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Abstract. It is shown that there exists a weak solution to a degenerate and singu-
lar elliptic-parabolic partial integro-differential system of equations. These equa-
tions model two-phase incompressible flow of immiscible fluids in either an ordinary
porous medium or in a naturally fractured porous medium. The full model is of
dual-porosity type, though the single porosity case is covered by setting the matrix-
to-fracture flow terms to zero. This matrix-to-fracture flow is modeled simply in
terms of fracture quantities; that is, no distinct matrix equations arise. The equa-
tions are considered in a global pressure formulation that is justified by appealing
to a physical relation between the degeneracy of the wetting fluid’s mobility and the
singularity of the capillary pressure function. In this formulation, the elliptic and
parabolic parts of the system are separated; hence, it is natural to consider various
boundary conditions, including mixed nonhomogeneous, saturation dependent ones
of the first three types. A weak solution is obtained as a limit of solutions to discrete
time problems. The proof makes no use of the corresponding regularized system.
The hypotheses required for various earlier results on single-porosity systems are
weakened so that only physically relevant assumptions are made. In particular, the
results cover the cases of a singular capillary pressure function, a pure Neumann
boundary condition, and an arbitrary initial condition.

1. Introduction

The existence of weak solutions to the equations describing the flow of two in-
compressible, immiscible fluids in an unfractured, single porosity porous medium
has been shown in various ways [1], [4], [10], [11], [21], [22]. In this paper we im-
prove upon these earlier results; moreover, we consider the question of existence for
such flows in naturally fractured porous media in which the concept of dual-porosity

[7], [28] is used to model the flow.
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A naturally fractured reservoir is one that has throughout its extent an intercon-
nected system of fractures that forms a porous structure distinct from that of the
matrix (i.e., the porous rock). In a dual-porosity model, the transport of fluids is
assumed to occur primarily within the fracture system, and this system is coupled
to the matrix through locally defined macroscopic matrix source terms, one for each
phase, that represent matrix-to-fracture flow. In general, a set of equations arises
to describe the flow within each matrix block (i.e., each block of porous rock com-
pletely surrounded by fractures) [6], [14], [15], [16], [18], [20]; essentially, the local
matrix-to-fracture flow is defined to be the net flow out of a matrix block. However,
for some purposes a simplified model is considered in which the matrix source flow
to the fracture is approximated by an explicit combination of the fracture quanti-
ties, and the matrix flow equations are neglected (see, e.g., [5], [12], [14], [15], [17],
and [27]). Herein we show the existence of weak solutions to this type of model. In
the process, we improve on the published results for ordinary single-porosity porous
media flow since the unfractured case is treated by setting the matrix-to-fracture
flow to zero.

We describe now the integro-differential system of equations considered in this
paper. It is identical to the equations describing flow in unfractured porous media
except for the introduction of the matrix source operator terms. Let Ω ⊂ IRd and
I = (0, T ], T > 0, denote the reservoir domain and the time interval of interest,
respectively, and set ΩT = Ω × I. The usual unknowns are the wetting fluid “w”
(water) phase saturation sw = s(x, t) (rescaled to lie between zero and one so that
the irreducible, or residual, saturations can henceforth be construed to be zero), the
w-phase pressure pw(x, t), and the nonwetting “o” (oil) phase pressure po(x, t). In
terms of these variables, we have the following three equations:

φ∂ts−∇ ·
(

kλw(s)(∇pw + γw)
)

= fw(s)− F (s) in ΩT , (1.1)

− φ∂ts−∇ ·
(

kλo(s)(∇po + γo)
)

= fo(s) + F (s) in ΩT , (1.2)

pc(s) = po − pw in ΩT , (1.3)

where φ(x) and k(x) are the porosity and tensor of absolute permeability of the
system of fractures, and for the phase θ = w or o, γθ(x) is the gravity-density
vector term, λθ(x, s) is the phase mobility (i.e., the relative permeability divided
by the phase viscosity), fθ(x, t, s) is the distributed external volumetric θ-source
term, pc(x, s) is the empirically given capillary pressure function, and −F (x, t, s)
is the macroscopically distributed matrix w-source operator, defined below (by in-
compressibility, F (s) is the matrix o-source operator). Note that mathematically
speaking, (1.3) defines s(x, t) = S(x, po − pw) as a function of x and po − pw. For
the relevant physics, see, e.g., [8], [11], [13], [25], and [26] as general porous media
references, and [7], [14], and [28] as dual-porosity references.

We consider a general integro-differential form for the matrix source operator.
Let ω(x, t) be a nonnegative function that decays in time for each fixed x ∈ Ω. For
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φ̂(x) ≥ 0 and δ(t) the Dirac delta generalized function, define

F (x, t, s) =

∫ t

0

∂tσ(x, s(x, t− τ))
[

φ̂(x)δ(τ) + ω(x, τ)
]

dτ

= φ̂(x) ∂tσ(x, s(x, t)) +

∫ t

0

∂tσ(x, s(x, t− τ))ω(x, τ) dτ, (1.4)

where for each x ∈ Ω, σ(x, · ) : [0, 1]→ [0, 1] is some increasing function that relates
fracture system saturations to matrix saturations. To be more exact, if pc,m is the
matrix capillary pressure function, then σ(s) = p−1

c,m

(

pc(s)
)

so that the matrix and
fracture systems are in pressure equilibrium; see [6], [14], and [15]. The definition
(1.4) is essentially what results from linearizing the equations describing matrix flow
in the full model [5].

The general form (1.4) is able to handle two distinct types of simplified dual-

porosity models. Let φm(x) denote the matrix porosity. If we take φ̂ = φm and
ω(x, t) ≡ 0, then

F (x, t, s) = φm(x) ∂tσ(x, s(x, t)), (1.4a)

and we have the “limit model” of [14], [15], and [17]. If we take instead φ̂ ≡ 0 and

ω(x, t) = φm(x)Λ(x)e−Λ(x)t

for some positive rate constant Λ(x), then

F (x, t, s) = φm(x)Λ(x)

∫ t

0

∂tσ(x, s(x, t− τ))e−Λ(x)τ dτ

= −φm(x)Λ(x)

{

Λ(x)

∫ t

0

σ(x, s(x, t− τ))e−Λ(x)τ dτ

+ σ(x, s(x, 0))e−Λ(x)t − σ(x, s(x, t))

}

, (1.4b)

and we have the model of [5]. If also σ is a multiple of the identity, we have the
model of [12] and [27]. In the case of (1.4b), note that F (s) is not a differential
operator since we can integrate by parts. In the general case, ω may be singular at
t = 0.

The most commonly encountered boundary conditions for underground reservoir
problems are of Dirichlet, Neumann, and “third” type [8]; more generally, the latter
two are in a saturation dependent form. We will consider these as well as the special
“well” type boundary condition [11]. Decompose ∂Ω into three disjoint regions Γ i,

i = 1, 2, 3, let Γ 3 =
⋃

j Γ
3,j where each Γ 3,j is connected, and set Γ

i(,j)
T = Γ i(,j)×I.

We impose for θ = w,o,

pθ = pD
θ on Γ 1

T , (1.5)

− kλθ(s)(∇pθ + γθ) · ν − aθ(s)pθ = gθ(s) on Γ 2
T , (1.6)

−

∫

Γ 3,j

k
(

λw(s)(∇pw + γw) + λo(s)(∇po + γo)
)

· ν = gW
j

pθ = pD
θ + πW

j







on Γ 3,j
T , (1.7)
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where pD
θ (x, t), aθ(x, t, s), gθ(x, t, s), and gW

j (t) are given functions, πW
j (t) are ar-

bitrary scaling constants, and ν is the outer unit normal to ∂Ω. Physically, Γ 1

represents the part of the boundary that is in contact with a liquid continuum. A
prescribed flow rate is assumed over Γ 2 through a pervious boundary if aθ = 0,
through a semipervious boundary if aθ > 0, and as a special but very important
case through an impervious boundary if aθ = 0 and gθ = 0. The flow rate is gener-
ally assumed to be in the form of WOR, given water/oil production ratio, in which
the flow rate of each phase is jointly proportional to its mobility and the total flow
rate. Each Γ 3,j represents the surface of a well through which the total flow rate
is controlled, and on which a pressure distribution (but not its absolute scale) for
each phase is maintained due to gravity and other factors.

The system is completed with a single initial condition for some s0(x):

s( · , 0) = s0 on Ω. (1.8)

These equations are complicated primarily by three factors. First, the phase
mobilities are degenerate; that is, at the irreducible w and o saturations (where
our saturation is 0 and 1, respectively), λw(0) = 0 and λo(1) = 0 (see Figure 1 for
typical graphs of these functions). At these saturations one of the two phases ceases
to flow. Second, pc is a singular function of saturation: pc(0) = +∞ is the usual
case (see Figure 2). Third, F (s) is in general an integro-differential delay operator
of s.
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Fig. 1. Typical relative mobility
functions.
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Fig. 2. A typical capillary pressure
function (for fixed x ∈ Ω).

The equations of two-phase incompressible flow in the single-porosity case (i.e.,
for F (s) ≡ 0) have been studied by Antoncev and Monahov [4], Chavent [10] and
Chavent and Jaffré [11], Kružkov and Sukorjanskĭı [22], Kroener and Luckhaus [21],
and Alt and di Benedetto [1]. Each of these authors showed the existence of a weak
solution to the system with various boundary conditions under various hypotheses
on the data.

Kružkov and Sukorjanskĭı [22] assume nondegeneracy of the phase mobilities
and nonsingularity of the capillary pressure. They then show the existence and
uniqueness of classical solutions to the single porosity system.
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Kroener and Luckhaus [21] require initial and boundary data that ensure the
saturation remains bounded away from zero [21; Lemma 2.5] to obtain any results;
hence, there is no pc-singularity to contend with. In fact, to obtain a genuine
weak solution, they require also that the saturation be bounded below one, thereby
removing all degeneracy. Their results are based on a theorem of Alt and Luckhaus
[2] giving the existence of weak solutions to general elliptic-parabolic systems. They
extract their solution as a limit of solutions to certain regularized problems.

Antoncev and Monahov have shown many results concerning the single poros-
ity equations and the corresponding nondegenerate regularized equations; a sum-
mary of their results appears in [4]. They use the mathematical concept of “global
pressure” (see (2.1) below) to reformulate (1.1)–(1.3) as an elliptic equation cou-
pled to a degenerate parabolic equation. Unfortunately, “third” and “well” type
boundary conditions are not treated (i.e., aw ≡ ao ≡ 0 and Γ 3 = ∅). Not all
of their hypotheses reflect physically relevant constraints. The complication of a
singular capillary pressure function is not considered because it is assumed that
0 < c ≤ |∂pc/∂s| ≤ C < ∞. Another major assumption is that S(pD

o − p
D
w) has

space and time derivatives in L2(ΩT ); hence, ∇(pD
o − pD

w) ∈ L2(ΩT ). This as-
sumption on the Dirichlet data is stronger than what is formally obtained for the
solution, that

√

λθ(s)∇pθ ∈ L
2(ΩT ). A consistent approach would require the same

smoothness for the data as is shown for the solution.

Chavent [10] and Chavent and Jaffré [11] do not consider the underground reser-
voir problem considered in this paper, since they impose boundary conditions that
are appropriate for a water dam problem. Again in this work, some of their hy-
potheses are not physically relevant. Most seriously, Chavent and Jaffré require
that |pc| be uniformly bounded, removing one of the natural complications inherent
in the system. For technical reasons they also require the unnatural condition that
∇s0 ∈ L2(Ω). They consider the system in a global pressure form. Their results
are derived with the aid of Kakutani’s fixed point theorem applied to certain pe-
nalized problems, and the solution is obtained as a limit of solutions to regularized
problems.

Finally, Alt and di Benedetto [1] have considered the fully degenerate and singu-
lar single porosity system, though they limit themselves to problems with Γ 1 6= ∅,
homogeneous Neumann conditions on Γ 2, and Γ 3 = ∅ (though they admit “over-
flow” boundary conditions as well). However, like the above authors, not all of their
hypotheses reflect physically relevant constraints. First, they require of the initial
condition that

∫ pc(x,s0)

0

(s0 − S(x, ξ)) dξ ∈ L1(Ω),

which restricts the blow-up of pc as s→ 0+ if s0 is much near zero, the usual case
for an oil-rich reservoir. Second, they require the not physically motivated condition
that the pD

θ ∈ L
∞(ΩT ). (For example, if the reservoir were in contact with a lake,

pD
w = −∞ on Γ 1.) Third, they require that ∇pD

θ ∈ L2(ΩT ), even though they

prove that the solution formally satisfies the weaker result
√

λθ(s)∇pθ ∈ L
2(ΩT ).

Alt and di Benedetto obtain some very important regularity results by making use
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of the global pressure formulation of the problem. However, their existence results
use the techniques of [2] applied to regularized problems, so they do not treat the
boundary conditions by considering separately the elliptic and parabolic parts of
the differential system. As a consequence, they were unable to handle the important
pure Neumann problem because it has an ambiguity in the pressure scale.

As far as the dual-porosity system is concerned, previous to this work, only the
‘limit model” (F (s) defined by (1.4a)) has been analyzed. Under the assumptions of
nondegenerate mobilities, nonsingular capillary pressures, and constant porosities,
existence, uniqueness, and regularity results have been shown [17].

We will show the existence of a weak solution to the full system in a global
pressure formulation. Our formulation will use as variables the global pressure p
and, rather than the saturation s, a “complementary pressure” q (see (2.2) below).
This transformation is achieved by noting a physical relation between the mobility
of the wetting phase and the capillary pressure function, namely, that the quantity
λw∂pc/∂s is integrable in s. This formulation is a natural setting for considering
the boundary conditions (1.5)–(1.7). (It should also be a convenient setting for con-
sidering other specialized boundary conditions.) We will be able to weaken various
assumptions made by the previously mentioned authors who obtained a portion of
the results derived in this paper. We require the same amount of smoothness for the
Dirichlet data as we show for the solution, and all of our assumptions are physically
reasonable. The techniques we use are similar to those used by Alt, di Benedetto,
and Luckhaus [1], [2]. One advantage of our formulation is that the system formally
appears to be nondegenerate (see (2.5)–(2.7) below). As a consequence, we need not
extract our solution as the limit of solutions to regularized or penalized problems;
we obtain it more directly.

2. The Global Pressure Formulation

Let us begin this section by stating the following assumptions, some of which are
more general than is needed for the physical problem. (In this paper, Hk = W k,2

where W k,r is the set of functions in the Lebesgue space Lr with derivatives up to
order k in Lr.)

(A1) Let Ω ⊂ IRd be a bounded, connected domain with Lipschitz boundary. Let

∂Ω =
⋃3

i=1 Γ
i
p =

⋃2
i=1 Γ

i
s , Γ

i
p ∩ Γ

j
p = ∅ for i 6= j and Γ 1

s ∩ Γ
2
s = ∅, where

each Γ i
p and Γ i

s is a (d− 1)-dimensional domain. Further, let Γ 3
p =

⋃

j Γ
3,j
p ,

where the Γ 3,j
p are the connectivity components of Γ 3

p . Finally, suppose that

Γ 1
p ∩ Γ

3
p = ∅ and Γ 1

p ∪ Γ
3
p ⊂ Γ

1
s . (Of course we will write Γ

i(,j)
p,T = Γ

i(,j)
p × I

and Γ i
s,T = Γ i

s × I.)
(A2) Let φ ∈ L∞(Ω) and φ(x) ≥ φ∗ > 0.
(A3) Let k(x) be a bounded, measurable, uniformly positive definite symmetric

tensor on Ω (i.e., for any nonzero ξ ∈ IRd, 0 < k∗ ≤ |ξ|
−2

∑

i,j kij(x)ξiξj ≤

k∗ <∞).
(A4) The λθ(x, s) are measurable in x ∈ Ω and continuous in s ∈ [0, 1], and have

graphs as depicted in Figure 1: λw(0) = 0, λw(s) > 0 for s > 0, λo(1) = 0,
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and λo(s) > 0 for s < 1. Let λ(x, s) = λw(x, s) + λo(x, s) and assume that
0 < λ∗ ≤ λ(x, s) ≤ λ∗ <∞.

(A5a∗) The λθ(x, s) are differentiable in x ∈ Ω.
(A5b∗) Suppose pc(x, s) is strictly monotone decreasing in s and is jointly differen-

tiable in x ∈ Ω and locally Lipschitz continuous in s ∈ (0, 1].
(A5c∗) Suppose that pc and the λθ are related in such a way that

(i)

∫ 1

0

(

λw
∂pc

∂s

)

(x, ς) dς ∈ L2(Ω),

(ii)

∫ 1

0

∣

∣

∣

∣

∇x

(

λw

λ

∂pc

∂s

)

(x, ς)

∣

∣

∣

∣

dς +

∫ 1

0

∣

∣

∣

∣

∇x

(

λwλo

λ2

∂pc

∂s

)

(x, ς)

∣

∣

∣

∣

dς ∈ L2(Ω).

(iii) sups∈[0,1]

∣

∣(λw∇xpc)(x, s)
∣

∣ ∈ L2(Ω).

We remark that (A5c∗) is physically reasonable by Leverett’s semi-empirical
equation

pc(x, s) = κ(x)J(s)

(see [8], [23], [26]) and by Burdine’s theoretical relationship between relative per-
meability and capillary pressure:

λw(s) ∝ s2
∫ s

0

dς

J2(ς)

(see [8], [9], [26]). We need only assume that |J(1)| <∞ and that κ and the λθ are
sufficiently smooth.

Our desire is to find a solution in some Sobolev space. It is important to choose
a reasonable set of dependent variables, since it is easily seen that pw = −∞ if
s = 0 (oil then being a continuous phase implies that po is well behaved). Hence
pw cannot in general be expected to lie in any Sobolev space. Because of (A5c∗),
we can define the global pressure ([3], [10]) as

p = po −

∫ s

0

(

λw

λ

∂pc

∂s

)

(x, ς) dς = po +

∫ pc(x,0)

po−pw

(

λw

λ

)

(x, S(x, ξ)) dξ, (2.1)

provided only that at each x ∈ Ω, po− pw is indeed in the range of pc. We can also
define a “complementary pressure”

q = −

∫ s

0

(

λwλo

λ2

∂pc

∂s

)

(x, ς) dς =

∫ pc(x,0)

po−pw

(

λwλo

λ2

)

(x, S(x, ξ)) dξ. (2.2)

Then with (1.3),

λ(s)∇p = λw(s)∇pw + λo(s)∇po

+ (λw∇xpc)(x, s)− λ(s)

∫ s

0

∇x

(

λw

λ

∂pc

∂s

)

(x, ς) dς, (2.3)

λ(s)∇q = −

(

λwλo

λ

)

(s)∇(po − pw)

+

(

λwλo

λ
∇xpc

)

(x, s)− λ(s)

∫ s

0

∇x

(

λwλo

λ2

∂pc

∂s

)

(x, ς) dς. (2.4)
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In terms of these variables, we obtain for the sum of (1.1) and (1.2), (1.1), and (1.3),

−∇ ·
[

k
(

λ(s)∇p+ γ1(s)
)]

= f(s) in ΩT , (2.5)

φ∂ts−∇ ·
[

k
(

λ(s)∇q + λw(s)∇p+ γ2(s)
)]

= fw(s)− F (s) in ΩT , (2.6)

s = S(q) in ΩT , (2.7)

where

γ1(x, s) = −(λw∇xpc)(x, s) + λ(x, s)

∫ s

0

∇x

(

λw

λ

∂pc

∂s

)

(x, ς) dς

+ λw(x, s)γw(x) + λo(x, s)γo(x), (2.8)

γ2(x, s) = −(λw∇xpc)(x, s) + λ(x, s)

∫ s

0

∇x

(

λwλo

λ2

∂pc

∂s

)

(x, ς) dς

+ λw(x, s)

∫ s

0

∇x

(

λw

λ

∂pc

∂s

)

(x, ς) dς + λw(x, s)γw(x), (2.9)

f(x, t, s) = fw(x, t, s) + fo(x, t, s), (2.10)

and, with

q∗(x) = −

∫ 1

0

(

λwλo

λ2

∂pc

∂s

)

(x, ς) dς, (2.11)

S(x, q) = S(x, po − pw) is the inverse of (2.2) for 0 ≤ q ≤ q∗(x). The boundary

conditions become (if Γ
i(,j)
p = Γ i(,j), Γ 2

s = Γ 2, and Γ 1
s = Γ 1 ∪ Γ 3)

p = pD on Γ 1
p,T ,

− k
(

λ(s)∇p+ γ1(s)
)

· ν − a(s)p = G(s) on Γ 2
p,T ,

−

∫

Γ 3,j
p

k
(

λ(s)∇p+ γ1(s)
)

· ν = gW
j

p = pD + πW
j











on Γ 3,j
p,T ,































(2.12)

q = qD on Γ 1
s,T ,

− k
(

λ(s)∇q + λw(s)∇p+ γ2(s)
)

· ν − aw(s)p = Gw(s) on Γ 2
s,T ,

}

(2.13)

where pD(x, t), qD(x, t) are the transforms of pD
w(x, t), pD

o (x, t) by the latter expres-
sions in (2.1)–(2.2),

a(x, t, s) = aw(x, t, s) + ao(x, t, s), (2.14)

G(x, t, s) = gw(x, t, s) + go(x, t, s)

+ a(x, t, s)

∫ s

0

(

λw

λ

∂pc

∂s

)

(x, ς) dς − aw(x, t, s)pc(x, s), (2.15)

Gw(x, t, s) = gw(x, t, s)

+ aw(x, t, s)

∫ s

0

(

λw

λ

∂pc

∂s

)

(x, ς) dς − aw(x, t, s)pc(x, s). (2.16)
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Finally, (1.8) becomes
q( · , 0) = q0 on Ω, (2.17)

where q0(x) is the transform of s0(x) by (2.2).

3. Statement of the Main Result

We require a bit of notation. Let

V = {v ∈ H1(Ω) : v|Γ 1
p

= 0, v|Γ 3,j
p

is constant for each j,

and if Γ 1
p = ∅ and a ≡ 0, then

∫

Ω
v dx = 0},

W = {w ∈ H1(Ω) : w|Γ 1
s

= 0},

and let V ∗ and W ∗ be the duals of V and W , respectively. Let ( · , · )R denote the
L2(R) inner product, and simplify the notation by writing ‖ · ‖k,R for ‖ · ‖Hk(R),
where R will be omitted if R = Ω. For ψ = ψ(x, s), let

|||ψ||| =
∥

∥ sup
s∈[0,1]

|ψ(x, s)|
∥

∥

for any given norm.
We now state the rest of our assumptions, again more generally than is necessary

for the physical problem. We begin by recasting (A5a–c∗).

(A5) Suppose that 0 < q∗ ∈ H1(Ω) and that S : {(x, q) : x ∈ Ω and 0 ≤
q ≤ q∗(x)} → [0, 1] is measurable in x, continuous and strictly monotone
increasing in q, and satisfies S(x, 0) = 0 and S(x, q∗(x)) = 1.

(A6) Each of γ1, γ2, f , fw, a, aw, G, and Gw is continuous in s, and for some
fixed ρ ∈ [2,∞], the following norms are bounded:

|||γ1|||Lρ(I;L2(Ω)), |||f |||Lρ(I;V ∗), |||a|||L∞(ΩT ), |||G|||Lρ(I;H−1/2(Γ 2
p )),

|||γ2|||L2(I;L2(Ω)), |||fw|||L2(I;W ∗), |||aw|||L∞(ΩT ), |||Gw|||L2(I;H−1/2(Γ 2
s )).

Moreover, a ≥ 0 and
{

∑

j(g
W
j )2

}1/2
∈ Lρ(I).

(A7) Suppose that:

(i) γ2(0) = 0 and γ1(1)− γ2(1) = λ(1)∇q∗ in ΩT ;
(ii) fw(0) ≥ 0 and fo(1) = f(1)− fw(1) ≥ 0 in ΩT ;
(iii) aw(0) = 0 and ao(1) = a(1)− aw(1) = 0 on Γ 2

s,T .

(iv) gw(0) = Gw(0) ≤ 0 and go(1) = G(1)−Gw(1) ≤ 0 on Γ 2
s,T ;

(A8) If Γ 1
p = ∅ and a ≡ 0, then f andG are independent of s and

∫

Γ 2
p

G(x, t) dA(x)+
∑

j g
W
j (t) =

∫

Ω
f(x, t) dx. There is some set Γ 2,∗

p ⊂ Γ 2
p (with nonzero mea-

sure only if Γ 1
p = ∅ and a 6≡ 0) such that for all (x, t, s) ∈ Γ 2,∗

p × I × [0, 1],
a(x, t, s) ≥ a∗ > 0.

(A9) Suppose pD ∈ Lρ(I;H1(Ω)), qD ∈ L2(I;H1(Ω)), ∂tq
D ∈ L1(ΩT ), and 0 ≤

qD(x, t) ≤ q∗(x) a.e. on ΩT .
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(A10) Let q0 ∈ L2(Ω) satisfy 0 ≤ q0(x) ≤ q∗(x) a.e. on Ω.
(A11) Let σ(x, s) be measurable in x, continuous and strictly monotone increasing

in s, and map onto [0, 1].

(A12) Let φ̂ ∈ L∞(Ω) and φ̂ ≥ 0.
(A13) Suppose ω ∈ L1(I;L∞(Ω)), ω ≥ 0, and for each fixed x ∈ Ω, ω(x, t) is

monotone nonincreasing in t ∈ I.

We should comment on (A7). First, (A7i) reflects (2.8)–(2.9). Second, (A7iii)
merely says that a semipermeable boundary is impermeable to the θ-phase if this
phase is absent. Finally, (A7ii, iv) reflect WOR-type conditions where external
volumetric sources of injection (either from within Ω or on ∂Ω) are unconstrained
but sinks of production are proportional to phase mobility.

Note that formally we can write

F (x, t, s) = φ̂(x) ∂tσ(x, s(x, t)) +

∫ t

0

∂tσ(x, s(x, t− τ))ω(x, τ) dτ

= ∂t

{

φ̂(x) σ(x, s(x, t)) +

∫ t

0

[

σ(x, s(x, t− τ))− σ(x, s0(x))
]

ω(x, τ) dτ

}

= ∂t

[

φ̂σ(s) + (σ(s)− σ(s0)) ∗ ω
]

(x, t), (3.1)

where “∗” denotes convolution in time. With ρ∗ = ρ/(ρ − 1), we can now define
what is meant by a weak solution to the problem.

Definition. A weak solution to the system (2.5)–(2.7), (2.12)–(2.13), (2.17) is a
pair of functions p ∈ Lρ(I;V ) + pD and q ∈ L2(I;W ) + qD such that

∂t

[

φs+ φ̂σ(s) + (σ(s)− σ(s0)) ∗ ω
]

∈ L2(I;W ∗)

and

0 ≤ q(x, t) ≤ q∗(x) almost everywhere on ΩT , (3.2)

s = S(q), (3.3)

∫

I

(

k[λ(s)∇p+ γ1(s)],∇ξ
)

+

∫

I

(G(s) + a(s)p, ξ)Γ 2
p

+
∑

j

∫

I

gW
j ξ|Γ 3,j

p

=

∫

I

(f(s), ξ) for all ξ ∈ Lρ∗

(I;V ), (3.4)

∫

I

〈

∂t

[

φs+ φ̂σ(s) + (σ(s)− σ(s0)) ∗ ω
]

, ζ
〉

+

∫

I

(k
[

λ(s)∇q + λw(s)∇p+ γ2(s)
]

,∇ζ
)

+

∫

I

(Gw(s) + aw(s)p, ζ)Γ 2
s

=

∫

I

(fw(s), ζ) for all ζ ∈ L2(I;W ), (3.5)
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and finally

∫

I

〈

∂t

[

φs+ φ̂σ(s) + (σ(s)− σ(s0)) ∗ ω
]

, ζ
〉

+

∫

I

(

φ(s− s0) + φ̂
(

σ(s)− σ(s0)
)

+ (σ(s)− σ(s0)) ∗ ω, ∂tζ
)

= 0 for all ζ ∈ L2(I;W ) ∩W 1,1(I;L1(Ω)) with ζ(x, T ) = 0. (3.6)

Here and throughout, s|∂Ω should be interpreted as S(q|∂Ω).

In the next section we prove:

Theorem 1. Assume (A1)–(A13). Then there exists a weak solution to the system

in the sense of the Definition.

Remark. The assumption (A9) on the transformed functions pD and qD is consistent
with our results for p and q. In terms of the original variables (i.e., by (2.3)–(2.4)
and (A5c∗)), (A9) requires that

λθ(S(pD
o − p

D
w))∇pD

θ ∈ L
2(ΩT );

this is consistent with what we obtain for the pθ, that λθ(s)∇pθ ∈ L
2(ΩT ).

4. Proof of Theorem 1

Our method of proof uses the technique of [2] to deal with the time derivative
of s; that is, we approximate it by a backward difference. For each positive integer

Ñ , partition I into N = 2Ñ subintervals, each of length h = T/N = 2−ÑT . These
partitions are nested for simplicity. Let tn = nh and In = (tn−1, tn] for an integer
n, and denote the time difference operator by

∂ηu(t) =
u(t+ η)− u(t)

η

for any function u(t) and any η ∈ IR. For H a Hilbert space, let

`h(H) = {v ∈L∞(I;H) :

v is piecewise constant in time on each subinterval In ⊂ I}.

For convenience, if u ∈ `h(H), let un = u|In
for n ≤ N . We approximate for t ∈ In

pD
h (x, t) =

1

h

∫

In

pD(x, τ) dτ and qDh (x, t) =
1

h

∫

In

qD(x, τ) dτ. (4.1)
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Our approximation scheme is the following: Find ph ∈ `h(V ) + pD
h and qh ∈

`h(W ) + qDh , extended such that qh = q0 for t ≤ 0, satisfying

sh = S(qh), (4.2)
∫

I

(

k[λ(sh)∇ph + γ1(sh)],∇ξ
)

+

∫

I

(G(sh) + a(sh)ph, ξ)Γ 2
p

+
∑

j

∫

I

gW
j ξ|Γ 3,j

p

=

∫

I

(f(sh), ξ) for all ξ ∈ `h(V ), (4.3)

∫

I

(∂−h[φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω
]

, ζ
)

+

∫

I

(k
[

λ(sh)∇qh + λw(sh)∇ph + γ2(sh)
]

,∇ζ
)

+

∫

I

(Gw(sh) + aw(sh)ph, ζ)Γ 2
s

=

∫

I

(fw(sh), ζ) for all ζ ∈ `h(W ). (4.4)

For any ζ ∈ `h(W ), we mean by “ζ ∗h ω” that for t ∈ In,

(ζ ∗h ω)(x, t) =

∫ tn

0

ζ(x, tn − τ)ω(x, τ) dτ

=
n

∑

k=1

ζn−k+1(x)

∫ tk

tk−1

ω(x, τ) dτ =
n

∑

k=1

ζk(x)ωn−k(x),

where ωj(x) =
∫

Ij+1
ω(x, τ) dτ . Note that for t ∈ In,

∂−h(σ(sh)− σ(s0)) ∗h ω =
n

∑

k=1

(σ(sk
h)− σ(sk−1

h ))ωn−k.

The heart of our existence proof is contained in Lemmas 1–4 below. Through-
out, c and C will denote generic positive constants, c small and C large, that are
independent of h unless such dependence is explicitly indicated.

Lemma 1. For any h sufficiently small, there exists a solution to the approximation

scheme (4.2)–(4.4); moreover,

0 ≤ qh(x, t) ≤ q∗(x) a.e. on ΩT . (4.5)

This is purely an elliptic result; to maintain the continuity of our argument, we
furnish its proof in the next section.

Lemma 2. The solutions to the approximation scheme are uniformly bounded:

‖ph‖Lρ(I;H1(Ω)) + ‖qh‖L2(I;H1(Ω)) ≤ C. (4.6)

In the proof, we will use the following:
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Proposition 1. If b : IR→ IR is monotone nondecreasing, b(0) = 0, and
{

an

}N

n=0

and
{

ωn

}N−1

n=0
are sequences of real numbers such that the ωn are nonincreasing in

n, then

(a)

N
∑

n=1

(

b(an)− b(an−1)
)

an ≥ B(aN)−B(a0) ≥ −B(a0),

where B(a) =
∫ a

0

(

b(a)− b(α)
)

dα, and

(b)

N
∑

n=1

n
∑

k=1

(

b(ak)− b(ak−1)
)

ωn−k an ≥ −b(a0)

N
∑

n=1

an ωn−1.

Proof. For part (a), note that by monotonicity, B(a) ≥ 0 for any a ∈ IR and

(

b(an)− b(an−1)
)

an ≥ B(an)−B(an−1);

hence, the sum on n collapses to give the result. We turn to part (b). By induction
on N for the first equality,

N
∑

n=1

n
∑

k=1

(

b(ak)− b(ak−1)
)

ωn−k an =

N−1
∑

`=0

N−
∑̀

k=1

(

b(ak)− b(ak−1)
)

ak+` ω`

=

N−1
∑

`=0

(

µ` − µ`+1 − b(a0) a`+1

)

ω`,

where

µ` =

N−
∑̀

k=1

b(ak) ak+`.

Note that b being monotone, the b(ak) and ak are ordered similarly; consequently,
µ0 ≥ µ` for all ` (see [19; Theorem 368]).

Part (b) will hold once we show more generally that

N−1
∑

`=0

(µ` − µ`+1)ω` ≥ 0

for any sequence of real numbers
{

µ`

}N

`=0
such that µ0 ≥ µ` for all `. We proceed

by induction on N . The result is trivial for N = 1. Suppose the result for some
N ≥ 1, then

N
∑

`=0

(µ` − µ`+1)ω` =
N−1
∑

`=0

(µ` − µ`+1)ω` + (µN − µN+1)ωN
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is nonnegative if µN ≥ µN+1. Suppose the contrary and replace ωN by ωN−1; it
follows that

N
∑

`=0

(µ`−µ`+1)ω` ≥
N−1
∑

`=0

(µ`−µ`+1)ω`+(µN−µN+1)ωN−1 =
N−1
∑

`=0

(µ̄`−µ̄`+1)ω` ≥ 0

by induction, where µ̄` = µ` for ` < N and µ̄N = µN+1. �

Proof of Lemma 2. For any integer n between 1 and N , let ξ = (ph − p
D
h )χIn

(t) ∈
`h(V ) in (4.3) to obtain immediately

c

∫

In

[

‖∇ph‖
2
0 + (a(sh)ph, ph)Γ 2

p

]

≤ C

∫

In

[

‖pD
h ‖

2
1 + |||γ1|||

2
0 + |||f |||2V ∗ + |||G|||2

−
1
2
,Γ 2

p
+

∑

j

(gW
j )2

]

+ ε

∫

In

‖ph‖
2
0 (4.7)

for any ε > 0, where c is independent of ε. The L2(Ω)-norm of ph is controlled by
variants of Poincaré’s inequality (see, e.g., [24; Theorems 3.6.4–5]):

‖ph‖0 ≤ C
{

‖∇ph‖0 + ‖ph‖0,Γ 2,∗
p

+ ‖pD
h ‖1

}

(4.8)

for any possible combination of the boundary conditions. Clearly

‖pD
h ‖L2(In;H1(Ω)) ≤ ‖p

D‖L2(In;H1(Ω)),

so we can replace pD
h by pD in (4.7). Since ph is piecewise constant in time, we

are now able to bound it in the proper norm independently of h (with Hölder’s
inequality if ρ <∞).

Next, let ζ = qh − q
D
h ∈ `h(W ) in (4.4); since ‖qh‖0,ΩT

≤ T 1/2‖q∗‖0, and with
the result from (4.7), immediately

c

∫

I

‖∇qh‖
2
0 ≤ C

{

‖q∗‖20 +

∫

I

[

‖qDh ‖
2
1 + |||γ2|||

2
0 + |||fw|||

2
W ∗ + |||Gw|||

2
−

1
2
,Γ 2

s

+ ‖pD‖21 + |||γ1|||
2
0 + |||f |||2V ∗ + |||G|||2

−
1
2
,Γ 2

p
+

∑

j

(gW
j )2

]

}

−

∫

I

(

∂−h
[

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω
]

, qh − q
D
h

)

. (4.9)

By Proposition 1, we have that
∫

I

(

∂−h
[

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω
]

, qh
)

=

N
∑

n=1

(

φ(sn
h − s

n−1
h ) + φ̂(σ(sn

h)− σ(sn−1
h )), qn

h

)

+
N

∑

n=1

n
∑

k=1

(

(σ(sk
h)− σ(sk−1

h ))ωn−k, q
n
h

)

≥ −C.
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Summation by parts yields

∫

I

(

∂−h
[

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω
]

, qDh
)

=
(

φsN
h + φ̂σ(sN

h ) + [(σ(sh)− σ(s0)) ∗h ω]N , qD,N
h

)

− (φs0h + φ̂σ(s0h), qD,1
h )

−

∫ T−h

0

(

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω, ∂
hqDh

)

≤ C

{

‖qDh ‖L∞(I;L1(Ω)) +

∫ T−h

0

‖∂hqDh ‖L1(Ω)

}

.

Now easily

‖qDh ‖L2(I;H1(Ω)) ≤ ‖q
D‖L2(I;H1(Ω)),

‖qDh ‖L∞(I;L1(Ω)) ≤ C‖q
D‖W 1,1(I;L1(Ω)),

and, for any positive integer k ≤ N (here we need only k = 1),

∫ T−kh

0

‖∂khqDh ‖L1(Ω) =
N−k
∑

i=1

1

k

∥

∥

∥

∥

i+k−1
∑

j=i

(qD,j+1
h − qD,j

h )

∥

∥

∥

∥

L1(Ω)

=
N−k
∑

i=1

1

kh

∥

∥

∥

∥

∫ ti+k−1

ti−1

∫ t+h

t

∂tq
D( · , τ) dτ dt

∥

∥

∥

∥

L1(Ω)

≤

∫

I

‖∂tq
D‖L1(Ω). (4.10)

Upon combining these results, we obtain the desired bound for qh. �

Corollary 1. For any ρ̄ ∈ [2, ρ] subject to ρ̄ < ∞, there exist functions p ∈
Lρ(I;V ) + pD and q ∈ L2(I;W ) + qD such that, for a subsequence, ph ⇀ p weakly

in Lρ̄(I;H1(Ω)) and qh ⇀ q weakly in L2(I;H1(Ω)) as h→ 0+. Moreover,

0 ≤ q(x, t) ≤ q∗(x) a.e. on ΩT . (4.11)

Proof. From Lemma 2, qh − qDh converges weakly in L2(I;V ). But qDh ⇀ qD in
L2(I;H1(Ω)); hence, qh ⇀ q in L2(I;H1(Ω)), where q ∈ L2(I;V ) + qD. If ρ <
∞, similar reasoning obtains p. If ρ = ∞, we obtain weak convergence of ph in
Lρ̄(I;H1(Ω)) for any ρ̄ <∞. Also ‖p‖Lρ̄(I;H1(Ω)) ≤ C with C independent of ρ̄, so

in fact p ∈ L∞(I;H1(Ω)). Trivially (4.11) follows from (4.5). �

Lemma 3. Independently of h, as η → 0+,

∫ T

η

(

φ[sh( · , t)− sh( · , t− η)], qh( · , t)− qh( · , t− η)
)

dt = o(η). (4.12)



16

Proof. Let k be an integer between 1 and N , and fix τ ∈ (kh, T ]. Define j by τ ∈ Ij
and define the interval R = R(τ) = ((j − k)h, jh]. Take

ζ(x, t) = khχR(t)∂−kh(qh − q
D
h )(x, τ) ∈ `h(W )

in (4.4). Note that

∫

I

∂−h
(

φsh + φ̂σ(sh)
)

χR(τ)

= φ
[

sh( · , τ)− sh( · , τ − kh)
]

+ φ̂
[

σ(sh( · , τ))− σ(sh( · , τ − kh))
]

.

Then, with Lemma 2, the fact that the measure of R is kh, and (4.10), we obtain
upon integrating in τ

∫ T

kh

(

φ[sh( · , τ)− sh( · , τ − kh)], qh( · , τ)− qh( · , τ − kh)
)

dτ

≤ Ckh−

∫ T

kh

∫

R(τ)

(

∂−h[(σ(sh)− σ(s0)) ∗h ω]( · , t),

qh( · , τ)− qh( · , τ − kh)
)

dt dτ. (4.13)

Now by induction on k, we can verify easily that

∫

R(τ)

∂−h[(σ(sh)− σ(s0)) ∗h ω]( · , t) dt

=

j
∑

i=j−k+1

i
∑

m=1

(σ(sm
h )− σ(sm−1

h ))ωi−m

=

j
∑

`=1

(σ(s`
h)− σ(s`−k

h ))ωj−`, (4.14)
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since sm
h = s0 for m ≤ 0. So

−

∫ T

kh

∫

R(τ)

∂−h[(σ(sh)− σ(s0)) ∗h ω]( · , t)
(

qh( · , τ)− qh( · , τ − kh)
)

dt dτ

= −
N

∑

j=k+1

j
∑

`=1

(σ(s`
h)− σ(s`−k

h ))ωj−` (qj
h − q

j−k
h ) h

= −
N

∑

j=k+1

{ j−k
∑

`=1

σ(s`
h)(ωj−` − ωj−`−k)

+

j
∑

`=j−k+1

σ(s`
h)ωj−` −

k
∑

`=1

σ(s0)ωj−`

}

(qj
h − q

j−k
h ) h

≤ 2q∗
N

∑

j=k+1

{ j−k
∑

`=1

(ωj−`−k − ωj−`) +

j
∑

`=j−k+1

ωj−` +

k
∑

`=1

ωj−`

}

h

= 4q∗
N

∑

j=k+1

k−1
∑

m=0

ωm h ≤ 4Tq∗
∫ kh

0

ω( · , τ) dτ. (4.15)

Since ω ∈ L1(ΩT ), independently of h,

∫ η

0

‖ω( · , τ)‖L1(Ω) dτ = o(η),

and so (4.13) combined with (4.15) gives the lemma for η = kh. Arbitrary η are
now allowed because we are dealing with step functions in time. �

Remark. If ω ≡ 0, then we can replace o(η) by Cη in (4.12). In that case, if S−1(s)
were Hölder continuous of order (r − 1)−1 in s (2 ≤ r < ∞), we would conclude
that

∫ T

η

‖qh( · , t)− qh( · , t− η)‖rLr(Ω) dt ≤ Cη,

and hence, for 0 < ε < 1/r and uniformly in h, qh ∈ W 1/r−ε,r(I;Lr(Ω)) ∩
L2(I;H1(Ω)), which would further imply that qh → q strongly in L2(ΩT ). This
conclusion can be reached without additional assumption on S−1. However, this
calculation suggests that q (and hence s) cannot be expected to have a trace on
Ω × {0}, so (3.6) is a proper way to apply the initial condition.

Lemma 4. For a subsequence, qh → q strongly in L2(ΩT ) as h→ 0+.

An auxiliary result given in Section 6 below, namely Theorem 3, is used in the
proof, so we present it there.
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Corollary 2. For fixed ε ∈
(

0, 1
2

)

, for a subsequence, qh → q strongly both in

L2(I;H1−ε(Ω)) and in L2(I;H1/2−ε(∂Ω)). Moreover, with s = S(q), sh → s
pointwise a.e. on either ΩT or ∂Ω × I.

Proof. By a well-known interpolation inequality, namely,

‖u‖r ≤ ε‖u‖1 + Cε‖u‖0 (4.16)

for any 0 < r < 1 and ε > 0, and by the boundedness of the trace operator, qh → q
as asserted. The pointwise convergence follows since S(x, q) is continuous in q. �

We have already obtained (3.2)–(3.3). We can now obtain convergence of (4.3)–
(4.4) for a subsequence. Since

⋃

∞

N=1 `h(V ) is dense in Lρ∗

(I;V ), we obtain (3.4) as
well as

lim
h→0+

∫

I

(

∂−h
[

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω
]

, ζ
)

+

∫

I

(

k
[

λ(s)∇q + λw(s)∇p+ γ2(s)
]

,∇ζ
)

+

∫

I

(Gw(s) + aw(s)p, ζ)Γ 2
s

=

∫

I

(fw(s), ζ) for all ζ ∈
∞
⋃

N=1

`h(W ). (4.17)

For any ζ ∈ L2(I;W ), ζh ∈ `h(W ) where ζh(x, t) = h−1
∫

Ik
ζ(x, τ) dτ for t ∈ Ik.

Hence from (4.4),

∫

I

(

∂−h
[

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω
]

, ζ
)

≤ C‖ζh‖L2(I;W ) ≤ C‖ζ‖L2(I;W );

that is, a subsequence of ∂−h
[

φsh + φ̂σ(sh)+(σ(sh)−σ(s0))∗hω
]

converges weakly

in L2(I;W ). But if now ζ ∈ C∞

0 (ΩT ), then for sufficiently small h,

∫

I

(

∂−h
[

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω
]

, ζ
)

= −

∫ T−h

0

(

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω, ∂
hζ

)

−→ −

∫

I

(φs+ φ̂σ(s) + (σ(s)− σ(s0)) ∗ ω, ∂tζ)

=

∫

I

〈∂t

[

φs+ φ̂σ(s) + (σ(s)− σ(s0)) ∗ ω
]

, ζ〉,

where we have used the fact that

(σ(sh)− σ(s0)) ∗h ω −⇀ (σ(s)− σ(s0)) ∗ ω



19

in the L∞(ΩT ) weak-∗ topology. Thus (3.5) follows from (4.17).
Finally, if ζ ∈ L2(I;W ) ∩W 1,1(I;L1(Ω)) satisfies ζ(x, T ) = 0, then
∫

I

(∂−h
[

φsh + φ̂σ(sh) + (σ(sh)− σ(s0)) ∗h ω
]

, ζ)

+

∫ T−h

0

(

φ(sh − s
0) + φ̂(σ(sh)− σ(s0)) + (σ(sh)− σ(s0)) ∗h ω, ∂

hζ
)

=
1

h

∫ T

T−h

(

φ(sh − s
0) + φ̂(σ(sh)− σ(s0)) + (σ(sh)− σ(s0)) ∗h ω, ζ

)

.

This converges to give (3.6), and the proof of Theorem 1 is complete.

5. Proof of Lemma 1

For technical reasons, in this section we must allow for the possibility that s 6∈
[0, 1]. All functions of s are extended constantly outside [0, 1] except S, which is
extended outside this interval such that ∂S/∂q = 1; hence, in (5.2) below we mean
that at x ∈ Ω,

s = extended S(q) =











q for q < 0

S(x, q) for 0 ≤ q ≤ q∗(x)

q − q∗(x) + 1 for q∗(x) < q.

(5.1)

Obviously, q and s follow each other up to a constant:

Proposition 2. If x ∈ Ω and q ∈ IR, then for s = S(x, q),

|s| ≤ 1 + |q| and |q| ≤ q∗(x) + |s|.

We show the existence of a solution to the finite difference scheme by induction
on the time levels. At each time, we have an elliptic problem. The main difficulty
in proving Lemma 1 lies in treating the matrix source operator. To treat this delay
operator, let n be a fixed positive integer and let {σ̃1(x), . . . , σ̃n−1(x), σ̃n(s)} be a
sequence of functions such that σ̃k : Ω → [0, 1] for k < n is assumed known and
σ̃n(s) = σ(s). Then the time discrete matrix source operator at time tn is

φ̂σ̃n +

n
∑

k=1

(σ̃k − σ̃0)ωn−k,

and its backward difference is equal to

1

h

{

φ̂(σ̃n − σ̃n−1) +

n
∑

k=1

(σ̃k − σ̃0)ωn−k −
n−1
∑

k=1

(σ̃k − σ̃0)ωn−k−1

}

=
1

h

{

φ̂(σ(s)− σ̃n−1) + σ(s)ω0 − σ̃
0ωn−1 +

n−1
∑

k=1

σ̃k(ωn−k − ωn−k−1)

}

.

Lemma 1 is a corollary of the following theorem.



20

Theorem 2. Assume (A1)–(A12) with all functions independent of time. Let n

and
{

σ̃k
}n

k=0
be as above, let s̃ : Ω → [0, 1], and suppose that

{

ωk(x)
}n−1

k=0
is a

nonnegative, nonincreasing sequence for each x ∈ Ω. Then for h sufficiently small,

the weak problem

s = S(q), (5.2)

(

k[λ(s)∇p+ γ1(s)],∇ξ
)

+ (G(s) + a(s)p, ξ)Γ 2
p

+
∑

j

gW
j ξ|Γ 3,j

p

= (f(s), ξ) for all ξ ∈ V, (5.3)

1

h

(

φ(s− s̃) + φ̂(σ(s)− σ̃n−1)

+ σ(s)ω0 − σ̃
0ωn−1 +

n−1
∑

k=1

σ̃k(ωn−k − ωn−k−1), ζ

)

+
(

k
[

λ(s)∇q + λw(s)∇p+ γ2(s)
]

,∇ζ
)

+ (Gw(s) + aw(s)p, ζ)Γ 2
s

= (fw(s), ζ) for all ζ ∈W (5.4)

has a solution p ∈ V + pD and q ∈ W + qD such that 0 ≤ q(x) ≤ q∗(x) a.e. on Ω.

Proof. Let
{

vm

}∞

m=1
and

{

wm

}∞

m=1
form bases for V andW , respectively. Set Vm =

⋃m
k=1{vk} and Wm =

⋃m
k=1{wk}. We define the Galerkin procedure corresponding

to (5.2)–(5.4) by subscripting p, q, s, V , and W by m.

Define Φm : IR2m → IR2m by Φm

(

α
β

)

=

(

ᾱ
β̄

)

where, with v =
∑m

k=1 αkvk,

w =
∑m

k=1 βkwk, and ς = S(w + qD),

ᾱi =
(

k[λ(ς)∇(v + pD) + γ1(ς)],∇vi

)

+
(

G(ς) + a(ς)(v + pD), vi

)

Γ 2
p

+
∑

j

gW
j vi|Γ 3,j

p
− (f(ς), vi),

β̄j =
1

h

(

φ(ς − s̃) + φ̂(σ(ς)− σ̃n−1)

+ σ(ς)ω0 − σ̃
0ωn−1 +

n−1
∑

k=1

σ̃k(ωn−k − ωn−k−1), wj

)

+
(

k
[

λ(ς)∇(w + qD) + λw(ς)∇(v + pD) + γ2(ς)
]

,∇wj

)

+
(

Gw(ς) + aw(ς)(v + pD), wj

)

Γ 2
s

− (fw(ς), wj).
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By assumption, Φm is continuous. We obtain easily for any fixed ε > 0,

Φm

(

α
β

)

·

(

α
β

)

≥ c
{

‖∇v‖20 + ‖∇w‖20 + ‖v‖2
0,Γ 2,∗

p

}

+ (aw(ς)v, w)Γ 2
s

− ε
{

‖v‖20 + ‖w‖20
}

− C

{

‖pD‖21 + ‖qD‖21 + |||γ1|||
2
0 + |||γ2|||

2
0

+ |||f |||2V ∗ + |||fw|||
2
W ∗ + |||G|||2

−
1
2
,Γ 2

p
+ |||Gw|||

2
−

1
2
,Γ 2

s
+

∑

j

(gW
j )2

}

+
1

h

(

φ(ς − s̃) + φ̂(σ(ς)− σ̃n−1)

+ σ(ς)ω0 − σ̃
0ωn−1 +

n−1
∑

k=1

σ̃k(ωn−k − ωn−k−1), w

)

.

where c is independent of ε. Proposition 2 shows that

h−1(φ(ς − s̃), w) ≥
φ∗
2h
‖w‖20 − C(h){1 + ‖q∗‖20 + ‖qD‖20},

and easily

1

h

(

φ̂(σ(ς)− σ̃n−1) + σ(ς)ω0 − σ̃
0ωn−1 +

n−1
∑

k=1

σ̃k(ωn−k − ωn−k−1), w

)

≥ −
2

h

{

‖φ̂‖L∞(Ω) +
n−1
∑

k=0

‖ωk‖0

}

‖w‖0 ≥ −ε‖w‖
2
0 − C(h).

With (4.16)

|(aw(ς)v, w)Γ 2
s
| ≤ C‖v‖1‖w‖0,Γ 2

s
≤ ε

{

‖v‖21 + ‖w‖21
}

+ C′‖w‖20

for some C′ independent of h. So with Poincaré’s inequality (see (4.8) above) and
with h sufficiently small,

Φm

(

α
β

)

·

(

α
β

)

≥ c
{

‖v‖21 + ‖w‖21
}

− C(h).

This is strictly positive for |α| + |β| large enough. As a consequence Φm has a
zero (for otherwise we could construct a continuous deformation of the ball to the
sphere); that is, there exists a solution to the Galerkin procedure.

None of the constants appearing above depend on m, so we have also shown that
the solutions pm, qm are uniformly bounded in H1(Ω) and that (with Proposition 2)
sm is uniformly bounded in L2(Ω). We can now find p ∈ V + pD, q ∈W + qD, and
s ∈ L2(Ω) such that pm ⇀ p and qm ⇀ q weakly in H1(Ω) and sm ⇀ s weakly in
L2(Ω) (for a subsequence) as m→∞. Furthermore, qm → q strongly in H1−ε(Ω),
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so sm = S(qm)→ S(q) = s pointwise a.e. on Ω and on ∂Ω. Thus, p, q is a solution
of (5.2)–(5.4).

To establish the maximum principle, first take ζ = q− = min(q, 0) ∈ W in (5.4)
to obtain that

h−1
(

φ(s− s̃) + φ̂(σ(s)− σ̃n−1), q−
)

+
1

h

(

σ(s)ω0 − σ̃
0ωn−1 +

n−1
∑

k=1

σ̃k(ωn−k − ωn−k−1), q
−

)

= −
(

k
[

λ(s)∇q + λw(s)∇p+ γ2(s)
]

,∇q−
)

− (Gw(s) + aw(s)p, q−)Γ 2
s

+ (fw(s), q−)

≤ 0, (5.5)

using (A4) and (A7). The second term on the far left side of (5.5) is nonnegative
because σ(s) q− = 0 and the ωk decrease in k. The first term is also nonnegative,
and so we conclude that q ≥ 0.

Next take ζ = (q − q∗)+ = max(q − q∗, 0) ∈ W in (5.4) and subtract (5.3) with
ξ = ζ (or ξ = ζ −

∫

Ω
ζ dx if Γ 1

p = ∅ and a ≡ 0); ξ ∈ V by (A1). We obtain (with
(A8)) that

h−1
(

φ(s− s̃) + φ̂(σ(s)− σ̃n−1), (q − q∗)+
)

+
1

h

(

σ(s)ω0 − σ̃
0ωn−1 +

n−1
∑

k=1

σ̃k(ωn−k − ωn−k−1), (q − q
∗)+

)

= −
(

k
[

λ(s)∇q − λo(s)∇p+ γ2(s)− γ1(s)
]

,∇(q − q∗)+
)

−
(

Gw(s)−G(s) + (aw(s)− a(s))p, (q − q∗)+
)

Γ 2
s

+
(

fw(s)− f, (q − q∗)+
)

≤ 0. (5.6)

When q ≥ q∗, σ(s) = 1, so the second term on the far left side above is

1

h

(

ω0 − σ̃
0ωn−1 +

n−1
∑

k=1

σ̃k(ωn−k − ωn−k−1), (q − q
∗)+

)

≥ h−1
(

ω0 − ωn−1 + (ωn−1 − ω0), (q − q
∗)+

)

= 0.

Since s = q − q∗ + 1 when q ≥ q∗, the first term on the far left side of (5.6) is
nonnegative; thus, q ≤ q∗. �

6. An Auxiliary Result and Proof of Lemma 4

In this section we consider results that are related to Lemmas 1.8 and 1.9 of Alt
and Luckhaus [2].
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Technical Lemma. Assuming (A1) and (A5), there exists for each M > 0 a

continuous µM : IR → IR with µM (0) = 0 such that if ui satisfies ‖ui‖1 ≤ M and

0 ≤ ui(x) ≤ q
∗(x) a.e. on Ω for i = 1, 2, then

‖u1 − u2‖0 ≤ µM (δ) (6.1)

whenever
(

S(u1)− S(u2), u1 − u2

)

≤ δ. (6.2)

Proof. Suppose the contrary result. Then there exist M > 0 and functions uδ
i for

δ → 0+ satisfying the hypotheses, (6.2), and

‖uδ
1 − u

δ
2‖0 ≥ c > 0. (6.3)

Now, for a subsequence, uδ
i ⇀ ui weakly in H1(Ω) and strongly in L2(Ω), so (6.3)

holds for u1 − u2. But also

0+ ←− δ ≥
(

S(uδ
1)− S(uδ

2), u
δ
1 − u

δ
2

)

−→
(

S(u1)− S(u2), u1 − u2

)

≥ 0,

which implies that u1 − u2 = 0, a contradiction. �

For the next result, let m be a positive integer, δ = T/m, Iδ
k = ((k−1)δ, kδ], and

define the operator Aδ : L1(I)→ L1(I) by

Aδ(u) =
1

δ

∫

Iδ
k

u(τ) dτ for t ∈ Iδ
k .

Theorem 3. Assume (A1), (A2), and (A5). If for all h = T/N there are uh ∈
`h(H1(Ω)) satisfying

‖uh‖L2(I;H1(Ω)) ≤ C′, 0 ≤ uh(x, t) ≤ q∗(x) a.e. on ΩT ,

and
∫ T

η

(

φ[S(uh( · , t)− S(uh( · , t− η)], uh( · , t)− uh( · , t− η
)

≤ µ(η)

for some C′ independent of h, some continuous, increasing µ : [0, T ]→ [0,∞) such

that µ(0) = 0, and any η > 0, then Aδ(uh) → uh strongly in L2(ΩT ) uniformly in

h as δ → 0+.

Proof. For positive η and M , define

R = R(uh, η,M)

=

{

t ∈ (η, T ] : ‖uh( · , t)‖1 + ‖uh( · , t− η)‖1

+
1

µ(η)

(

φ[S(uh( · , t))− S(uh( · , t− η))], uh( · , t)− uh( · , t− η)
)

> M

}

.
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Clearly the measure of R ≤ C′2/M2. If t ∈ I \R, then by the Technical Lemma,

‖uh( · , t)− uh( · , t− η)‖0 ≤ µM

(

Mµ(η)

φ∗

)

;

consequently,

∫ T

η

‖uh( · , t)− uh( · , t− η)‖20 ≤ Tµ
2
M

(

Mµ(η)

φ∗

)

+
4C′2

M2
‖q∗‖20.

With M large and η small, we conclude that

∫ T

η

‖uh( · , t)− uh( · , t− η)‖20 −→ 0 (6.4)

uniformly in h as η → 0+.
We now estimate

∫

I

‖uh −A
δ(uh)‖20 =

m
∑

k=1

∫

Iδ
k

∥

∥

∥

∥

1

δ

∫

Iδ
k

(

uh( · , t)− uh( · , τ)
)

dτ

∥

∥

∥

∥

2

0

dt

≤
m

∑

k=1

∫

Iδ
k

1

δ

∫ t−(k−1)δ

t−kδ

‖uh( · , t)− uh( · , t− η)‖20 dη dt

=

m
∑

k=1

1

δ

∫ δ

−δ

∫ min(kδ+η,kδ)

max((k−1)δ,η+(k−1)δ)

‖uh( · , t)− uh( · , t− η)‖20 dt dη

≤
2

δ

∫ δ

0

∫ T

η

‖uh( · , t)− uh( · , t− η)‖20 dt dη,

which tends to zero uniformly in h as δ → 0+ by (6.4). �

Proof of Lemma 4. Clearly ‖Aδ(qh)‖L2(I;H1(Ω)) ≤ C for all h, so for fixed δ > 0,

Aδ(qh) converges strongly in L2(ΩT ) as h→ 0+. Therefore

‖qh1
− qh2

‖0,ΩT
≤

2
∑

i=1

‖qhi
−Aδ(qhi

)‖0,ΩT
+ ‖Aδ(qh1

)− Aδ(qh2
)‖0,ΩT

shows the lemma by Theorem 3. �

7. A Remark on the Solution When F (s) = φ̂ ∂tσ(s)

When F (s) = φ̂ ∂tσ(s) is not a delay operator, the existence of a solution follows
directly from the results for an unfractured reservoir (F (s) ≡ 0). To see this, define
the pseudo-saturation variable [17] as

S(x, t) = φ−1
t

[

φs+ φ̂σ(s)
]

, (7.1)
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where φt(x) = φ(x) + φ̂(x) is the total porosity of the medium. By inverting (7.1),
we obtain for x ∈ Ω a strictly monotone increasing function Σ(x, · ) ∈ C0([0, 1])
mapping onto [0, 1] such that

s = Σ(x, S). (7.2)

We change variables according to (7.2). In the definition of weak solution, replace
γ1(s), γ2(s), fw(s), λw(s), and λo(s) by (γ1 ◦Σ)(S), (γ2 ◦Σ)(S), etc., respectively,

and replace S(q) by (Σ−1 ◦ S)(q). Finally, replace φs + φ̂σ(s) by φtS and φs0 +

φ̂σ(s0) by φtS
0, where s0 = Σ(S0). The resulting weak equations are those of an

unfractured reservoir with saturation dependent functions modified by Σ and with
φt replacing φ [17]. Since (A1)–(A13) hold for the transformed system, we have our
result.
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