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Abstract. Multiscale finite element numerical methods are used to solve flow problems when the coeffi-
cient in the elliptic operator is heterogeneous. A popular mixed multiscale finite element has basis functions
which can be defined only over pairs of elements, so we call it a “dual-support” element. We show by example
that it can fail to reproduce constant flow fields, and so fails to converge in any meaningful way. The problem
arises when the coefficient is an anisotropic tensor. A new approach to multiscale finite elements based on the
microscale structure theory of homogenization is presented to avoid the problems with anisotropy. Five nu-
merical test cases are presented to evaluate and contrast the methods. The first involves anisotropy, and the
second is similar in that, although it has an isotropic coefficient, its heterogeneity leads to an anisotropic homo-
genized coefficient. As expected, the popular method has difficulty—while the new method shows no difficulty
—with either anisotropy or macroscale implied anisotropy. The final three tests involve heterogeneous and
channelized cases, and features of the new method are shown to be important for good approximation. Finally,
for a two-scale coefficient, a proof of convergence is presented for standard mixed multiscale finite elements
that reduces to four simple steps. From its simplicity, one can easily see that the popular elements fail only the
step related to the counterexample, and we conjecture, but do not prove, that the new homogenization-based
elements converge.
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1. Introduction. To illustrate ideas, we consider only the following simple second
order elliptic equation, which in mixed form is

u ¼ −aϵ∇p in Ω;ð1:1Þ
∇ ⋅ u ¼ f in Ω;ð1:2Þ
u ⋅ ν ¼ 0 on ∂Ω;ð1:3Þ

where Ω ⊂ Rd, d ¼ 2, 3, is the problem domain, ν is the outer unit normal, aϵðxÞ is a
tensor, uniformly positive definite, fðxÞ is the source or sink term, and the unknowns are
pressure pðxÞ and velocity uðxÞ. The difficulty arises from the coefficient aϵ, which is
assumed to be highly heterogeneous; that is, aϵ varies on a fine scale ϵ ≪ 1. Resolution
of the solution requires that it be approximated on a mesh T h of maximal spacing h < ϵ;
however, this is often not computationally feasible. To reduce the computational work-
load, and to increase parallelism, various multiscale approximation schemes have been
proposed, including multiscale finite element and finite volume methods [22], [2], [27],
[28], [23], [33], [34], [18], [1], [3], variational multiscale methods and related subgrid up-
scaling and component mode synthesis techniques [29], [30], [9], [4], [8], [5], [6], [31], [7],
[36], [38], [39], [25], generalized finite elements and partition of unity methods [13], [11],
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[43], [12], the heterogeneous multiscale method [21], the multiscale mortar method [41],
[10], multiscale solver methods [37], [24], [32], [40], and many others.

In this paper, in sections 2 and 6, we consider certain mixed multiscale finite element
methods, which are also variational multiscale methods, since these types of methods
have implicitly defined multiscale finite elements [7]. In a sense to be made clear, the
multiscale elements we consider are based on the standard, nonmultiscale mixed ele-
ments of first order due to Raviart and Thomas (RT0) [42] and of second order due
to Brezzi, Douglas, and Marini (BDM1) [16], [15]. The standard mixed multiscale ele-
ments of first order are implicit in the work of Arbogast, Minkoff, and Keenan and later
defined by Chen and Hou (ME0) [9], [18], and the ones of second order are due to Ar-
bogast (ME1) [4], [5], [7]. We also consider the simplest variant of the “dual-
support” element defined by Aarnes, Krogstad, and Lie (MD) [1], [3]. In section 3,
we show that this element cannot converge as the mesh size tends to zero by construct-
ing a family of counterexamples. The problem arises when aϵ is an anisotropic tensor.

We define a new “homogenization-based”mixedmultiscale finite element HE0 in sec-
tion 5 that uses some of the ideas of the MD element, but does not (apparently) have the
same problem with anisotropy. Homogenization theory, section 4, suggests that micro-
scale variation inu can be represented to orderOð ffiffiffi

ϵ
p Þ as a fixed functionAϵ depending on

ϵ times the smooth homogenized solution u0.We therefore base our new finite element on
an explicit representation ofAϵ and on an approximation of u0, in our case, by a constant
vector. We also note a variant HE0-OS that uses oversampling to define Aϵ.

In section 7, we present a series of five test cases to evaluate and contrast the meth-
ods. Generally, HE0-OS performs best. The first test case uses a constant but anisotropic
aϵ. The second test case uses a locally isotropic aϵ that has streaks of alternating high
and low values. Under homogenization, this streaked aϵ tends to the first case. These
two cases show the problems that MD can experience for anisotropic problems, both
directly and also as a macroscopic effect under upscaling, and also shows no such diffi-
culty for HE0. The third test case is moderately heterogeneous, and all methods work
relatively well. The final two test cases involve channelized flows.

A complete summary of our results and conclusions is given in section 8.
Theoretical convergence results are presented in the appendix for ME0 and ME1.

The results are not new, but the proof reduces to four simple steps. The MD elements fail
only one step, which is related to our counterexample. We do not extend the proof to
HE0 elements because of technical issues related to homogenization theory, but the sim-
plicity of the proof does allow us to conjecture that HE0 should work well, as our nu-
merical results show.

To fix some of our notation, for ω ⊂ Ω, let k⋅kk;p;ω denote the norm of the Sobolev
space Wk;pðωÞ of k times differentiable functions in LpðωÞ, 1 ≤ p ≤ ∞. Similarly, k⋅kk;ω
is the norm of the Hilbert space HkðωÞ ¼ Wk;2ðωÞ. We may omit ω in the notation if it
is Ω.

2. Some mixed multiscale finite element methods. For most of the discus-
sion, it suffices that Ω ⊂ Rd, d ¼ 2, 3, is polygonal and that T H is a conforming mesh
of simplices or rectangles of maximal element diameter H > 0. However, for a few cri-
tical results, we require a mesh of rectangles, so we tacitly assume this for the rest of the
paper. Between two adjacent elements, we denote by e the (d− 1)-dimensional inter-
section, referred to as an “edge” (we use the two-dimensional terminology—e is a face in
three dimensions). Let the set of edges be denoted EH .

At times we will need a consistent normal direction, so for e ∈ EH , let νe denote a
fixed unit normal vector. Moreover, if e ⊄ ∂Ω, let Ee;1 and Ee;2 be the two elements that
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share edge e, where νe points from Ee;1 to Ee;2. If e ⊂ ∂Ω, simply let νe ¼ ν, Ee;1 be the
element containing e, and Ee;2 be empty. Finally, let the dual-element support domain
be Ee ¼ Ee;1 ∪ Ee;2 ∪ e.

Let V ¼ Hðdiv;ΩÞ ¼ fv ∈ ðL2ðΩÞÞd: ∇ ⋅ v ∈ L2ðΩÞg and W ¼ L2ðΩÞ∕ R. Then the
standard variational problem for (1.1)–(1.3) is to find ðu; pÞ ∈ V ×W such that

ðαϵu; vÞ− ðp;∇ ⋅ vÞ ¼ 0 ∀ v ∈ V;ð2:1Þ
ð∇ ⋅ u; wÞ ¼ ðf ; wÞ ∀w ∈ W;ð2:2Þ

where αϵ ¼ aϵ−1 and ð⋅; ⋅Þ is the L2ðΩÞ innerproduct.
Once conforming finite element spaces VH ×WH ⊂ V ×W are defined, the stan-

dard mixed finite element method is to find ðuH ; pH Þ ∈ VH ×WH such that

ðαϵuH ; vÞ− ðpH ;∇ ⋅ vÞ ¼ 0 ∀ v ∈ VH ;ð2:3Þ
ð∇ ⋅ uH ;wÞ ¼ ðf ; wÞ ∀ w ∈ WH:ð2:4Þ

If we use special ϵ-scale-dependent finite elements, we call this a mixed multiscale finite
element method.

The lowest order mixed finite elements that we consider all take WH as the set of
piecewise constants; that is,

WH ¼ fw ∈ W : wjE is constant ∀E ∈ T Hg:ð2:5Þ

2.1. Raviart-Thomas (RT0) elements. The standard lowest order RT0 mixed
finite elements [42], [17] are defined on a rectangular element E so that VRT0ðEÞ is a
vector for which the ith component is linear in xi and constant in the other variables.
These are pieced together so that

VRT0
H ¼ fv ∈ V: vjE ∈ VRT0ðEÞ∀E ∈ T Hg;

that is, the normal component of velocity is continuous across all edges.

2.1.1. Element definition. A basis can be found by defining degrees of freedom as
the normal fluxes on each element edge. This vector basis can be constructed by solving
boundary value problems on each element E. For each edge e ⊂ ∂E, the vector vRT0e and
unused scalar ϕRT0

e are the solution of the mixed problem

vRT0e ¼ −∇ϕRT0
e in E;ð2:6Þ

∇ ⋅ vRT0e ¼ νE ⋅ νejej∕ jEj in E;ð2:7Þ

vRT0e ⋅ νE ¼
�
0 on ∂E \ e;
1 on e;

ð2:8Þ

where νE is the outward normal to ∂E. Given e ∈ EH , we solve the problem above on
both Ee;1 and Ee;2, which piece together to give vRT0e ∈ V.

2.1.2. Dual-element support definition. Alternatively, when T H is rectangu-
lar, a basis can be constructed on the dual-support domain Ee. For each edge e ∈ EH ,
solve
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vRT0e ¼ −∇ϕRT0
e in Ee;ð2:9Þ

∇ ⋅ vRT0e ¼ νEe;i
⋅ νejej ∕ jEe;ij in Ee;i; i ¼ 1; 2;ð2:10Þ

vRT0e ⋅ ν ¼ 0 on ∂Ee:ð2:11Þ

The equivalence of definitions is not difficult to verify on rectangular grids, since the
solution is piecewise linear in the flow direction and constant in the normal direction.
However, this equivalence does not hold on triangles/simplices. Nevertheless, (2.9)–
(2.11) suggest a multiscale element on general computational meshes (see section 2.3
below).

These elements have no dependence on the scale ϵ. It is well known (see, e.g., [42],
[17], and also the appendix below) that

ku− uRT0
H k0 ≤ Ckuk1H; k∇ ⋅ ðu− uRT0

H Þk0 ≤ Ckfk1H;ð2:12Þ

whereC is independent of ϵ. However, kuk1 ¼ Oðϵ−1Þ, so the method is useful only when
H < ϵ [13], [27], i.e., when H resolves the fine-scale heterogeneity.

2.2. Variational multiscale elements (ME0) based on RT0. The variational
multiscale method was first defined by Hughes et al. [29], [30] for the nonmixed problem,
and for the mixed case by Arbogast, Minkoff, and Keenan [9], [4], [5]. It can be viewed
(see [7]) as a variational framework that uses mixed multiscale finite elements, but also
improves approximation of the fixed source term f in (1.2). For simplicity of exposition,
we will omit this last modification until the numerical results in section 7 and consider
only the effects of the multiscale finite elements.

The first and lowest order mixed multiscale finite element space VME0
H was defined

implicitly in [9], [7] as a modification of the RT0 elements, and also later in [18]. A basis
for the multiscale elements (RT0 ME0) can be realized by solving on each element E, for
each edge e ⊂ ∂E,

vME0
e ¼ −aϵ∇ϕME0

e in E;ð2:13Þ
∇ ⋅ vME0

e ¼ νE ⋅ νejej∕ jEj in E;ð2:14Þ

vME0
e ⋅ ν ¼

�
0 on ∂E \ e;
1 on e:

ð2:15Þ

The normal trace along the interelement edge e is constant as for RT0 elements, but now
vME0
e picks up some of the microstructure within E.

It is known that this method converges. From [6] we have a convergence estimate
when H < ϵ,

ku− uME0
H k0 ≤ Ckuk1H; k∇ ⋅ ðu− uME0

H Þk0 ≤ Ckfk1H;ð2:16Þ

and, for ϵ < H , from [18], [7] (see also the appendix below) the multiscale error estimate

ku− uME0
H k0 ≤ CfHku0k1 þ jϵku0k0 þ

ffiffiffiffiffiffiffiffiffiffi
ϵ ∕ H

p
ku0k0;∞g;ð2:17Þ

where u0 is a smooth function independent of ϵ and defined below in section 4 (where
also condition (4.1) is made on the multiscale form of aϵ).
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2.3.Multiscale dual-support (MD) elements. TheMD finite elements that we
consider were first used by Aarnes, Krogstad, and Lie [1], [3]. We consider only the sim-
plest family of such finite elements. A basis for VMD

H can be constructed for each edge
e ∈ EH by solving on all of Ee

VMD
e ¼ −aϵ∇ϕMD

e in Ee;ð2:18Þ
∇ ⋅ vMD

e ¼ νEe;i
⋅ νejej ∕ jEe;ij in Ee;i; i ¼ 1; 2;ð2:19Þ

vMD
e ⋅ ν ¼ 0 on Ee:ð2:20Þ

We call this a dual-support finite element because it cannot be constructed by joining
together pieces defined on each element E ⊂ Ee. That is, the shape on Ee;1 depends on
Ee;2, and vice versa. Because of this fact, this is not actually a finite element in the clas-
sical sense of Ciarlet [20], although we will consider it so in this work.

When T H is rectangular and aϵ is a constant diagonal tensor, these elements coin-
cide with the RT0 elements (recall (2.9)–(2.11)). The normal trace along the interele-
ment edge e is no longer constant, but there still is an average unit flux. The basis finite
elements mimic a “typical” but local flow problem, so naturally one would think that
they can better approximate flows in a global problem. However, we show in the next
section that in fact this method fails to converge when the coefficient aϵ is anisotropic. In
fact, the counterexample uses a constant tensor, so nonconvergence is unrelated to the
fine-scale heterogeneity.

3. Anisotropic counterexamples to convergence of MD. We give a family of
examples where the MD elements fail to converge. For simplicity, consider the problem
(1.1)–(1.3) on a square domain Ω, and use a uniform rectangular grid T H . The key is to
take a constant tensor coefficient a ¼ aϵ such that a ¼ QTΛQ, whereQ is a rotation and
Λ is a diagonal tensor. Assuming the grid aligns with the coordinate axes, we take a Λ
that is not a scalar multiple of the identity, and a rotation Q that is not a multiple of
π∕ 2, so a genuine anisotropy is induced into the numerical problem.

It is a fact that, in this case, all of the MD basis functions vMD
e have a nonconstant

normal trace on interelement edges e ∈ EH . That is, the MD basis functions become
“twisted” in some sense, as shown in Figure 3.1. The problem is now manifest: the space
VMD

H cannot reproduce constants, and so the method cannot converge in any reason-
able sense.

Because a is constant, the same shape vMD
e is used everywhere in the grid (up to a

rescaling). Indeed, the same shape is used for every H as well. As noted above, because
there is anisotropy and it is not aligned with the grid, the shape vMD

e has a nonconstant
trace along edges. For a general problem (with possibly nonconstant u), as we shrink the

FIG. 3.1. The velocity basis function vMD
e for a constant, anisotropic coefficient aϵ. The preferential di-

rection is 30 degrees above the horizontal and 100 times the orthogonal direction. The nonconstant nature of
the normal trace along the interelement edge e is very noticeable.

628 TODD ARBOGAST

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



grid size H , the velocity u has a nearly constant normal trace along edges because it is
smooth. This difference between the shape and the velocity on the edges accounts for the
nonconvergence.

There is nothing particularly special about the uniform rectangular grid. What is
important is that there is at least one edge of (most) every element that is not aligned
with one of the principal axes of a. In that case, the shape functions vMD

e have a non-
constant normal trace on the edge e, and the same ideas as above apply. This counter-
example also suggests that some dual-support elements may not work well in practice, or
at the least that they must be used with care. We will define a convergent element that
uses the dual-element support idea below in section 5.

This example is also a reasonable proxy for more complicated examples of coefficient
fields aϵ, because directional preferences in the subfield effectively act as a tensor at the
coarse scale, as homogenization theory and upscaling schemes verify. We show such a
numerical example below in section 7.2.

4. Microscale structure from homogenization theory. At times we will de-
note the true solution to the problem (1.1)–(1.3), or, equivalently, (2.1)–(2.2), by
ðuϵ; pϵÞ, to emphasize its scale dependence.

We assume that the heterogeneity in the coefficient a in (1.1) has a separation of
scales and therefore a regular form; specifically, we assume that

aϵðxÞ ¼ aðx; x ∕ ϵÞ;ð4:1Þ

where aðx; yÞ is periodic in y in the unit cube Y ¼ ½0; 1�d. It is well established (see,
e.g., [44], [14], [35], [26], [27], [7]) that ðuϵ; pϵÞ converges to the solution ðu0; p0Þ of
the homogenized problem

u0 ¼ −a0∇p0 in Ω;ð4:2Þ
∇ ⋅ u0 ¼ f in Ω;ð4:3Þ
u0 ⋅ ν ¼ 0 on ∂Ω:ð4:4Þ

Here, the homogenized tensor coefficient a0ðxÞ is given by

a0;ijðxÞ ¼
Z
Y
aðx; yÞ

�
δij þ

∂ωjðx; yÞ
∂yi

�
dy;ð4:5Þ

where ωjðx; yÞ, for each fixed x ∈ Ω, is the y-periodic solution of the cell problem

−∇y ⋅ ½aðx; yÞð∇yωjðx; yÞ þ ejÞ� ¼ 0ð4:6Þ

with ej ∈ Rd being the jth standard unit vector.
The convergence result we need is given in [7, Theorem 5.2]. We state it below, with

a result giving the microscale structure extracted carefully from an examination of the
proof given there.

THEOREM 4.1. Assume that (4.1) holds and p0 ∈ H 2ðΩÞ ∩ W 1;∞ðΩÞ. Let α0 ¼ a−1
0

and define the fixed tensor

Aijðx; yÞ ¼
X
k;l

aikðx; yÞ
�
δkl þ

∂ωlðx; yÞ
∂yk

�
α0;lj;ð4:7Þ
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which depends on aðx; yÞ, but not on the domain Ω. Then with AϵðxÞ ¼ Aðx; x ∕ ϵÞ,
uϵðxÞ ¼ AϵðxÞu0ðxÞ þ θΩϵ ðxÞ;ð4:8Þ

where

kθΩϵ k0 ≤ Cfϵku0k1 þ
ffiffiffiffiffiffiffiffiffiffiffi
ϵj∂Ωj

p
ku0k0;∞g:ð4:9Þ

5. New homogenization-based elements (HE0 andHE0-OS). The structure
result (4.8) shows that u has ϵ-scale structure due to the heterogeneity in a very specific
way, at least in the two-scale separation case of (4.1). Up toOð ffiffiffi

ϵ
p Þ, u is an operator of a

smooth function u0: uϵ ≈Aϵu0. This suggests that the finite element space should con-
sist of functions of the form

fAϵv: v is some nice smooth functiong:

However, since in general Aϵ is a tensor, this definition would create finite element func-
tions that lie outside Hðdiv;ΩÞ; that is, nonconforming finite elements. Moreover, the
divergence ∇ ⋅Aϵv is not piecewise constant, making it difficult to verify the inf-sup
condition [17], and in fact Aϵ need not be positive definite at each point. To avoid these
difficulties, we modify the definition to enforce appropriate local boundary conditions,
divergence properties, and positivity.

We define a new mixed multiscale finite element using homogenization theory,
particularly (4.8), as a heuristic guide. The elements are well defined independently
of assumption (4.1). In d dimensions, we have dmultiscale finite element basis functions
per edge e ∈ EH .

Our definition has two main steps for each e ∈ EH . In the first step, we solve the
periodic cell problem (4.6) for each ωjðx; yÞ, and define Aϵ from it according to (4.7). In
the locally periodic case, this is well defined. However, in practice, we do not have the
separation of scales hypothesis, so we resort to the dual-element support idea to define a
local version of (4.1). That is, we take E�

e ¼ Ee to be Y , the domain of the local cell
problem. Thus, for each edge e ∈ EH and j ¼ 1; : : : ; d, we define ωe;jðxÞ as the periodic
solution to

−∇ ⋅ ½aϵð∇ωe;j þ ejÞ� ¼ 0 in E�
e:ð5:1Þ

As mentioned earlier, in this paper we assume that the fine scale is solved exactly. In
practice, (5.1) is solved on the fine grid using, say, RT0 elements. In mixed form, we
solve

ψe;j ¼ −aϵð∇ωe;j þ ejÞ in E�
e;

∇ ⋅ψe;j ¼ 0 in E�
e

with periodic boundary conditions on ωe;j and ψe;j; that is, we solve for ðψe;j;ωe;jÞ ∈
V� ×W � such that

ðαϵψe;j; vÞ− ðωe;j;∇ ⋅ vÞ ¼ −ðej; vÞ ∀ v ∈ V�;

ð∇ ⋅ ψe;j; wÞ ¼ 0 ∀ w ∈ W �;

where V� ×W � is the RT0 space on E�
e with periodic boundary conditions on V�. We

can now define Ψe to be the matrix with columns ψe;j and then (4.5) becomes
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ae0 ¼
1

jE�
ej
Z
E�

e

ΨeðxÞdx;

where jE�
ej is the measure of the set, and the tensor (4.7) near edge e is

AeðxÞ ¼ ΨeðxÞαe
0;ð5:2Þ

where, as usual, αe
0 ¼ ðae0Þ−1.

In fact, we use only normal traces on e. Since u0 is smooth, we approximate it by a
polynomial, in our case, of degree zero. For example, on e in d ¼ 2 dimensions, for con-
stants c1 and c2,

uϵ ⋅ ν≈Aeu0 ⋅ ν≈Ae

�
c1
c2

�
⋅ ν ¼ c1Aϵe1 ⋅ νþ c2Aϵe2 ⋅ ν:

Only the tracesAeðxÞei ⋅ ν, i ¼ 1; : : : ; d for x ∈ e are required. In principle, we could use
a higher order approximation here, but then WH would also need to be modified.

The second main step of the definition is to solve for a basis for our new space VHE0
H .

For each e ∈ EH and i ¼ 1; : : : ; d, on each element E ∈ T H for which ∂Ee, define vHE0;ie

from the problem

vHE0;ie ¼ −aϵ∇ϕHE0;i
e in E;ð5:3Þ

∇ ⋅ vHE0;ie ∈ R in E;ð5:4Þ

vHE0;ie ⋅ ν ¼
�
0 on ∂E \ e;
Aϵei ⋅ ν on e;

ð5:5Þ

where the constant in R is given by the compatibility condition. Note that our finite
element spaceVHE0

H has d times the number of degrees of freedom as the previous spaces.
If Aϵei ⋅ ν should vanish, vHE0;ie ¼ 0 and we should either remove this function from the
basis, or perhaps replace it with a standard element such as vRT0e or one of the vBDM1;i

e

elements from section 6 below.
We note that Hou and Wu proposed an oversampling technique [27] that reduces

the resonance error. This technique was applied to define a nonconforming variant of
ME0 [18], and it could be applied to any of the methods noted in this paper. In parti-
cular, we propose to use it in the definition of the homogenization functions ωj in (5.1);
that is, we solve this problem (5.1) on a domain E�

e larger than Ee. In our numerical
results, the oversampled version (HE0-OS) in two dimensions uses the six elements that
surround edge e (or fewer, if we are near ∂Ω).

6. The additional finite elements BDM1 and ME1. Before presenting our
numerical results, we note the definitions of two additional finite elements to which
we will compare. These finite elements have as many degrees of freedom as the HE0
elements (i.e., d per edge). The standard, nonmultiscale elements are due to Brezzi, Dou-
glas, andMarini in two dimensions [16] and Brezzi et al. in three [15]. These elements will
be denoted as BDM1, and they use WH as defined (piecewise constants over the ele-
ments). The velocity space VBDM1

H uses linear (two dimensions) or bilinear (three dimen-
sions) variation in the normal velocity on each edge, extended by a low order polynomial
over the element.
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The multiscale variant of the BDM1 (or BDDF1) elements is due to Arbogast [4]. It
is defined for each e ∈ EH and i ¼ 1; : : : ; 2d−1. On each element E ∈ T H for which ∂Ee,
we solve the problem

vME1;i
e ¼ −aϵ∇ϕME1;i

e in E;ð6:1Þ
∇ ⋅ vME1;i

e ∈ R in E;ð6:2Þ

vME1;i
e ⋅ ν ¼

�
0 on ∂E \ e;
Li on e;

ð6:3Þ

where the constant in R is determined by the compatibility condition and the Li form a
basis for the linears on e in two dimensions and the bilinears in three dimensions.

7. Numerical results. In this section we consider several test cases in two
dimensions (i.e., d ¼ 2) designed to illustrate the ideas and methods discussed in this
paper. Our test cases are driven by application to flow in natural porous media, wherein
f represents wells and aϵ is the permeability of the medium, which is indeed highly het-
erogeneous and generally anisotropic.

For these tests, we assume that the domain Ω is a rectangle and the permeability is
given on a fixed, fine, uniformly rectangular mesh T h of rectangles of maximal spacing h.
We solve for the multiscale finite element solution on the coarsened, uniformly rectan-
gular mesh T H , so h ≤ ϵ < H . The multiscale finite element basis is computed using
RT0 elements on the fine mesh T h over the coarse elements E ∈ T H or over the
dual-support elements Ee for e ∈ EH .

Wells tend to be highly localized objects, and therefore require multiscale treatment.
Often, f is zero over most of the domain, and nonzero in only a few isolated fine-scale
elements. Because of the way WH is defined (see (2.5)), the multiscale method (2.3)–
(2.4) sees only PWH

f , where PWH
is the L2-projection onto WH . Therefore, the well is

smeared evenly over the coarse element it lies within. To correct for this smearing, all of
our upscaled results use the constant correction part of the affine closure operator de-
scribed in [4], [5], [7]. That is, we define the mixed multiscale finite element solution
to be

uH ¼ ûH þ ~uH ;

where ûH is the multiscale finite element solution given by (2.3)–(2.4). If f is nonzero on
coarse element E ∈ T H , then we compute ~uH on E as the fine mesh solution to

~uH ¼ −aϵ∇ ~pH in E;ð7:1Þ
∇ ⋅ ~uH ¼ f − PWH

f in E;ð7:2Þ
~uH ⋅ νE ¼ 0 on ∂E:ð7:3Þ

Again, we solve this problem on the fine mesh T h using RT0.
We concentrate on the velocity approximation, which is generally the variable of

interest. Moreover, the pressure tends to be better approximated than the velocity, since
the velocity is proportional to the pressure gradient.

7.1. A constant, anisotropic permeability. We begin our computational tests
by considering a simple constant but anisotropic permeability on the unit square Ω ¼
ð0; 1Þ2 with an injection well in the lower left corner and a production well of opposite
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strength in the upper right corner. We take a ¼ QTΛQ, where the rotation is through an
angle tan θ ¼ 1 ∕ 2 so θ ¼ 26:565 degrees and in fact

a ¼
�
80:798 39:404
39:404 21:692

�
¼

�
cos θ − sin θ
sin θ cos θ

��
100:5 0
0 1.990

��
cos θ sin θ
− sin θ cos θ

�
:

In this case, ωj ¼ 0 for each j, and so the method HE0 is the same as ME0, with half the
basis functions having constant fluxes across coarse edges and the other half of the “basis
functions” vanishing. We reset the extra basis functions to have linear flux variation, so
HE0 becomes ME1 (and oversampling does not come into play).

This is actually a very difficult problem. As shown in Figure 7.1, fluid is injected
mainly along the preferred flow direction, bleeds through the domain, and is extracted
again through the preferred flow direction. In all figures, the color scale depicts the speed
of the velocity, and the arrows show the direction (and speed) of flow.

There is no need for a fine mesh T h to define the permeability; nevertheless, a fine
mesh is needed to adequately resolve the solution. We approximated the solution on
uniformly square meshes for 1 ∕ h ¼ 20, 40, 80, and 160. To avoid changing the problem
when the grid changes, the wells cover the bottom left and upper right corner elements of
the 20× 20 grid, and cover multiple cells for the finer grids. The effect of the wells, being
discontinuous, is difficult to approximate. Even though the solution is smooth away
from wells and BDM1 is second order convergent, we did not see numerical convergence
on a uniform grid until 1 ∕ h ¼ 80 or 1 ∕ h ¼ 160. We take the BDM1 solution on the
160× 160 grid, Figure 7.1, as the reference solution and compare our upscaled results
to this.

In Figure 7.2, we show the solution using the HE0 ¼ ME1 and MD methods. These
upscaled computations all use the fine 160× 160 grid decomposed into a coarse grid and
a subgrid within each coarse element. Therefore each upscaled result has sufficient re-
solution to match the fine BDM1 solution, and any error is due to the size of the coarse
grid and the multiscale elements used. We use coarse grids of size 1 ∕ H ¼ 10, 20, and 40,
that is, grids of size 10× 10, 20× 20, and 40× 40. In all these cases 1 ∕ h ¼ 160, but the
subgrid meshes decrease as 16× 16, 8× 8, and 4× 4, respectively.

We note that HE0 ¼ ME1 does a nice job reproducing the solution. However, MD
exhibits a fluctuation across the domain of period the same as the the sizeH of the coarse
grid. This is due to the twist in the basis function as described in section 3.

In Table 7.1, we give the relative errors of the HE0¼ ME1, MD, and ME0 methods
with respect to the fine 160× 160 BDM1 solution for the test cases depicted above, as

FIG. 7.1. Anisotropic test. The fine-scale BDM1 solution using a uniform 160× 160 grid. The color de-
picts the speed, on a log scale from 4.6e-4 to 4.6e-2, and the arrows show the velocity direction (and speed).
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FIG. 7.2. Anisotropic test. The upscaled HE0 ¼ ME1 (top) andMD (bottom) solution using fixed resolu-
tion 1∕ h ¼ 160 on coarse 10× 10, 20× 20, and 40× 40 grids and 16× 16, 8× 8, and 4× 4 subgrids, respec-
tively, from left to right.

TABLE 7.1
Anisotropic test. Relative errors in the pressure and velocity for HE0 ¼ ME1, MD, and ME0 relative to

the 160× 160 reference BDM1 solution. Both l2 and l∞ (maximum) norm errors are shown. Note that all
computations work over the fine 160× 160 grid. The number of coarse dof’s depends on the number m of basis
functions per edge.

Coarse mesh
N ×N

Subgrid mesh
n× n

Coarse dof’s
2NðN − 1Þm Pressure error Velocity error

Method l2 l∞ l2 l∞

HE0 10 16 360 0.0525 0.3152 0.2516 0.3427
20 8 1520 0.0017 0.0188 0.0598 0.1919
40 4 6240 0.0007 0.0069 0.0189 0.0460
80 2 25280 0.0006 0.0055 0.0115 0.0155

MD 10 16 180 0.0551 0.2864 0.3709 0.3576
20 8 760 0.0197 0.1388 0.2641 0.5451
40 4 3120 0.0077 0.0603 0.1441 0.3565
80 2 12640 0.0016 0.0143 0.0549 0.1335
160 1 50880 0.0006 0.0055 0.0115 0.0155

ME0 10 16 180 0.0532 0.3098 0.3751 0.3864
20 8 760 0.0171 0.1136 0.2513 0.4511
40 4 3120 0.0052 0.0422 0.1241 0.2937
80 2 12640 0.0016 0.0143 0.0549 0.1335
160 1 50880 0.0006 0.0055 0.0115 0.0155
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well as a few more to fill out the results. The observed convergence rate is difficult to
assess, since we do not have a true analytic solution, but we can make some qualitative
statements. We note first that the pressure is always rather well approximated in these
tests. For the velocity, we note that MD and ME0 have similar errors, although perhaps
the simpler ME0 is a bit better overall. If we were to plot theME0 results as in Figure 7.2,
we would see little difference between the two sets of figures. Finally, we note that the
HE0 ¼ ME1 method outperforms MD, but of course it uses twice as many degrees of
freedom (dof’s) on each edge. The total number of interface dof’s are given, so one can
see that HE0 ¼ ME1 still outperforms MD by comparing the MD results with the
HE0 ¼ ME1 results for the next lower number of dof’s in the table.

It was noted above that convergence should not be seen for MD because of the basis
function twist effect. Nevertheless, it does appear that the solution is converging as
H → 0. This is due to at least two facts. First, the solution is difficult to approximate
near the wells, where f is discontinuous, so there is error in these methods from the use of
coarse grids. As we refine, we improve the approximation of the wells, and thereby re-
duce the error. This error appears to dominate the solution. Second, the subgrid is be-
coming coarser as we take H → 0, so we lose the twisting effect of the basis functions as
the subgrid is derefined, and paradoxically we reduce the twisting error.

The twisted basis function effect can be seen more clearly in Figure 7.3, where we fix
the subgrid to 16× 16, and take again coarse grids of size 10× 10, 20× 20, and 40× 40.
Note that now in fact the resolution h is reduced as H is reduced to 1 ∕ h ¼ 160, 320, and
finally 640. As can be seen, HE0 ¼ ME1 shows continued good approximation as

FIG. 7.3. Anisotropic test. The upscaled HE0 ¼ ME1 (top) and MD (bottom) solution using coarse
10× 10, 20× 20, and 40× 40 grids, respectively, from left to right, and fixed 16× 16 subgrids.
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H → 0. However, MD exhibits a stronger fluctuation effect compared to Figure 7.2, even
on the finest grid.

In Table 7.2 we compare the relative errors as computed in the discrete l2-norm
(i.e., we compute the relative error using a trapezoidal rule for the integrals, and thus
the numbers differ slightly from the previous table). We show results for both 16× 16

and 4× 4 subgrids. As can be seen, the errors are either negligible or improve with re-
finement for HE0 ¼ ME1. For MD, the finer subgrid has the slightly greater error, but
perhaps this is not conclusive. This example shows how small the twisted basis function
effect is on the error, and perhaps explains why the MD element works well in practical
computations.

7.2. A streaked permeability. Our second set of computational tests is related
to the previous anisotropic case. We work again on the unit square Ω ¼ ð0; 1Þ2 with an
injection well in the lower left corner covering ð0; 1 ∕ 20Þ2 and a production well of op-
posite strength in the upper right corner covering ð1− 1 ∕ 20; 1Þ2. We consider now three
locally isotropic but heterogeneous permeability fields, on grids of size 40× 40, 80× 80,
and 160× 160. The permeability fields alternate the values 1 and 200 over the grid in a
streaked pattern, as illustrated in Figure 7.4. In each case, the “streak” is about one cell
wide, so we have, respectively for the grids, an increasing number of about 20, 40, and 80
streaks which decrease in width.

The angle of these streaks is exactly tan θ ¼ 1 ∕ 2 (i.e., θ ¼ 26:565), the same as in
the previous test case. Moreover, the arithmetic and harmonic means of 1 and 200 are
100.5 and 1.990. Thus, up to the stair-step nature of the permeability streaks, these

TABLE 7.2
Anisotropic test. Relative errors in the pressure and velocity for HE0 ¼ ME1 and MD relative to the

160× 160 reference BDM1 solution. Discrete l2-norm errors are shown.

Discrete l2

velocity
error

Coarse mesh N ×N Subgrid mesh n× n Resolution Nn HE0 MD

10 16 160 0.2704 0.4225
20 16 320 0.0686 0.2863
40 16 640 0.0377 0.1671
80 16 1280 0.0353 0.1257

40 4 160 0.0200 0.1545
80 4 320 0.0307 0.1040
160 4 640 0.0345 0.1122

FIG. 7.4. Streaked test. The permeability pattern as illustrated on a 7× 7 grid. The streaks, of about one
cell wide, extend across the domain at angle tan θ ¼ 1∕ 2. The streaks alternate permeability between the two
values 200 (black) and 1 (white).
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fields homogenize into the anisotropic tensor treated in the previous set of computa-
tional tests.

The fine-scale BDM1 solution is shown in Figure 7.5, wherein we plot only the speed
of the velocity field, since the stair-step nature of the velocity arrows obscures the de-
piction of the flow direction. Note that the flow speed closely matches that of the homo-
genized case Figure 7.1, except that we see explicit streaks. Moreover, the speed appears
to converge to the anisotropic case as the grid spacing tends to zero.

In Figures 7.6 and 7.7 we show the solution for HE0 and for HE0-OS, which uses
oversampling to define Aϵ. From left to right, the columns correspond to the 40× 40,
80× 80, and 160× 160 fine grids. The top row uses a fixed 8× 8 subgrid (so the coarse
grids are 5× 5, 10× 10, and 20× 20, respectively), and the bottom row uses a fixed
4× 4 subgrid (so the coarse grids are 10× 10, 20× 20, and 40× 40, respectively). Both

FIG. 7.5. Streaked test. The fine-scale BDM1 solution for grids of size 40× 40, 80× 80, and 160× 160,
from left to right. The color depicts the speed, on a log scale from 4.6e-4 (blue) to 4.6e-2 (red).

FIG. 7.6. Streaked test. The upscaled HE0 speed. The top row uses 5× 5, 10× 10, and 20× 20 coarse
grids, from left to right, with a fixed 8× 8 subgrid. The bottom row uses 10× 10, 20× 20, and 40× 40 coarse
grids, with a fixed 4× 4 subgrid.
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the HE0 and HE0-OS solutions closely approximate the fine-scale solution (Figure 7.5),
and show nice improvement as H is reduced. The oversampled version is clearly better.

The corresponding solution for MD is shown in Figure 7.8. Compared to HE0-OS,
we see relatively poorer approximation in at least two ways. First, MD appears to be
more numerically diffusive: the speed is washed out and spread over the domain com-
pared to HE0-OS. Second, the MD velocity along the permeability streaks is disjointed,
while HE0-OS shows no such effect. In fact, MD exhibits a fluctuation across the domain
similar to that seen in the anisotropic test example (e.g., as in Figures 7.2 and 7.3), and
this fluctuation appears related to the disjointedness of the speed (i.e., the color bands
are disjoint). Even though the permeability is locally isotropic, MD has difficulty with
this problem because, on the coarser scales, there is an induced anisotropy from the
subgrid which, as we saw, the method cannot approximate well.

7.3. Amoderately heterogeneous permeability. Our third numerical test case
is based on a moderately heterogeneous, mildly correlated, but locally isotropic permeabil-
ity field that was geostatistically generated on a uniform 40× 40 grid, as depicted in
Figure 7.9. The test is an example of a quarter five-spot pattern of wells, with wells in
the lower right and upper left corners. The domain is 40 meters square. This is a good test
of the methods, since even though the scale separation assumption (4.1) does not strictly
hold, the mild correlation does suggest that we are not too far from local periodicity.

Since this is a moderate test case, all methods work reasonably well, except possibly
ME0. Relative errors are given in Table 7.3. Note that RT0 exhibits about 3% error
compared to BDM1, even though both computations are done on the fine scale, due
to discontinuities in the permeability. Omitting ME0, the multiscale elements show
l2 pressure errors of about 10–14% and velocity errors of about 12–19%, which is

FIG. 7.7. Streaked test. The upscaled HE0-OS speed. The top row uses 5× 5, 10× 10, and 20× 20 coarse
grids, from left to right, with a fixed 8× 8 subgrid. The bottom row uses 10× 10, 20× 20, and 40× 40 coarse
grids, with a fixed 4× 4 subgrid.
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FIG. 7.9. Moderate heterogeneity test. The permeability field on a 40× 40 grid. The permeability is de-
picted on a log scale, and varies from about 0.32 to 3200 millidarcy.

TABLE 7.3
Moderate heterogeneity test. Relative errors in the pressure and velocity for various elements relative to

the 40× 40 reference BDM1 solution, using a 4× 4 coarse grid (and 10× 10 subgrid), except that RT0 is a
fine-grid result. Both l2 and l∞ (maximum) norm errors are shown.

Pressure error Velocity error

Method l2 l∞ l2 l∞

RT0 0.0357 0.0297 0.0297 0.0281
ME0 0.1606 0.2087 0.2872 0.2587
ME1 0.1031 0.1623 0.1873 0.1646
MD 0.1384 0.2362 0.1582 0.1236
HE0 0.1338 0.2008 0.1444 0.1374
HE0-OS 0.1405 0.1935 0.1180 0.1053

FIG. 7.8. Streaked test. The upscaled MD speed. The top row uses 5× 5, 10× 10, and 20× 20 coarse
grids, from left to right, with a fixed 8× 8 subgrid. The bottom row uses 10× 10, 20× 20, and 40× 40 coarse
grids, with a fixed 4× 4 subgrid.

HOMOGENIZATION-BASED MIXED MULTISCALE FINITE ELEMENTS 639

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



probably reasonable for engineering accuracy in subsurface flow applications (given our
lack of permeability characterization). The oversampled HE0-OS gives the best velocity,
while interestingly, ME1 gives the best pressure and worst velocity. In Figure 7.10 we
show the velocities of the various methods.

7.4. A simple channelized permeability. It is known that local upscaling or
multiscale methods have difficulty treating permeabilities that exhibit long-range
correlations, such as high permeability channels (see, e.g., [2]), which are far from locally
periodic. These are good tests of the HE0 method, since its derivation suggests it will
work well in the two-scale separation case of (4.1), but it is unclear how well it extends to
problems with more general permeability fields. We consider a relatively simple syn-
thetic example taken from White and Horne [45]. The permeability, depicted in
Figure 7.11, takes only three values on a fine 30× 30 grid and exhibits a single fluvial
channel of high permeability. We again consider a quarter five-spot pattern of wells,
with wells in the lower right and upper left corners. The fine-scale BDM1 solution is
shown in Figure 7.12, wherein it is clear that fluid concentrates into the high perme-
ability channel and tends to avoid the lowest permeability regions.

We upscale these results to a very coarse 3× 3 grid that clearly does not resolve the
channel. Nevertheless, as seen in Figure 7.13, the HE0-OS, HE0, and MD methods are
able to properly resolve the channel flow. Errors are given in Table 7.4, where it is ver-
ified that the HE0-OS solution is best, giving a 15% relative l2 velocity error.

From Figure 7.13, the main differences in the solutions are in the lower central
coarse element, which is where fluids concentrate as they enter the high permeability

FIG. 7.10. Moderate heterogeneity test. The top row shows the solution using fine BDM1 and upscaled
ME0 and ME1 elements. The bottom row uses upscaled MD, HE0, and HE0-OS elements. The fine grid is
40× 40, and the upscaled results use a 4× 4 coarse grid with 10× 10 subgrid. The color depicts the speed,
on a log scale from 0.55 to 0.0055, and the arrows show the velocity.
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channel. In Figure 7.14 we explore the performance of HE0-OS, HE0, and MD near the
right-most (e1) and upper (e2) edges of this coarse element. We show the basis functions
on these edges that are used to produce the solution over this coarse element. We can see
that the MD element on e1 is far too uniform compared to what is needed from the
BDM1 fine-scale solution. Moreover, the MD element on e2 overemphasizes the flow

FIG. 7.11. Simple channel test. Shown is the fine 30× 30 grid permeability, which has only three values:
10 (white), 1 (gray), and 0.1 (black) darcies. Upscaling to a coarse 3× 3 grid does not resolve the high perme-
ability channel.

FIG. 7.12. Simple channel test. Shown is the fine 30× 30 grid BDM1 solution. The color depicts the speed
(not on a log scale), and the arrows show the velocity direction (and speed).

FIG. 7.13. Simple channel test. Shown are the upscaled HE0-OS, HE0, and MD solutions for a 3× 3

coarse grid with 10× 10 subgrid. The color depicts the speed (not on a log scale), and the arrows show the
velocity direction (and speed).
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on the left compared to flow on the right (the flow is also opposite, but this is immaterial
since it has a negative weight in the solution).

On the other hand, the HE0-OS elements do a much better job representing the
BDM1 flow. On e1 we show the primary basis function v1e1 for flow in the x-direction
above the basis function v2e1 for the cross-flow in the y-direction. Both functions show a
good multiscale shape for the fine-scale flow. In fact, the cross-flow weight is about 2.5
times the primary flow weight. On e2 we show the primary basis function v2e1 for flow in
the y-direction to the left of the basis function v1e1 for the cross-flow. In this case the
primary flow has the greater weight (in absolute value).

Since oversampling uses information outside Ee, we also show the nonoversampled
HE0 elements, which use no more information than MD. Note that from Table 7.4, HE0
is about 20% accurate, while MD is only 26% accurate. This is seen in the basis functions,
which better represent the fine BDM1 solution. Interestingly, the strength of the weights
for primary versus cross-flow is opposite that for HE0-OS: on e1 the primary flow is more
important while on e2 it is the cross-flow. The point is, since MD only uses a type of
primary flow, it cannot do as well as HE0 or HE0-OS, which significantly use the cross-
flow basis functions.

7.5. A channelized permeability from SPE10. In our final test case, we take
our permeability field from one layer of the tenth Society of Petroleum Engineers (SPE)
comparative solution project (SPE10) [19]. These are extremely difficult, channelized
test cases, which are very far from locally periodic. We thus expect significant error
for the purely local methods considered in this paper. The permeability is anisotropic,
but the anisotropy is aligned with the coordinate axes, so no local twisting effect arises.
We take layer 85, which is shown in Figure 7.15. It is given on a fine 60× 220 grid. Our
upscaled results will be computed over a coarse 6× 22 grid with a 10× 10 subgrid.

The fine-scale BDM1 speed is shown in Figure 7.16, which should be compared to
the upscaled results in Figure 7.17 for MD, HE0-OS (oversampled), HE0, and ME1.
Note the existence of strong, long-range channels. All elements appear to work well.

The relative errors are given in Table 7.5. Note first that the discrepancy between
BDM1 and RT0, which are both fine-scale results, is about 8% in l2, so this is a very
difficult problem to approximate well even when the permeability is fully resolved by the
grid. Again, the difficulty is related to the fact that the permeability is discontinuous.
We might reduce this discrepancy by using a finer mesh; however, if we did so, the phy-
sical application would demand a downscaling of the permeability field to the refined

TABLE 7.4
Simple channel test. Relative errors in the pressure and velocity for various elements relative to the 30×

30 reference BDM1 solution, using a 3× 3 coarse grid (and 10× 10 subgrid), except that RT0 is a fine-grid
result. Both l2 and l∞ (maximum) norm errors are shown.

Pressure error Velocity error

Method l2 l∞ l2 l∞

RT0 0.0148 0.0200 0.0251 0.0387
ME0 1.1023 0.1808 0.4663 0.3393
ME1 0.4905 0.1198 0.2749 0.3228
MD 0.3049 0.1015 0.2619 0.3624
HE0 0.2784 0.0660 0.2043 0.3080
HE0-OS 0.2811 0.0711 0.1524 0.2202
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mesh. Since the downscaling process is not well understood, we simply compute on the
60× 220 grid, note the extreme difficulty of the problem, and realize that the error is
within engineering accuracy for the problem, given the practical uncertainty in the
permeability data.

Now note in Table 7.5 that HE0 without oversampling is disappointing, giving a
large 70% error. From Figure 7.17, we see that it does not correctly compute the channel
near the top center of the domain. However, oversampling corrects this and gives the
best error, which is nevertheless somewhat large at 35%.

Large errors in the relative l2 norm are surprising, since Figure 7.17 suggests good
approximation. Perhaps this norm is a poor measure of velocity error. Generally speak-

FIG. 7.14. Simple channel test. Shown are the multiscale basis functions forMD, HE0-OS, and HE0 near
the right-most (e1) and upper (e2) edges of the lower center coarse element. For HE0-OS and HE0, on e1, we
show the primary basis function for flow in the x-direction above the basis function for the cross-flow in the y-
direction, and on e2, we show the primary basis function for flow in the y-direction to the left of the basis
function for the cross-flow.
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FIG. 7.16. SPE10-85 test. The fine-scale BDM1 speed on a 60× 220 grid using a log scale from 6.0e-6
(red) to 6.0e-9 (blue).

FIG. 7.15. SPE10-85 test. The x and y permeability fields on a 60× 220 grid using a log scale from 1.9e-11
(red) to 1.0e-18 (blue) square meters.

FIG. 7.17. SPE10-85 test. The speed on a 6× 22 coarse grid with a 10× 10 subgrid using various
elements.
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ing in porous medium applications, velocities are computed to transport some fluid such
as a tracer. We computed simple linear tracer transport using the steady-state computed
flow fields and a small amount of diffusion, until tracer filled about half the domain. The
relative errors for tracer concentration are also given in Table 7.5. These show a more
reasonable error of about 18% for velocities computed using HE0-OS, which is the best
of the methods tested.

We remark that layer 36 of the SPE10 set produces about 48% error for HE0 and
HE0-OS, and a bit more for the other methods. Moreover, tracer errors were about 50%
for this permeability. Unlike layer 85, this layer has a single strong channel, which is very
hard to identify and approximate well with a purely local method such as the ones used
herein.

8. Summary and conclusions. In this paper, we defined and evaluated several
existing mixed multiscale finite element methods. These all approximate the pressure by
a piecewise constant over the coarse mesh. Moreover, each method defines the velocity
basis functions on an edge e by solving the differential equation locally over the support
Ee, using homogeneous Neumann boundary conditions on the outer boundaries ∂Ee.
They differ in the way the normal velocity is defined on e.

The standard multiscale elements ME0 and ME1 impose a polynomial normal ve-
locity on e of degree 0 or 1, respectively, and solve for the basis function on each ad-
joining element Ee;i separately. These methods have 1 and 2 dof’s per edge (in two
dimensions), respectively. The dual-support element MD simply solves the differential
system locally over all of Ee, which implicitly defines the normal velocity on e. It has
only 1 dof per edge.

New elements based on homogenization theory HE0 were presented. These define
the normal velocity on e based on the multiscale expansion predicted by homogeniza-
tion, which is that the normal velocity is a fine-scale functionAϵ multiplied by a smooth
function (the homogenized velocity). Therefore, to define the multiscale basis, the nor-
mal velocity on e is approximated by this multiplier function times a (vector) polyno-
mial of degree 0. The method uses 2 dof’s per edge (in two dimensions). The multiplier
function is obtained by solving local periodic cell problems in each direction: the primary
direction normal to e and cross-flow along e. The domain for the cell problems is natu-
rally set to be Ee, although other domains could be used. When a larger domain is used,
we referred to the variant as having oversampled elements HE0-OS.

TABLE 7.5
SPE10-85 test. Relative errors in the pressure and velocity for various elements relative to the 60× 220

reference BDM1 solution, using a 6× 22 coarse grid (and 10× 10 subgrid), except that RT0 is a fine-grid
result. Both l2 and l∞ (maximum) norm errors are shown. Also given are relative l2 errors in the tracer
concentration on a 60× 220 grid using the various velocity fields, compared to the tracer computed using
the fine-grid BDM1 velocity.

Pressure error Velocity error Tracer error

Method l2 l∞ l2 l∞ l2

RT0 0.0383 0.0265 0.0777 0.1419 —

ME0 0.2657 0.1013 0.7196 0.5333 —

ME1 0.2165 0.0756 0.5750 0.5623 0.4116
MD 0.2385 0.1111 0.4511 0.4618 0.3009
HE0 0.2414 0.1083 0.6961 0.9063 0.2046
HE0-OS 0.2402 0.1057 0.3492 0.5549 0.1793
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We showed by a family of counterexamples that MD cannot converge in any sense as
H → 0. The problem is anisotropy in the permeability, since in this case, as H → 0, the
MD elements do not have a constant normal velocity on e and therefore cannot approx-
imate smooth functions.

The numerical test cases showed that generally HE0-OS outperforms the other
methods. The anisotropic twisting effect for MD was shown in the first test case using
a constant but anisotropic permeability. A fine-scale fluctuation was evident due to the
nonsmoothness of the basis as H → 0. However, it is a relatively small effect, possibly
explaining at least partly why the MD elements generally work well in practical applica-
tions. This anisotropic case was mimicked through a locally isotropic permeability of
streaks that homogenize to the anisotropic case. The fluctuations in the MD solution
were evident, and caused the solution to appear disjointed along the streaks.

All the multiscale methods, except possibly ME0, seemed to work well for moderate
levels of heterogeneity, as shown in the third test case. Channelized flow is difficult to
approximate with purely local multiscale methods. The simple channelized test case
showed that better results were obtained using HE0 and HE0-OS over MD, because
the former two methods include basis functions that approximate cross-flow, whereas
MD only approximates primary flow.

The final test case using a very complex channelized permeability from the SPE10
comparative solution project was extremely challenging for these purely local multiscale
methods. The relative l2 velocity errors were quite large, even though the graphs of the
velocity fields appeared reasonable. However, it is not completely clear that this is a
good measure of the error. Since in applications computed velocities are often used
in transport problems, perhaps a better norm is to consider the effect of the velocity
errors on transport. A simple linear tracer transport test showed relative l2 concentra-
tion errors to be more reasonable.

The theoretical results in the appendix below present a convergence proof for ME0
and ME1 that reduces to four simple steps. The MD elements fail only to approximate
smooth solutions, which is the basis of our counterexample. While the proof is not ex-
tended to HE0 elements because of technical issues related to homogenization theory, it
is pointed out below that HE0 elements do not fail to approximate smooth solutions.
Thus there is some theoretical basis for expecting that HE0 should work well, as our
numerical results also showed.

Appendix. Theoretical convergence results. In this appendix we prove conver-
gence of the methods ME0 and ME1 under the two-scale separation hypothesis
(4.1). These results are known [18], [7], but we include this appendix since the style
of proof developed here is simpler than appears in the literature, and is therefore a useful
guide in devising new multiscale elements. We also show where the proof breaks down
for MD elements, and speculate on the case of HE0 elements.

In this appendix, we assume that T H is a quasi-uniform rectangular grid of maximal
spacing H > 0. That is, for positive constants c and C , and any E ∈ T H and e ∈ EH ,

cHd ≤ jEj ≤ CHd and cHd−1 ≤ jej ≤ CHd−1:

We assume that the coefficient aϵðxÞ is smooth, bounded, and uniformly positive
definite symmetric. That is, there are positive constants a� and a�, independent of ϵ,
such that for any ξ ∈ Rd,

a�jξj2 ≤ ξ ⋅ αϵðxÞξ ≤ a�jξj2 ∀ x ∈ Ω:ðA:1Þ
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Let PWH
denote L2-projection onto WH . It is well known that the conforming ap-

proximation (2.3)–(2.4) to (2.1)–(2.2) is quasi-optimal, no matter which conforming fi-
nite elements are used (provided only that ∇ ⋅ VH ⊂ WH ).

LEMMA A.1. If (A.1) holds and ∇ ⋅ VH ⊂ WH , then

kuϵ − uHk0 ≤
ffiffiffiffiffi
a�

a�

s
kuϵ − vk0ðA:2Þ

for any v ∈ VH such that ∇ ⋅ v ¼ PWH
∇ ⋅ uϵ.

The proof follows from subtracting (2.3)–(2.2) from (2.1)–(2.2), which leads to the
equation for the error

ðαϵðuϵ − uH Þ; vÞ− ðPWH
p− pH ;∇ ⋅ vÞ ¼ 0 ∀ v ∈ VH ;ðA:3Þ

ð∇ ⋅ ðuϵ − uH Þ; wÞ ¼ 0 ∀ w ∈ WH;ðA:4Þ

and replacing v by ðuϵ − vÞ− ðuϵ − uH Þ ∈ VH and w by PWH
p− pH ∈ WH . Then

ðαϵðuϵ − uH Þ;uϵ − uH Þ ¼ ðαϵðuϵ − uH Þ;uϵ − vÞ

for any v ∈ VH with ∇ ⋅ v ¼ PWH
∇ ⋅ uϵ.

In light of Lemma A.1, our goal in a convergence analysis is to find any good ap-
proximation of uϵ in our multiscale finite element space that respects the divergence
condition.

A.1. Homogenized finite elements. The ϵ dependence of our finite elements is
difficult to analyze directly, so we define smooth (homogenized) versions. The idea is to
replace the true coefficient aϵ with the corresponding homogenized one a0 in the definitions
of the finite elements (2.13)–(2.15), (6.1)–(6.3), and (2.18)–(2.20). This gives the solutions
vME0
0;e , vME1;i

0;e , and vMD
0;e , respectively. From these basis functions we define the spaces

VM
0;H ¼ span

e∈EH

n
vM0;e

o
; M ¼ ME0;MD; and VME1

0;H ¼ span
e∈EH ;i

n
vME1;i
0;e

o
:

Tounify notation,wewill henceforth include i, which ranges over the number of basis func-
tions on e, in the notation, though there is only one value for iði ¼ 1Þ whenM ¼ ME0 or
MD.

Since our finite elements are defined by boundary value problems, the homogeniza-
tion result Theorem 4.1 applies. The following result is a direct application of the the-
orem, since the coefficient in the differential equations is aϵ and the multiscale and
homogenized elements use the same fixed boundary conditions.

LEMMA A.2. Assuming (4.1), for each e ∈ EH and methodM ¼ ME0,ME1, andMD,

vM;i
e ¼ Aϵv

M;i
0;e þ θEe;M;i

ϵ ;ðA:5Þ

where

kθEe;M;i
ϵ k0;Ee

≤ CfϵkvM;i
0;e k1;Ee

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵj∂Eej

p
kvM;i

0;e k0;∞;Ee
g:ðA:6Þ

A.2. Some flux-based projection operators. For the analysis, we define some
projection operators related to the Raviart–Thomas or Fortin projection operators [42],
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[17]. It is convenient for the notations to assume that L1 ¼ 1 and the rest of the Li form
an orthogonal basis for L2ðeÞ, normalized so that ∫ eL

2
ids ¼ jej.

Given a vector function v ∈ Hðdiv;ΩÞ ∩ LrðΩÞ, for some r > 2, on Ω, for each
e ∈ EH , let

γi
e ¼

1

jej
Z
e
v ⋅ νeLids:ðA:7Þ

Then the Raviart–Thomas and BDM projection operators are defined by

πMv ¼
X
e∈EH ;i

γi
ev

M;i
e ; M ¼ RT0;BDM1:ðA:8Þ

Similarly, for each multiscale method M ¼ ME0, ME1, and MD, we define πM
ϵ v ∈ VM

H

and πM
0 v ∈ VM

0;H by

πM
ϵ v ¼

X
e∈EH ;i

γiev
M;i
e and πM

0 v ¼
X
e∈EH ;i

γi
ev

M;i
0;e :ðA:9Þ

The following lemma is easy to verify.
LEMMA A.3. For v ∈ Hðdiv;ΩÞ ∩ LrðΩÞ, r > 2, and M ¼ ME0, ME1, or MD,Z

e
πM
ϵ v ⋅ νds ¼

Z
e
πM
0 v ⋅ νds ¼

Z
e
πRT0v ⋅ νds ¼

Z
e
v ⋅ νds ∀ e ∈ EH ;ðA:10Þ

ð∇ ⋅ πM
ϵ v; wÞ ¼ ð∇ ⋅ πM

0 v; wÞ ¼ ð∇ ⋅ πRT0v; wÞ ¼ ð∇ ⋅ v; wÞ ∀ w ∈ WH:ðA:11Þ

The last result is that ∇ ⋅ πM
ϵ ¼ ∇ ⋅ πM

0 ¼ ∇ ⋅ πRT0 ¼ PWH
∇⋅.

We turn now to an abstract multiscale approximation result.
LEMMA A.4. Assuming (4.1), if v ∈ H 1ðΩÞ, then for M ¼ ME0, ME1, or MD,

kπM
ϵ v−Aϵπ

M
0 vk0 ≤ Ckvk1ðϵ ∕ H þ j

ffiffiffiffiffiffiffiffiffiffi
ϵ ∕ H

p
Þ:ðA:12Þ

Proof. We begin with a stability result. The quasi-uniformity of the mesh T H and
our normalization gives that

kLik0;∞;e ≤ CH−ðd−1Þ ∕ 2kLik2;e ¼ CH−ðd−1Þ ∕ 2jej1 ∕ 2 ≤ C;

where C is independent of the domain size (i.e., H), so with (A.7) defining γi
e, we

compute

jγi
ej ≤

1

jej
Z
e
jv ⋅ νejdskLik0;∞;e ≤

C

jej
�
1

H

Z
Ee

jvjdxþ
Z
Ee

j∇vjdx
�

≤ C
jEej1 ∕ 2
H jej kvk1;Ee

≤ CH−d ∕ 2kvk1;Ee
:ðA:13Þ

Now Lemma A.2 implies that

πM
ϵ v−Aϵπ

M
0 v ¼

X
e∈EH ;i

γi
eðvM;i

e −Aϵv
M;i
0;e Þ ¼

X
e∈EH ;i

γieθ
Ee;M;i
e ;
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and, further,

kπM
ϵ v−Aϵπ

M
0 vk0;E ≤

X
e⊂∂E;i

jγi
ejkθEe;M;i

e k0;E

≤
X

e⊂∂E;i

jγi
ejfϵkvM;i

0;e k1;Ee
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵj∂Eej

p
kvM;i

0;e k0;∞;Ee
g:

Elliptic regularity of the problems defining the finite elements (i.e., (2.13)–(2.15), (6.1)–
(6.3), or (2.18)–(2.20) with aϵ replaced by a0) and the quasi–uniformity of the mesh T H

imply that

kvM0;ek1;Ee
≤ CHd ∕ 2−1:

Moreover, the smoothness of a0 implies that kvM0;ek0;∞;Ee
≤ C . Thus, using (A.13),

kπM
ϵ v−Aϵπ

M
0 vk20 ≤ C

X
E∈T H

�X
e⊂∂E;ijγi

ejðϵHd ∕ 2−1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵHd−1

p
Þ
�

2

≤ C
X
e∈EH ;i

jγiej2Hdðϵ ∕ H þ
ffiffiffiffiffiffiffiffiffiffi
ϵ ∕ H

p
Þ2

≤ C
X
e∈EH

kvk21;Ee
ðϵ ∕ H þ

ffiffiffiffiffiffiffiffiffiffi
ϵ ∕ H

p
Þ2

≤ Ckvk21ðϵ ∕ H þ
ffiffiffiffiffiffiffiffiffiffi
ϵ ∕ H

p
Þ2;

which completes the proof. ▯
We also need the following smooth approximation result.
LEMMA A.5. For any v0 that has the form v0 ¼ −a0∇ϕ0 for some ϕ0 ∈ H 2ðΩÞ,

kv0 − πM
0 v0k0 ≤ Ckv0kjHj;ðA:14Þ

where M ¼ ME0 and j ¼ 1 or M ¼ ME1 and j ¼ 1, 2.
The counterexamples of section 3 show that a similar result cannot hold in general

for MD.
Proof. On an element E ∈ T H , with e ⊂ ∂E and

γi
e ¼

1

jej
Z
e
v0 ⋅ νeLids;

the difference

ψ ¼ v− πME0
0 v ¼ v−

X
e⊂∂E;i

γi
ev

M;i
0;e ¼ −a0∇

�
ϕ0 −

X
e⊂∂E;i

γi
eϕ

M;i
0;e

�
in E

is a potential field satisfying, for F ¼ ∇ ⋅ v0, the Neumann problem

∇ ⋅ ψ ¼ F − PWH
F in E; ψ ⋅ νe ¼ v0 ⋅ νe −

X
i

γieLi on e ⊂ ∂E:

We therefore have the standard energy estimate
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kψk0;E ≤ C

(
kF − PWH

Fk−1;E þ
X
e⊂∂E

����v0 ⋅ νe −X
i

γieLi

����
−1 ∕ 2;e

)
;

and so, for j ¼ 1 or, when M ¼ ME1, j ¼ 1, 2,

kv0 − πM
0 v0k0 ≤ CfkFkj−1 þ kv0kjgHj ≤ Ckv0kjHj;

since
P

iγ
i
eLi is the best L2ðeÞ constant or linear approximation of v0 ⋅ νe. ▯

COROLLARY A.6. Assuming (4.1), if Ω is a domain possessing the elliptic regularity
property, and M ¼ ME0 or ME1, then there is some β > 0, independent of ϵ ≤ H , such
that the following inf-sup condition holds:

sup
vH∈VM

H

ðwH;∇ ⋅ vH Þ
kvHk0 þ k∇ ⋅ vHk0

≥ βkwHk0 ∀wH ∈ WH:ðA:15Þ

Proof. The proof is fairly standard. For wH ∈ WH , we solve

∇ ⋅ v0 ¼ wH in Ω;

v0 ¼ −a0∇ϕ0 in Ω;

v0 ⋅ ν ¼ 0 on ∂Ω;

and conclude from elliptic regularity that

kv0k1 ≤ CkwHk0
for some constant C independent of ϵ. We take vH ¼ πM

ϵ v0 ∈ VM
H , so ∇ ⋅ vH ¼ PWH

∇ ⋅
v0 ¼ wH and, by Lemmas A.4 and A.5,

kvHk0 ¼ kπM
ϵ v0k0 ≤ kπM

ϵ v0 −Aϵπ
M
0 v0k0 þ kAϵðπM

0 v0 − v0Þk0 þ kAϵv0k0
≤ C

�
kv0k1

�
ϵ ∕ H þ

ffiffiffiffiffiffiffiffiffiffi
ϵ ∕ H

p �
þ kv0k1H þ kv0k0

�
≤ C0kwHk0;

since kAϵk0;∞ is bounded, where C0 is independent of ϵ ≤ H . The result follows with
β ¼ 1 ∕ ðC0 þ 1Þ. ▯

A.3. Convergence results. In this section, we combine our results to prove the
following theorem.

THEOREM A.7. Assume that (4.1) holds, Ω is a domain possessing the elliptic reg-
ularity property, and p0 ∈ H 2ðΩÞ ∩ W 1;∞ðΩÞ. Then for M ¼ ME0 and j ¼ 1 or ME1
and j ¼ 1, 2,

kuϵ − uM
H k0 ≤ Cfðϵþ ϵ ∕ H þ

ffiffiffiffiffiffiffiffiffiffi
ϵ ∕ H

p
Þku0k1 þ Hjku0kj þ

ffiffiffi
ϵ

p ku0k0;∞gðA:16Þ

and, for ϵ ≤ H ,

kPWH
pϵ − pHk0 ≤ Ckuϵ − uM

H k0:ðA:17Þ

Moreover, ∇ ⋅ uM
H ¼ PWH

f and
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k∇ ⋅ ðuϵ − uM
H Þk0 ≤ Ckfk1H:ðA:18Þ

We have stated a convergence result for the projection of the pressure PWH
p in

(A.17), which implies only OðHÞ convergence of pH to p itself. This can be improved
by including the approximation (7.1)–(7.3) of the fixed source term f (see [7]).

Proof. Result (A.18) follows trivially from the definition of the finite element meth-
od (2.4).

Lemma A.1 gives us a convergence result if we can find a good approximation vϵ of
uϵ inVM

H such that∇ ⋅ vϵ ¼ PWH
∇ ⋅ uϵ. We claim that vϵ ¼ πM

ϵ u0 ∈ VM
H is a good choice.

Note that Lemma A.3 gives the divergence condition. We combine Theorem 4.1 and
Lemma A.4 to obtain that

kuϵ − uM
H k0 ≤ Ckuϵ − πM

ϵ u0k0
≤ Cfkuϵ −Aϵu0k0 þ kAϵðu0 − πM

0 u0Þk0 þ kAϵπ
M
0 u0 − πM

ϵ u0k0g
≤ Cfðϵþ ϵ ∕ H þ

ffiffiffiffiffiffiffiffiffiffi
ϵ ∕ H

p
Þku0k1 þ

ffiffiffi
ϵ

p ku0k0;∞ þ ku0 − πM
0 u0k0g;ðA:19Þ

since kAϵk0;∞ is bounded. The proof of (A.16) then reduces to an analysis of the final
term ku0 − πM

0 u0k0, which is bounded by Lemma A.5.
Finally, the inf-sup condition Corollary A.6 and (A.3) give

βkPWH
pϵ − pHk0 ≤ sup

vH∈VM
H

ðPWH
pϵ − pH ;∇ ⋅ vH Þ

kvHk0 þ k∇ ⋅ VHk0

¼ sup
vH∈VM

H

−ðαϵðuϵ − uM
H Þ; vH Þ

kvHk0 þ k∇ ⋅ vHk0
≤ Ckuϵ − uM

H k0;

which is (A.17). ▯
The main part of the proof is the estimate of kuϵ − uM

H k0 in (A.19), which consists of
four simple parts:

(1) quasi-optimality kuϵ − πM
ϵ u0k0, Lemma A.1;

(2) homogenization kuϵ −Aϵu0k0, Theorem 4.1;
(3) smooth approximation by the homogenized finite elements ku0 − πM

0 u0k0,
Lemma A.5; and

(4) multiscale approximation kAϵπ
M
0 u0 − πM

ϵ u0k0, Lemma A.4.
Steps (1) and (2) are universal in this class of approximations, so one need only devise
mixed multiscale finite elements that satisfy (3) and (4).

Interestingly, MD has good multiscale approximation properties (i.e., Lemma A.4
holds for MD), but it fails to approximate smooth functions with its corresponding
homogenized finite elements.

The new HE0 elements are difficult to analyze rigorously, since the boundary con-
dition (5.5) depends on ϵ. It is not clear how we should define the “homogenized” finite
elements. What is clear is that, as ϵ → 0, Aϵ ⇀ I , the identity tensor (see (4.5) and
(4.7)). Thus, in some sense, whatever homogenized elements we define, they should con-
verge to the RT0 elements. If we take these as our homogenized elements, they satisfy
the smooth function approximation requirement. However, we then need homogeniza-
tion theory that treats the Neumann boundary condition to prove multiscale approx-
imation properties. Such theory is not known to the author. But our analysis does
suggest that the new homogenization-based elements should work well, and not suffer
when the permeability is anisotropic.
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A.4. A remark on convergence of nonmultiscale elements. The standard
convergence estimate (2.12) for RT0 elements suggests that the error blows up as
ϵ → 0, since

ku− uRT0
H k0 ≤ Ckuk1H ∼ CH ∕ ϵ → ∞:

Under the assumption (4.1), this is in fact not the case: the error remains bounded as
ϵ → 0. To see this, we use the optimality Lemma A.1, Theorem 4.1, and the standard
approximation result for πRT0 to estimate

ku− uRT0
H k0 ≤ Cku− πRT0u0k0

≤ Cfku−Aϵu0k0 þ kðAϵ − I Þu0k0 þ ku0 − πRT0u0k0g
≤ CfðϵþHÞku0k1 þ

ffiffiffi
ϵ

p ku0k0;∞ þ ku0k0g ≤ C < ∞;

independently of H and ϵ, since these are bounded. A similar bound can be derived for
BDM1 elements.
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