following elliptic problem for u on the bounded
domain 2 C IR", n = 2 or 3, with boundary 02 =11 UI5, I' NIy = {:

1.1a) V-o+du=f in £,

1.1b) oc=—-a(Vu+bu—c) in (2,
1.1c) w=—g on Iy,

1.1d) oc-v=0 on Iy,

where a(x) is a uniformly positive definite, bounded, symmetric tensor, b(z) and
c(z) are bounded vectors, d(z) > 0 is bounded, f(z) € L3(02), g(x) € H?*($)
(H*(02) = Wk2($) is the Sobolev space of k differentiable functions in L2(£2)),
and v is the outer unit normal to the domain. Let (-, -)s denote the L?(S) inner
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product (we omit S if S = £2). Assume that the problem is coercive in the sense
that there is a positive constant  such that for any v € (L2(£2))" and w € L?(£2),

(1.2) (a™ v, v) + (bw, v) + (dw, w) > /i{||v||%L2(Q))n + (dw,w)}

(this immediately implies that if d = 0 a.e. on a set S, then b = 0 a.e. on 5).
Assume also that if I'T = (), d > 0 on some set of positive measure, so that if
v = —a(Vw + bw — ¢), then a generalized Poincaré inequality gives us control over
w.
Problem (1.1) is recast in mixed form as follows. Let

H(div; 2) = {v e (I*(2))" : V-v € L*(2)},
V={ve H(div;2):v-v=0on Iy},
W = L*(0).

Then the mixed form of (1.1) for the pair (o,u) € V x W is

(1.3a) (V-o,w)+ (du,w) = (f,w), YweW,
(1.3b) (a to,v) — (u,V-v) + (bu,v) = (c,v) + (g,v-v)p,, YveEV.

In 1985, Arnold and Brezzi [1] showed that if b = ¢ = d = 0, and n = 2, the
mixed finite element methods for the even order Raviart-Thomas spaces defined
over triangles are equivalent to certain nonconforming methods. In particular, the
lowest order Raviart-Thomas space defined over triangles [21] is equivalent to a
simple modification of the P;-nonconforming Galerkin method. This nonconform-
ing method yields a symmetric and positive definite problem (i.e., a minimization
problem); whereas, the mixed formulation is a saddle point problem.

Marini [18] noted that the computational cost of this modification is almost nil,
if a is a piecewise constant scalar. This equivalence has been exploited to obtain
optimal L*°(2)-error estimates for the mixed method [16]. Recently, Brenner [4]
has used the equivalence to define and analyze an optimally convergent multigrid
method. Chen [9], [11] has derived some nonconforming methods that are equiva-
lent to certain lower dimensional mixed methods, and exploited superconvergence
properties to obtain a better approximation to the scalar variable.

Analogous equivalences for problems with nonzero low order terms or for prob-
lems posed in higher dimensions (say n = 3) have not been shown. It is necessary
to obtain an equivalence for d # 0 to treat time dependent, parabolic problems.
Moreover, an equivalence has not been shown for rectangular mixed methods, even
though they are used widely in practice. We consider such problems in this paper,
concentrating on the case of the lowest order Raviart-Thomas mixed method de-
fined over rectangles or rectangular parallelepipeds. An outline of the paper and a
summary of our results follows.

We begin in Section 2 with the development of a general theory on the equivalence
of mixed and nonconforming methods. Our theory is similar to but more general
than that developed earlier by one of the authors [11]. We generalize the results of
Arnold and Brezzi [1] in defining a nonconforming method for some finite element
space Mp,. It is a Galerkin method with the addition of some special projection
operators, and hence we will call it a projection finite element method. We then
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develop three conditions on M} that are sufficient to imply the equivalence of the
projection method to a given mixed method. In Section 3 we consider the problem
of constructing finite element spaces that satisfy these three conditions. We derive
a simple local criterion that guarantees the equivalence in the case of mixed spaces
possessing the usual vector projection operator. In Sections 4 and 5, we use this
general theory to define equivalent projection methods for various mixed methods
for the problem (1.3). We treat the mixed spaces of Raviart and Thomas [21],
Nedelec [19], Brezzi, Douglas, and Marini [8], Brezzi, Douglas, Durdn, and Fortin
[6], and Brezzi, Douglas, Fortin, and Marini [7] defined over triangles or rectangular
parallelepipeds in IR? and IR®. Our nonconforming spaces perhaps illuminate some
of the relationships between these mixed spaces. We point out that projection finite
element spaces are not necessarily unique, since two such spaces are known for the
lowest order Raviart-Thomas space over triangles: the one defined by Arnold and
Brezzi [1] uses cubic “bubble functions” while the one defined by Chen [11] uses
quadratic bubble functions.

Then, for several sections, we restrict our attention to the lowest-order Raviart-
Thomas mixed method on rectangles. In Section 6, our general projection space
is shown to have a nice structure. It is a simple augmentation of a standard non-
conforming Galerkin space with P»-bubble functions. These bubble functions are
orthogonal in some sense to the standard nonconforming part of the solution. Di-
agonal a and a modification to the mixed method, in which the coefficients are
projected into the space of piecewise constants, allows us to exploit this fact. We
can therefore give an explicit expression for the bubble function corrections (see
formula (6.9) below), and so the method is easily implemented. A trivial post-
processing of its solution recovers the mixed solution. However, the nonconforming
solution has better convergence properties than the mixed solution in that the scalar
variable is approximated to the optimal order two (see Section 7). Alternatively,
we may view the nonconforming solution as an approximation to u obtained by a
special postprocessing of the mixed solution.

This equivalence is exploited in Section 8 to derive optimal order multigrid algo-
rithms for the mixed and nonconforming methods. Unlike the multigrid algorithm
imposed in [4] for the lowest-order Raviart-Thomas mixed triangular finite element
method, our multigrid algorithms are based on standard nonconforming finite ele-
ment methods. The bubble functions can be handled separately in the computations
because of the orthogonality; in fact, the mixed method solution can be obtained
without the need to obtain multigrid approximations to the bubble functions. The
convergence of the multigrid algorithms is shown in the appendix.

The above results will be shown explicitly in two space dimensions. We will ex-
tend them to the three dimensional case of mixed methods defined over rectangular
parallelepipeds in Section 9, and also in an analogous way to simplices and prisms
in Sections 10 and 11.

Problem (1.1) arises in many practical applications. We note only that the simple
formula (6.5) given below for the calculation of the flux variable o is very useful in
calculations and in obtaining a priori estimates for the numerical electric fields of
semiconductor devices [12].

2. Equivalent Projection Finite Element Methods. To define a finite ele-
ment method, we need a partition &, of {2 into elements F, say, simplexes, rect-
angular parallelepipeds, and/or prisms, where only edges or faces on 9f2 may be
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curved. In &, we also need that adjacent elements completely share their common
edge or face; let &, denote the set of all interior edges (n = 2) or faces (n = 3)
e of &,. We tacitly assume that 0, # (0. Finally, each exterior edge or face has
imposed on it either Dirichlet or Neumann conditions, but not both.

Let V), x W), € V x W denote some standard mixed finite element space for
second order elliptic problems defined over &, such that V -V}, = W}, (see, e.g., [6],
(7], [8], [13], [19], and [21]). This space is finite dimensional and defined locally on
each element F € &, so let Vi (E) = Vi|g and Wy (E) = Wy|g. The constraint
Vi, C V says that the normal components of the members of V} are continuous
across the interior boundaries in 0. Following [1], we relax this constraint on V},
by defining

Vi ={v € L*(2) : v|g € V4(E) for each E € &,}.

We then need to introduce Lagrange multipliers to enforce the required continuity
on V},, so define

L, = {ue L2< U e) : pile € Vi, - V| for each e € 85h}.
e€88h

The mixed finite element solution of (1.3) is (op,up) € Vi, x W, satisfying

(2.1a) (V-op,w)+ (dup,w) = (f,w), Yw e W,
(2.1b) (a ton,v) — (up, V - v) + (bup,v) = (c,v) + (g,v-v)p,, Yo € V.

It has a unique solution by (1.2). The unconstrained problem is to find (o, up, Ap) €
Vi, x W}, x Ly, such that

(2.2a) > (Veonw)g+ (dun,w) = (f,w), Yw € Wy,
Ecé&y,
(2.2b) (a top,v) — Z [(un, V- v)g — (An.v - vE)amon] + (bus,v)
Eec&y
= (c,v) + (g,v-v)p,, Vv €V,
(2.2¢) Z (on - vE, opane =0, Vu € Lp.
Ecé&y,

Note that o, and wy are identical in the two formulations, since (2.2¢) enforces
op € Vp,.

We need some projection operators. Let Py, : L%(£2) — W}, denote L?(£2)-
projection: For ¢ € L?(£2),

(2.3) (¢ — Pw,p,w) =0, Yw € W,

Similarly let Pr, : L?(Ueeag, e) — Lp be L?(Uecas, e)—proje(ztion. To handle vari-
able a(z), we introduce the weighted (L2(£2))"-projection Py, : (L2(£2))" — V,
defined by

(2.4) (a (o — 75Vh<p),fu) =0, YveW,.
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Note that each of these operators is defined locally on each E € &, or on each
e € 0&y,, since only V}, has a continuity constraint.

We define now in an abstract sense our projection finite element method. Let
M, denote some as yet unspecified finite dimensional finite element space defined
over &, such that the degrees of freedom of My |r, vanish. We seek ¢y, € My — g
satisfying

(2.5) Z (Pv, [a(Ven + bPw, ¥n — ©)], VE) , + (dPw, Y. Pw, &)
EcE),

= (fv PWh£)7 V£ S Mh-

Our goal is to define M}, so that

(2.6a) on = —Pv, [a(Vipn + bPw, Pn — )],
(2.6b) up = Pw, ¥n,
(2.6¢) An = PL,Yn-

The first requirement is that M} give rise to a legitimate finite element method
defined by (2.5); hence, we require that there exists a unique solution to the prob-
lem. Since (2.5) is a square linear system, uniqueness implies existence. For unique-
ness, if ¢, € M), satisfies

> (Pila(Vibn + bPw, n)], VE) , + (dPw, von, Pw, ) =0, V€ € My,

Eegh

then we need to show that ¢, = 0. Take £ = 1), note that by (2.4),

(PVh(avwh V’Qbh) a_lpvh (aVy), aV’QDh)

=

(a PVh aVv,bh) th (av¢h))
(PVh (abPth/)h V@/)h) (a_IPVh ab'PWh@/)h) an)h)

= (vPw, ¥n. P, (aVipn)) &

and then apply coercivity (1.2) to conclude that both Py, (aVYw)ll 2y = 0

and (dPw,, ¥n, Pw,¢¥n) = 0. The former requires that the Py, -projection of aViy,
be zero on each F € &:

(a™taViy,v)p =0, VYou € Vu(E).

We therefore require of the space M}, the first condition:
(C1) For £ € My, if (V&,v)g = 0 for all v € Vi(E) and all E € &, and if
(dPw, &, Pw, &) =0, then £ = 0.
In order that (2.6¢) makes sense, we require that
(C2) For £ € My, its projection Pr, & can be uniquely defined on each e € 9&,.

We can consider now the equivalence of the two schemes (2.2) and (2.5). It is
convenient to take 1) as given by (2.5) and let oy, up, and A, be given by (2.6).
We then show that (2.2) results.
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By the definitions (2.6), definitions (2.3) and (2.4), and finally integration by
parts, we see that for any v € V},,

(2.7) (a " op,v) — Z [(un, V- v)g — (An, v vE)amon] + (bus,v)
E€E,

— —(a_l']SVh [a(Vin + bPw, ¥n — c)l, U)

- Z [(Pw, ¥,V - 0)E — (PL,%n.v - VE)aman] + (0Pw, ¥n. v)
Ecé,

=— Z (Vion + bPw, ¥ — ¢, v)

Eec&y

N Z [(¢h7 V-v)g — (Yn,0v- VE)@E\@_Q] + (bPw, ¢p, v)

Ecéy
= > [~ (V¢n—c,0)B+ (Vn,v)s] + (9.0 v)r,
Ecéy
= (C,’U) + (g,v- V)F1;

this is (2.2b).
For (2.2a)and (2.2c), we integrate the first term on the left-hand side of (2.5) by
parts to see that for any & € My,

(2.8) Z (Pvi [a(Vipn +bPw, on — )], VE) , = Z (Vo &) E— (o1 vE,&)oE];

Ecé&y Ecéy
hence, introducing two projection operators, (2.5) becomes

(2.9)
> (Veon Pw,&)e + (dun, Pw,&) — > (on - vm, Pr,)omon
Ec&y Ecé&y
= (f7 PWh§)7 v€ € Mh7

where Pr, & on OF is defined on the trace of £ from within E. To separate infor-
mation on JF from that in F, we require the third condition on Mj:

(C3) For any (w, ) € Wy, X Ly, there exist &1, &2 € My, such that

. Pw, &1 = w, .. Pw, &2 =0,
(l){PVZé::)U. and <“>{7ff£:u.

The &; gives us (2.2a) while the & gives us (2.2¢).

Since any wuj, and A, can arise as a solution to (2.2) by adjusting the data,
condition (C3) is also necessary for the equivalence. We have shown the following
theorem.

Theorem 1. For a given mized finite element method (2.1) or (2.2) such that
Wy, =V -V}, the projection finite element method (2.5) is well-defined if, and only
if, My, satisfies (C1). Moreover, if M}, satisfies (C1) and (C2), these two methods
are equivalent by the relations (2.6) if, and only if, My, satisfies (C3).
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Theorem 2. If a given projection finite element method (2.5) with projection space
Vi (and Wy, =V -V}, and Ly, defined from Vy, ) satisfies (C1)—(C3) and the property
that for any & € My, such that Pr, & =0,

Z (07V£)E
(2.10) sup Betn > kin || Pw, €]l 202)

vevin{oy vl zz(2))n

for some Ky, > 0, then V}, gives rise to an equivalent mized method (2.1) or (2.2)
for which Vi, and W}, satisfy the inf-sup condition [5] for the constant ky: For any
w € Wy,

V.v,w
sup V-vw) > kpllwlL2 ().
vevi\ {0} 1Vl z2 (2

Moreover, if (2.10) holds uniformly in h, i.e., k;, = k is independent of h, then also
the inf-sup condition holds uniformly in h.

Proof. For w € Wj, we can choose by (C3) & € M, such that Pw,{ = —w
and Pr, ¢ = 0. For this &, (2.10) is the inf-sup condition after an integration
by parts. [

3. On the local construction of M. It is not yet clear whether an appropriate
M}, can be constructed for a given mixed method. In this section we consider the
question of how to construct such an Mj;. We do not discuss problems associated
with the outer boundary of the domain, but instead concentrate on the local spaces
defined on some E € &, with edges or faces e € 0&,.

We begin by noting that dimensional considerations for satisfying (C1) and (C3)
easily show the following corollary of Theorem 1, wherein My (E) = My|g and
Lh(e) = Lh|e-

Corollary 1. If a given mized finite element method (2.1) or (2.2) (with Wy, =
V - Vi) is equivalent to the projection finite element method (2.5) by the relations
(2.6), then, for each E € &, such that OE N 082 = (),

dim(W,(E)) + Y dim(Ly(e)) < dim(My(E)) < dim(V,(E)) + 1.
eCOFE

The left-hand side of the inequality follows from (C3), and the right-hand side
from (C1). This result can be used to bound the dimension of M} (FE); it may even
show that M (E) cannot exist for some novel mixed methods.

We now localize the condition (C1) as follows:

(C1") For £ € My, (E), if (V&,v)g =0 for all v € Vj,(E), then ¢ is constant on E.

Theorem 3. Suppose that Vi, x Wy, is a mized finite element space such that W, =
V-V, 1€ Wi(E) for each E € &, and 1 € Ly(e) for each e € O&,. If M}, satisfies
(C1") for each E € &, and (C2), then My, satisfies (C1).

Proof. For some & € My, suppose that (V& v)g =0 for all v € Vj,(E) and E € &,
and (dPw, &, Pw,&) = 0. We conclude from (C1’) that £ is constant on each E.
Since (C2) requires a unique definition of Pr, £, in fact € is a constant on all of (2.
Finally, either I'y # () or d > 0 implies that £ = 0. O
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The mixed method spaces that we consider have the property that there exists
a projection operator ITj, : (Hl(E))n — Vi (FE) such that

(3.1a) V - (ITpv) = Pw, (V - v),
(3.1b) (ITpv) -v =P, (v-v).

We exploit this fact in the following way.

Theorem 4. Suppose that E is conver and that Vi,(E) x Wi, (E) is a mized finite
element space such that Wi, (E) = V - Vi(E), 1 € Wy(E), 1 € Lp(e) for each
e C OF, and there exists an operator II, : (HY(E))" — Vi (E) satisfying (3.1). If
My (E) is a space of functions such that

dim(M;,(E)) = dim(W,(E)) + > dim(La(e))
eCOFE

with unisolvent degrees of freedom described by

(DF1) (&, w)g for all w in a basis of Wy (E),
(DF2) (&, p)e for all v in a basis of Ly(e), for each e C OF,

and if My(E) contains the constant functions, then My (E) satisfies (C1"), (C2),
and (C3).

Proof. The hypotheses (DF) give (C2) and (C3), so we need only show (C1’). Let
As(e) = (p,1)s/(1,1) g denote a type of average of a function ¢(x) on S C E. For
§ € Mp(E), if (=& — Ap(§) and

(3.2) (V& v)E=(V¢)E=—((V-0)g+ Y ((v-v)e=0

eCOFE

for all v € V},(F), then we need to show that { = 0.
Given any w € W}, there is some v € V}, such that V- v = w. Solve the problem

Ap = Apg(v-v) in E,
Vo-v=v-v ondFE,

and set v = 0 — II,Vyp € V;,. Then (3.1) implies that v - v = 0 on OFE and
V-v=w— Asg(v-v). As a consequence, (3.2) implies that Py, ( = 0.

Now for e C OF, take any A € Ly (e) and then any v € V}, such that o-v = X on
e. Solve the problem

Ap=V -0 —Ag(V - 9)+ Agp\e(V-v) in K,
Veo-v=10-v ondFE\e,
Veo-v=0 one,

and again set v = 0 — I[I, V¢ € V. Then (3.1) and (3.2) imply that Pr, ( = 0 on e.
By the unisolvence of the degrees of freedom, since { € M}, we conclude that
¢=0. O
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4. Equivalent spaces for triangular mixed methods. We are now in a po-
sition to construct some nonconforming spaces that give rise to projection finite
element methods that are equivalent to standard mixed methods. We begin by
generalizing the results of Arnold and Brezzi [1] to the known triangular methods.
These mixed spaces satisfy the conditions of Theorem 4, so it remains only to define
over a triangle T a space M} (T') of the correct dimension and prove the unisolvence
of (DF).

Let P (F) denote the space of polynomials of total degree less than or equal to k
defined in F. We will make use of the barycentric coordinates @i, 1=1,2,3, defined
on T to be the unique affine functions that take the value one at vertex i, and
the value zero on the opposite edge. Finally, for any edge e, let Py(e) denote the
L?(e)-orthogonal complement of Py(e) in Px_1(e) (i.e., the span of the Legendre
polynomials of exact degree k).

4.1. The Raviart-Thomas spaces on triangles. These spaces [21] are defined
for each k£ > 0 by

VET) = (P(T))" @ (2, y) Pi(T)),
LE(e) = Py(e).

First let us recall what is already known for the lowest order space. An M}, (of
dimension 4) for this space is [1], [11]

Mi(T) = P(T) & B(T),
where we define B, (T) to be the span of either the P3-bubble function,

ﬁ%(qju y) = él(xu y)22($7 y)ZS(xv y),

which vanishes on each edge, or the P,-bubble function,

Bi(z,y) =2 — 3(6(z,y) + 63(z, y) + B3(z,y)),

which vanishes at the two quadratic Gauss points on each edge.
For £ € M}, we can write £ = & + & for & € Pi(T) and & € By (T), and then
the degrees of freedom for the element are normally given as the value of:
(0) [ €a)ds
T
(ii) &; at the midpoint of each edge e C OT.

(Note that if B, (T) = span{/33}, we may replace & by & in (ii).) An equivalent set
of degrees of freedom can be given by the value of (i) and

(i) /5(3:) do(z) for each edge e C OT;

(ii) and (ii’) are equivalent since midpoint quadrature is exact for linear functions.
These degrees of freedom are (DF1) and (DF2), and their unisolvence is known.
For the family as a whole, we define

M,If( = {U € Prys(T) : vle e Pk—i-l(e)}~ if k is even,
{v e Puys(T): v|e € Py(e) ® Pyya(e)} if kis odd.
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We first show that MF(T) has the correct dimension. The dimension of Py 3(T)
is 3(k + 5)(k + 4), which is exactly six more than dim(W(T)) + 3dim(Ly(e)) =
2(k + 8)(k + 1). For simplicity, assume that k is even; the odd case is similar. For
any £ € Pry3(T), we can write that

€)= Y aigli(e)f(a)

0<i+j<k+3

for some constants a; ;. If now & € MF(T), then ¢|., € Pyii(er) implies that
a0, k+3 = ao k2 = 0, and €|, € Pry1(ez) implies that axy30 = ary2,0 = 0. On e3,
fg =1- gl, SO

Eles = Y. aijli(1—11)7 € Pryi(es)
0<itj<k+3

implies that

Z (—1)ja,~,j =0 and Z (—1)jai,j + Z j(—l)j_laiyj = 0.

i+j=k+3 i+j=k+2 i+j=k+3

These six conditions are clearly independent, so M ,’f (T') has the correct dimension.

Now we consider the unisolvence of (DF). Suppose that ¢ € M} (T) has degrees of
freedom (DF) equal to zero. The (DF2) imply that on each edge e, £ is a Legendre
polynomial of degree k£ + 1 if k is even and k + 2 if k£ is odd, i.e., of odd degree.
Since the odd degree Legendre polynomials are odd functions, traversing 0T, we
see that £ must vanish identically on the boundary. As a consequence, we write
that & = {10503w for some w € P, (T). Now (DF1) shows that (élézégw,w)T =0,
which finally gives that £ = 0.

We remark that if £ is even, we obtain the nonconforming method of Arnold and
Brezzi [1].

4.2. The Brezzi-Douglas-Marini spaces on triangles. These spaces [8] can
be defined for each k£ > 1 by

ViE(1) = (Pu(T))’,
Wy (T) = Pe_1(T),
LE(e) = Py(e).

Let us define

{v € Pyya(T) : v|e € Prya(e)} if k is even,
i) -

{v € Pyys(T) : vle € Pyle) ® 13k+2(e)} if £ is odd.

Since dim(Py42(T)) = 3(k + 4)(k + 3) is exactly three more than dim(W,(T)) +
3dim(Ly(e)) = 3(k+ 6)(k + 1), an argument as above shows that M}’ (T) has the
correct dimension. The unisolvence of (DF) is also shown as above.

5. Equivalent spaces for rectangular parallelepiped mixed methods. We
now construct some nonconforming spaces that give rise to projection finite element
methods that are equivalent to standard mixed methods defined over a rectangle
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or rectangular parallelepiped R C IR", n = 2 or 3. Again the mixed spaces satisfy
the conditions of Theorem 4.

For simplicity, assume that R = [—1,1]". We will make use of the Legendre
polynomials p,,(z;) of degree m defined on the interval [—1,1]. Recall that Py(R)
is the space of polynomials of total degree less than or equal to k defined in R, and
let Qk ¢,m(R) denote the space of polynomials of degree less than or equal to & in
x1, £ in z9, and m in x3 (where m and x5 are absent if n = 2).

5.1. The Raviart-Thomas spaces on rectangles. These spaces [21] are defined
for each k£ > 0 by

Vit(R) = Qpy1.1(R) X Qg 11 (R),
Wi (R) = Qri(R),
Lk(e) = Pi(e).

We define

MF(R) = Qry2,k(R) ® Qprt2(R) = Qrp(R) ® A*(R) @ B*(R),

where
(5.1a) A¥(R) = { Z[ai,1pk+1(3§1) + aiopkr2(71)]pi(w2) @ aij € IR},
(51b) Bk(R) = { Zpi(xl)[bi,lpk—l—l(xZ) + bi’gpk+2(flf2)] : bi,j € IR}

Note that dim(A*(R)) = dim(B*(R)) = 2(k + 1), so it is trivial to verify that
dim(MF(R)) = dim(WE(R)) + 4dim(L% (e)).

We need to show that the degrees of freedom (DF) are independent. Assume
that the (DF) are zero for some & € MF(R) = &1 + & + &3, where &1 € Qpr(R),
& € AF(R), and &3 € B¥(R). By the orthogonality of the Legendre polynomials,
(DF1) is zero for A*(R) and B¥(R), so (DF1) implies that £&; = 0. On the two
sides where x1 = &1, (DF2) for B¥(R) is zero, but for A¥(R) we have

Z /_1[ai,1pk+1(i1) + i 2prr2(E1)]pi(w2)p(w2) dze = 0, Vo € P([-1,1]),

and so a; 1pr+1(£1) + a; 2pk+2(£1) = 0 for each i. Since the Legendre polynomials
are alternately even and odd, we conclude that a;; = a;2 = 0 for each i, i.e.,
& = 0. Similarly on the sides where x5 = +1 we conclude that £&3 = 0, and so £ = 0
and we have our unisolvence.

We omit the proofs of unisolvence below, since they are similar to that given
above.

5.2. The Brezzi-Douglas-Marini spaces on rectangles. These spaces [8] are
defined for each &k > 1 as

VF(R) = (P,C(R))2 @ span{curl z5 ' zy, cwrl wyzh T},
Wy (R) = Pe_1(R),
Li(e) = Pi(e),
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where curlw = (—0w/0xq,0w/dx1). We define
M (R) = P,_1(R) ® A*(R) ® B*(R),
where A¥(R) and B¥(R) are defined above by (5.1).

5.3. The Brezzi-Douglas-Fortin-Marini spaces on rectangles. Also called
reduced Brezzi-Douglas-Marini spaces [7], they can be defined for each k£ > 0 as

VF(R) = {p € Pyy1(R) : the coefficient of 25+ vanishes} x
X {¢ € Pyy1(R) : the coefficient of 2¥*! vanishes},
Wy (R) = Pu(R),
L (e) = Py(e).
Now we define
M} (R) = P(R) @ A*(R) @ B*(R).
Again, AF(R) and B*(R) are defined by (5.1).

5.4. The Raviart-Thomas-Nedelec spaces on rectangular parallelepi-
peds. These spaces are the three dimensional analogues of the Raviart-Thomas
spaces on rectangles, and they are defined [19], [21] for each k£ > 0 by

ViIH(R) = Qrt1,6,6(R) X Qr itk (R) X Qp g got1(R),
WE(R) = Qrpi(R),
Ly(e) = Qux(e).

We define
MF(R) = Qriokk(R) ® Qrrrar(R) @ Qpkria(R)
= Qrrx(R) ® A*(R) ® B¥(R) @ C*(R),
where
k
A¥(R) = { > [aijapre1(w1) + i g oprre(1)]pi(r2)pi (23) © a; 0 € ]R},

k
Zpi(xl)[bi,j,lpk—i—l(l'z) + bi jopr+2(x2)|pj(z3) t b je € IR}a

C*(R) = { ZZpi(331)pj(flfz)[ci,j,1pk+1(333) + cijoPry2(T3)] 1 ciju € IR}-

5.5. The Brezzi-Douglas-Duran-Fortin spaces on rectangular parallelepi-
peds. These spaces [6] are the three dimensional analogues of the Brezzi-Douglas-
Marini spaces on rectangles. They are defined for £ > 1 by

VER) = (Pk(R))3 @ span{curl(0,0, 2+ x,), curl(0, z125 1, 0), curl(z5 123, 0,0),
curl(0, 0, a:lxi2+1a:§_i), curl(0, a:’frla:’;_ia:g, 0), curl(a:’f_ixza:?'l, 0,0) },

Wi (R) = Pu_1(R),

Ly (e) = Pu(e).
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We define
MF(R) = P,_1(R) ® A*(R) ® B*(R) @ C*(R),

where

(5.2a) A"(R) = { @i j1pr+1(71) + i joppta(@1)]pi(z2)pj(w3) @ aijy € ]R},
0<i+j5<k

(5.2b) B¥(R) = { Z Di(21)[bi j1Pk+1(22) + bi joDr+2(z2)]pi(T3) < b j e € IR}7
0<i+j<k

(5.2¢) C*(R) = { > pilz)pi(za)leijaprs1 (3) + cijoprya(Ts)] : cije € ]R}-
0<i+j<k

5.6. The Brezzi-Douglas-Fortin-Marini spaces on rectangular parallelepi-
peds. These spaces [7] are also called reduced Brezzi-Douglas-Durdn-Fortin spaces,
and they can be defined for each k > 0 as

k+1
VF(R) = {(p € Pi11(R) : the coefficient of Zx’;“_ixg vanishes} X
i=0

k+1
X {go € Pi11(R) : the coefficient of Za:'f“‘ixé vanishes} X
=0

k+1
X {cp € Pry1(R) : the coefficient of Zx'fﬂ_ixé vanishes}
=0

Wi (R) = Py(R),
LE(e) = Py(e).

We define
MF(R) = Py(R) ® A*(R) @ B¥(R) @ C*(R),

where A*(R), B¥(R), and C*(R) are defined in the previous subsection by (5.2).

6. Implementation of the lowest order Raviart-Thomas method on rect-
angles. We now concentrate our attention to the lowest order Raviart-Thomas
spaces over rectangles [21] (or equivalently the lowest order Brezzi-Douglas-Fortin-
Marini spaces [7]), since these are widely used in practice. In this and the follow-
ing three sections, let {2 be a planar domain, let &, be a family of quasi-regular
partitions of {2 into rectangles oriented along the coordinate axes with maximum
diameter h, and let a be diagonal. For simplicity of exposition, assume that a is a
scalar, I's, = (), and g = 0.
The lowest order Raviart-Thomas spaces [21] are

Vi ={v:v|gp = (akh + aka,a% + agy), ay € R, VR € E;

v - n is continuous at the interelement edges of &},
Wy, = {w : w|g is constant, VR € &},
Ly = {p : ple is constant, Ve € 0&}.
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A general, equivalent, nonconforming method is defined above in Subsection 5.1
(and also in 5.3) for the space

My, = {5 Er = ah 4 ahr + aby + aha® 4+ a%y?, ah € R, VR € Ep;

if Ry and Ry share an edge e, then /§|5R1 ds = /§|332 ds;

and / £|3_Qd3:0}
ORNOL2

It will prove advantageous to understand some structure and properties of Mj,.
Let the P>-bubble function in R € &, be defined by

(y — ?JR)2>7

2
h,

(r — zR)?
W

ﬁR(x,y):4—12< +

where (zg,Yr), hre, and hg, are the center, z-length, and y-length of R, respec-
tively. This bubble function vanishes at the two quadratic Gauss points on each
edge (recall that the Gauss points on [-1,1] are at 1/4/3). Define the nonconform-
ing spaces

Ny = {§:§|R:a}2+a%x+a?j{y+a%(x2—y2), a% €eR, VR € &p;

if Ry and Ry share an edge e, then /§|331 ds = /§|332 ds;

and / §|3_Qd3:0},
ORNOS2
By, = {¢: ¢|r = a%Br(z,y), a} € R, VR € &,},

Namely, N is a standard nonconforming space and Bj is the set of Ps-bubble
functions over &j,.

Two-point Gaussian quadrature is exact on cubic functions. Therefore we can
rephrase the integral continuity constraint in Ny, (or in Mj}) to say that on interior
edges, the sum of the jump discontinuities in £ at each of the two quadratic Gauss
points is zero, and on external boundary edges, the sum of ¢ at the two quadratic
Gauss points is zero.

Lemma 1. The following three relations hold:
(i) For any R € &,, VMp(R) = V,(R);
(11) Mh = Nh & Bh;
(iii) For any R € &, (V&, V() r =0, V§ € Ny(R), ¢ € By(R).

Note that (iii) holds if “V&” is replaced by any constant vector, since these are
contained in VN, (R).

Proof. Relations (i) and (ii) are trivial. Relation (iii) is a type of orthogonality. It
can be seen after integration by parts,

(VE, VO r=—(AE,r+ (VE-1,()ar = 0,
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since A¢ = 0 and V¢ - v is constant. [

If a is not diagonal, then we cannot easily exploit (i) and (iii). That is why
we have assumed that a is diagonal. In fact, we also need that the coefficients
be piecewise constant. Fortunately, we can use a minor modification of the usual
mixed method (2.1) consisting of projection of the coefficients into the space Wi,
In that case, (i) and (iii) will prove to give us considerable computational savings,
without any loss of accuracy (see Section 7 or [10,14]).

We need to maintain coercivity, so explicitly assume a somewhat stronger version

of (1.2): for any v € (L?(£2))" and w € L?(2),
60)  (no)+ (o) + () = w0y + (draw )}

for some constant x > 0 independent of h, where o, = Pw,a~!, b, = Pw, b, and
dr, = Pw, d. (This follows from (1.2) if a and d are sufficiently large compared to
b, the coefficients are sufficiently smooth, and h is sufficiently small.)

The mixed method for (1.3) is then to find (op,up) € Vi, x W, such that

(6.2a) (V-op,w) + (dpup,w) = (fp,w), Yw € Wy,
(6.2b) (apon,v) — (up, V- v) + (bpup,v) = (cp,v), Y € V,

where ¢, = Pw, c and f), = Pw, f. It is well known that w; approximates u only
to order one; therefore, various postprocessing techniques have been defined to
improve the approximation. Let us define the following scheme (cf. Stenberg [22]):
Find u, € M}, such that in each R € &y,

(6.3&) (ﬂh — Up, 1)R = 0,
(6.3b) ((Vﬁh + bpup — Ch) + apop, Vé)R =0, V¢e Mh(R)

The equivalent nonconforming projection finite element method for approximat-
ing (1.1) has its coefficients modified accordingly. We find 5, € M}, such that

(6.4) > (ap (Ven + b Pw, tbn — cn), VE)  + (dnPw, vn, €)
ReE,

= (fh7§)7 V£ € Mh-

Theorem 5. The solutions of (6.2)—(6.3) and (6.4) have the relationship

oy = —a;l(Vd)h + bh,PWh@/)h — Ch),
un = Pw, ¥n,

up, = Y.

Proof. Since VM, (R) = Vi (R), Py, is unnecessary in (6.4) and (6.5), and so
(6.5) and (6.6) follow from the general theory (for each fized &, we have fixed
coefficients). Since 1)y, satisfies (6.3), uniqueness of u;, implies (6.7). O

We give now a simple formula for computing the numerical flux ¢; from an only
slightly modified nonconforming method, (6.8) below.
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Theorem 6. For each R € &y, let

YR = (dPw, Br — o "ABR) ™,
wr = 1 — dpyrPw, Br:

and on R, define

by, = wrbp, cn = cn — bnyr ' Pw, Br,

dp, = wrdp, fn = wrfn.

Let z;, € Ny, be the solution of

(6.8) Z (' (Van + b Pw, 20 — En), VE) p + (dnPw, 2, €) = (fn. €),  VE € Ny,
REE)

and Cp € By, be given by

(6.9) Ch(z,y) R = YR (fo — dnPw, 2n) | R Br(z, ).

Then b, € My, is the solution of (6.4) if, and only if, Yy = zp + (. Moreover, oy,
at a point (z,y) € R € &, is evaluated by the formula

(6.10) op(w,y) =
— a; V(2 y) + buPw, 2nlr — & + YR(frn — diPw, 21)|[RV Br(z,y) }-

Proof. We begin by noting that 0 < wgp < 1, and wg — 1 as h — 0. In fact,
since a, d, and (2 are bounded, wr > w, > 0 for some constant w, independent of
h. As a consequence, (6.1) holds with b, and dj, replacing by, and dj, respectively.
Therefore, (6.8) is well posed.

We exploit the orthogonality (iii) of Lemma 1 to obtain the theorem. Let v, be
the solution to (6.4) and let ¢y, = zp + (5, for some zp, € Nj and ¢, € By,. We must
show that (6.8)—(6.9) hold.

Restrict to a test function £ € By, in (6.4), and use orthogonality to see that
(6.11)

(a, ' VCh, VE)  + (dnPw, Chy - = (fr — dnPw, 21, )R, V€ € Bilr, R € En.
Integrate by parts the first term on the left-hand side to obtain that
thWhCh — a,:lACh = (fh — thWhZh)|R in each R € &,

since the boundary term is zero by appeal to Gaussian quadrature. It follows from
the definition of By, that (} is given by (6.9).

In (6.4), restrict now to £ € Nj, and use (6.9) and orthogonality to obtain (6.8)
for zp, since in each R € &y,

(6.12) Pw, Yn = Pw, 2n + Pw, Ch = Pw, 2n + VR (fh — dnPw, Zh)IPWhﬁR
= wrPw, zn + YR Pw, BR-
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Conversely, we obtain (6.4) from (6.8)—(6.9) and unisolvence.
Finally, from (6.5) and (6.12),

(6.13) o = —a;l{VZh + bp|[wrPw, 2n + YRS Pw, Br] — cn + VC}L},
and so (6.10) follows. O

We end this section with three remarks. Firstly, if u; is needed, it is given
by (6.12) (recall (6.6)). However, since v, approximates u to a higher order of
accuracy than up, as shown in the next theorem, the use of (6.12) seems inadvisable.
Secondly, if the Lagrange multipliers for the mixed method are desired, they are the
average value of 1y, or z; on each edge. Thirdly, if R is a square and b =c=d =0,
(6.10) is simply
(6.14) on = —a,jlv,zh + %PwhﬂR (x — xR,y —yr), Y(z,y) € R € &y,
which is the same form as in the case of triangular mixed finite elements [18], [11].

7. Error estimates. Denote by || - ||; s the norm of H7(S), where we omit j if
j=0and S if S = (2. We have the following theorem.

Theorem 7. If u and o solve (1.1), up and op, solve (6.2), and )y, solves (6.4),
then there is a constant C' independent of h such that

(7.1) Mo = onll + [Ju = unl < CAIfI; lallwr. () [l lellL) b,
(7.2) V- (o —on)l < CUIF I lallwre ), 10l llell1) A,
(73)  [Pw,u—unll < CUIf Il lallwros @) [1Bllw .o ), llellr, ldllwr.ee2)) B,

1/2
(7.4) (ZHW—V%II%) < G Nallwregay, 1811, i)

Re&y,
(7.5)  llu—9ull < CUIflh: lallwroc 2y, [Dllwree 2y, el ldllwrs2) B>

Proof. Results (7.1)—(7.3) are essentially known [14]. They can be obtained by a
careful application of the techniques of Douglas and Roberts [15]. To handle the
modified coefficients, we must recognize that for s = 0,1 and 1 < j < o0,

(7.6) |1 Pw, & — Bllw i) < Clldllwria)h' .
We also use elliptic regularity to obtain that
[ull2 < C[fllo and [V - ully < C[|f]]1,

and a duality argument to obtain (7.3).

Results (7.4)—(7.5) follow from the use of an abstract theorem concerning error
estimates between u and )y, (see [11; Theorem 2.2]). However, a simpler approach
is to note by equivalence from (6.3) that

(7.7)  (u—Yp,w) = (Pw,u—up,w), Ywe W,
(7.8)  (V(u—tn) +bu(u—up) + an(o —on), VE) 4
= ((bh —=b)u+c—cp+ (an —a "o, VE) o, VE € My(R) and R € &,

Estimate in a straightforward way the second elliptic equation to obtain (7.4) from
(7.1) and (7.6). Use (7.7) to obtain that

lw = tnllo,r < C{IV (u = ¥n)llo,rh + [[Pw, u — unl
and then apply (7.3) and (7.4) to finish the proof. O

o,R}
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8. A multigrid solution algorithm. In this section we develop a multigrid
algorithm for the nonconforming method (6.4) and the mixed method (6.2). We
need to assume a structure to our family of partitions. Let hy and &, = &y be
given. For each integer k > 1, let hy, = 27 %hg and En, = &k be constructed by
connecting the midpoints of the edges of the rectangles in £_1. In this section
(and the appendix) only, we will replace subscript hy simply by subscript k. Since
the intergrid transfer operators below do not preserve either the energy or the L2-
norm, as noted in [3], the standard argument of convergence for V-cycles does not
carry over directly. So, only a W-cycle, full multigrid algorithm will be defined
here. Since mixed methods are designed to approximate well the flux variable o,
and since it is of primary interest in many applications, we develop the multigrid
algorithm with emphasis on the calculation of this variable. We assume in this
section that b = c = 0.

With this in mind, we now take advantage of the factorization of the system
(6.4) into (6.8) and (6.11). For each k, let

k(6. Q) =Y (ag"VE V) + (diPw, &, C),

Reé&y,

ar(6,Q) = Y (03 'VEVE) , + (dPw, &), VE, (€ M.

Reé&y,

Then (6.8) asks for z; € Nj such that

(81) ak(zkvé.) = (fk7§)7 v€ € Nk7

and (6.11) asks for (, € By such that

(8.2) ak(Ck, (,0) = (fk — dkPWka, (p), V(p € Bk.

For k =1,2,---, solutions to problem (8.2) can be obtained directly, since By has no
continuity constraints across element boundaries; therefore, we define a multigrid
procedure for (8.1) only.

Standard inverse estimates yield that the spectral radius of the operator ax on
N x Ni is bounded above: there exists a constant C; independent of £ such that

(8.3) spectral radius of a on N x N < Clh,zz.

Note that, since Ny_1 ¢ Nj, these spaces are not nested. It is well-known that
natural injection operators do not work for nonnested finite element spaces. Thus,
we need to introduce special intergrid transfer operators. Following [4], we define
the coarse-to-fine intergrid transfer operators I,’j_l : Np_1 — N as follows. If
¢ € Ni_1 and e is an edge of a rectangle in &, then I,’j_lé € N}, is defined by
(8.4)

0 if e C 012,

1 & [ &do if e ¢ OR for any R € &,_1,

il k—lé_ 0 — 1 .

el Je m{ I, (&|r, +&|R,) do}  if e C ORy N OR, for some
Ri,Ry € &_y.
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The multigrid algorithm for obtaining approximate solutions z € Nj to problem
(8.1) is given in terms of the kth level multigrid step, defined below, which yields

the result MG (k, z*, fx) € Ny as an approximate solution to (8.1) from the initial

guess z* € Nj. Let r be a positive integer independent of k, which denotes the

number of multigrid iterations in (ii) below. The overall multigrid algorithm is
defined sequentially for each k as follows:

(8.5a)
For k =1,2z; = MG(1, -,fl) is obtained by a direct method;

(8.5b)
For k > 2,7 is obtained recursively by

(i) 26 = I§_1Zk-1,

(ii) 2F = MGk, 25 |, fro), 1 <<,
k

(iii) 2 = 2~

The multigrid step is defined for k =1 and F € N{ as MG(1, -, F') = z1, where
z1 is obtained directly as the solution to

ai(z1,€) = (F, &), V&€ Ny.
For k > 2, z € N, and F € N/,
(MG) MG(k,z,F)=S(k,z, F)+ C(k,S(k,z, F), F)
is calculated by means of the smoothing step

(S) S(k,g0,F) = gm, where m is the number of smoothing steps and the ap-
proximation g; € N, j = 1,2,---,m, is defined recursively from the initial
guess go by the equations

(gj - gj—lvg) = Cl_lh%((F7 é) - ak(gj—lvg))7 vé_ € Nk: .7 = 17 T, M,

and the correction step

(C) C(k,gm,F) =1IF_,q,, where gj € Nx_1,j=0,---,p (p =2 or 3), is defined
recursively from ¢y = 0 by

qj:MG(k_lvqj—lvF)v jZl,---,p,
(Fu é) = (Fu Illcc—lg) - ak(gmvlllj—lg): V€ € Ng_1.

From (6.10), the multigrid approximate solution 7y to oy is defined in R € &
by

(8.6) Gk = —ay {VE, + vr(fr — diPw,2) RV Br(z,9) }.

The standard argument [2], [3], [4] for the convergence analysis of the multigrid
algorithm (8.5) applies here if we prove that I¥ | is bounded and reduces to the
natural injection on continuous bilinear functions. Although the second fact is false,
it is true after a modification of the definition of I ,’j_l given in the appendix (the
modified definition is equivalent to the original on Nj_1). The first fact together
with the following lemma will be shown in the appendix.
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Lemma 2. If m and r in the multigrid algorithm are sufficiently large, there is a
constant C(||al|w1.(0), ||d||wi.~(2)) independent of k such that

1/2
(8.7) 2 — Zll + ( S V(o - zwn%) < ChillfIl
Regk
(8.8) 2 — Z4ll < CR2| £

Theorem 8. If m andr in the multigrid algorithm are sufficiently large, then there
is a constant C(||al|w1. (), ||d||w1.~2)) such that

(8.9) ok — Tx|| < Chell fl,
(8.10) o — okl < Chyllf].

Proof. Equations (6.10), (8.6), and (8.7) imply equation (8.9), since yg = O(h})
and ||VBg| = O(h;'). Equation (8.10) follows with (7.1) (the bound is propor-
tional to || f|| because ¢ =0). O

It can be seen that the total work performed in obtaining 2 is O(ng) [2]; thus,
the cost to compute oy, is also O(ny).
Since oy, belongs to

Vi = {v:v|r = (ak + aka, 0y + aky), ay € R, VR € &},

but not necessarily to Vi, following [4], we introduce the averaging operator Ay :
‘/}k — Vk. Let e be an edge of R € & and n. be a unit outer normal to e. For
v € Vi, if e C 92, then (Ayv - v)|e = (v|g - )| if € is the common edge of Ry and
Ry € &, then

(Akv ) VR1)|€ = %((U|R1 ) VR1)|€ + (U|R2 ’ VR1)|6)'

Thus, Ag restricted to Vj is the identity. The next result follows from this definition
and Theorem 8.

Theorem 9. There is a constant C such that
|Agv] < C|lv|], Yv € V.

Moreover, under the conditions of Theorem 8, there is a constant C(||allw1.~ (),
||| w1, (2)) such that

llox — Arar|| < Chel|f]],
lo — Arawl|l < Chal| f-

The final result in this section concerns 1y, defined by (6.4). Recall that (j is
the solution to (8.2), and define

~

(8.11) D = e + G

Since )y — zzk = 2}, — 2k, we have the following from Lemma 2 and (7.5).
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Theorem 10. If the assumptions of Theorem 8 are satisfied, then there is a con-
stant C([|a|lw 1.0 (o), ||d||w1.(2)) such that

N N 1/2
e — Bell + ( S IV — m)ll%) < ChallfIl

Regk
Moreover, if f € HY(£2),

e — el < ChE| Sl
lu — il < CRE[|f -

An averaging process similar to that for o3 can be defined for 12)\;C The multigrid
algorithms developed in this section for the rectangular elements can be extended
to the lowest-order triangular elements and the results in Theorems 8-10 remain
valid.

9. Extension to rectangular parallelepipeds. Let now (2 be a polygonal
domain in IR® and &, be a decomposition of 2 into rectangular parallelepipeds
having maximum diameter h and oriented along the coordinate axes. Again assume
that a is a scalar, I, = (), and g = 0.

We consider the lowest order Raviart-Thomas-Nedelec space [19] W}, x V}, defined
over &, (equivalently, the lowest order Brezzi-Douglas-Fortin-Marini space [7]).

Let M}, be the nonconforming space introduced in Sections 5.4 and 5.6 above.
We obtain Lemma 1 in Section 6 provided that we redefine

Ny = {5 c€r = ak +akr +ady+agz +aR(@® —y?) + aS(2? - 2?),

a% €eR, VR € &,; if Ry and R, share a face e,

then /§|5R1 ds:/§|332 ds; and / §|agds:0},
e e ORNAS2
By ={¢:¢|r = aRBr(z.y), al € R, VR € &,},

where now the P»-bubble function in each R € &, is

Br(z,y,2) =5— 12( (y —2y3)2
h%,

(x — zR)?
he

_|_

n (Z_ZR)2>7

I
which is equal to zero at the four tensor product quadratic Gauss points on each
face.

With these modifications, we again have the equivalence between the solutions
of (6.2)—(6.3) and (6.4) in the sense of Theorem 5. Theorems 6 and 7 hold as well;
moreover, if &, is given and each &, , is a regular refinement of &, into eight
times as many elements, then the results in Section 8 remain valid.

10. Extension to simplices. Let now &£, be a partition of {2 into simplices, and
again assume that a is a scalar, I'y = (), and ¢ = 0. The lowest-order Raviart-
Thomas-Nedelec space V}, [21], [19] defined over &}, is given by

Vi = {v:v|g = (ak + a%z, a3 + a2y, o} + a%2), o'y € R, VE € &p;
v - m is continuous at the interelement faces of £},

Wy, = {w : w|g is constant, VE € &},

Ly = {p: ple is constant, Ve € 90&,}.
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We define the nonconforming space N by

Ny, = {g g =ah +akr+aby+agz, dy € R, VE € &,;if By and Es share

a face e, then /§|3E1 ds = /§|3E2 ds; and / Elogds = 0}.
e e O0ENOS2

For each F € &, let l@, 1 =1,2,3,4, denote the barycentric coordinates of a point
in the simplex. These functions are the unique affine functions that take the value
one at vertex 7, and the value zero on the opposite face. The P»-bubble function
takes the form

Be(w,y,2) =1 =25+ B+ 5+ 13), V(v,y,2) € E.
This quadratic bubble function has vanishing integral over each face. Let
By ={£:{|p = apPp, ay € R}

and My, = Nj, @ By,. This M}, satisfies the conditions of Theorem 4 (in particular,
(DF) are unisolvent).
We have an analogue of Lemma 1.

Lemma 3. The following two relations hold:
(i) For any E € &, VNi(E) C V,(E);
(H) For any E € gh; (vé_u VC)E = 0; vé_ € Nh(E); C € Bh(E)

Proof. For (i), VN,(E) = (Py(F))® C Vi(E). For (ii), integrate by parts and use
that A& =0. O

To exploit this orthogonality, we will assume as in Section 6 that the coefficients
are projected into the space Wj,. So assume (6.1) and take (6.2). As an analogue
of (6.3), we define u;, € M}, such that on each E,

(10.1&) (’[Lh — Up, 1)E = 0,
(10.1Db) ((Pv,, Vn + brun — cp) + anon, VE) , =0, V& € My(E).
(The existence of uy, follows easily from Lemma 3).
Note that for any £ € Mp,, we can write {, = 25, +Cp, where 2, € Ny, and (p, € Bp,.

Then Py, V&, = Vzp, 4+ Py, V(;,. The equivalent nonconforming projection finite
element method for approximating (6.2) is to find 15, € M}, such that

(10.2)

S (a3 (Pv, Vb + b Pw, ¥ — ), VE)  + (dnPw, ¥n, €)
Eec&y,
:(fh7£)7 v£€Mh-

Then Theorem 5 holds, provided (6.5) is replaced by

(10.3) op = —a;l(’ﬁvh Vb + bh,PWh@/)h — Ch).
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Theorem 6 also holds, provided that now
Yr = (dpPw, Br — a;, 'V - Py, VBr) !
and (6.10) is replaced by

(10.4) op(z,y) =
— o, Y{Van(@,y) + b Pw, znlr — én + YR(fn — diPw, 20) | RPv,, VBR(z,9) }.

The convergence result in Section 7 also holds. In the case of equilateral sim-
plices, this can be seen as before since then VB (E) C Vj,(E) and the projection
operator 75Vh in (10.3) can be removed. In the general case the convergence result
can be shown using the ideas given in [4] (that is, we show that ||Py, V&|| and || V€|
are equivalent norms for £ € Nj, and we use the interpolant of u into Nj as an
intermediary). Finally, results analogous to those in Section 8 are valid.

11. Extension to prisms. Let now 2 be of the form 2 = G x [0, 1] with G C TR?
and &, be a partition of {2 into prisms with three vertical edges parallel to the z-axis
and two horizontal faces in the (z,y)-plane. Let E = T X (zgq,, zgp) denote such
a prism, of height hg, = zgy, — zp,. Again, l@-, 1 = 1,2,3, denotes the barycentric
coordinates of a point in the triangle T'. In this section, we again assume that a is
a scalar, I'y = (), and g = 0.

The lowest-order prismatic space V3, [20] defined over &, is given by

Vi, ={v:v|g = (ap + apz,a, + afy. af + ayz), dg € R, VE € &;
v - n is continuous at the interelement faces of Sh},

W, ={w : w|g is constant, VE € &},

Ly = {p: ple is constant, Ve € 90, }.

The nonconforming space Ny, is defined by
Ny, = {§ g =ag+air+ayy+apz+ay(c? +y? —22%), oy € R, VE € &,;

if F1 and E5 share a face e, then /§|3E1 ds = /§|3E2 ds;

and / §|agds:0},
dENSN
By ={¢:&|p = 3B, o € R},

where the Py-bubble function takes the form
) ) 52 4 ZEa T ZEb ?
Be(z,y,2) =3 —4(6] + 43+ 43) — oA ) V(z,y,2) € F,
Ez
so that its integral over each face vanishes. Finally, M, = Nj, & By,.
We have Lemma 3 and the results for simplices of the last section hold also for
prisms.
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Appendix. Proof of Lemma 2. We prove Lemma 2 of Section 8 in this appen-
dix. Recall that here b = ¢ = 0. From Section 6, note that on the kth mesh

Br=0(1), VBr=O0Mh;"), ABr=0(h;?),
SO
(A1) lyr| < Ch? and |wgr — 1| < ChZ,

where C' depends only on the bounds for a and d. (In general, without further
comment, we will assume that the generic constant C' may depend on ||al[y1.0 ()

and ||d|lw1.(0) in this appendix.) Since I fx — frll < Ch2||f|l, we can replace fi

by fi up to the second order in hjy. A similar statement holds for dj, and dj.
For each k, define the energy norm

1€]|x = (ar(€,€))">.

(This is equivalent to the H1(£2)-norm by (6.1) and a Poincaré inequality.) Stan-
dard arguments for the error in approximating (1.1) by a nonconforming method
are easily combined with arguments to handle the projections into Wy in (8.1), so
we have that

1/2
(A2) o=zl + (X 1Vu=9al}) < Chl.
Reé&y,
and a duality argument can be used to show that

(A3) [ — 2] < CRE|f]I1-

This last result can also be derived easily from Theorems 6 and 7. Clearly (6.9)
implies that
1<kl < Chi (ILF1] + 11 Py, 21 )

and then (6.8) implies that
[P, zill < ClI £

Theorem 7 and an inverse inequality (see (A8) below) give (A3). We can derive
(A2) similarly.
For our analysis, we introduce the conforming finite element space
U, = {5 € Co(ﬁ) : £|R € Ql’l(R), VR € &, and §|ag = 0}
Unlike the triangular case, Uy ¢ Ni. Let z; € Uy satisfy
(A4) dk(ék,v) = (fk,v), Vv € Ug.

The usual error estimate for this finite element method is

(A5) lu— Zx|| + hellu — Zelle < ChilIf]-
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For each k, let G, be
Gr = N @ {v:v|gr = agry, ak € R, VR € &};

Gy, contains both Ny and Uy. Let my = dim(Gy). By the spectral theorem, there
are eigenvalues 0 < A; < Ag < --- < Ay, and eigenfunctions ¢1, @2, -+, ¢m, € Gk
such that

(his ) = 6; 5 and  ag(pi,v) = Xi(Pisv), Vv € G.

If v € Gy, we write v = > ¢;¢; and define as in the standard case [2]

m 1/2
s,k = <Z C,?)\f) .

=1

[I[]]

The Cauchy-Schwarz inequality implies that

|ax(w, v)| < [[Jwll]1sgll[0]ll1-s.5

for any s € IR and v, w € Gi. Note that |||v|||o,x = ||v|| and |||v]||1.£ = ||v]|&-
As mentioned in Section 8, we now modify the definition of I,’j_l so that it
behaves well on Ug_1. So, let I¥ | : Gj_1 — G}, be defined by (8.4) and

4 4

(A6) Z(—l)illlcc—ﬂm(pl{,i) = Z(—l)"v|R(pR,i)7 VR € &,

where pg ; are the vertices of R, labeled counterclockwise (i.e., so that (—1)? changes
sign between the two ends of each edge of OR). As an immediate consequence of
the definition, we have the following.

Proposition 1. If¢ € N1 and v = zy, then for any R € & or E_1,

4

> (1¢lar) = 0.

S (~1)ilr(pra) # 0.

=1

The first result guarantees that I ,’j_l restricted to Ni_1 has the same definition

as before. The second result guarantees that 1’3—1 is well-defined on G_;. We have
the following technical lemma as in [3].

Lemma 4. There is a constant C independent of k such that

(A7) C™Hvllk < fvlle—1 < Cllv[ls, Vv € C%(£2),
(A8) vl < Chi Mol Vv € Gy,

(A9) 1510l < Clloll, Vo € Gr,

(A10) f,'j_lv =v, Yvé€Ug_q,

(Al1) IIE_1&llk < Clléllk—1, V€ E Np—1 @ Up_1,
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where IF_| is defined by (8.4) and (A6).

Proof. Result (A7) is trivial. The & are quasi-uniform by construction, so (A8) is a
standard inverse inequality. Result (A9) follows immediately from the definition of
I 1’3—1- Since Up_1 C U, C G, and I 1’5—1 is well-defined, result (A10) follows trivially.

We easily obtain inequality (A11) for £ € Ug_1 from the definition of IF | since
Up—1 C C%(2). Given £ € Nj,_; ® Ug_1, define v € Ny_1 ® Up,_1, w € Up_1, and
z € H}(2) by
(A12) dk—1(£7 C) = (’U, C)v VC € Nk—l @ Uk—17

ag—1(w, ) = (v,¢), V(¢ € Ug-1,
dk—l(zu C) = (’U, C)v VC € H&(‘Q)

Note that ||z||2 < C||v|| by elliptic regularity, and that £ and w are approximations
to z with the usual error estimates. It follows from the earlier results that

1Z5—1&llk < IHg_1 (€ = w)lli + Cllwllx
< C[ i IE—1 (€ =)l + 1€ = wllk—1 + [|€]l1—1]
Clhy 1||€ wl + [[€]le—1]
Clhy " (1€ = 2l + llw = 2) + [|€] 1]
Clhllvll + [1€llk—1]-

Finally, (A12) gives

[]]* = ar-1(&v) < [€llk-1llvlle—1 < ChylE]lr-1llo]l,

and (A11) follows. O

We are in a position to prove that the kth level iteration MG(k, go, fk), when
applied to the problem of finding z € Ny such that

dk(’Z?g):(fk;é)? v£€Nk7

with the initial guess g is a contraction in the energy norm. Let e; = 2 — g; € N,
[l =0,---,m, where g; is defined as in (S), the smoothing step in (MG). Also let
e € Nx_1 and e € Uy_1 satisty

(Al?)) ak—l(eu é-) = &k(emv Illj—lg)a v€ € Nk—h
(A14) ar(é,v) = ag(em, IF_v), Yo € Up_1.

Lemma 5. There is a constant C such that

(A15) lem [l < Clleollx
(A16) llemlll24 < Chi'm=]leol|x
(A17) leflk—1 < Clleol |-
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Proof. Equation (A15) and (A16) are proven using the ideas in [2]. It follows from
the definition of the smoothing step (S) that

(e1,€) = (e1-1,&) — Cy ' hiag(e1-1,€), V& € Ng.

If eg = D" cigi, then
ZC'LQS'L - 1h2 ) le,---,m,

from which and (A8) or (8.3) we have (A15). From this we can derive (A16) as in
[2; Equation (3.13)].
From (A13) and (A15), we see that

lelli—1 = an(em, Ii_1e) < llemllsll IE_rellk < Cllemlullelli-1 < Clleollxllellx-1,

which yields inequality (A17). O
Lemma 6. There is a constant C such that

—1/2

le = éllk—1 < Cm™"[leo[x-

Proof. Let fo € G_1 satisfy
(vaU) = &k(emalllj_l'l)), Vv € Gg_1.
We observe that

1 foll® = @ (em, I¥_1 fo) <

ok < Clllem|ll2.xll foll,

so that
I foll < Clllem]|]2.k-

Let vo € H}(£2) N H2(N2) solve
=V - (aVvg) +dvg = fo in (2.

Note that, from the definition of fy, (A13), and (A14), e and é are approximations
to vg in Ng—1 and Ug_1, respectively. Thus, as in (A3) and (A5), we see that

lvo — ellk—1 < Chi—1]|foll,
llvo — é|lx < Chg—1]| foll,

and so, with (A16), we obtain
le = élle—1 < Chi—allfoll < Chie—rllem|llz e < Cm™2|leo .,

completing the proof. [
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Lemma 7. There is a constant C such that

lem — élli < Cm™2|eo|1-
Proof. From (A14) and (A10), we have
(A18) ax(em —€,v) =0, Vv € Ug_1.

By (A16), we get

lem — e[l = ax(em — & em — &)
= ag(em — €,em)
< |llem = élllo,xllleml]

< Chi'm ™2 |lem — €|l lleollk-

2.k

Applying a duality argument to (A18), we can easily see that
lem — €l < Chyllem — €|k,

and our result follows. O

Lemma 8. There existy € (0,1) and an integer m > 1 in (MQG), both independent
of k, such that

|2 — MG (. go. fi)llx <712 — gollx-

Proof. We proceed by an induction argument on k. The result is trivial for £ = 1,
with even v = 0. Let us suppose that the lemma is true for £ — 1. Lemmas 6 and 7
and (All) imply that
12 = MG (k, go, fi)lk = llem — Ti_1apllx
< llem — élle + [1i—1(e = )l + 1 1x=1(e — ap)lx
< C[m=2leo|ls; + lle — apllr—1]-

By (A13) and the definition of the correction step (C) in (MG), for all £ € Ng_1,

ax—1(e, &) = ar(z — gm, If_1£)
- (fkulli;c—lé-) - ak(gmullf;;—lé-)
= (fr: €);

therefore, ¢; = MG(k — 1,¢;_1, ﬁ), and the induction assumption and iteration
gives
le — gplle—1 < YP[lellk-1,

since qo = 0.
We obtain with (A17) that

Iz~ MG(k. go. fi) & < C[m="lealle +7*llelli—1] < Ca(m=2 +77) eol .
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If v € (0,1) is sufficiently small, then Coy? < /2 since p > 1, and if m is large
enough, Com~2 < v/2. For such choices, we obtain the lemma. O

Lemma 8 says that if the number of smoothing steps m is large enough, the kth

level iteration is a contraction. Let Ry denote the standard interpolation operator
for Uy. If v € H?({2), then

(A19) lv = Rivl + hillv — Ryvllx < Chillvlla.
Proof of Lemma 2. From Lemma 8, (A3), (A19), and (A11), we see that

12k = Zille <A 12w — IF_ 1 Zk—1]lx
<" [z — ulli + llu — Re—1ulli + [T (Rr—1w — Zi—1)||x]
< Cy" [l fIl + | Re—1t — Z—1||j—1]
< Oy [hill FIl 4 | Rk—1w — ullk—1 + [Ju — zr—1]lk—1
+ ||lzk—1 — Zr—1|x—1]

< OV [he|lFIl + 1ze—1 — Zre—1llk—1]-

Since z1 — z1 = 0, iterating this expression leads to the inequality

k
, , Csy"
-2 <§ Cohp_iy1y7" <——h
2k — Zllx < P k-1 | fIl < 1— 2Csy" Kl £l

provided that r is large enough so that 2C3y" < 1. Hence,
l2e = Zkllk < Challf]],

which implies (8.7).
We prove (8.8) as in [17; Theorem 7.1, p. 162]. First, by (A3) and (A19),

Iz = Li—yzn—1ll < llzw — wll + lJu = Ryl + [ 15y (Rru — z5-1) |
< Chillflly + | Ryu — zi—1
< Chillf |1

Now Lemma 8 yields that

26 — Zill < A" ll2w — Ifi_1 21l
<" [z — Ii_yze—1ll + [1E_1 (zk—1 — Zk—1)|]

<A [ChNIFII + llzk—1 — Zra ]

so an induction argument yields (8.8). The proof is complete. [J
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