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Abstract. We present a two-scale theoretical framework for approximating the solution of a
second order elliptic problem. The elliptic coefficient is assumed to vary on a scale that can be
resolved on a fine numerical grid, but limits on computational power require that computations
be performed on a coarse grid. We consider the elliptic problem in mixed variational form over
W × V ⊂ L2 × H(div). We base our scale expansion on local mass conservation over the coarse
grid. It is used to define a direct sum decomposition of W ×V into coarse and “subgrid” subspaces
Wc ×Vc and δW × δV such that (1) ∇·Vc = Wc and ∇· δV = δW , and (2) the space δV is locally
supported over the coarse mesh. We then explicitly decompose the variational problem into coarse
and subgrid scale problems. The subgrid problem gives a well-defined operator taking Wc × Vc to
δW × δV, which is localized in space, and it is used to upscale, that is, to remove the subgrid from
the coarse-scale problem. Using standard mixed finite element spaces, two-scale mixed spaces are
defined. A mixed approximation is defined, which can be viewed as a type of variational multiscale
method or a residual-free bubble technique. A numerical Green’s function approach is used to make
the approximation to the subgrid operator efficient to compute. A mixed method π-operator is
defined for the two-scale approximation spaces and used to show optimal order error estimates.
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1. Introduction. Many mathematical models and numerical schemes have ap-
peared in the literature that can capture fine-scale phenomena on coarse scales or
grids. This is the essence of upscaling. The change-of-scale problem goes back to
the beginning of mathematical modeling; however, research on it has recently seen a
renewed and widespread resurgence.

Among many approaches, numerical techniques have been developed and ex-
ploited. For second order elliptic equations, a certainly not exhaustive list includes
the multiscale finite element method [20], the residual-free bubble techniques [9], cer-
tain domain-decomposition techniques [27, 31], the two-grid techniques [30, 18], and
a posteriori modeling techniques [25, 26]. A scheme related directly to the work here
is the variational multiscale finite element method [21, 22, 23]. Each scheme can be
viewed as a subgrid technique in the sense that each attempts to resolve scales be-
low the coarse grid scale by incorporating local computations into a global problem
defined only on a coarse grid.

A new subgrid technique for upscaling an elliptic partial differential equation
based on a certain combination of low order mixed finite elements was introduced
in [5] and [1]. It involves the decomposition of the solution operator into two parts,
one representing the coarse scale and the other representing the subgrid scale. The
method is described in general terms, and numerical tests are given that demonstrate
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the overall speed and convergence properties of the method in [5, 1]. Applications
to groundwater contaminant transport and petroleum simulation are given in [3, 4],
wherein it is shown that the method has great potential to resolve fine-scale effects
in practical problems. Complete details of implementation are presented in [2], as
well as additional and more stringent numerical tests that apply the technique to
two-phase porous medium problems with significant heterogeneity and wells. An
advantage of this subgrid technique is that it needs no assumptions about the under-
lying physics. The data used in the simulation is to be provided directly on the fine
scale.

The goals of this paper are threefold. First, we present a theoretical framework
within which to understand the upscaling process. We achieve upscaling without the
need for an explicit closure assumption or a restrictive assumption such as periodicity
or the like. In general, it is difficult to analyze the errors introduced by a closure
assumption; however, this problem does not arise here. Rather the ability of the
upscaled model to capture fine-scale features in the solution becomes a question of
approximation theory: how well do we approximate the upscaled model? Second,
we generalize the mixed finite element technique of [5, 1] to essentially arbitrary
choices of mixed spaces. Because of the upscaling framework, these methods can
be implemented very efficiently and require the solution of a global problem defined
only on the coarse grid. Finally, we provide an error analysis showing optimal order
approximation.

Both an outline of the paper and a brief summary of results follow. After pre-
senting in the next section the elliptic problem in mixed variational form posed in
W × V ⊂ L2 ×H(div), we then proceed in section 3 to define our framework within
which we upscale the differential problem. We define the coarse grid we can ultimately
compute over and use it to define a direct sum decomposition of W × V into coarse
and subgrid subspaces Wc×Vc and δW ×δV such that (1) the divergence constraints
∇ · Vc = Wc and ∇ · δV = δW , needed for local mass conservation over the coarse
and subgrid scales, and (2) the space δV is locally supported over the coarse mesh,
which is needed for upscaling the subgrid. This then leads to a decomposition of the
variational problem into coarse and subgrid scale problems, with solutions in Wc×Vc

and δW × δV, although the two problems remain coupled.
We define in section 4 the δ-solution operator as the solution of the subgrid

problem. It is used to relate the subgrid to the coarse solution, and it is a well-defined
operator that takes Wc × Vc to δW × δV. Since this operator is localized in space,
it can be used to control the fine scales. We use it in the coarse problem to remove
direct reference to the subgrid, resulting in the upscaled problem involving only the
coarse-scale solution.

In section 5 we exploit the two-scale structure of the solution to define an efficient
mixed finite element method. We use any of the usual mixed elements to approxi-
mate the δ-solution operator and also any choice of mixed spaces to approximate the
upscaled coarse solution. This defines many families of two-scale, mixed spaces. Our
approximation can be viewed as a type of variational multiscale method [21, 22] or a
residual-free bubble technique [9]. A numerical Green’s function approach makes the
approximation to the subgrid operator efficient to compute.

In section 6 we analyze the approximation error. We show optimal order a priori
error estimates. Care must be taken, as the two-scale decomposition depends on the
coarse grid. We therefore analyze the combined system, showing approximation of the
full solution. The key development here is the definition of a suitable mixed method π-
operator that preserves the L2-projection of the discrete divergence and approximates
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well in the two-scale context. Finally, in section 7 we apply the convergence theory
to the special cases defined in [5] and [1].

2. A second order elliptic equation. Let Ω ⊂ R
n, n = 2 or 3, be a convex

polygonal domain. Throughout the paper, for domain ω, we denote by Lp(ω) the
usual Lebesgue space of index p, 1 ≤ p ≤ ∞, and by W k,p(ω) the usual Sobolev space
of k weak derivatives in Lp(ω). We denote by (·, ·)ω the L2(ω)-inner product (i.e.,
Lebesgue integration over ω). Moreover, ‖ · ‖k,ω is the norm of Hk(ω) ≡ W k,2(ω). In
the notation we may suppress ω when it is Ω.

Decompose ∂Ω = Γ̄N ∪ Γ̄R, where ΓN and ΓR are disjoint open sets in ∂Ω, and
let ν be the outer unit normal vector. The problem is to find the unknown functions
p (pressure) and u (velocity) satisfying

ap + ∇ · u = b in Ω,(2.1)

u = −d(∇p− c) in Ω,(2.2)

u · ν = gN on ΓN ,(2.3)

αu · ν = p− gR on ΓR,(2.4)

wherein a ∈ L∞(Ω) is nonnegative, b ∈ L2(Ω), c ∈ (L2(Ω))n, and d is a second
order uniformly positive definite symmetric tensor in (L∞(Ω))n×n (i.e., d and d−1 are
both uniformly elliptic and uniformly bounded). The boundary conditions represent
Neumann and Robin (and Dirichlet, if α = 0) conditions for suitably nice functions
gN , gR, and α ≥ 0. We assume that a unique and sufficiently regular solution to this
system exists and that the coefficients are sufficiently regular for the error analysis to
follow.

A special case arises if a vanishes identically on all of Ω and ΓN = ∂Ω. Then it
is well known and follows from the divergence theorem that solvability requires the
compatibility condition ∫

Ω

b(x) dx =

∫
∂Ω

gN (x) ds(x).(2.5)

In this case, we obtain p only up to an arbitrary constant.
To enforce conservation of mass (2.1) locally, we base our method on a mixed

variational formulation. Let

H(div; Ω) = {v ∈ (L2(Ω))n : ∇ · v ∈ L2(Ω)}

denote the usual space, with the inner product

(v1,v2)H(div) = (v1,v2) + (∇ · v1,∇ · v2)

and norm ‖v‖H(div) = (v,v)
1/2
H(div), and let

V = {v ∈ H(div; Ω) : v · ν = 0 on ΓN},

which is a closed subspace. To impose the Neumann boundary condition, we need to
extend gN to some fixed vector vgN ∈ H(div; Ω) such that

vgN · ν = gN on ΓN and vgN · ν = 0 on ΓR.

Finally, let W = L2(Ω), or let W = L2(Ω)/R = {w ∈ L2(Ω) :
∫
Ω
w(x) dx = 0} if p

will be defined only up to a constant.



ANALYSIS OF SUBGRID UPSCALING 579

The mixed variational problem equivalent to (2.1)–(2.4) is to find u ∈ V + vgN

and p ∈ W such that

(ap,w) + (∇ · u, w) = (b, w) ∀ w ∈ W,(2.6)

(d−1u,v) + (αu · ν,v · ν)ΓR
− (p,∇ · v) = (c,v) − (gR,v · ν)ΓR

∀ v ∈ V.(2.7)

Note that (2.3) is imposed as an essential condition and (2.4) is imposed weakly as a
natural boundary condition.

3. Separation of scales. We recall that a Hilbert space H is the direct sum of
M and N if H = M + N and M and N are closed subspaces that intersect only at
the zero vector. We denote this fact by H = M ⊕N . In this case, given x ∈ H, there
is some unique m ∈ M and n ∈ N such that x = m+n. We note the following result,
which is an exercise in the application of the closed graph theorem [29].

Proposition 3.1. If H is a Hilbert space and H = M ⊕ N , then the operator
P̃M : H → M defined for x ∈ H by P̌Mx = m, where x = m+n, m ∈ M and n ∈ N ,
is a bounded linear (but possibly nonorthogonal) projection.

We expand functions in W ×V uniquely according to a direct sum decomposition
of the spaces. We base our decomposition on our two primary requirements: that the
finer (i.e., “subgrid”) scales be localized and that mass conservation is maintained. To
do so we choose a coarse mesh partition TH of Ω of a finite number of convex elements
over which we will decompose the solution into coarse and local (i.e., “subgrid”) pieces.
The choice is mostly arbitrary at this point, but later the mesh will be used as the
coarse mesh we compute on. We do, however, need a nondegeneracy condition. We
assume that there is some universal fixed constant γ > 0 such that any choice of TH
satisfies

msr(Ec) ≥ γ(diam(Ec))
n ∀Ec ∈ TH ,(3.1)

where msr(Ec) is the measure of Ec and diam(Ec) is its diameter.

3.1. A two-scale decomposition of W ×V. As is well known, the divergence
operator maps V onto W . The range of the divergence operator must be decomposed
into a direct sum decomposition W = Wc⊕δW of closed subspaces. For our purposes,
the decomposition is arbitrary, except that we must insist on two properties. First,

δW ⊂ (W 1
c )⊥, W 1

c = {wc ∈ W : wc is constant ∀ coarse elements Ec ∈ TH},

with respect to the L2(Ω)-inner product.
Second, we insist that there is a uniformity in the separation of Wc and δW . We

define the possibly nonorthogonal projections

P̃Wc
: W → Wc and P̃δW : W → δW(3.2)

with respect to the direct sum decomposition. By Proposition 3.1, these operators
are bounded but not necessarily uniformly so with respect to the coarse mesh TH
selected. Our requirement is that in fact these are bounded uniformly: there is some
universal constant C, independent of the coarse mesh TH , such that

‖wc‖0 + ‖δw‖0 ≤ C‖w‖0,(3.3)

where w = wc + δw ∈ Wc ⊕ δW . We can easily achieve this property if, for example,
Wc ⊂ W such that W 1

c ⊂ Wc is given arbitrarily and δW = W⊥
c . However, we

maintain flexibility by not assuming strict orthogonality.
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To obtain a decomposition of V, we first define

V1
c = {v ∈ V : ∇ · v ∈ Wc},

δV1 = {δv ∈ V : ∇ · δv ∈ δW and δv · ν = 0 on ∂Ec ∀ Ec ∈ TH}.

Proposition 3.2. It follows that
(a) V1

c and δV1 are closed subspaces of V;
(b) V = V1

c + δV1;
(c) V1

c ∩ δV1 = {v ∈ V : ∇ · v = 0 and v · ν = 0 on ∂Ec ∀ Ec ∈ TH};
(d) ∇ · V1

c = Wc and ∇ · δV1 = δW .
Proof. For (a), first note that each space is a linear subspace. The divergence

operator is continuous on V, so V1
c is closed. Finally, we note that δV1 is the

intersection of a closed subspace of V (the vectors δv with ∇ · δv ∈ δW ) and the
kernel of a finite number of normal trace operators, so δV1 is also closed.

To see (d), we consider an auxiliary elliptic problem. Given δw ∈ δW , on each
Ec ∈ TH let ϕ ∈ H1(Ec) solve the linear problem

∆ϕ = δw in Ec,(3.4)

∇ϕ · ν = 0 on ∂Ec.(3.5)

This problem is solvable because δw ⊥ W 1
c , so δw satisfies the compatibility condition.

Set δv = ∇ϕ. It is easy to conclude that δv ∈ V, since the normal traces match (in
fact vanish) on each side of ∂Ec ∩ Ω ∀Ec ∈ TH . Thus we conclude that δv ∈ δV1,
and so δW ⊂ ∇ · δV1. The opposite inclusion holds by definition, so ∇ · δV1 = δW .
Similarly, given wc ∈ Wc, let ψ ∈ H1(Ω) solve the linear problem

∆ψ = wc in Ω,(3.6)

∇ψ · ν = 0 on ΓN ,(3.7)

ψ = 0 on ΓR.(3.8)

Then vc = ∇ψ ∈ V1
c allows us to conclude that ∇ · V1

c = Wc.
For (b), we know that V ⊃ V1

c + δV1, so consider any v ∈ V and decompose
∇ ·v = wc + δw for wc ∈ Wc and δw ∈ δW . Construct ϕ and δv = ∇ϕ from δw as in
(3.4)–(3.5) above. Then we conclude that vc = v − δv ∈ V1

c , and so V ⊂ V1
c + δV1.

Finally, (c) follows trivially from (d), since Wc ∩ δW = {0}.
The proof above suggests the following Helmholtz decomposition. Let

Vp
c = {vp

c ∈ V1
c : vp

c = ∇ψ for some wc ∈ Wc and ψ satisfying (3.6)–(3.8)},
Vs = {vs ∈ V : ∇ · vs = 0} ⊂ V1

c .

These spaces are clearly closed subspaces, and we claim that Vp
c ∩Vs = {0}. Let v be

a member of both. Then there is some scalar potential function ψ such that v = ∇ψ,
and ∇ · v = ∆ψ = 0. Moreover, the boundary conditions from Vp

c imply that ψ is
constant (zero if ΓR �= ∅), and so v = 0. Thus we conclude that in fact

V1
c = Vp

c ⊕ Vs

is a direct sum of potential and solenoidal vector fields. Similarly, we have the closed
subspace

δVp = {δvp ∈ δV1 : δvp = ∇ϕ for some δw ∈ δW and ϕ satisfying (3.4)–(3.5)}
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and the direct sum

δV1 = δVp ⊕ δVs, where δVs = Vs ∩ δV1.

By similar reasoning, we conclude from Wc ∩ δW = {0} that Vp
c ∩ δVp = {0}, and

thus

V = Vp
c ⊕ δVp ⊕ Vs.(3.9)

Theorem 3.3. There is some constant C, independent of TH , and there exist
closed subspaces Vc and δV of V such that

(a) V = Vc ⊕ δV;
(b) ∇ · Vc = Wc and ∇ · δV = δW ;
(c) δV ⊂ δV1 = {δv ∈ V : ∇ · δv ∈ δW and δv · ν = 0 on ∂Ec ∀ Ec ∈ TH};
(d) for v = vc + δv ∈ Vc ⊕ δV given,

‖vc‖H(div) + ‖δv‖H(div) ≤ C‖v‖H(div).(3.10)

Moreover, a choice exists such that also the potential vector fields
(e) Vp

c ⊂ Vc and δVp ⊂ δV.
That is, (d) says that the projection operators defined by the direct sum,

P̃Vc : V → Vc and P̃δV : V → δV,(3.11)

are bounded independently of TH .
Proof. The troublesome part of (3.9) are the solenoidal fields Vs. With respect

to the H(div)-inner product, let

Vs
c = (δVs)⊥ ∩ Vs = {vs

c ∈ Vs : vs
c ⊥ δVs}.

Then Vs = Vs
c ⊕ δVs, and we can define

Vc = Vp
c ⊕ Vs

c and δV = δVp ⊕ δVs,

satisfying (a)–(c) and (e).
We need to examine the construction more carefully to conclude (d). Let v ∈ V

be given, and decompose

∇ · v = wc + δw = P̃Wc∇ · v + P̃δW∇ · v ∈ Wc ⊕ δW.

We then construct δvp = ∇ϕ ∈ δVp from (3.4)–(3.5) using the given δw and note
that standard elliptic energy estimates show that on each Ec ∈ TH ,

‖δvp‖2
0,Ec

= ‖∇ϕ‖2
0,Ec

= (P̃δW∇ · v, ϕ)Ec

≤ ‖P̃δW∇ · v‖0,Ec‖ϕ‖0,Ec ≤ C‖P̃δW∇ · v‖0,Ec‖∇ϕ‖0,Ec ,

where C is the Poincaré inequality constant [17] for Ec, which is proportional to
diam(Ec)

n

msr(Ec)1−1/n and therefore universally bounded by the nondegeneracy assumption

(3.1). Thus, from (3.3),

‖δvp‖H(div) ≤ C‖P̃δW∇ · v‖0 ≤ C‖v‖H(div).
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Similarly, we construct vp
c = ∇ψ ∈ Vp

c from (3.6)–(3.8) using the given wc and
conclude that

‖vp
c‖H(div) ≤ C‖v‖H(div).

Now v = vp
c +δvp+vs ∈ Vp

c ⊕δVp⊕Vs by (3.9), and vs = vs
c +δvs ∈ Vs

c⊕δVs,
which is an orthogonal decomposition, so

‖vs
c‖2

H(div) + ‖δvs‖2
H(div) = ‖vs‖2

H(div) = ‖v − vp
c − δvp‖2

H(div) ≤ C‖v‖2
H(div).

Finally,

‖vc‖H(div) = ‖vp
c + vs

c‖H(div) ≤ C‖v‖H(div),

‖δv‖H(div) = ‖δvp + δvs‖H(div) ≤ C‖δv‖H(div),

and the proof is complete.
Thus (a) gives us a unique decomposition of vectors in V, (b) allows us to en-

force mass conservation over TH on both the coarse and subgrid scales, (c) gives us
a locality property of the space δV that we can exploit later, and (d) gives us a
uniformity property of the decomposition independent of TH . The specific choice of
decomposition appears to be unimportant for our purposes, although we will revisit
this question later in section 5.1. In what follows, we fix a choice of Vc and δV
satisfying the properties (a)–(d) of the theorem.

3.2. Separation of scales in the equations. Recall that vgN ∈ H(div; Ω)
satisfies the Neumann boundary condition. Decompose the solution

p = pc + δp ∈ Wc ⊕ δW,

u = uc + δu + vgN ∈ Vc ⊕ δV + vgN .

Then we decompose (2.6)–(2.7) by choosing test functions restricted to the spaces
Wc × Vc or δW × δV. This results in an equivalent system of the four equations
(3.12)–(3.15) below. For convenience, let

b∗ = b−∇ · vgN ,

c∗ = c− d−1vgN .

Coarse-scale equations. Find uc ∈ Vc and pc ∈ Wc such that

(a(pc + δp), wc) + (∇ · (uc + δu), wc) = (b∗, wc) ∀ wc ∈ Wc,(3.12)

(d−1(uc + δu),vc) + (αuc · ν,vc · ν)ΓR
− (pc + δp,∇ · vc)

= (c∗,vc) − (gR,vc · ν)ΓR
∀ vc ∈ Vc.(3.13)

Subgrid δ-scale equations. Find δu ∈ δV and δp ∈ δW such that

(a(pc + δp), δw) + (∇ · (uc + δu), δw) = (b∗, δw) ∀ δw ∈ δW,(3.14)

(d−1(uc + δu), δv) − (pc + δp,∇ · δv) = (c∗, δv) ∀ δv ∈ δV.(3.15)

4. The δ-solution operator and upscaling. The systems (3.12)–(3.13) and
(3.14)–(3.15) are coupled together, and as written they do not allow us to exploit the
locality of δV. Our goal now is to rewrite (3.12)–(3.13) independently of δp and δu.
To do so, we need to write these quantities in terms of pc and uc.
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4.1. Solvability of the subgrid scale equations.
Lemma 4.1. Given (pc,uc) ∈ Wc ×Vc, there exists a unique solution (δp, δu) ∈

δW × δV to (3.14)–(3.15). Moreover, there is some constant C, independent of the
coarse mesh TH and the specific decomposition of W × V selected, such that

‖δp‖0 + ‖δu‖H(div) ≤ C{‖b‖0 + ‖c‖0 + ‖vgN ‖H(div) + ‖pc‖0 + ‖uc‖H(div)}.

We can prove Lemma 4.1 using the theory of saddle point problems [6, 8, 13, 7].
We need a generalization of the theory developed in, e.g., [13]. Consider the following
abstract problem: Find p̌ ∈ W̌ and ǔ ∈ V̌ such that

č(p̌, w̌) + (∇ · ǔ, w̌) = F (w̌) ∀ w̌ ∈ W̌ ,(4.1)

ǎ(ǔ, v̌) − (p̌,∇ · v̌) = G(v̌) ∀ v̌ ∈ V̌,(4.2)

where W̌ ⊂ L2(Ω) and V̌ ⊂ H(div; Ω) are Hilbert spaces. The following result is a
simple corollary of the more general theory [13, pp. 44–47].

Theorem 4.2. Suppose that W̌ ⊂ L2(Ω) and V̌ ⊂ H(div; Ω) are Hilbert spaces
such that ∇ · V̌ = W̌ . Suppose that ǎ and č are continuous, symmetric, positive
semidefinite bilinear forms on V̌× V̌ and W̌ × W̌ , respectively, and that ǎ is coercive
on V̌ ∩ ker(∇·), G ∈ V̌′, F ∈ W̌ ′, and there exists β > 0 such that

inf
w̌∈W̌

sup
v̌∈V̌

(∇ · v̌, w̌)

‖v̌‖H(div) ‖w̌‖0
≥ β > 0.(4.3)

Then there exists a unique solution (p̌, ǔ) ∈ W̌ × V̌ to (4.1)–(4.2), and there is a
constant C such that

‖p̌‖0 + ‖ǔ‖H(div) ≤ C{‖F‖ + ‖G‖},

where C is a nonlinear function of ‖ǎ‖, ‖č‖, the reciprocal of the coercivity bound for
ǎ, and 1/β that is bounded on bounded subsets.

The key result is to prove the celebrated inf-sup condition (4.3). This condition
is known to hold over W ×V, and the following corollary is well known and uses the
fact that for v ∈ V,

(gR,v · ν)ΓR
= (gR,v · ν)∂Ω ≤ C‖gR‖1/2,∂Ω‖v‖H(div),

where gR on ∂Ω is any fixed bounded extension.
Corollary 4.3. There exists a unique solution to (2.6)–(2.7), and there is some

constant C depending on a, d, and the inf-sup bound such that

‖p‖0 + ‖u‖H(div) ≤ C{‖b‖0 + ‖c‖0 + ‖vgN ‖H(div) + ‖gR‖1/2,∂Ω}.

Lemma 4.4. The inf-sup condition holds over both Wc ×Vc and δW × δV, with
constants independent of the coarse mesh TH and the specific decomposition of W ×V
selected.

Proof. For Wc × Vc, we have the following argument. Given wc ∈ Wc, solve for
ψ ∈ H1(Ω) satisfying (3.6)–(3.8), with

∫
Ω
ψ dx = 0 if ΓN = ∂Ω. Set v = ∇ψ. Then

‖v‖2
0 = ‖∇ψ‖2

0 = (wc, ψ) ≤ ‖wc‖0‖ψ‖0 ≤ C‖wc‖0‖∇ψ‖0,
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by Poincaré’s inequality [17], so ‖v‖H(div) ≤ C‖wc‖0. Let v = v̂c+δv, where v̂c ∈ Vc

and δv ∈ δV. We note that wc = ∇ · v = ∇ · v̂c ∈ Wc. Moreover,

‖v̂c‖H(div) = ‖P̃Vcv‖H(div) ≤ C‖v‖H(div) ≤ C‖wc‖0.

Thus

inf
wc∈Wc

sup
vc∈Vc

(∇ · vc, wc)

‖vc‖H(div) ‖wc‖0
≥ inf

wc∈Wc

(∇ · v̂c, wc)

‖v̂c‖H(div) ‖wc‖0

= inf
wc∈Wc

‖wc‖0

‖v̂c‖H(div)
≥ 1

C
> 0.

The proof for δW × δV is entirely similar and omitted.
Proof of Lemma 4.1. We can rewrite the subgrid δ-scale equations (3.14)–(3.15)

in the form of the abstract problem (4.1)–(4.2) by taking V̌ = δV and W̌ = δW and
by defining

č(δw1, δw2) = (aδw1, δw2),

ǎ(δv1, δv2) = (d−1δv1, δv2),

F (δw) = (b∗ − apc −∇ · uc, δw),

G(δv) = (c∗ − d−1uc, δv) + (pc,∇ · δv).

Easily, the bilinear forms ǎ and č are continuous, symmetric, and nonnegative on δV,
and ǎ is coercive on δV ∩ ker(∇·), with constants depending on the coefficients a, c,
and d. Moreover, F and G are continuous linear functionals. Lemma 4.4 gives us the
inf-sup condition (4.3), so the hypotheses required by Theorem 4.2 are satisfied by
the system, and so the conclusions follow.

4.2. The δ-solution operator. Lemma 4.1 allows us to define the solution
operator of the subgrid δ-scale equations (3.14)–(3.15) in terms of the coarse-scale
solution. It is in fact an affine operator with constant and linear parts.

Constant part of the δ-solution operator. Find δp̄ ∈ δW and δū ∈ δV such that

(aδp̄, δw) + (∇ · δū, δw) = (b∗, δw) ∀ δw ∈ δW,(4.4)

(d−1δū, δv) − (δp̄,∇ · δv) = (c∗, δv) ∀ δv ∈ δV.(4.5)

Wc-linear part of the δ-solution operator. For wc ∈ Wc, find δp̃ ∈ δW and δũ ∈ δV
such that

(a(wc + δp̃), δw) + (∇ · δũ, δw) = 0 ∀ δw ∈ δW,(4.6)

(d−1δũ, δv) − (wc + δp̃,∇ · δv) = 0 ∀ δv ∈ δV.(4.7)

Vc-linear part of the δ-solution operator. For vc ∈ Vc, find δp̂ ∈ δW and δû ∈ δV
such that

(aδp̂, δw) + (∇ · (vc + δû), δw) = 0 ∀ δw ∈ δW,(4.8)

(d−1(vc + δû), δv) − (δp̂,∇ · δv) = 0 ∀ δv ∈ δV.(4.9)

The theory of saddle point problems allows us to conclude the solvability and bound-
edness of each system, so we have the following result.
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Theorem 4.5. There exist bounded linear operators

δp̃ : Wc → δW and δũ : Wc → δV,

δp̂ : Vc → δW and δû : Vc → δV,

bounded independent of the coarse mesh TH and the specific decomposition of W ×V
selected, defined by (4.6)–(4.9), and functions δp̄ ∈ δW and δū ∈ δV defined by
(4.4)–(4.5) such that

δp = δp̃(pc) + δp̂(uc) + δp̄,

δu = δũ(pc) + δû(uc) + δū.

Moreover, there is some constant C such that

‖δp̄‖0 + ‖δū‖H(div) ≤ C{‖b‖0 + ‖c‖0 + ‖vgN ‖H(div)}.

Because δV · ν = 0 on each ∂Ec for Ec ∈ TH , δp̃, δũ, δp̂, and δû are locally
defined operators. That is, the restriction to Ec of the result is given by evaluating
the restricted operators, which are defined by restricting the integrals to Ec in (4.6)–
(4.9). Symbolically, we might write

δp̃(pc)|Ec
= δp̃|Ec

(pc|Ec
) and δũ(pc)|Ec

= δũ|Ec
(pc|Ec

),

δp̂(uc)|Ec = δp̂|Ec(uc|Ec) and δû(uc)|Ec = δû|Ec(uc|Ec).

These operators are well defined, linear, and bounded uniformly with respect to TH
and the decomposition of W × V selected.

In upscaling theory, results like Theorem 4.5 allow one to close the equations.
That is, the fine scale is represented as an operator of the coarse scale. However,
usually such a result is either assumed or additional assumptions are added to restrict
the nature of the problem (such as assuming some kind of periodicity or ergodicity).
Hence such results are often called closure assumptions. We have closed our system
without the need of any additional assumptions.

4.3. The upscaled equation. If we substitute the δ-solution operator into the
coarse-scale equations (3.12)–(3.13), we obtain the following problem.

Asymmetric upscaled equations. Find pc ∈ Wc and uc ∈ Vc such that

(a(pc + δp̃(pc) + δp̂(uc)), wc)

+ (∇ · (uc + δũ(pc) + δû(uc)), wc)

= (b∗ − aδp̄−∇ · δū, wc) ∀ wc ∈ Wc,(4.10)

(d−1(uc + δũ(pc) + δû(uc)),vc)

+ (αuc · ν,vc · ν)ΓR
− (pc + δp̃(pc) + δp̂(uc),∇ · vc)

= (c∗ − d−1δū,vc) + (δp̄,∇ · vc) − (gR,vc · ν)ΓR
∀ vc ∈ Vc.(4.11)

This system is posed entirely with respect to coarse-scale functions, so we say that
it has been upscaled from the fine scale. However, this system is not symmetric, even
though the original fine-scale system is symmetric. We can remedy this by noting
several equivalences. First, note that from (4.6) and then (4.7),

(a(pc + δp̃(pc)), δp̃(wc)) = −(∇ · δũ(pc), δp̃(wc))

= −(d−1δũ(wc), δũ(pc)) + (wc,∇ · δũ(pc)),
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and similarly from (4.9) and then (4.8),

(d−1(uc + δû(uc)), δû(vc)) = (δp̂(uc),∇ · δû(vc))

= −(aδp̂(vc), δp̂(uc)) − (∇ · vc, δp̂(uc)).

We also apply (4.9), (4.6), (4.7), and then (4.8) to obtain

(d−1δũ(pc),vc) = (δp̂(vc),∇ · δũ(pc)) − (d−1δû(vc), δũ(pc))

= −(a(pc + δp̃(pc)), δp̂(vc)) − (d−1δû(vc), δũ(pc))

= −(a(pc + δp̃(pc)), δp̂(vc)) − (pc + δp̃(pc),∇ · δû(vc))

= −(apc, δp̂(vc)) − (pc,∇ · δû(vc)) + (∇ · vc, δp̃(pc)).

Combining, we obtain a symmetric form for our system.
Symmetric upscaled equations. Find pc ∈ Wc and uc ∈ Vc such that

(a(pc + δp̃(pc)), wc + δp̃(wc)) + (d−1δũ(pc), δũ(wc))

+ (∇ · (uc + δû(uc)), wc) + (aδp̂(uc), wc)

= (b∗ − aδp̄−∇ · δū, wc) ∀ wc ∈ Wc,(4.12)

(d−1(uc + δû(uc)),vc + δû(vc))

+ (aδp̂(uc), δp̂(vc)) + (αuc · ν,vc · ν)ΓR

− (pc,∇ · (vc + δû(vc))) − (apc, δp̂(vc))

= (c∗ − d−1δū,vc) + (δp̄,∇ · vc) − (gR,vc · ν)ΓR
∀ vc ∈ Vc.(4.13)

The final solution is given then by

p = pc + δp̃(pc) + δp̂(uc) + δp̄,(4.14)

u = uc + δũ(pc) + δû(uc) + δū + vgN .(4.15)

It remains to show that indeed (4.10)–(4.11) or, equivalently, (4.12)–(4.13) has a
unique solution from which to construct the solution p and u.

Theorem 4.6. There exists a unique solution to (4.10)–(4.11) or, equivalently,
to (4.12)–(4.13). Moreover, there is some constant C, independent of the coarse mesh
TH and the specific decomposition of W × V selected, such that

‖pc‖0 + ‖uc‖H(div) ≤ C{‖b‖0 + ‖c‖0 + ‖vgN ‖H(div) + ‖gR‖1/2,∂Ω}.
Proof. Rather than trying to show the inf-sup condition for the system (4.12)–

(4.13) with its bilinear form (∇·(vc+δû(vc)), wc)+(aδp̂(vc), wc), we use a more direct
route. From Corollary 4.3, we have (p,u) ∈ W×(V+vgN ) solving the original system.
We uniquely decompose p = pc + δp ∈ Wc ⊕ δW and u − vgN = uc + δu ∈ Vc ⊕ δV.
By construction, (pc,uc) ∈ Wc × Vc is a solution to (4.12)–(4.13).

To demonstrate the uniqueness of the solution, consider the difference of two
solutions, which is equivalent to setting all constant terms to zero and showing that
there is only the trivial solution. Take the test functions wc = pc and vc = uc and sum
the equations to conclude that uc + δû(uc) = δũ(pc) = 0 and, by the uniqueness of
the decomposition Vc ⊕ δV, that uc = 0 and thus also δp̂(uc) = 0. Since ∇ ·V = W ,
equations (4.7) and (4.11) imply that pc+δp̃(pc) = 0, and thus pc = 0 and uniqueness
is established.

We use (3.3) and (3.10) to bound

‖pc‖0 ≤ C‖p‖0 and ‖uc‖H(div) ≤ C‖u‖H(div).

Finally, Corollary 4.3 bounds these terms as required.
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5. Numerical approximation. In the previous section, we demonstrated that
the δ-problems (4.4)–(4.9) and the upscaled problem (4.12)–(4.13) are well-posed,
uniformly with respect to TH . In this section, we construct an efficient computational
algorithm, exploiting the structure exposed in the previous two sections. Namely, we
exploit that the δ-problems are local and thus easily solved computationally and that
the global upscaled problem on TH is relatively small compared to the full fine-scale
problem (2.6)–(2.7) itself.

We present a class of discretizations based on standard mixed spaces. Our class of
discretizations includes the particularly pertinent low order discretization described
in [1, 2] and later in section 7.

We now consider TH as a coarse mesh. For approximation purposes, we assume
that it is chosen of conforming simplexes, rectangular parallelepipeds, or prisms such
that, for simplicity, Γ̄N is the union of coarse edges or faces. Let

H = max
Ec∈TH

diam(Ec).

On each Ec ∈ TH , let Th(Ec) be a fine mesh sufficient to resolve the coefficients of the
problem, and define

h = max
Ec∈TH

max
δE∈Th(Ec)

diam(δE).

Then TH,h = ∪Ec∈TH
Th(Ec) is the full fine mesh. The meshes need not match across

boundaries of coarse elements.

5.1. Two-scale conforming approximation spaces. From among any of the
usual mixed finite element spaces for second order elliptic equations, such as those of
[28, 24, 12, 10, 11, 14, 13], we select the coarse space W ∗

H × V∗
H ⊂ W × V on the

mesh TH , with V∗
H satisfying the homogeneous Neumann boundary condition on ΓN .

In all the usual spaces,

∇ · V∗
H = W ∗

H

and piecewise discontinuous constants W 1
c ⊂ W ∗

H .
On each coarse element Ec ∈ TH , we similarly select from among any of the usual

mixed finite element spaces the δ-space δWh(Ec) × δVh(Ec) ⊂ (W × V)|Ec on the
mesh Th(Ec), with δWh(Ec) ⊥ 1 and δVh(Ec) satisfying the homogeneous Neumann
boundary condition on ∂Ec. Merging these spaces results in δWh × δVh over the
entire domain Ω. Then δWh ⊥ W 1

c and

∇ · δVh = δWh.

For simplicity, we take the same mixed space for each coarse element, although this
assumption could be relaxed.

The overall two-scale mixed spaces are then defined to be

WH,h = W ∗
H + δWh and VH,h = V∗

H + δVh.

However, it is possible for general combinations of mixed spaces that the coarse and
δ-spaces are not linearly independent. The following construction suffices to rectify
the problem. First, complete a basis for δWh∩W ∗

H to a basis for W ∗
H and then define

WH as the span of the extra vectors. Similarly, we complete a basis for δVh ∩V∗
H to

a basis for V∗
H and use the extra vectors to define VH .
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To summarize our construction, our two-scale finite element spaces are and satisfy

WH,h = W ∗
H + δWh = WH ⊕ δWh ⊂ W,

VH,h = V∗
H + δVh = VH ⊕ δVh ⊂ V,

where

∇ · δVh = δWh and ∇ · VH,h = WH,h.

Our spaces are conforming in the sense that both WH and δWh are subspaces of
W , and VH and δVh are subspaces of V and δV1, respectively, and thus have the
required H(div) smoothness and satisfy the requisite boundary conditions.

However, it is not necessarily the case that WH ⊂ Wc and δWh ⊂ δW nor that
VH ⊂ Vc and δVh ⊂ δV. In section 3.1, we made a few arbitrary choices. We
could, for example, have chosen WH = Wc and then defined δW in such a way that
both δWh ⊂ δW and (3.3) hold, perhaps after assuming the restriction on the grid
mentioned in section 6. We might similarly be able to decompose Vs in such a way
that VH ⊂ Vc and δVh ⊂ δV. Then the mixed spaces would be fully conforming in
the two-scale sense. However, there appears to be no advantage to such a construction,
so we will not attempt it here.

5.2. The discrete equations in computable form. The key to efficient im-
plementation is to determine the δ-operators’ actions only on the finite element basis
for VH . We call such solutions numerical Green’s functions, since they give the
response of the system to a “unit” disturbance, which on the numerical level is a
coarse-scale basis function.

Let {wH,i}i and {vH,j}j be finite element bases for WH and VH , respectively.
One property of a finite element basis is that the support of any basis function is
relatively small. Expand

pH =
∑
i

piwH,i and uH =
∑
j

ujvH,j .(5.1)

Then to compute, for example,

δû(uH) =
∑
j

ujδû(vH,j)

requires only the numerical Green’s functions δû(vH,j) for each j.
The numerical scheme has three main steps. The first step is to compute the

solutions to the following problems.
Constant part of the approximate δ-solution operator. Find δp̄h ∈ δWh and δūh ∈

δVh such that

(aδp̄h, δwh) + (∇ · δūh, δwh) = (b∗, δwh) ∀ δwh ∈ δWh,(5.2)

(d−1δūh, δvh) − (δp̄h,∇ · δvh) = (c∗, δvh) ∀ δvh ∈ δVh.(5.3)

WH-linear part of the approximate δ-solution operator. For wH,i in a basis for
WH , find δp̃h,i ∈ δWh and δũh,i ∈ δVh such that

(a(wH,i + δp̃h,i), δwh) + (∇ · δũh,i, δwh) = 0 ∀ δwh ∈ δWh,(5.4)

(d−1δũh,i, δvh) − (wH,i + δp̃h,i,∇ · δvh) = 0 ∀ δvh ∈ δVh.(5.5)
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VH-linear part of the approximate δ-solution operator. For vH,j in a basis for
VH , find δp̂h,j ∈ δWh and δûh,j ∈ δVh such that

(aδp̂h,j , δwh) + (∇ · (vH,j + δûh,j), δwh) = 0 ∀ δwh ∈ δWh,(5.6)

(d−1(vH,j + δûh,j), δvh) − (δp̂h,j ,∇ · δvh) = 0 ∀ δvh ∈ δVh.(5.7)

These problems are quick and efficient to solve, since they are relatively quite
small due to their local nature. That is, we actually solve them on each coarse
element independently. For example, we know that for the standard mixed spaces,
vH,j is supported on at most two coarse elements, E1

c and E2
c . Thus, to evaluate

δû(vH,j), we solve (5.6)–(5.7) twice, with all spaces and integrals restricted to Ek
c for

k = 1, 2. Then in fact δû(vH,j) is the combination of the two solutions δû|Ek
c
(vH,j |Ek

c
)

on Ek
c , k = 1, 2. On each coarse element, each linear system in (5.2)–(5.7) has the

same matrix, and only the so-called right-hand side vector varies. Thus it is reasonable
to use a direct solver for these problems. Moreover, they parallelize trivially. Since
these are square linear systems, existence and uniqueness of a solution follow from
uniqueness, which follow in the usual way from the fact that ∇ · δVh = δWh.

Then we have the implicit expressions

δph = δp̃h(pH) + δp̂h(uH) + δp̄h =
∑
i

piδp̃h,i +
∑
j

ujδp̂h,j + δp̄h,(5.8)

δuh = δũh(pH) + δûh(uH) + δūh =
∑
i

piδũh,i +
∑
j

ujδûh,j + δūh,(5.9)

since at this stage of the computation pi and uj are not known.
The second main step is to compute the solution to the upscaled equation. We

approximate (4.12)–(4.13) in the symmetric case by restricting to the finite element
basis: Find pH ∈ WH and uH ∈ VH such that

(a(pH + δp̃(pH)), wH + δp̃(wH)) + (d−1δũ(pH), δũ(wH))

+ (∇ · (uH + δû(uH)), wH) + (aδp̂(uH), wH)

= (b∗ − aδp̄h −∇ · δūh, wH) ∀ wH ∈ WH ,(5.10)

(d−1(uH + δû(uH)),vH + δû(vH))

+ (aδp̂(uH), δp̂(vH)) + (αuH · ν,vH · ν)ΓR

− (pH ,∇ · (vH + δû(vH))) − (apH , δp̂(vH))

= (c∗ − d−1δūh,vH) − (δp̄h,∇ · vH) − (gR,vH · ν)ΓR
∀ vH ∈ VH .(5.11)

By following the computations in section 4.3, we easily see that a similar finite element
approximation of the asymmetric formulation (4.10)–(4.11) is equivalent to (5.10)–
(5.11). Either problem is the same size as a full finite element approximation of
(2.6)–(2.7) over the coarse space WH × VH .

The final main step is to construct the solution using (5.8)–(5.9):

ph = pH + δph ∈ WH,h,(5.12)

uh = uH + δuh + vgN ∈ VH,h + vgN .(5.13)

5.3. An equivalent form for the discrete equations. It should be noted
that our procedure is an efficient implementation of the algebraically equivalent mixed
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finite element method corresponding to (2.6)–(2.7), which is to find uh ∈ VH,h +vgN

and ph ∈ WH,h such that

(aph, wh) + (∇ · uh, wh) = (b, wh) ∀ wh ∈ WH,h,(5.14)

(d−1uh,vh) + (αuh · ν,vh · ν)ΓR
− (ph,∇ · vh)

= (c,vh) − (gR,vh · ν)ΓR
∀ vh ∈ VH,h.(5.15)

Existence and uniqueness of a solution follow from uniqueness, which follows from the
linear independence of WH ×VH and δWh× δVh and the fact that ∇·VH,h = WH,h.

From (5.14)–(5.15), we can conclude existence and uniqueness of (5.10)–(5.11),
since ph = pH + δph and uh = uH + δuh give pH and uH , which satisfy the system.

6. Analysis of the approximation error. We begin this section with some
notation. For M , a subspace of L2, we denote by PM : L2 → M the orthogonal
L2-projection, based on the decomposition L2 = M ⊕ M⊥. We contrast this with
P̃M : L2 → M from Proposition 3.1, which was based on a possibly nonorthogonal
decomposition L2 = M ⊕N .

At this point, we require some uniformity of the discrete decomposition. Let
P̃WH

: WH,h → WH and P̃δWh
: WH,h → δWh be the projections associated with the

decomposition WH,h = WH ⊕ δWh. We assume that there is a constant C such that

‖P̃δWh
‖ ≤ C.(6.1)

Note that then also

‖P̃WH
‖ = ‖I − P̃δWh

‖ ≤ 1 + C.(6.2)

It is not difficult to ensure (6.1). The simplest possibility is that WH ⊥ δWh so that
P̃δWh

= PδWh
and we can take C = 1. This holds for certain choices of mixed spaces

but not for others. Another possibility is to enforce uniformity on the two-scale mesh
TH,h. Suppose that as H → 0, we insist that H/h remains fixed. If we also assume
that the coarse and fine element shapes remain fixed, then it is clear by a scaling
argument that (6.1) will hold on each coarse element and thus globally. Moreover, we
can even allow the element shapes to change as long as they do not change too badly,
such as being the images of a reference element under a uniformly bounded family of
affine maps with uniformly bounded inverses.

Let K ≥ 1 and L ≥ 1 denote the approximation orders of the coarse spaces V∗
H

and W ∗
H , respectively. That is, for some constant C and for any v ∈ V and w ∈ W ,

inf
vH∈V∗

H

‖v − vH‖0 ≤ C‖v‖m Hm, 0 ≤ m ≤ K,(6.3)

inf
wH∈W∗

H

‖w − wH‖0 ≤ C‖w‖i Hi, 0 ≤ i ≤ L.(6.4)

For all the usual mixed spaces, L = K or L = K − 1. It is also true that

inf
vH∈V∗

H

‖(v − vH) · ν‖0,ΓR
≤ C‖v · ν‖m,ΓR

Hm, 0 ≤ m ≤ K.(6.5)

Similarly, let k ≥ 1 and � ≥ 1 denote the approximation orders of the δ-spaces δVh

and δWh, respectively.
Lemma 6.1. Given any w ∈ W ,

‖w − PWH,h
w‖0 ≤ C‖w‖i+jH

ihj , 0 ≤ i ≤ max(0, L− j), 0 ≤ j ≤ �.(6.6)
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Proof. For each Ec ∈ TH , we note that in all the usual mixed spaces W ∗
H restricted

to Ec consists of polynomials of full degree at least L−1 that are discontinuous across
∂Ec. Thus from standard polynomial approximation results, we compute

‖w − PWH,h
w‖0,Ec

= inf
wH∈W∗

H

inf
δwh∈δWh

‖w − wH − δwh‖0,Ec

≤ C inf
wH∈W∗

H

‖w − wH‖j,Ech
j

≤ C‖w‖i+j,EcH
ihj ,

wherein 0 ≤ j ≤ � and then 0 ≤ i ≤ max(0, L− j).
Approximation in VH,h is more delicate, as we need to preserve divergence prop-

erties.

6.1. A mixed method π-operator. All the usual mixed spaces W̌η× V̌η have
projection operators π̌ : V ∩H1(Ω) → V̌η such that

∇ · π̌v = PW̌η
∇ · v,

‖v − π̌v‖ ≤ C‖v‖iηi, 1 ≤ i ≤ m,

where C is a constant independent of the mesh spacing η and m is the approximation
order of the space V̌η. Moreover, on ∂Ω,

π̌v · ν = PV̌η·νv · ν.(6.7)

We have the associated operators

πH : V ∩H1(Ω) → V∗
H ,

δπEc,h : δV(Ec) ∩H1(Ec) → δVh(Ec) ∀ Ec ∈ TH ,

and also δπh, defined by combining the δπEc,h. Then for any v ∈ V and δv ∈ δV1,

∇ · πHv = PW∗
H
∇ · v,

∇ · δπhδv = PδWh
∇ · δv.

Our goal now is to define a similar operator for the two-scale space WH,h×VH,h.
Let v ∈ V ∩H1(Ω). On each Ec ∈ TH , let

δw = P̃δWh
PWH,h

∇ · v.

Define δvp = ∇ϕ, where ϕ ∈ H1(Ec) satisfies (3.4)–(3.5) with the given δw. Then,
because of (3.1), the Poincaré inequality constant is independent of H and h, so elliptic
regularity [19] gives us the bound

‖ϕ‖2,Ec
≤ C‖P̃δWh

PWH,h
∇ · v‖0,Ec

,

where a simple scaling argument shows that C depends on the shape of Ec but not
on its size. Thus also

‖δvp‖1,Ec
≤ C‖P̃δWh

PWH,h
∇ · v‖0,Ec

,(6.8)

and we conclude that we can apply δπh to δvp.
Definition 6.2. Let π : V ∩H1(Ω) → VH,h = V∗

H + δVh be defined by

πv = πH(v − δvp) + δπhδv
p,

where δvp = ∇ϕ and ϕ satisfies (3.4)–(3.5) with δw = P̃δWh
PWH,h

∇ · v.
This operator, while well defined, is not a projection.
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Proposition 6.3. It follows that

∇ · πv = PWH,h
∇ · v on Ω,

πv · ν = πHv · ν on ∂Ω.

Proof. Since PWH,h
= (P̃WH

+ P̃δWh
)PWH,h

and PW∗
H
PWH,h

= PW∗
H

, we compute

∇ · πv = ∇ · πH(v − δvp) + ∇ · δπhδv
p

= PW∗
H
∇ · (v − δvp) + PδWh

∇ · δvp

= PW∗
H
∇ · v − PW∗

H
P̃δWh

PWH,h
∇ · v + PδWh

P̃δWh
PWH,h

∇ · v
= PW∗

H
∇ · v − PW∗

H
(I − P̃WH

)PWH,h
∇ · v + P̃δWh

PWH,h
∇ · v

= (P̃WH
+ P̃δWh

)PWH,h
∇ · v

= PWH,h
∇ · v.

By (6.7), we see that

πv · ν = πH(v − δvp) · ν + δπhδv
p · ν = πHv · ν,

since δvp · ν = 0 on ∂Ω.
Lemma 6.4. If (3.1) and (6.1) hold, then for v ∈ V ∩H1(Ω),

‖v − πv‖0 ≤ C‖v‖mHm, 1 ≤ m ≤ K,

‖(v − πv) · ν‖0,ΓR
≤ C‖v · ν‖m,ΓR

Hm, 0 ≤ m ≤ K.

Proof. We construct δvp ∈ δVp as in the definition of π. Then for 1 ≤ m ≤ K,

‖v − πv‖0 = ‖v − πHv + πHδvp − δπhδv
p‖0

≤ ‖v − πHv‖0 + ‖πHδvp − δvp‖0 + ‖δvp − δπhδv
p‖0

≤ C

{
‖v‖mHm +

∑
Ec∈TH

(‖δvp‖1,EcH + ‖δvp‖1,Ech)

}

≤ C{‖v‖mHm + ‖P̃δWh
PWH,h

∇ · v‖0H},

by (6.8). The Bramble–Hilbert lemma [15, 7] implies that for any 0 ≤ i ≤ L,

‖P̃δWh
PWH,h

∇ · v‖0 = ‖(I − P̃WH
)PWH,h

∇ · v‖0 ≤ C‖∇ · v‖iHi,

since the operator (I − P̃WH
)PWH,h

is uniformly bounded by (6.1), and it preserves
polynomials of the appropriate degree. With i = m − 1, i is in the range 0 ≤ i ≤ L
(L = K or L = K − 1), and we obtain the required first estimate.

The second estimate follows from Proposition 6.3 and its approximation proper-
ties, (6.7) and (6.5).

6.2. Error analysis. The equation for the error is given by (2.6)–(2.7) with test
functions in WH,h × VH,h minus (5.14)–(5.15), which is

(a(p− ph), w) + (∇ · (u − uh), w) = 0 ∀ w ∈ WH,h,(6.9)

(d−1(u − uh),v) + (α(u − uh) · ν,v · ν)ΓR
= (p− ph,∇ · v) ∀ v ∈ VH,h.(6.10)
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Theorem 6.5. If (3.1) and (6.1) hold, and a ∈ W 1,∞(Ω), then the two-scale
approximation satisfies the error bounds

‖
√
a(PWH,h

p− ph)‖0 + ‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

≤ C{‖p‖i+jH
ihj+1 + (‖u − vgN ‖m + ‖(u − vgN ) · ν‖m,ΓR

)Hm},
‖PWH,h

p− ph‖0 ≤ C{‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

},
‖p− ph‖0 ≤ C{‖PWH,h

p− ph‖0 + ‖p‖i+jH
ihj},

‖∇ · (u − uh)‖0 ≤ C{‖
√
a(PWH,h

p− ph)‖0 + ‖p‖i+jH
ihj+1 + ‖∇ · u‖i+jH

ihj},

wherein 0 ≤ i ≤ max(0, L − j), 0 ≤ j ≤ �, and 1 ≤ m ≤ K. Moreover, if α = 0 or
ΓR = ∅, and if h is sufficiently small, then

‖PWH,h
p− ph‖0 ≤ C{‖∇ · (u − uh)‖0h + ‖p‖i+jH

ihj+1 + ‖u − uh‖0H}.

Note that these are optimal order estimates, since L = K or L = K−1. Moreover,
‖PWH,h

p− ph‖0 is superconvergent if α = 0 or ΓR = ∅ and h is sufficiently small.
Proof. For notational convenience, let us define

πu ≡ π(u − vgN ) + vgN .

The sum of the equations (6.9)–(6.10) with

w = PWH,h
p− ph ∈ WH,h and v = πu − uh ∈ VH,h,

because of Proposition 6.3 and the fact that ∇ · VH,h = WH,h, results in

(a(PWH,h
p− ph),PWH,h

p− ph) + (d−1(u − uh),u − uh)

+ (α(u − uh) · ν, (u − uh) · ν)ΓR

= (a(PWH,h
p− p),PWH,h

p− ph) + (d−1(u − uh),u − πu)

+ (α(u − uh) · ν, (u − πu) · ν)ΓR
.

If ā ∈ WH,h is the piecewise discontinuous constant average of a over the fine mesh
TH,h, then

(a(PWH,h
p− p),PWH,h

p− ph) = ((a− ā)(PWH,h
p− p),PWH,h

p− ph)

≤ C‖a‖W 1,∞(Ω)h ‖PWH,h
p− p‖0‖PWH,h

p− ph‖0.

Thus for any ε > 0,

‖
√
a(PWH,h

p− ph)‖0 + ‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

≤ Cε{‖p− PWH,h
p‖0h + ‖u − πu‖0 + ‖(u − πu) · ν‖0,ΓR

} + ε‖PWH,h
p− ph‖0.

Standard elliptic lift arguments can be used to estimate PWH,h
p − ph. That is,

we solve (3.6)–(3.8) for ψ with wc replaced by PWH,h
p− ph and take v = π∇ψ. Then

∇ · v = PWH,h
p− ph and

‖v‖0 ≤ ‖∇ψ‖0 + ‖∇ψ − π∇ψ‖0 ≤ C‖ψ‖2 ≤ C‖PWH,h
p− ph‖0,

‖v · ν‖0,ΓR
≤ ‖∇ψ · ν‖0,ΓR

+ ‖(∇ψ − πH∇ψ) · ν‖0,ΓR

≤ C‖ψ‖2 ≤ C‖PWH,h
p− ph‖0,
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using (6.7). Then (6.10) implies that

‖PWH,h
p− ph‖2

0 = (d−1(u − uh),v) + (α(u − uh) · ν,v · ν)ΓR

≤ C{‖u − uh‖0‖v‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

‖v · ν‖0,ΓR

≤ C{‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

}‖PWH,h
p− ph‖0,

and, with Lemmas 6.1 and 6.4, the first three estimates of the theorem follow.
If α = 0 or ΓR = ∅, we replace (3.6)–(3.8) by

aψ −∇ · d∇ψ = PWH,h
p− ph in Ω,(6.11)

− d∇ψ · ν = 0 on ΓN ,(6.12)

ψ = 0 on ΓR,(6.13)

and we modify the argument as follows [16]:

‖PWH,h
p− ph‖2

0 = (PWH,h
p− ph, aψ −∇ · d∇ψ)

= (a(PWH,h
p− ph), ψ) − (PWH,h

p− ph,∇ · πd∇ψ),

and, using (6.10),

(PWH,h
p− ph,∇ · πd∇ψ) = (d−1(u − uh), πd∇ψ)

= (u − uh,∇ψ) − (d−1(u − uh), d∇ψ − πd∇ψ)

= −(∇ · (u − uh), ψ) − (d−1(u − uh), d∇ψ − πd∇ψ),

and, for w ∈ WH,h arbitrary, by (6.9),

(∇ · (u − uh), ψ) = (∇ · (u − uh), ψ − w) − (a(PWH,h
p− ph), w)

− (a(p− PWH,h
p), w)

= (∇ · (u − uh), ψ − w) − (a(PWH,h
p− ph), ψ)

− (a(PWH,h
p− ph), w − ψ) − ((a− ā)(p− PWH,h

p), w).

Since a good choice of w implies

‖w − ψ‖0 ≤ C‖ψ‖1h and ‖w‖0 ≤ C‖ψ‖1,

we have that

‖PWH,h
p− ph‖2

0 ≤ C{(‖∇ · (u − uh)‖0 + ‖PWH,h
p− ph‖0 + ‖p− PWH,h

p‖0)‖ψ‖1h

+ ‖u − uh‖0‖ψ‖2H}
≤ C{(‖∇ · (u − uh)‖0 + ‖PWH,h

p− ph‖0 + ‖p− PWH,h
p‖0)h

+ ‖u − uh‖0H}‖PWH,h
p− ph‖0,

and the final result of the theorem follows for h sufficiently small.
Finally, (6.9) with w = ∇ · (πu − uh) ∈ WH,h implies that

‖∇ · (πu − uh)‖2
0 = −(a(PWH,h

p− ph),∇ · (πu − uh))

− ((a− ā)(p− PWH,h
p),∇ · (πu − uh)).

Since ∇· (u−πu) = (I−PWH,h
)∇·u, which approximates as in (6.6), the divergence

estimate of the theorem follows.
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In the special case a = α = 0, we obtain optimality of the finite element approxi-
mation uh to u in the energy norm subject to the appropriate divergence constraint.

Theorem 6.6. If a = α = 0 and (3.1) and (6.1) hold, then

‖d−1/2(u − uh)‖0 ≤ inf
vh∈VH,h

∇·vh=PWH,h
∇·(u−vgN

)

‖d−1/2(u − vgN − vh)‖0 ≤ C‖u − vgN ‖mHm,

∇ · uh = PWH,h
∇ · u,

‖PWH,h
p− ph‖0 ≤ C‖u − uh‖0,

‖PWH,h
p− ph‖0 ≤ C{‖∇ · (u − uh)‖0h + ‖u − uh‖0H},

‖p− ph‖0 ≤ C{‖PWH,h
p− ph‖0 + ‖p‖i+jH

ihj},

wherein 0 ≤ i ≤ max(0, L− j), 0 ≤ j ≤ �, and 1 ≤ m ≤ K.
Proof. For any vh ∈ VH,h such that ∇ · vh = PWH,h

∇ · (u − vgN ), take

w = PWH,h
p− ph ∈ WH,h,

v = (u − uh) − (u − vgN − vh) ∈ VH,h

in (6.9)–(6.10). Then with a = α = 0, the sum of the equations implies that

(d−1(u − uh),u − uh) = (d−1(u − uh),u − vgN − vh)

≤ ‖d−1/2(u − uh)‖0‖d−1/2(u − vgN − vh)‖0

so that

‖d−1/2(u − uh)‖0 ≤ inf
vh

‖d−1/2(u − vgN − vh)‖0 ≤ C‖u − vgN − π(u − vgN )‖0,

since π(u − vgN ) satisfies the divergence constraint by Proposition 6.3. Lemma 6.4
gives the required approximation result for the first estimate of the theorem.

Now a = 0 and (6.9) imply that ∇ · uh = PWH,h
∇ · u, giving the second result of

the theorem. The final estimates follow as in the previous proof.
The underlying assumption in the error analysis, and the tacit assumption in all

similar subgrid methods mentioned in the introduction, is that the finest grid, scale
h, resolves the fine-scale details of the solution. We see this here in the Sobolev norms
appearing in the error estimates. If h does not resolve the subgrid problems, then we
cannot expect a good approximation.

Under this tacit assumption, we proved two main results. First, in Theorem 6.6,
the solution is optimally approximated in the finite element space subject to the fine-
scale divergence constraint. Thus the approximation is no worse than using only a
coarse-scale approximation (up to questions of the scale of the divergence constraint).
It is presumably much better, as numerical results show [1, 2, 4]. Second, the pressure
is approximated on the finest scale, up to a higher order coarse H error term. This
is a strict improvement over merely solving on the coarse scale. Moreover, these
improvements are achieved for negligible additional numerical cost compared to the
coarse-scale solution and much less cost than the fine-scale solution itself [1, 4].
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The error estimates of this subsection appear to explain the numerical results that
have appeared elsewhere: that they are amazingly accurate for reasonable problems
where the fine grid resolves the coefficients of the problem [1, 2, 4]. The error estimates
also explain why numerical results break down in certain difficult cases in which h does
not resolve the problem well. If h and H are relatively large compared to the Sobolev
norms of the solution, the method is not expected to work well. This appears to be
the main factor limiting the utility of the method in practice. As an example, in [2], a
numerical test was presented involving Darcy flow in a porous medium with a long thin
high permeability streak. This is a very difficult problem to resolve numerically on a
coarse grid. The streak introduces channelized flow, which means that the derivatives
of the solution are large, and so by Theorem 6.5 or 6.6, we neither expect nor see good
results. (It should be noted, however, that the upscaling technique of this paper is
not entirely unsuccessful in resolving the solution of even this very difficult problem.)

7. Two special cases. A particularly pertinent choice of spaces was studied nu-
merically in [1, 2]. On the coarse mesh, we approximate (pc,uc) in the two-dimensional
BDM-1 or three-dimensional BDDF-1 mixed finite element spaces [12, 10]. The space
of scalars W ∗

H consists of piecewise discontinuous constants, and the space of vectors
V∗

H is second order accurate and has linear fluxes on the edges or faces of coarse
elements.

On each coarse element Ec ∈ TH , we approximate (δp̄, δū), (δp̃, δũ), and (δp̂, δû)
in the RT-0 spaces [28]. These approximate with piecewise discontinuous constants
for δWh(Ec) and with constant fluxes on each interior edge or face for δVh(Ec).

In this case, V∗
H ∩ δVh = {0}, so VH = V∗

H requires no attention. Also, WH,h =
W ∗

h , the space of piecewise discontinuous constants over the fine mesh TH,h. We note
that W ∗

H ⊥ δWh, so WH = W ∗
H and condition (6.1) holds. However, it is not so

simple to compute with δWh(Ec), since such functions are supported in all of Ec.
Fortunately, a careful implementation of the scheme [2] allows one to avoid working
over δWh(Ec) and instead work over the full space δWh(Ec) + span{1} of piecewise
discontinuous constants over Th(Ec). Now K = 2 and L = k = � = 1, so Theorem 6.5
takes the following simple form.

Theorem 7.1. If a ∈ W 1,∞(Ω) and (3.1) holds, the BDDF-1(BDM-1)/RT-0
two-scale approximation satisfies the error bounds

‖
√
a(PWH,h

p− ph)‖0 + ‖u − uh‖0 + ‖
√
α(u − uh) · ν‖0,ΓR

≤ C{‖p‖1h
2 + (‖u − vgN ‖2 + ‖(u − vgN ) · ν‖2,ΓR

)H2} ≤ CH2,

‖PWH,h
p− ph‖0 ≤ C{‖u − uh‖0 + ‖

√
α(u − uh) · ν‖0,ΓR

} ≤ CH2,

‖p− ph‖0 ≤ C{‖PWH,h
p− ph‖0 + ‖p‖1h} ≤ C(H2 + h),

‖∇ · (u − uh)‖0 ≤ C{‖
√
a(PWH,h

p− ph)‖0 + ‖p‖1h
2 + ‖∇ · u‖1h} ≤ C(H2 + h).

Moreover, if α = 0 or ΓR = ∅, and h is sufficiently small, then

‖PWH,h
p− ph‖0 ≤ C{‖∇ · (u − uh)‖0h + ‖p‖1h

2 + ‖u − uh‖0H} ≤ C(H3 + h2).

If H2 ∼ h as H → 0, then p and u are resolved on the fine scale to order h. Hence
relatively good numerical approximation results have been obtained [1, 3, 4, 2].

A second special choice is to use RT-0 spaces on both scales. In this case, K =
L = k = � = 1, and Theorem 6.5 would suggest that p and u are approximated only
on the coarse scale to order H. Although we retain the optimality of the solution



ANALYSIS OF SUBGRID UPSCALING 597

in the energy norm under the appropriate conditions, the numerical approximation
results are not nearly as good as in the previous special case (see [5]).
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[10] F. Brezzi, J. Douglas, Jr., R. Duràn, and M. Fortin, Mixed finite elements for second
order elliptic problems in three variables, Numer. Math., 51 (1987), pp. 237–250.

[11] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini, Efficient rectangular mixed finite
elements in two and three space variables, RAIRO Modél. Math. Anal. Numér., 21 (1987),
pp. 581–604.

[12] F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed elements for second
order elliptic problems, Numer. Math., 47 (1985), pp. 217–235.

[13] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New
York, 1991.

[14] Z. Chen and J. Douglas, Jr., Prismatic mixed finite elements for second order elliptic prob-
lems, Calcolo, 26 (1989), pp. 135–148.

[15] P. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam,
1978.

[16] J. Douglas, Jr., and J. E. Roberts, Global estimates for mixed methods for second order
elliptic equations, Math. Comp., 44 (1985), pp. 39–52.

[17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, 1983.

[18] V. Girault and J.-L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes
problem, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 945–980.

[19] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[20] T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems in composite

materials and porous media, J. Comput. Phys., 134 (1997), pp. 169–189.
[21] T. J. R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann for-

mulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput.
Methods Appl. Mech. Engrg., 127 (1995), pp. 387–401.
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