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AN OVERVIEW OF SUBGRID UPSCALING
FOR ELLIPTIC PROBLEMS IN MIXED FORM

Todd Arbogast

ABSTRACT. We present an overview of recent work dealing with upscaling
second order elliptic problems in mixed form. We use a direct sum decompo-
sition of the solution space into coarse and localized “subgrid” spaces. We use
these to construct a two-scale variational form. A numerical Greens function
approach allows for its efficient approximation. A three dimensional computa-
tional result representing flow in a porous medium illustrates the performance
of the technique in approximating fine scales on coarse grids.

1. Introduction

Complex physical phenomena almost always occur on widely varying scales.
A continuing challenge in mathematical, scientific, and computational modeling is
to handle all the relevant scales properly. Fine scale effects often have a profound
influence on coarser scales. It is imperative to express each modeled phenomenon
appropriately on the scale of interest, and to properly account for their interactions.

The recent emergence of terascale computing has given promise to significant
advances in computational science and engineering, making possible simulations
of unprecedented sophistication and detail, and allowing the resolution of events
that occur on many different spatial and temporal scales. However, in spite of
these vastly expanded limits on computational power, we will continue into the
foreseeable future to be thwarted in our efforts to understand the most complex
multi-scale phenomena. This is due to the vast range of scales and the stochastic
nature of certain problems, which preclude either (1) full resolution of all pertinent
space and time scales for a sufficient number of stochastic realizations to obtain
meaningful statistical predictions; or (2) the heterogeneity gives rise to severely ill-
conditioned linear systems that cannot be easily solved. That is, many important
problems remain and will remain computationally intractable.

Since merely relying on sheer technological improvements in computing power
cannot solve the problem of simulating multi-scale phenomena, mathematical and
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computational modeling remains a key tool. Many multi-scale techniques have
been developed over the last few hundred years. To mention just a few, these
include statistical mechanics, asymptotic analysis, homogenization, and cellular
automata, and various techniques based on expansion methods such as Taylor,
Fourier, wavelet, and eigenfunction expansions and transforms.

We consider in this paper a relatively recently exploited type of expansion tech-
nique and its computational implementation. The expansion technique is based
analytically on very general Hilbert space direct sum decompositions, and imple-
mented on the discrete or computational level as a variational multi-scale method
[25, 26, 11]. However, because of the way it handles the scales of the underlying
equations, it is also referred to as a type of subgrid upscaling method [6, 2].

Many numerical methods involve computations on coarse and fine grids. The
subgrid methods use a coarse grid and a subgrid within each coarse element. Al-
though the subgrids form a fine grid, they are effectively decoupled from each other.
Many numerical techniques may be classified as subgrid methods. An incomplete
list includes methods involving (residual free) bubble functions and subgrid stabi-
lization [27, 25, 16, 17, 22, 23], the variational multiscale method [25, 26, 28],
and subgrid upscaling [6, 2, 3, 1]. Very closely related but somewhat distinct meth-
ods include those involving nonoverlapping domain decomposition [30, 34, 33], the
generalized finite element method (if the elements are defined on a subgrid) [8, 32]
and the multiscale finite element method [24].

Subgrid methods approximate some of the finer-scale aspects of the problem
by incorporating information within each coarse grid element. Subgrid methods
can provide improvements in stability, mathematical modeling (e.g., large eddy
simulation), and numerical approximation.

In this paper we review some of the basic theory of subgrid methods and sum-
marize work of the author in implementing these ideas for second order elliptic
problems in mixed form. The method was developed and applied to simulate flow
in heterogeneous porous media. We take the point of view that the porous medium
flow problem can be expressed at some scale that can be resolved on a very fine
grid. However, this fine grid gives rise to a discrete problem that is too large to
be solved efficiently. Coarse grids are the rule in subsurface simulation, due to the
large size of the physical domain, its extreme heterogeneity, the large number of
equations that must be solved simultaneously, and the large number of stochastic
realizations that must be investigated.

Our subgrid approach was developed to scale up fine grid information to coarse
scales in an approximation to a nonlinear parabolic system governing two-phase
flow in porous media. The technique allows upscaling of the usual parameters
porosity and relative and absolute permeabilities, and also the location of wells and
capillary pressure effects. Some of these are critical nonlinear terms that need to
be resolved on the fine scale, or serious errors will result.

Very briefly, upscaling is achieved by decomposing the solution space into a
direct sum of Hilbert spaces with desirable properties. In particular, one of the
spaces is localized in space. The differential system is written as a variational prob-
lem and decomposed using this direct sum into a coarse-grid-scale operator coupled
to a subgrid-scale operator. The subgrid-scale operator is approximated locally in
space on each coarse-grid element. An influence function or numerical Greens func-
tion technique enables us to solve these subgrid-scale problems independently of
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the coarse-grid approximation. The coarse-grid problem is modified to take into
account the subgrid-scale solution and solved as a large linear system of equations.
Finally, the coarse scale solution is corrected on the subgrid-scale, providing a fine-
grid scale representation of the solution. In this approach, no explicit macroscopic
coefficients nor pseudo-functions result.

In the next section we review the abstract theory of the multi-scale subgrid
variational methods, developed originally by Hughes et al. [26] and Brezzi [11].
Once this context has been set forth, it is relatively easy to describe the application
of the ideas to problems written in mixed form. This is done in Section 3. In the
last section we present a numerical example to illustrate the results.

2. Background: Abstract Framework for Subgrid Methods

In outline form, subgrid methods involve the following set of ideas for a varia-
tional problem:

(1) A decomposition of the solution space into a direct sum of coarse and
subgrid spaces, for which the latter in some sense can be localized;

(2) A separation of the problem scales via the test space;

(3) A closing of the system by defining an affine subgrid solution operator
taking coarse information to the subgrid;

(4) An upscaling of the coarse problem using this solution operator to remove
explicit reference to the subgrid;

(5) The solving of the coarse problem;

(6) The construction of a full two-scale solution by adding back in the subgrid
scales using the subgrid solution operator.

We detail this approach below (following heavily the ideas in [26, 11]).
2.1. Construction of the two-scale variational form. Let X be a Hilbert

space and a : X x X — R a continuous, coercive, bilinear form. Let f € X'
Consider the problem: Find u € X such that

(2.1) a(u,v) = f(v) Vv € X.
We impose what we call a two-scale direct sum decomposition of X,
(2.2) X=X.8X,

wherein we consider X, the coarse space and X the subgrid space. Then u =
e + du is uniquely decomposed or expanded into coarse and subgrid parts. The
nature of these parts depends on the type of direct sum decomposition we choose,
and different decompositions result in different properties.

We then recast our variational problem into the form: Find u. € X, and
du € §X such that

(2.3) a(ue + du,v.) = f(ve) Yo, € X,

(2.4) a(ue + du, 0v) = f(v) Vv € 0X.

We remark that if a(vy,vs) = (Av1,v2) and f(v) = (F,v), then
a(du,dv) = f(ov) — a(ue,dv) = (F — Au,, dv),

so du can be viewed as a residual correction.
To apply these ideas to upscaling through the use of subgrid modeling, we
choose a coarse mesh Tg. This coarse mesh is artificial at this point, but it will
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become the coarse mesh of the discrete scheme later. We suppose that we have
chosen the direct sum decomposition so that we can localize the bilinear and linear
forms on the subgrid scale:

a(u,dv) = Z ap,(u|g,,0v|p.) and f(dv) = Z fe.(0v

E.€Th E.€Th

B.)-

For a second order elliptic problem, we would probably take X C H! and §X|p, =
HL(E,) (i.e., the bubble functions), so that these localization conditions would hold.

The subgrid problem (2.4) can be used to define the subgrid or d-solution
operator du : X, = 6X by

(2.5) a(ve + du(v.),0v) = f(dv) Yov € 6X.

This is an affine operator, with linear part éu : X, — § X defined by
(2.6) a(ve + 0u(ve),dv) =0 Vv € 0X,

and constant part éu € § X defined by

(2.7 a(dt, év) = f(ov) Vév € §X.

If u. were known, then du = du(u.) = 6u(u.) + du.

The §-solution operator is usually called a closure operator, since it is used
to remove direct reference to the subgrid scale. Normally, the equations defining
this operator are not well-posed, and some closure assumption, such as additional
boundary conditions or dropping certain “small” terms, is imposed to define the
operator. In this new framework, the closure operator is defined without adding
additional assumptions to the problem. This is very important, as it is often difficult
to understand the modeling errors committed by imposition of closure assumptions.

The upscaled problem is then given by substituting the d-solution operator in
the coarse scale equations (2.3). The result is the problem: Find u. € X, such that

(2.8) a(ue + du(ue),v.) = f(ve) — a(dd,v.) Yo, € X,
or, in symmetric form (assuming a is symmetric),
(2.9) a(ue + 60(ue), ve + di(ve)) = f(ve) — a(da@,v.) Yo, € Xe.

This problem is defined entirely in terms of the coarse space X.. We have modified
the bilinear form and linear functional, and hence we have the term multiscale
variational method. Once this is solved for u., the full two-scale solution is then

(2.10) u = u, + 0u(ue) = ue + 6t(u.) + da.

The above construction has been given on the analytical level, and so it is exact.
A similar construction can be given on the discrete level. The advantage we are
trying to exploit is that the subgrid problems are localized and expressed in terms
of the §-solution operator.

2.2. Discretization. We obtain a finite element approximation by defining
within each coarse element E. € T, a fine grid 7, (E.) (see Fig. 1). Approximate
X. by Xy and X |g, by 60X, (E.), where H is the maximal diameter of the coarse
elements, and h is the maximal diameter of the subgrid elements. By restricting
the trial and test spaces in (2.8) or (2.9) and (2.6)—(2.7) to these finite dimensional
subspaces, we obtain our finite element method.

The §-operator must be evaluated, but the key is that it needs to be evaluated
only on the space X . We use a technique involving influence functions or numerical
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Fi1GURE 1. The two-scale discretization grid.

Greens functions, related to static condensation or Shur complements. For each
E. € Tu, let {vg,;}; be a basis for Xg|p,. This space has low dimension. Since

B.= Y U,
j

Ug

we have that

B =0i(unlp.) =Y a;di(vy,;).
j

Define the numerical Greens function oty ; € 60X, by
(2.11) a(vHJ + (51]}17]‘, (5’Uh) =0 Yovy, € §X,.

Then

Oty (urr)

B =Y a;diy,

J

and dup(upm)|g, = 0tp(un)|E, + 04p|E,, where day € 60X, satisfies

(2.12) a(0tp, ovy) = f(dvp) Yovy, € 6X}.

There are just a small number of these problems for each coarse element, and
they are small and have multiple right-hand-sides, so a direct solver is appropri-
ate. Moreover, the problems on each E. € Ty are independent, and so naturally
parallelize. Thus this part of the computation is very fast and efficient.
The discrete upscaled problem is then: Find ug = Z ajvg,j € X such that
J

(213) Zaj a(vH’j =+ (S’LALh’j,’UH’Z' + (S’LALh’Z') = f(UHJ') — a(éﬂh,vHﬁi) V’UH’Z' € Xg.
J
We have modified the matrix and right-hand-side. After solving this problem, the
full two-scale solution is given by
(2.14) up = un + dup = Zaj (ve,j + 6Up,;) + Oy,
J

We use modified test functions as in the generalized and multiscale finite element
methods; however, we have also modified the right-hand-side term.
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2.3. Error analysis. The error is easily analyzed if the approximation is
viewed as a whole. Let

(2.15) Xun=Xu+ Z 0Xn(E:)

E.€Th
denote our two-scale finite element space. Then the combination of the equations
is the problem: Find u; € Xg 5 such that
(2.16) a(up,vy) = f(vp) Yoy € XH p-
It is then easy to analyze the error [20, 9]. Cia’s Lemma gives the estimate that
2.17 u—up|| <C inf u—uvp|| <C inf  ||lu—wvgl,
(217) le=wll<C inf fu-vl|<C_inf Ju=val
for some constant C' independent of the coarse and subgrid meshes. Thus accuracy
is reduced simply to a question of approximation theory. Generally, we can only
expect approximation accuracy to some order in the coarse scale parameter H,
the diameter of the coarse elements, and not in the fine scale parameter h, the
diameter of the subgrid elements. The somewhat surprising result is that we obtain
approximation accuracy on the fine scale when applying the method to elliptic
equations in mixed form (for the scalar variable).

3. Subgrid Upscaling for Problems in Mixed Form

The above ideas were applied to and developed for second order elliptic equa-
tions in mixed form in the papers [6, 4, 2, 5, 3, 1]. Consider the model problem

(3.1) Vou=f in Q,
(3.2) u=-KVp in Q,
(3.3) u-v=_0 on 01,

where  C R? is a Lipschitz domain, f € L*(2)/R, and K is a uniformly bounded
and positive definite rank two tensor. With the Hilbert spaces

W = L2 (Q)/R,
V = H(div; Q) = {v € (L*(2))* : V-v € L*(Q),v-v =0 on 90},
and the L?(Q) inner product (-, -), a mixed variational formulation is: Find p € W
and u € V such that
(3.4) a(u,v) =(p,V-v) Vvev,
(3.5) (V-u,w) =(f,w) VYweW,
where a(u,v) = (K~ 1u,v).
3.1. Upscaling the mixed problem. We base our two-scale decomposition
or expansion on local mass conservation. Both W and V must be decomposed.

Again, we begin by defining a coarse computational grid 7g on 2, and, for simplic-
ity, let

We D {w. € W : w, is constant V coarse elements E. € Tr},
SW =W,

Vi={veV:V-veW.},

VI ={veV:V-6veéW, 6v-v=00ndE. VY E. € Tu},
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although we can be even more general [1]. It turns out that W = W, @ é6W and
V = V! +6V!; moreover, there exist subspaces V. C V! and §V C §V! such that
V-V.=W,and V-J§V = §W [1]. This two-scale expansion is used to define and
separate scales in the variational form (3.4)-(3.5). The inf-sup condition holds over
both W, x V. and 6W X 0V, with constants independent of the coarse mesh [1].
Thus the saddle-point theory of Babuska [7] and Brezzi [10] can be used to prove
the existence of the affine d-solution operator. In this simple case, we have

op = 6p(uc) = 6ﬁ(uc) + dp,
du = du(u.) = du(u.) + déa

(in general, the operators also have a linear term involving p.), where, for v. € V,
these solve the variational problems: Find dp(v.) € W and éu(v,.) € 6V such that

(3.6) a(ve +0p,v) = (dp, V - v) YV ov € 6V,
(3.7 (V-oh,0w) =0 Y dw € 0W;
and: Find ép € W and éu € 4V such that

(3.8) a(ép,v) = (6p,V - v) Y év € 6V,
(3.9) (V- ou,dw) = (f, ow) Y dw € 6W.

The upscaled problem, in symmetric form, is: Find (p;,u.) € W, x V. such
that

(3.10)  a(u + du(ue),ve + da(vy)) = (pe, V- ve) — a(du, ve) Vv.€V,

(3.11) (V-ue,we) = (f,we) Y w. € We,
and the full solution is

(312) pP=Dpc+ 5p(uc) =pc+ 613(110) + 613’

(3.13) u = u, + du(u.) = u, + du(u.) + éu.

These equations are exact, since no closure assumption is made. Moreover, the
equations maintain strict local conservation on both coarse and subgrid scales.
Since 6V has a homogeneous Neumann boundary condition, du is a local operator.

3.2. Mixed method discretization. The numerical approximation spaces
on the coarse and subgrid scales can be any of the usual mixed spaces [31, 29,
14, 12, 13, 18, 15]. We select Vi§; x W}, C 'V x W on Tg, and, for each coarse
element E. € Ty, we select 0W},(E.) x §V,(E.) on Ty(E,.), with §W,(E.) L 1 and
0V (E,) satisfying the homogeneous Neumann boundary condition on 0E.. It may
be that the coarse and §-spaces are not linearly independent, so we may need to
reduce Vi; x Wi to Vg x Wy so that

Wan = W;I + W, =Wy @& W, C W,
Vun :V}{+6Vh =Vyg®ddéV,CV.

Since V - 6V, = W), and V - Vg, = Wgy,,, we maintain discrete local mass
conservation.

As usual, the finite element method is given by replacing the full spaces by the
corresponding finite dimensional spaces. We solve the system using the numerical
Greens function approach described above (see also [2, 3] for more details).
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3.3. Convergence results. If Py, , : W — Wy j, is L?-projection, we have
the following approximation result [1].

LEMMA 3.1. If Wg approzimates as O(H™), W), approzimates to order O(ht),
and L > {, then
llw = Pwy wllo < Cllwl|p H" A

Note that we have fine-scale approximation. For the vector variable, we have
the existence of a m-projection operator ([1]; cf., [21]).

LEMMA 3.2. There exists an operator m: VN H'(Q) — Vg, such that
Vv =Pw,,V- v,
v —avllo < CllvllxH",

where || - ||; is the usual H(Q)-norm, C is independent of the coarse and subgrid
meshes, and K is the approzimation order of the coarse velocity space.

These approximation results lead to the following error estimate [1].

THEOREM 3.3. If L > ¢, Q C R?, and there is some fized v > 0 such that as
H — 0, the coarse meshes satisfy the property that
msr(E,.) > v(diam(E,))? VE. € T,
where msr(E,) is the measure and diam(E,) is the diameter of E., then
IK 2 (a—wp)llo < inf K2 (u—vs)llo < Cllul|xHY = O(H"),
o
V-uy =Pw,,V-u,
1Pwaap —pullo < C{IAILH A + |lul|[ gk H*H} = O(HP = R + HEHY),
Ip = pallo < C{lIplle + N AlLRJHY D" + |l X1} = O(H" R + HEHY),

In all mixed finite element spaces, L = K or L = K — 1. If the lowest order
Raviart-Thomas spaces (RT0) are used on both the coarse and fine scales, we have
the RT0O-RTO two-scale space for which K = L =/ =1 and

la = unllo < Cllu|, H = O(H),
llp = pallo < C{llplls + I fllskh + lul[1 H*} = O(h + H?).

This method does not give a particularly good approximation, since the velocity
approximation is limited to first order on the coarse scale. A better choice is to use
the Brezzi-Douglas-Duran-Fortin spaces (BDDF1) on the coarse level, for which
K =2and L =/¢=1. (In 2-D, the BDDF1 spaces are due to Brezzi-Douglas-
Marini, BDM1.) Then we have the BDDF1-RT0 two-scale space and

[u—uplo < CllullH? = O(H?),
Ip = pallo < CHlllplls + [1£11h]h + [[allH?} = O(h + H).

This method gives a good estimate, since the velocity, while still only approximated
in H, is now second order. The pressure is approximated on the fine scale (up to
a higher order coarse perturbation). If, say, H = Vh, we have good fine scale ap-
proximation of both variables, even though the work is concentrated in the upscaled
problem defined over the coarse mesh. Thus the method is both very efficient and
very accurate.
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F1aure 2. Log (base 10) of Rock permeability in milliDarcies, at
the injection corner.

4. A Numerical Example

We close this paper with a numerical example representing a petroleum wa-
terflood. The system has two fluid phases, water and oil. Each phase is governed
by a conservation equation combined with Darcy’s law. Their sum is an elliptic
equation, called the pressure equation, that governs the total fluid velocity. The
water conservation equation is then called the saturation equation; it is advection
dominated. Only the elliptic pressure equation needs to be upscaled. For more
details on the equations, see, e.g., [5, 3].

The domain is 300 x 600 x 150 feet and initially filled with oil and about 30%
water in gravitational equilibrium. There is a water injection well at one of the
corners, and a production well at the opposite corner.

The domain is discretized by a uniform fine grid of size 30 x 60 x 30 (so the
fine grid elements are of size 10 x 10 x 5 feet). We upscale the pressure equation to
6 x 12 x 6 with a 5 x 5 x 5 subgrid in each coarse element, for an upscaling factor
of 125. The saturation equation is solved on the fine scale.

The problem is particularly difficult, since it has the highly stratified permeabil-
ity field depicted in Fig. 2. The permeability and porosity are a corner portion of
the data from the second test example of the Tenth Society of Petroleum Engineers
Comparative Solution Project [19], which is designed to test upscaling techniques.
From the figure it should be clear that the permeability field is not at all well
resolved on the coarse grid. This is especially true in the vertical direction.

The velocity profile is depicted in Fig.3. It is difficult to assess the quality
of the approximation, but it does appear to have captured the main features and
the layering of the medium. Instead, we concentrate on the effects of the velocity
field, namely, the flow of the fluid through time within this velocity field. The
saturation distribution at 150 days of simulation time is shown in Figs. 4 and 5.
The upscaled saturation contours are somewhat smeared, as is typical for upscaling
and averaging techniques. However, the level of detail is remarkable, considering
both the difficulty of the problem and the coarseness of the grid (a mere 432 coarse
elements compared to 54,000).

The fine scale solution was solved using the first order approximation space
RTO. The upscaling technique used the BDDF1-RTO0 two-scale space. Both were
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Fine 30 x 60 x 30 Upscaled to 6 x 12 x 6

FiGure 3. Total fluid velocity at 150 days for fine and upscaled solutions.

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Fine 30 x 60 x 30 Upscaled to 6 x 12 x 6

F1GURE 4. Water saturation at 150 days for fine and upscaled
solutions at the injection corner (top figures) and production corner
(bottom figures).

solved using Jacobi preconditioned conjugate gradients. On a 2.8 GHz Pentium 4
computer, to solve the pressure equation once, the code takes about 303 seconds
on the fine scale and 33 seconds when upscaled, for a speed-up of about a factor
of 9. The factor is not closer to 125 since the coarse problem in the upscaling
technique uses the second order approximation space BDDF1, which is considerably
bigger than RT0. The subgrid problems themselves actually add very little to the
computation time. The saturation equation is solved 20 times for each pressure
solve for a total of about 1520 seconds, verifying that there is no need to upscale
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6x12x%x6

Fine
30 x 60 x 30

F1GURE 5. Central cross-sections of water saturation at 150 days
for the fine and upscaled solution. Black is 0 and white is 1.

the saturation equation. Overall, this problem was solved about 7 times faster with
the upscaling technique compared to the fine scale solution.
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