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SUBGRID UPSCALING AND MIXED MULTISCALE FINITE
ELEMENTS∗

TODD ARBOGAST† AND KIRSTEN J. BOYD‡

Abstract. Second order elliptic problems in divergence form with a highly varying leading order
coefficient on the scale ε can be approximated on coarse meshes of spacing H � ε only if one uses
special techniques. The mixed variational multiscale method, also called subgrid upscaling, can be
used, and this method is extended to allow oversampling of the local subgrid problems. The method
is shown to be equivalent to the multiscale finite element method when one uses the lowest order
Raviart–Thomas spaces and provided that there are no fine scale components in the source function
f . In the periodic setting, a multiscale error analysis based on homogenization theory of the more
general subgrid upscaling method shows that the error is O(ε+Hm+

√
ε/H), where m = 1. Moreover,

m = 2 if one uses the second order Brezzi–Douglas–Marini or Brezzi–Douglas–Durán–Fortin spaces
and no oversampling. The error bounding constant depends only on the Hm−1-norm of f and so is
independent of small scales when m = 1. When oversampling is not used, a superconvergence result
for the pressure approximation is shown.
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1. Introduction. Many physical problems can be modeled by a second order
elliptic partial differential equation in space. In many cases, the coefficients of the
equation are highly heterogeneous, which induces fine scale variability in the solution.
Thus the difficulty in approximating the solution on a coarse finite element mesh TH is
that the solution is not fully resolved on this scale. Traditional finite element analysis
fails, and we require some multiscale approximation techniques.

Babuška and Osborn [10, 9] proposed using special finite elements to approximate
the solution. Hughes et al. [23, 24] (see also [13]) developed a more formal framework,
which they called the variational multiscale method. A mixed variant, described as
subgrid upscaling, was developed by Arbogast et al. [7, 3, 4, 6, 5]. Hou and Wu [21]
and Hou, Wu, and Cai [22] took a more direct approach and simply proposed finding a
special finite element basis by solving the problem locally. They called this approach
the multiscale finite element method. A mixed form was developed later by Chen and
Hou [17].

To be more precise, consider a connected, convex polygonal domain Ω ⊆ R
d,

where d = 2 or 3, and a second order, uniformly positive-definite symmetric tensor
a, so that both a and a−1 are uniformly elliptic and uniformly bounded. Suppose
we are also given vectors b and vg. For a set S, let νS be the outward unit normal
to ∂S, and define the function g on ∂Ω by g = vg ·ν, where ν = νΩ. The problem under
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consideration is to find u and p such that

∇ · u = f in Ω,(1.1)

u = −a(∇p− b) in Ω,(1.2)

u · ν = g on ∂Ω.(1.3)

The above system of two first order differential equations is described as a mixed
formulation, and it is preferable to a single second order differential equation for p be-
cause it allows one to enforce the conservation property for the flux (1.1) locally [16].
An example governed by this system is fluid flow in porous media, where the perme-
ability (divided by fluid viscosity) a can vary by many orders of magnitude over a
small spatial displacement, u is the Darcy velocity, p is the fluid pressure, and f mod-
els sources and sinks, i.e., wells, which themselves may be quite small scale features
in the problem.

To approximate the velocity u and pressure p on the coarse mesh TH requires
meeting two competing objectives. First, the approximating spaces must be rich
enough to follow the variability in the solution. While a fully fine scale approximating
space fulfills this objective, it is not computationally efficient. The second objective
is to somehow reduce the problem to the size and complexity of an ordinary coarse
scale approximation. The natural approach is to simplify the representation of the
solution on the coarse element edges in two dimensions, or faces in three dimensions.

In the variational point of view taken by Arbogast et al., the solution space is
decomposed into coarse and fine scale components. This also splits the trial space, and
therefore the equations, into coarse and fine scale parts. The fine scale equations are
local, and thus solvable, and allow one to compute the fine scale part of the solution
from the coarse scale part. The problem then reduces to solving a coarse scale problem
for the coarse part of the solution. Any of the usual mixed finite element spaces can
be used on the coarse scale. To obtain good approximation on the coarse element
edges or faces in this context, it was found that one should use at least second order
accurate velocities on the coarse scale.

The multiscale finite element approach of Hou, Wu, and Cai is based on using
the lowest order Raviart–Thomas (RT0) spaces [27] on the coarse scale. One modifies
the usual coarse basis to incorporate the microstructure in a by solving the system
(1.1)–(1.2) locally. This produces finite elements that vary much like the solution
itself. One simply solves a coarse mesh mixed finite element method using these
perturbed elements. However, because the RT0 spaces are only first order accurate,
they do not give good approximation on the coarse element boundaries. To alleviate
this problem, Hou, Wu, and Cai propose an oversampling technique, in which they
modify each local basis function by sampling the microstructure over a domain larger
than its support. This induces variability in the velocity across coarse element edges
or faces and improves the quality of the solution. Several interesting and important
advances in the design of the mixed multiscale finite elements have been proposed by
Aarnes [1] and Aarnes, Krogstad, and Lie [2].

In this paper, we obtain a connection between the two frameworks. Even though
they appear very different, we show that they are in fact equivalent under mild re-
strictions. We first extend the subgrid upscaling approach to allow oversampling.
Then the two frameworks are equivalent provided that one uses the RT0 spaces, and
provided that there are no fine scale components in f . This last is a subtle point, but
important in porous media applications, since wells are so small in two of their three
dimensions. The variational framework picks up additional terms related to fine scale
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components of the wells that are overlooked in the multiscale finite element approach,
since the latter emphasizes only heterogeneity in a (unless perhaps one supplements
the finite element space with special well elements).

We also show that the multiscale error analysis of Chen and Hou [17] extends
to the variational multiscale framework. In this analysis, one considers a(x) to be
locally periodic of period ε; that is, the scale of the heterogeneity is well defined
as ε. In the case considered in [17], RT0 on simplices, our results are similar and
give an O(ε + H +

√
ε/H) error bound, wherein the bounding constant depends on

Sobolev norms of the smooth homogenized solution but not on the solution itself.
Moreover, the proof is elucidated by the application of variational upscaling ideas
and results in improved error estimates with regard to f , requiring its L2-norm to
be bounded rather than its H1-norm. When oversampling is not used, we obtain
error bounds of O(ε + Hm +

√
ε/H) for RT0 on nonsimplicial elements (m = 1) and

the second order accurate (m ≤ 2) Brezzi–Douglas–Marini (BDM1) [15] spaces in
two dimensions or the Brezzi–Douglas–Durán–Fortin (BDDF1) [14] spaces in three
dimensions. Furthermore, when oversampling is not used, we obtain an important
superconvergence result for the pressure approximation, showing that it is O

(
(ε +

H + (ε/H)1/d−η)(ε + Hm +
√
ε/H)

)
, where η > 0 if d = 2 and η = 0 if d = 3.

The outline of the paper follows. In section 2, we apply the construction in [5] to
obtain equations upscaled to the coarse level. We show that the upscaling correction
terms are antidiffusive and nonlocal in character. We also extend the method to allow
oversampling. In section 3, we extract the multiscale finite elements that are implicit
in the construction and show when the method is equivalent to that of Chen and
Hou [17]. In section 4, we discuss the fundamental inf-sup lemma regarding solvability
and approximability. In the next section, section 5, we state certain homogenization
results that we need for section 6, in which our multiscale convergence result for
the velocity is stated and proved. Due to the structure of the inf-sup lemma, the
error has two components, the optimal velocity error and an error due to the use of
nonconforming spaces. Finally, in section 7, we treat the pressure error and show that
it is superconvergent in the multiscale setting.

We close the introduction by recasting (1.1)–(1.3) in variational form. Let

H(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)}

with inner product

(v1,v2)H(div;Ω) = (v1,v2)(L2(Ω))d + (∇ · v1,∇ · v2)L2(Ω)

and norm ‖v‖H(div;Ω) = (v,v)
1/2
H(div;Ω). We set

V = H0(div; Ω) = {v ∈ H(div; Ω) : v · ν = 0 on ∂Ω}

and W = L2(Ω)/R with the L2(Ω)-norm, so that ∇ · V = W . We wish to find
u ∈ V + vg and p ∈ W such that

(∇ · u, w) = (f, w) ∀ w ∈ W,(1.4)

(αu,v) = (p,∇ · v) + (b,v) ∀ v ∈ V,(1.5)

where α = a−1 and we denote the L2(S) inner product by (·, ·)S for set S and omit

S from the notation when it is Ω. We assume that a ∈ (L∞(Ω))
d×d

, b ∈
(
L2(Ω)

)d
,
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f ∈ L2(Ω), and vg ∈ H1(Ω). Provided that we have the compatibility condition∫
Ω

f(x) dx =

∫
∂Ω

g(x) ds,

it follows from the standard inf-sup theory of saddle point problems [8, 12, 11, 16, 17]
that (1.4)–(1.5) is indeed uniquely solvable.

2. Approximation by the variational multiscale method. Let TH be a
regular and quasi-uniform partition of Ω into simplices and/or bricks having maximum
diameter H, satisfying the condition that the minimum angle of each E is bounded
below by some positive constant independent of H. Consider the orthogonal direct
sum decomposition

W = W̄ ⊕W ′,

where the coarse space is

W̄ = {w̄ ∈ W : w̄ is constant on each E ∈ TH}

and the “subgrid” space is the orthogonal complement

W ′ = W̄⊥ =

{
w′ ∈ W :

∫
E

w′(x) dx = 0 ∀ E ∈ TH
}
.

Following [5], we can find a (nonorthogonal) direct sum decomposition of V into closed
subspaces V̄ and V′ such that

V = V̄ ⊕ V′,

V̄ ⊆
{
v̄ ∈ V : ∇ · v̄ ∈ W̄

}
,

V′ =
{
v′ ∈ V : ∇ · v′ ∈ W ′ and v′ · νE = 0 on ∂E ∀E ∈ TH

}
;

moreover, ∇·V̄ = W̄ and ∇·V′ = W ′. Thus we can uniquely decompose the solution
(u, p) ∈ (V + vg) ×W of (1.4)–(1.5) as

u = ū + u′ + vg,(2.1)

p = p̄ + p′,(2.2)

where ū ∈ V̄, u′ ∈ V′, p̄ ∈ W̄ , and p′ ∈ W ′.

2.1. Subgrid closure operators. By using the above decompositions and re-
stricting the test functions in (1.4)–(1.5) to (v′, w′) ∈ V′ ×W ′, we obtain the subgrid
equation

(∇ · u′, w′) = (f −∇ · vg, w
′) ∀ w′ ∈ W ′,(2.3)

(α(ū + u′),v′) = (p′,∇ · v′) + (b − αvg,v
′) ∀ v′ ∈ V′,(2.4)

where certain terms have vanished due to the orthogonality of W̄ and W ′ and the
property that ∇ · V̄ = W̄ . Note that for our problem, p̄ does not appear in the above
equation (see [5] for handling the general case).

We now define the subgrid closure operators mapping each ū ∈ V̄ to some u′ ∈ V′

and p′ ∈ W ′. Each is an affine operator consisting of a linear and a constant part
depending on ū, the coarse part of u, so we write

u′ = u′(ū) = û′(ū) + ũ′,(2.5)

p′ = p′(ū) = p̂′(ū) + p̃′.(2.6)
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More generally, for each v ∈ H(div; Ω), by (2.3)–(2.4), (û′(v), p̂′(v)) ∈ V′ × W ′ is
defined by

(∇ · û′(v), w′) = 0 ∀ w′ ∈ W ′,(2.7)

(α (v + û′(v)) ,v′) = (p̂′(v),∇ · v′) ∀ v′ ∈ V′,(2.8)

and (ũ′, p̃′) ∈ V′ ×W ′ is defined by

(∇ · ũ′, w′) = (f −∇ · vg, w
′) ∀ w′ ∈ W ′,(2.9)

(αũ′,v′) = (p̃′,∇ · v′) + (b − αvg,v
′) ∀ v′ ∈ V′.(2.10)

These equations are well-posed on each E ∈ TH [5].
For future reference, we note that on each E ∈ TH ,

− a∇p̂′(v) = v + û′(v),(2.11)

− a∇p̃′ = ũ′ − ab + vg,(2.12)

because V′|E = H0(div;E) is the full space. Moreover, W ′|E = L2(E)/R, so

∇ · û′(v) = 0.(2.13)

2.2. The upscaled equation. We now define a vector space V̂ ⊆ V by

V̂ =
{
v̂ ∈ V : v̂ = v̄ + û′(v̄) for some v̄ ∈ V̄

}
,

restrict the test functions in (1.4)–(1.5) to be in V̂×W̄ , use the various decompositions,
and introduce the notation

f̂ = f −∇ · vg and b̂ = b − α(vg + ũ′).

Thus we rewrite (1.4)–(1.5) in upscaled form as the problem of finding (û, p̄) ∈ V̂×W̄
such that

(∇ · û, w̄) = (f̂ , w̄) ∀ w̄ ∈ W̄ ,(2.14)

(αû, v̂) = (p̄,∇ · v̂) + (b̂, v̂) ∀ v̂ ∈ V̂,(2.15)

where now

u = ū + û′(ū) + ũ′ + vg = û + ũ′ + vg.(2.16)

By [5, Theorem 4.6], the above problem has a unique solution.

2.3. Character of the upscaled operator. With v′ = û′(ū) in (2.8), we note
that

(αû′(ū), v̄) = −(αû′(ū), û′(v̄)),

so (1.5) with v = v̄ ∈ V̄ enables us to rewrite the upscaled equation (2.15) as

(αū, v̄) − (αû′(ū), û′(v̄)) = (p̄,∇ · v̄) + (b̂, v̄) ∀ v̄ ∈ V̄.(2.17)

Thus the second term on the left-hand side, the primary subscale correction, is purely
antidiffusive on the coarse scale, as we should expect. Moreover, there is an affine
correction term related to subscales of b, f , and vg through ũ′.
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Next let Gx(y) be the Green’s function on a coarse element E, defined by

−∇ · a∇Gx = δx − 1/|E| in E,

− a∇Gx · νE = 0 on ∂E,

where δx is the Dirac mass at x ∈ E and the average of Gx vanishes, and where
vertical bars around a set in R

d denotes d-dimensional or (d−1)-dimensional Lebesgue
measure, as appropriate. Then on E,

p(x) = (−∇ · a∇Gx + 1/|E|, p)E
= (a∇Gx,∇p)E + p̄

= −(∇Gx,u − ab)E + p̄

= −(∇Gx, ū − ab)E − (∇Gx,u
′ + vg)E + p̄

= −(∇Gx, ū − ab)E + (Gx,∇ · (u′ + vg))E − (Gx,vg · νE)∂E + p̄

= −(∇Gx, ū − ab)E + (Gx, f
′)E − (Gx,vg · νE)∂E + p̄,

where f ′ is defined by the decomposition f = f̄ + f ′ ∈ W̄ ⊕ W ′ and we use that
Gx ∈ W ′ to replace (Gx,∇ · (u′ + vg))E by (Gx,∇ · u)E = (Gx, f

′). Now

α(x)u(x) − b = −∇p = (∇x∇yGx, ū − ab)E − (∇xGx, f
′)E + (∇xGx,vg · νE)∂E ,

so the diffusive and b terms of (1.5), tested on the coarse scale, are

(αu − b, v̄)E =

∫
E

∫
E

ū(y) · ∇x∇yGx(x, y) · v̄(x) dy dx(2.18)

−
∫
E

∫
E

b(y) · a(y)∇x∇yGx(x, y) · v̄(x) dy dx

−
∫
E

∫
E

f ′(y)∇xGx(x, y) · v̄(x) dy dx

+

∫
E

∫
∂E

vg · νE(y)∇xGx(x, y) · v̄(x) ds(y) dx,

so the upscaled inverse permeability tensor is a nonlocal operator (confined to E)
related to a(y)∇x∇yGx(y).

2.4. Oversampling. For each element E ∈ TH , choose some larger set E∗ ⊇ E
such that E∗ ⊆ Ω, E∗ is the same shape as E (i.e., a simplex or brick, again such
that the minimum angle is bounded below by some positive constant independent of
H and E), and, for some C > 0 independent of H and E, diam(E∗) ≤ C diam(E).
Locally on each E∗, recalling the definition of W ′ and properties of V′, we define
function spaces W ′

∗(E∗) = L2(E∗)/R and

V′
∗(E∗) =

{
v′
∗ ∈ V : ∇ · v′

∗ ∈ W ′
∗(E∗) and v′

∗ · νE∗ = 0 on ∂E∗
}
.(2.19)

By analogy to (2.7)–(2.8), we now define the linear part of the oversampled subgrid
closure operators mapping any v ∈ V to some (û′

∗(v), p̂′∗(v)) ∈ V′
∗(E∗) × W ′

∗(E∗)
defined by

(∇ · û′
∗(v), w′

∗)E∗ = 0 ∀ w′
∗ ∈ W ′

∗(E∗),(2.20)

(α (v + û′
∗(v)) ,v′

∗)E∗ = (p̂′∗(v),∇ · v′
∗)E∗ ∀ v′

∗ ∈ V′
∗(E∗).(2.21)
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Note that if E∗ = E, then the operators û′
∗(·) and û′(·) coincide. We also define the

oversampled constant parts of the subgrid closure operators corresponding to (2.9)–
(2.10) as (ũ′

∗, p̃
′
∗) ∈ V′

∗(E∗) ×W ′
∗(E∗) defined by

(∇ · ũ′
∗, w

′
∗)E∗ = (f −∇ · vg, w

′
∗)E∗ ∀ w′

∗ ∈ W ′
∗(E∗),(2.22)

(αũ′
∗,v

′
∗)E∗ = (p̃′∗,∇ · v′

∗)E∗ + (b − αvg,v
′
∗)E∗ ∀ v′

∗ ∈ V′
∗(E∗).(2.23)

Usually we consider these quantities only locally on E, so we need not concern our-
selves with the overlap of the E∗’s. Also note that ∇ · û′

∗(v) = 0 for all v ∈ V.

2.5. Discretization. In practice, we must approximate the solution to the sub-
grid problems (2.20)–(2.21) and (2.22)–(2.23). Since these problems are small (i.e.,
localized to E∗), we assume that we can fully resolve the fine scales in these problems
on a fine subgrid mesh and thereby obtain a sufficiently accurate approximation (see
also [5]). Thus, we will discuss only approximation of the coarse space in this paper,
and we assume that the subgrid is solved exactly.

Let V̄H × W̄H ⊆ V ×W be the lowest order Raviart–Thomas (RT0) [27] space
or the lowest order Brezzi–Douglas–Marini (BDM1) [15] space in two dimensions or
the Brezzi–Douglas–Durán–Fortin (BDDF1) [14] space in three dimensions. In each
case, the pressure approximation space is the space of piecewise constants, so we have
W̄H = W̄ . Let EE be the analytic extension operator from E to E∗, and define the
function space

V̂H,∗ =

{
v̂H,∗ : v̂H,∗ = v̄H +

∑
E∈TH

û′
∗(EEv̄H)|E for some v̄H ∈ V̄H

}
,(2.24)

wherein, technically, EEv̄H = EE(v̄H |E). Now V̂H,∗ ⊆ X, where

X =
⊕

E∈TH

H(div;E)(2.25)

is a Banach space with the norm ‖v‖X =
(∑

E∈TH
‖v‖2

H(div;E)

)1/2
. Clearly V =

H0(div; Ω) ⊆ X, but if E∗ 
= E for any E ∈ TH , then V̂H,∗ 
⊆ V and we have a
nonconforming finite element space.

We approximate (2.14)–(2.15) by the problem of finding (ûH , p̄H) ∈ V̂H,∗ × W̄H

such that ∑
E∈TH

(∇ · ûH , w̄H)E = (f̂ , w̄H) ∀ w̄H ∈ W̄H ,(2.26)

(αûH , v̂H) =
∑

E∈TH

(p̄H ,∇ · v̂H)E + (b̂∗, v̂H) ∀ v̂H ∈ V̂H,∗,(2.27)

where

b̂∗ = b − α

(
vg +

∑
E∈TH

ũ′
∗|E

)
.

Define the affine space

VH,∗ = V̂H,∗ +
∑

E∈TH

ũ′
∗|E + vg(2.28)
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and the discrete oversampled approximation

u ≈ uH = ûH +
∑

E∈TH

ũ′
∗|E + vg ∈ VH,∗,(2.29)

p ≈ pH = p̄H +
∑

E∈TH

(
p̂′∗(EEūH) + p̃′∗

)∣∣
E
∈ W.(2.30)

The full approximation satisfies∑
E∈TH

(∇ · uH , w)E = (f, w) ∀ w ∈ W,(2.31)

(αuH , v̂H) =
∑

E∈TH

(p̄H ,∇ · v̂H)E + (b, v̂H) ∀ v̂H ∈ V̂H,∗,(2.32)

which corresponds to the original system (1.4)–(1.5). The systems (2.26)–(2.27) and
(2.31)–(2.32) are equivalent; the former is suitable for computation and the latter for
analysis. In section 4, it will be shown using the abstract inf-sup lemma [8, 12, 11,
16, 17] that this problem has a unique solution.

If oversampling is not used, this is the same discrete approximation considered
in [5], except that there the subgrid operators are also approximated on a finer mesh
than TH . Since our concern in this paper is to relate ε, the scale of the heterogeneity,
to H, the size of the coarse mesh, we have assumed that the subgrid operators are
fully resolved (as was done in [17]).

3. Partial equivalence with the multiscale finite element method. In
[17], Chen and Hou give a mixed finite element method for the equations making use
of their multiscale finite element basis functions. As we show in this section, their
method is fundamentally equivalent to that described in this paper in the case where
V̄H is the vector variable part of the RT0 space and ũ′ and p̃′ vanish. Note that from
(2.9)–(2.10), ũ′ and p̃′ vanish exactly when (f −∇ · vg, w

′) = 0 for all w′ ∈ W ′ and
(b − αvg,v

′) = 0 for all v′ ∈ V′; that is, the subscales of f − ∇ · vg and b − αvg

vanish.

Let E ∈ TH be given, and let eEi represent the ith edge in two dimensions or face
in three dimensions of E. We begin by recalling a standard basis

{
RE

i

}
for RT0(E),

the vector part of the RT0 space [27] on E ∈ TH , which satisfies

∇ ·RE
i = 1/|E| in E,

RE
i = −∇ωE

i in E,

RE
i · νE =

{
1/
∣∣eEi ∣∣

0
on eEi ,
on eEj , j 
= i.

That is, RE
i is linear, has a constant divergence, and has constant fluxes over the

edges or faces of E.

Chen and Hou [17] construct the multiscale finite element space in the following
way. Let

{
RE∗

i

}
be the basis of RT0(E∗), the vector part of the RT0 space on E∗,

which satisfies

RE∗
i · νE∗

=

{
1/
∣∣eE∗

i

∣∣ on eE∗
i ,

0 on eE∗
j , j 
= i,
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where eE∗
i represents an edge or face of E∗. Since the RT0 basis functions on E∗ also

span RT0(E), there must exist, for each i and j, constants cEij such that

RE
i =

∑
j

cEijR
E∗
j |E .

(If E∗ = E, we simply have cEij = δij , where δij is the Kronecker delta.) Now for each

j, let wE∗
j be the unique solution in L2(E∗)/R = W ′

∗(E∗) of the Neumann problem∫
E∗

a∇wE∗
j · ∇ϕdx =

1∣∣E∗
∣∣
∫
E∗

ϕdx− 1∣∣eE∗
j

∣∣
∫
eE∗
j

ϕds ∀ϕ ∈ H1(E∗),(3.1)

which is equivalent to

∇ · ψ̂H,i = ∇ ·RE∗
i in E∗,(3.2)

ψ̂H,i = −a∇wE∗
i in E∗,(3.3)

ψ̂H,i · νE∗ = RE∗
i · νE∗ on ∂E∗.(3.4)

For each i, set

w̃E∗
i =

∑
j

cEijw
E∗
j .

Now let

MS∗(E) = span{−a∇w̃E∗
i |E}

and X̃H,∗ = {v ∈ X : v|E ∈ MS∗(E) for all E ∈ TH}. Define

ΠH : X̃H,∗ →
⊕

E∈TH

RT0(E)

to be the natural projection defined locally for v|E = −
∑

i bia∇w̃E
i by ΠH(v)|E =∑

i biR
E
i . The oversampled multiscale finite element space X̂H,∗ ⊆ X is then defined

by

X̂H,∗ =
{
v ∈ X̃H,∗ : ΠHv ∈ V̄H

}
,

wherein V̄H is RT0 in this section. Note that again the subgrid problems have been
assumed to be solved exactly, since the fine scales can be fully resolved.

To see the equivalence with the construction in this paper, first note that the
problems (3.1), i.e., (3.2)–(3.4), and (2.20)–(2.21) are closely related, so that

−a∇wE∗
j = RE∗

j + û′
∗(R

E∗
j ) = −a∇p̂′∗(R

E∗
j );

that is, wE∗
j = p̂′∗(R

E∗
j ). Now clearly EERE

i =
∑

j c
E
ijR

E∗
j , so

EERE
i + û′

∗(EERE
i ) = −a∇p̂′∗(EERE

i ) = −
∑
j

cEija∇w̃E∗
j .

Since the matrix cEij is invertible,

MS∗(E) = span{RE
i + û′

∗(EERE
i )|E}.
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Now if v ∈ X̃H,∗, then v|E =
∑

i bi
(
RE

i + û′
∗(EERE

i )|E
)
, and so ΠHv|E =

∑
i biR

E
i .

The condition that ΠHv ∈ V̄H merely says that the local RT0 basis functions fit
together globally in H(div; Ω). Thus X̂H,∗ is the span of v̄H +

∑
E û′

∗(EEv̄H)|E for
v̄H ∈ V̄H ; that is,

X̂H,∗ = V̂H,∗,

and our construction agrees with that in [17], up to the treatment of ũ′ and p̃′.
Moreover, the mixed multiscale finite element method obtains only p̄H ∈ W̄H (not
pH) from (2.30).

4. Analysis of the saddle point variational problem. In this paper, we use
the notation ‖·‖j,S for the norm of the Sobolev space Hj(S), and ‖·‖j,p,S for the norm
of the Sobolev space W j,p(S) when p 
= 2. We proceed through a series of lemmas.

Lemma 4.1. There exists C > 0, independent of ε and H, such that for each
E ∈ TH and v ∈ V,

‖û′
∗(v)‖0,E∗ + ‖∇p̂′∗(v)‖0,E∗ ≤ C‖v‖0,E∗ .

Moreover, if v ∈ V′
∗(E∗) has vanishing divergence, then û′

∗(v) = −v and p̂′∗(v) = 0.

Proof. This is the standard energy estimate for the differential system (2.20)–
(2.21), and the bound depends only on the ellipticity and continuity constants for a
and so is independent of ε and H. The final remark is obvious from the definition of
the operator.

Lemma 4.2. There exists C > 0, independent of ε and H, such that for any
v̂H ∈ V̂H,∗, if v̄H ∈ V̄H is any element corresponding to v̂H in the sense that

v̂H = v̄H +
∑

E∈TH

û′
∗(EEv̄H)|E ,(4.1)

then on any E, ∇ · v̂H |E = ∇ · v̄H |E and

‖v̂H‖H(div;E) ≤ C‖v̄H‖H(div;E).

Proof. By the definition (2.24), each v̂H ∈ V̂H,∗ has at least one v̄H satisfying
(4.1). Since the operator norm of EE (as applied to low order polynomials and with
respect to the L2(E)- and L2(E∗)-norms) is bounded uniformly in E and H under
our assumptions on the shape regularity of E and E∗, we have

‖EEv̄H + û′
∗(EEv̄H)‖0,E∗ ≤ C‖EEv̄H‖0,E∗ ≤ C‖v̄H‖0,E .

Note that EEv̄H + û′
∗(EEv̄H) agrees with v̂H on E, so we have

‖v̂H‖0,E ≤ C‖v̄H‖0,E .

The above inequality holds for the H(div;E)-norm as well, because ∇ · û′
∗(v) is iden-

tically zero for all v ∈ V, which implies ∇ · v̂H = ∇ · v̄H .
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Lemma 4.3. There exists a constant β > 0, independent of ε and H, such that
for any q̄H ∈ W̄H , the following inf-sup condition holds:

sup
0 �=v̂H∈V̂H,∗

∑
E∈TH

(q̄H ,∇ · v̂H)E

‖v̂H‖X
≥ β‖q̄H‖0,Ω.

Proof. It is known that the inf-sup condition holds for all the usual mixed finite
element spaces, such as W̄H × V̄H . Because ∇ · û′

∗(·) = 0, and by Lemma 4.2, we
have

sup
0 �=v̂H∈V̂H,∗

∑
E∈TH

(q̄H ,∇ · v̂H)E

‖v̂H‖X
≥ C sup

0 �=v̄H∈V̄H

(q̄H ,∇ · v̄H)

‖v̄H‖H(div;Ω)
≥ Cβ̄‖q̄H‖0,Ω,

where β̄ > 0 is the inf-sup condition constant for W̄H × V̄H .

To obtain a unique solution of the discrete approximation (2.31)–(2.32) of (1.4)–
(1.5), we can now apply the abstract inf-sup theory given in [16], for example. We can
also obtain a bound on the approximation error, but it involves the approximation of p
in W̄H , which is only first order accurate. This is acceptable for RT0, but suboptimal
for the higher order spaces.

Theorem 4.4. There exists a unique solution (uH , p̄H) ∈ VH,∗ × W̄H to (2.31)–
(2.32). Moreover, there exists C > 0, independent of ε and H, such that if (u, p) is
the solution of (1.4)–(1.5), then

∇ · uH = ∇ · u = f,(4.2)

‖u − uH‖0,Ω ≤ C

{
inf

vH∈VH,∗,∇·vH=∇·u
‖u − vH‖0,Ω(4.3)

+ sup
0 �=ψH∈V̂H,∗,∇·ψH=0

|(αu − b, ψH)|
‖ψH‖0,Ω

}
,

‖p̄− p̄H‖0,Ω ≤ C

{
‖u − uH‖0,Ω(4.4)

+ sup
0 �=ψH∈V̂H,∗

∣∣(αu − b, ψH) −
∑

E∈TH
(p,∇ · ψH)E

∣∣
‖ψH‖X

}
.

Proof. The first equality follows from (2.31). The inf-sup condition of the previous
lemma and (2.32) allow us to estimate directly that

β‖p̄− p̄H‖0,Ω

≤ sup
0 �=ψH∈V̂H,∗

∑
E∈TH

(p̄− p̄H ,∇ · ψH)E

‖ψH‖X

= sup
0 �=ψH∈V̂H,∗

∑
E∈TH

[
(p,∇ · ψH)E − (αuH − b, ψH)E

]
‖ψH‖X

≤ sup
0 �=ψH∈V̂H,∗

∑
E∈TH

[
(p,∇ · ψH)E − (αu − b, ψH)E

]
‖ψH‖X

+ ‖α(u − uH)‖0,Ω,

and the third result (4.3) follows.
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The statement vH ∈ VH,∗ such that ∇ · vH = ∇ · u = ∇ · uH merely says that

vH − uH ∈ V̂H,∗ and has vanishing divergence. For any such vH , we compute

‖u − uH‖0,Ω ≤ ‖u − vH‖0,Ω + ‖vH − uH‖0,Ω

≤ ‖u − vH‖0,Ω + C sup
0 �=ψH∈V̂H,∗,∇·ψH=0

|(α(vH − uH), ψH)|
‖ψH‖0,Ω

≤ ‖u − vH‖0,Ω + C

{
sup

0 �=ψH∈V̂H,∗,∇·ψH=0

|(α(u − uH), ψH)|
‖ψH‖0,Ω

+ sup
0 �=ψH∈V̂H,∗,∇·ψH=0

|(α(vH − u), ψH)|
‖ψH‖0,Ω

}

≤ C

{
‖u − vH‖0,Ω + sup

0 �=ψH∈V̂H,∗,∇·ψH=0

|(αu − b, ψH)|
‖ψH‖0,Ω

}
,

since (αuH , ψH) = (b, ψH), and the second result (4.4) follows.

Finally, we obtain that the discrete solution must be unique by setting all the
data to zero (f , b, vg, which implies that u and p also vanish). We then also obtain
existence of a solution, since the system has finite dimensions and is square.

5. Some homogenization theory needed for multiscale error analysis.
We give a multiscale analysis of the error similar to that given by Hou et al. [22, 17].
This analysis determines the behavior of the error as a function both of H and the
scale of the heterogeneity in a, which we denote by ε. If H ∼ ε, the system is well
resolved, there is no need for oversampling, and the scheme converges with optimal
order of approximation [5]. Thus we tacitly assume the underresolved case where
ε � H. The difficulty, then, with standard approximation theory is that the error
is bounded in terms of H and derivatives of the solution. However, we expect that
each derivative of the solution is proportional to ε−1, and H/ε is not small. The two
exceptions are given by the standard energy estimates for our problem, which are
stated in the following lemma.

Lemma 5.1. Let (u, p) ∈ (V+vg)×W be the solution of (1.4)–(1.5). Then there
is a constant C > 0, depending only on the ellipticity bounds for a, such that

‖u‖0,Ω + ‖∇p‖0,Ω ≤ C
{
‖f −∇ · vg‖0,Ω + ‖vg‖0,Ω + ‖b‖0,Ω

}
,

‖∇ · u‖0,Ω = ‖f‖0,Ω.

In order to quantify the scale of the heterogeneity, we use homogenization theory.
Thus we assume that the permeability has “locally periodic” oscillations whose scale
is on the order of some ε > 0. That is, let C1

per(R
d) denote the space of all C1(Rd)

functions that are periodic with respect to the unit cube Y ⊆ R
d, and assume that

a = a(x, x/ε), where for each i, j = 1, . . . , d, aij(x, y) ∈ C1(Ω̄;C1
per(R

d)), and a varies

slowly in its first argument on a scale resolved by H. Moreover, suppose B ∈ (L2(D))d.

Following Chen and Hou [17], we now review the relevant aspects of homogeniza-
tion theory. Let D ⊆ Ω be a Lipschitz domain in R

d and suppose F ∈ L2(D) and
G ∈ L2(∂D) satisfy the compatibility condition

∫
D

F (x) dx =

∫
∂D

G(x) ds.
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For each ε > 0, we let qε ∈ H1(D)/R be the unique solution of the Neumann problem∫
D

a(x, x/ε) (∇qε − B) · ∇ϕdx =

∫
D

Fϕdx−
∫
∂D

Gϕds ∀ ϕ ∈ H1(D).(5.1)

The homogenized coefficient matrix a0(x) =
(
a0
ij(x)

)
ij

of a(x, x/ε) is given by

a0
ij(x) =

1

|Y |

d∑
k=1

∫
Y

aik(x, y)

(
δkj −

∂χj

∂yk
(x, y)

)
dy, x ∈ Ω, y ∈ Y,(5.2)

where δkj is the Kronecker delta and χj(x, y) is the Y -periodic (in y) solution of the
jth cell problem

d∑
i=1

d∑
k=1

∂

∂yi

(
aik(x, y)

∂χj

∂yk
(x, y)

)
=

d∑
i=1

∂

∂yi
aij(x, y),

with
∫
Y
χj(x, y) dy = 0. Now, we let q0 ∈ H1(D)/R be the unique solution of the

homogenized counterpart of (5.1), namely,∫
D

a0(x)(∇q0 − B) · ∇ϕdx =

∫
D

Fϕdx−
∫
∂D

Gϕds ∀ ϕ ∈ H1(D).(5.3)

In the usual way, we define the first order corrector of qε by

(q0)ε1(x) = q0(x) − ε

d∑
k=1

χk(x, x/ε)

(
∂q0

∂xk
−Bk

)
.(5.4)

Recall that we use the notation ‖·‖j,p,S for the norm of the Sobolev space W j,p(S),
and simply ‖ · ‖j,S if p = 2.

Theorem 5.2. Suppose that q0 ∈ H2(D)∩W 1,∞(D) and D′ ⊂ D. Let the fluxes
be denoted by

Uε = −aε(∇qε − B) and U0 = −a0(∇q0 − B).

There exist a constant C, independent of ε, the size of the domains D and D′, and
the terms B, F , and G, and there exists a boundary corrector θSε ∈ H1(S)/R, defined
below for S ⊂ D in (5.11)–(5.12) and (5.9)–(5.10), such that

‖∇[qε − (q0)ε1 − εθDε ]‖0,D ≤ Cε‖∇q0 − B‖1,D,(5.5)

‖Uε − (U0 + εaε∇θD
′

ε − εaε∇θDε + ψD′

Sol)‖0,D′ ≤ Cε‖∇q0 − B‖1,D,(5.6)

where ψD′

Sol is a solenoidal vector, i.e., ∇·ψD′

Sol = 0 and ψD′

Sol·νD
′
= 0 on ∂D′. Moreover,

‖ε∇θSε ‖0,S ≤ C
{
ε‖∇q0 − B‖1,S +

√
ε|∂S| ‖∇q0 − B‖0,∞,S

}
,(5.7)

‖ε∇θSε ‖0,S ≤ C
(
ε + H−1

S (ε|∂S|)1/d−η
)
‖∇q0 − B‖1,S ,(5.8)

where S is D or D′, HS = diam(S), and η = 0 if d = 3 and η is any fixed positive
number if d = 2.

Remark 5.1. In [17], it is conjectured, but not proven, that estimate (5.7) can
be improved by replacing

√
ε|∂S| by ε

√
|S|/HS in the oversampled case, i.e., with S
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replaced by S′ ⊂ S on the left-hand side. If this turns out to be the case, the estimates
we derive can be correspondingly improved.

In [25], (5.5) and (5.7) were derived in the case where the coefficient a = a(x) is
periodic and B = 0. In [17], the proof was elucidated and extended to the case in
point, where a = a(x, x/ε) is locally periodic. The proof easily modifies to handle the
extra term related to B, and we reproduce it here in brief so that we can extract the
estimates (5.6) and (5.8).

Proof. We use the Einstein summation convention for repeated indices, and the
more concise notation ∂j = ∂/∂xj , and ∂x

j = ∂/∂xj and ∂y
j = ∂/∂yj if we are dealing

with a function of (x, y). The key to the proof is to note that

a0
ik(x) − aε,ij(x, y)

(
δjk − ∂y

j χ
k(x, y)

)
= ∂y

jA
k
ij(x, y),(5.9)

where Ak
ij(x, y) is skew-symmetric for each k [25, p. 6]. Let us denote

γi(x) = ∂j{Ak
ij(x, x/ε) [∂kq

0(x) −Bk(x)]},(5.10)

so that

∂y
jA

k
ij(x, x/ε) (∂kq

0 −Bk) = εγi − ε∂x
j A

k
ij(∂kq

0 −Bk) − εAk
ij∂j(∂kq

0 −Bk).

After some manipulation

−aε,ij [∂j(q
0)ε1 −Bj ] = −a0

ij(∂jq
0 −Bj) + εγi + εψ1,i,

where

ψ1,i = −∂x
j A

k
ij(∂kq

0 −Bk) −Ak
ij∂j(∂kq

0 −Bk)

+ aε,ij∂
x
j χ

k(∂kq
0 −Bk) + aε,ijχ

k∂j(∂kq
0 −Bk).

Now we let θSε ∈ H1(S)/R be defined by

∇ · (aε∇θSε ) = 0 in S,(5.11)

aε∇θSε · νS = γ · νS on ∂S,(5.12)

so that ψS
Sol = ε(γ − aε∇θSε ) has the requisite properties and

−aε[∇(q0)ε1 − B] = −a0(∇q0 − B) + εaε∇θSε + ψS
Sol + εψ1.(5.13)

It is now a simple consequence of the governing equations (5.1) and (5.3) and the
properties of ψD

Sol that

(aε∇[qε − (q0)ε1 − εθDε ],∇ϕ)D = ε(ψ1,∇ϕ)D,

and the first result (5.5) follows easily. The second result (5.6) follows from (5.13)
and the previous result.

To obtain bounds on the boundary corrector, we use a smooth cut-off function
ζε(x) ∈ [0, 1] with compact support that is one except near ∂S, where it tends to zero
in a narrow region of width ε with gradient bounded by C/ε. Now let

γI,i(x) = ∂j{Ak
ij(x, x/ε) [∂kq

0(x) −Bk(x)]ζε(x)},
γB,i(x) = ∂j{Ak

ij(x, x/ε) [∂kq
0(x) −Bk(x)][1 − ζε(x)]}
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(i.e., γ = γB + γI), and note that (5.11)–(5.12) imply that

‖∇θε‖0,S ≤ C‖γB‖0,S ,

since γB is divergence free. Finally,

ε‖γB,i‖0,S = ε‖∂j{Ak
ij [∂kq

0 −Bk][1 − ζε]}‖0,S

≤ ε‖∂x
j A

k
ij [∂kq

0 −Bk][1 − ζε]‖0,S + ε‖Ak
ij∂j [∂kq

0 −Bk][1 − ζε]‖0,S

+ ε‖Ak
ij [∂kq

0 −Bk]∂j [1 − ζε]‖0,S + ‖∂y
jA

k
ij [∂kq

0 −Bk][1 − ζε]‖0,S

≤ C
{
ε‖∇q0 − B‖1,S + ‖∇q0 − B‖0,Sζ

ε

}
,

where Sζ
ε is the support of 1 − ζε. Since the measure of Sζ

ε is proportional to ε|∂S|,
we have

‖∇q0 − B‖0,Sζ
ε
≤

√∣∣Sζ
ε

∣∣ ‖∇q0 − B‖0,∞,S ≤ C
√
ε|∂S| ‖∇q0 − B‖0,∞,S ,

and (5.7) follows. To show (5.8), we instead use Hölder’s inequality with r = d/(d−2)
(or large but finite if d = 2) and the Sobolev imbedding theorem to show that

‖∇q0 − B‖0,Sζ
ε
≤ C(ε|∂S|)(r−1)/2r‖∇q0 − B‖0,2r,Sζ

ε

≤ CH−1
S (ε|∂S|)1/d−η‖∇q0 − B‖1,S ,

wherein η = 0 if d = 3 and η > 0 if d = 2 (the factor H−1
S comes from a scaling

argument on the size of the domain S). The proof is complete.

We will apply Theorem 5.2 several times, with D being one of Ω, E, or E∗. Since
these are convex polygonal domains, the hypothesis q0 ∈ H2(D) ∩ W 1,∞(D) will
hold provided that, for some r > d, F ∈ Lr(D) and G = vg · νD on ∂D for some
vg ∈ (W 1,r(D))d [17, 20, 26].

6. Multiscale estimation of the errors. In this section, we estimate the terms
in the basic estimates of Theorem 4.4 for the velocity and pressure errors. We obtain
the following estimates which isolate the dependence on both H and ε.

Theorem 6.1. For each ε > 0, let (uε, pε) ∈ (V+vg)×W be the solution of (1.4)–
(1.5) with the coefficient aε = a(x, x/ε) and αε = a−1

ε . Let (u0, p0) ∈ (V + vg) ×W
satisfy (1.4)–(1.5) with the homogenized coefficient a0 defined by (5.2) in place of a,

and α0 = (a0)−1. For H > 0, let (ûε
H , p̄εH) ∈ V̂H,∗×W̄H be the solution of the discrete

upscaled equation (2.26)–(2.27), and define uε
H by (2.29).

(a) Oversampling. Assume that the partition TH consists only of simplices and
V̄H is RT0. Then

‖uε − uε
H‖H(div;Ω) + ‖pε − p̄εH‖0,Ω(6.1)

≤ C
{
(ε +

√
ε/H + H)

[
‖f −∇ · vg‖0,Ω + ‖vg‖0,Ω + ‖b‖0,Ω

]
+ (ε/H) ‖∇p0‖0,∞,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

+ (ε + H)
[
‖∇p0‖1,Ω + ‖∇p0 − b‖1,Ω

]
+ H‖u0 − vg‖1,Ω

}
.

If the oversampling conjecture of Chen and Hou [17] holds (Remark 5.1), then√
ε/H may be replaced by ε/H above.
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(b) Nonoversampling. Assume that oversampling is not used. Let m = 1 when
V̄H is RT0 and m = 1 or 2 when V̄H is BDM1 or BDDF1. Then

‖uε − uε
H‖H(div;Ω) + ‖p̄ε − p̄εH‖0,Ω(6.2)

≤ C
{
ε‖∇p0 − b‖1,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

+ Hm
(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
.

Moreover, with η = 0, if d = 3, and η any fixed positive number, if d = 2,

‖uε − uε
H‖H(div;Ω) ≤ C

{(
ε + (ε/H)1/d−η

)
‖∇p0 − b‖1,Ω(6.3)

+ Hm
(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
.

We remark that (a) is a small improvement over the result in [17, Theorem 2.2].
Assuming the more pessimistic but proven bound on the boundary corrector, and
with vg = b = 0, this previous result is

‖uε − uε
H‖H(div;Ω) + ‖pε − p̄εH‖0,Ω

≤ C
{
(ε + H)

(
‖p0‖2,Ω + ‖f‖1,Ω + ‖u0‖H(div;Ω)

)
+
√
ε/H

(
‖p0‖1,∞,Ω + ‖f‖0,Ω + ‖u0‖H(div;Ω)

)}
.

The small improvement is in the norm on f , which as noted in the introduction can
have small scale aspects in some applications such as flow in porous media. Result (b)
is new for the BDM1 and BDDF1 spaces, and for RT0 with nonsimplicial elements.

Concerning the proof of this theorem, by Theorem 4.4, for (b), we need only to
bound the optimal velocity error, which is done in section 6.1. For (a), we need this,
the oversampling error, handled in section 6.2, and the following simple estimate for
the pressure. Note that in (6.1), we have pε rather than p̄ε. This is allowed by the
estimate

‖p− p̄H‖0,Ω ≤ ‖p− p̄‖0,Ω + ‖p̄− p̄H‖0,Ω ≤ CH‖∇p‖0,Ω + ‖p̄− p̄H‖0,Ω

and the bound on ‖∇p‖0,Ω in Lemma 5.1. We will improve the pressure estimate of
(b) in section 7.

6.1. The optimal velocity error. In this subsection, we assume that oversam-
pling may be used, so as to handle cases (a) and (b) of Theorem 6.1 simultaneously.
Let π̄H : V ∩ Lr(Ω) → V̄H (for some r > 2) be the standard mixed finite element
interpolation operator [27, 18, 15, 14, 16]. It has the property that

∇ · π̄Hv = PW̄H
∇ · v(6.4)

for all v ∈ V ∩ Lr(Ω), where PW̄H
is the L2-projection onto W̄H . We also have the

approximation property

‖v − π̄Hv‖0,Ω ≤ CHm‖v‖m,Ω,(6.5)

where m = 1 when V̄H is RT0 and m = 1 or 2 when V̄H is BDM1 or BDDF1.
We now note a lemma on the difference between nonoversampled and oversampled

quantities.
Lemma 6.2. If E ∈ TH and w ∈ H1(E∗), then

∇p̂′∗(a∇w) = −∇w and û′
∗(a∇w) = 0.(6.6)
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In fact, p̂′∗(a∇w) = −w provided w ∈ W ′
∗(E∗). Moreover, on E,

∇p̂′(a∇w) = ∇p̂′∗(a∇w)|E = −∇w.(6.7)

Proof. We simply observe that (6.6) provides the unique solution to the equations
defining the subgrid operator (2.20)–(2.21). The remark for w ∈ W ′

∗(E∗) ∩ H1(E∗)
is then trivial, since w is correctly normalized. Similar results hold for p̂′, so (6.7)
follows.

Our main result in this subsection follows.

Lemma 6.3. Let

v̂ε
H = π̄H(u0 − vg) +

∑
E∈TH

û′
∗(EE π̄H(u0 − vg))|E ∈ V̂H,∗,

vε
H = v̂ε

H +
∑

E∈TH

ũ′
∗|E + vg ∈ VH,∗.

Then there is C > 0, independent of ε and H, such that

∇ · uε = ∇ · vε
H ,

‖uε − vε
H‖0,Ω ≤ C

{
ε‖∇p0 − b‖1,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

+ Hm
(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
,

‖uε − vε
H‖0,Ω ≤ C

{(
ε + (ε/H)1/d−η

)
‖∇p0 − b‖1,Ω

+ Hm
(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
,

where m is 1 or 2 and η ≥ 0 as in Theorem 6.1.

Proof. The divergence result is easy to see from (6.4). For the other result, we
work locally on E∗ ⊃ E ∈ TH . We have an expansion over E∗ similar to the one over
E, so on E∗ we can write

pε = p̄∗ + p̂′∗ + p̃′∗,

where p̄∗ is the average of pε over E∗ and p̂′∗, p̃
′
∗ ∈ W ′

∗(E∗) are defined in (2.20)–(2.23)
above. (To see this fact, simply consider an expansion as in section 2 on a perturbed
coarse mesh containing E∗, and discard the expansion outside E∗.) In fact, we have
uε = ū∗ + û′

∗ + ũ′
∗ + vg and the functional relationship

p̂′∗ = p̂′∗(ū∗) = p̂′∗(u
ε − ũ′

∗ − vg),

using Lemma 4.1 to avoid further discussion of ū∗ and û′
∗. Thus we have on E that

uε = −aε(∇pε − b)

= −aε∇p̂′∗(u
ε − ũ′

∗ − vg) − aε(∇p̃′∗ − b)

= −aε[∇p̂′∗(u
ε − u0) + ∇p̂′∗(u

0 − vg) −∇p̂′∗(ũ
′
∗)] + ũ′

∗ + vg,

using (2.23) in the last step.

Note that on E,

v̂ε
H |E = π̄H(u0 − vg) + û′

∗(EE π̄H(u0 − vg))|E = −aε∇p̂′∗(EE π̄H(u0 − vg))|E ,(6.8)



SUBGRID UPSCALING AND MULTISCALE FINITE ELEMENTS 1167

so

uε − vε
H = uε − (v̂ε

H + ũ′
∗ + vg)

= −aε[∇p̂′∗(u
ε − u0) + ∇p̂′∗(u

0 − vg) −∇p̂′∗(ũ
′
∗) −∇p̂′∗(EE π̄H(u0 − vg))].

Now we estimate

‖uε − vε
H‖0,E ≤ C{‖∇p̂′∗(u

ε − u0)‖0,E + ‖u0 − vg − EE π̄H(u0 − vg)‖0,E∗(6.9)

+ ‖∇p̂′∗(ũ
′
∗)‖0,E},

using Lemma 4.1 again, this time to bound the operator. The second term on the
right is bounded as

‖u0 − vg − EE π̄H(u0 − vg)‖0,E∗ ≤ C Hm ‖u0 − vg‖m,E∗ ,

using the approximation property (6.5) of π̄H (actually, a slight extension to E∗, but
the approximation result continues to hold since the operator EE π̄H preserves low
order polynomials).

For the last term on the far right side of (6.9), since ũ′
∗ ∈ V′

∗(E∗), note that we
have the differential system

−∇ · aε∇p̂′∗(ũ
′
∗) = PW ′

∗(f −∇ · vg) in E∗,

− aε∇p̂′∗(ũ
′
∗) · νE∗ = 0 on ∂E∗,

where PW ′
∗ is the L2-projection onto W ′

∗(E∗). The standard energy estimate is

‖∇p̂′∗(ũ
′
∗)‖0,E∗ ≤ C‖PW ′

∗(f −∇ · vg)‖(H1(E∗))∗ ≤ C Hm ‖f −∇ · vg‖m−1,E∗ ,
(6.10)

where (H1(E∗))
∗ is the dual space of H1(E∗), using standard negative norm estimates

for approximation of a function with vanishing average.
Finally, we estimate the first term on the far right side of (6.9), using Theorem 5.2,

specifically the expansion in (5.6). By Lemma 4.1 we can introduce the local solenoidal
term ψE∗

Sol, so we have

∇p̂′∗(u
ε − u0)

= ∇p̂′∗(u
ε − u0 − εaε∇θE∗

ε + εaε∇θΩ
ε ) + ε∇p̂′∗(aε∇θE∗

ε ) − ε∇p̂′∗(aε∇θΩ
ε )

= ∇p̂′∗(u
ε − u0 − εaε∇θE∗

ε + εaε∇θΩ
ε + ψE∗

Sol) − ε∇θE∗
ε + ε∇θΩ

ε ,

using Lemma 6.2. Thus Theorem 5.2 gives the two bounds

‖∇p̂′∗(u
ε − u0)‖0,E

≤ C
{
ε‖∇p0 − b‖1,E∗ +

√
ε|∂E∗| ‖∇p0 − b‖0,∞,E∗ + ‖ε∇θΩ

ε ‖0,E∗

}
,

‖∇p̂′∗(u
ε − u0)‖0,E ≤ C

{(
ε + H−1(ε|∂E∗|)1/d−η

)
‖∇p0 − b‖1,E∗ + ‖ε∇θΩ

ε ‖0,E∗

}
(with the first bound improved if the oversampling conjecture holds).

Combining terms, summing over E ∈ TH , and using that the number of overlaps
of the E∗ are bounded yield

‖uε − vε
H‖0,Ω ≤ C

{
ε‖∇p0 − b‖1,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

+ ‖ε∇θΩ
ε ‖0,Ω + Hm

(
‖u0 − vg‖m,Ω + ‖f −∇ · vg‖m−1,Ω

)}
,
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wherein
√

ε/H ‖∇p0−b‖0,∞,Ω can be replaced by (ε/H)1/d−η‖∇p0−b‖1,Ω. The proof
is completed by Theorem 5.2 to bound the global boundary corrector term.

We have an abstract result, analogous to Theorem 5.2, relating uε to a correction
of the homogenized solution u0.

Corollary 6.4. If ũ′
∗(u

0) is defined by (2.22)–(2.23) with vg replaced by u0,
then∥∥∥∥uε −

(
u0 +

∑
E∈TH

ũ′
∗(u

0)|E
)∥∥∥∥

0,Ω

≤ C
{
ε‖∇p0 − b‖1,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

}
,

∥∥∥∥uε −
(
u0 +

∑
E∈TH

ũ′
∗(u

0)|E
)∥∥∥∥

0,Ω

≤ C
(
ε + (ε/H)1/d−η

)
‖∇p0 − b‖1,Ω.

Proof. Simply take vg = u0. Then v̂ε
H = 0, and we can remove the term involving

f from the estimate since ∇ · vg = ∇ · u0 = f .

6.2. The oversampled nonconforming error. Chen and Hou [17, pp. 559–
563] bounded the nonconforming error terms in Theorem 4.4 when b = 0. The key
features needed in the analysis are (1) that the vector variable of the RT0 spaces, when
restricted to an element and multiplied by a constant matrix, is a pure potential (i.e.,
a gradient of a scalar function), and (2) a vector variable v̄H in RT0 satisfies the
estimate

‖v̄H‖1,E ≤ C‖v̄H‖H(div;E)(6.11)

(see [17, (4.26)]). These properties hold only for RT0 on simplices.
The extension of their result to nonzero b is not difficult, and, again using the

more pessimistic but proven bound on the homogenization boundary corrector terms
(see Remark 5.1), the extended result follows.

Lemma 6.5. There is a constant C > 0, independent of H and ε, such that for
any ψH ∈ V̂H,∗,∣∣∣∣∣(αu − b, ψH) −

∑
E∈TH

(p,∇ · ψH)E

∣∣∣∣∣
≤ C

{
(ε +

√
ε/H + H)

[
‖f −∇ · vg‖0,Ω + ‖vg‖0,Ω + ‖b‖0,Ω

]
+ (ε + H)

[
‖∇p0‖1,Ω + ‖∇p0 − b‖1,Ω

]
+ (ε/H) ‖∇p0‖0,∞,Ω +

√
ε/H ‖∇p0 − b‖0,∞,Ω

}
‖ψH‖X .

This completes the proof of Theorem 6.1.

7. Superconvergent multiscale estimation of the pressure error. In this
section, we assume that oversampling is not used. In this case, we can significantly
improve the estimate of the pressure error over that obtained in Theorem 6.1 above.

Theorem 7.1. For each ε > 0, let (uε, pε) ∈ (V + vg) × W be the solution of
(1.4)–(1.5), with the coefficient aε = a(x, x/ε) and αε = a−1

ε . For each H > 0, let

(ûε
H , p̄εH) ∈ V̂H × W̄H be the solution of the nonoversampled (E∗ = E ∀E ∈ TH)

discrete upscaled equation (2.26)–(2.27), and define (uε
H , pεH) by (2.29)–(2.30). Let

m = 1 when V̄H is the RT0 space and m = 1 or 2 when V̄H is BDM1 or BDDF1.
Assume that the domain Ω is k-regular, in the sense of (7.3) below. If k = 2, then

‖pε − pεH‖0,Ω ≤ C
(
ε + (ε/H)1/d−η + H

)
‖uε − uε

H‖0,Ω,
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and if k = 3, then

‖pε − pεH‖−1,Ω ≤ C
(
ε + (ε/H)1/d−η + Hm

)
‖uε − uε

H‖0,Ω.

These results display superconvergence, in that the pressure converges at a rate
better that we would normally expect from approximation theory. Combining Theo-
rems 7.1 and 6.1(b), we obtain for d = 2 that

‖pε − pεH‖0,Ω ≤ C
(
ε2 + ε/H + Hm+1

)
.(7.1)

One should compare this estimate to the L2-estimate of Efendiev, Hou, and Wu [19]
for the (nonmixed) multiscale finite element method:

‖pε − pεH‖0,Ω ≤ C
(
ε + ε| lnh| + (ε/H)2 + Cθε/H + H2

)
,

although numerical results suggest that Cθ is negligible.
Proof. The difference between (1.5) and the conforming, nonoversampled method

(2.32) is

(
α(u − uH), v̂H

)
= (p̄− p̄H ,∇ · v̄H) ∀ v̂H ∈ V̂H(7.2)

(wherein we suppress the superscript ε on the solutions and the subscript ε on α). For
ϕ ∈ Hk−2(Ω), we construct a test function from the solution U ∈ V to the problem

∇ · U = ϕ in Ω,

U = −a∇q in Ω,

U · ν = 0 on ∂Ω.

This is the same problem as (1.1)–(1.3), with f = ϕ, b = 0, and g = 0 (i.e., vg = 0).
We solve this problem approximately with the variational multiscale method (2.31)–

(2.32) of section 2 for UH = ÛH+Ũ′ ∈ V̂H+Ũ′. Note that ∇·ÛH = ϕ̄, Ũ′ = −a∇q̃′,
and Theorem 6.1 imply that

‖U − UH‖0,Ω ≤ C
{(

ε + (ε/H)1/d−η
)
‖∇q0‖1,Ω + Hm

(
‖U0‖m,Ω + ‖ϕ‖m−1,Ω

)}
,

where (U0, q0) ∈ V×W satisfies the corresponding homogenized problem (i.e., with a0

replacing a). The k-regularity assumption means that there is some constant C > 0,
independent of H and ε, such that

‖U0‖k−1,Ω + ‖q0‖k,Ω ≤ C‖ϕ‖k−2,Ω,(7.3)

so

‖U − UH‖0,Ω ≤ C
(
ε + (ε/H)1/d−η + Hm

)
‖ϕ‖k−2,Ω,

wherein m = 1 if k = 2.
Using the test function ÛH ∈ V̂H in (7.2), we obtain that

(p̄− p̄H , ϕ̄) = (p̄− p̄H , ϕ) =
(
α(u − uH), ÛH

)
(7.4)

=
(
α(u − uH),UH − U

)
+
(
α(u − uH),U − Ũ′).
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Now, by the divergence theorem,(
α(u − uH),U − Ũ′) = −

(
α(u − uH), a∇(q − p̃′)

)
= −

(
u − uH ,∇(q − p̃′)

)
=

(
∇ · (u − uH), q − p̃′

)
= 0,

so

(p̄− p̄H , ϕ) =
(
α(u − uH),UH − U

)
≤ C‖u − uH‖0,Ω‖U − UH‖0,Ω

≤ C‖u − uH‖0,Ω

(
ε + (ε/H)1/d−η + Hm

)
‖ϕ‖k−2,Ω,

wherein m = 1 if k = 2.
Taking k = 2 and the supremum over ϕ ∈ L2(Ω), we see the estimate

‖p̄− p̄H‖0,Ω ≤ C
(
ε + (ε/H)1/d−η + H

)
‖u − uH‖0,Ω.

If instead k = 3 and ϕ ∈ H1
0 (Ω), we obtain

‖p̄− p̄H‖−1,Ω ≤ C
(
ε + (ε/H)1/d−η + Hm

)
‖u − uH‖0,Ω.

Now by Lemma 4.1, we see that

p̂′(ū − ūH) = p̂′
(
ū + û′(ū) − ūH − û′(ūH)

)
= p̂′(u − uH),

so we conclude that

‖p− pH‖0,Ω ≤ ‖p̄− p̄H‖0,Ω + ‖p̂′(u − uH)‖0,Ω

≤ ‖p̄− p̄H‖0,Ω + CH‖∇p̂′(u − uH)‖0,Ω

≤ ‖p̄− p̄H‖0,Ω + CH‖u − uH‖0,Ω

≤ C
(
ε + (ε/H)1/d−η + H

)
‖u − uH‖0,Ω,

which is our first estimate. For the negative norm estimate,

‖p̂′(u − uH)‖−1,Ω ≤ CH2‖∇p̂′(u − uH)‖0,Ω ≤ CH2‖u − uH‖0,Ω,

so if k = 3,

‖p− pH‖−1,Ω ≤ ‖p̄− p̄H‖−1,Ω + ‖p̂′(u − uH)‖−1,Ω

≤ C
(
ε + (ε/H)1/d−η + Hm

)
‖u − uH‖0,Ω,

completing the proof.
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