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Résumé. — Une modèle �porosité double, permeabilité double� est presentée
pour la simulation d’un déplacement incompressible miscible dans un mileau poreux
naturellement fracturé. L’écoulement des fluides est décrit dans le système des frac-
tures et dans chaque bloc matriciel par une équation elliptique pour la pression et une
équation parabolique pour la concentration. L’échange de fluide entre les fractures
et les blocs est modelé par l’imposition des conditions au bord sur les équations ma-
tricielles et par l’inclusion d’un terme de source distribuée en les équations dans les
fractures. Une méthode d’éléments finis est donné pour approcher la solution. Elle
utilise une méthode mixte pour la pression, une méthode modifiée des caractéristiques
pour l’équation pour la concentration dans les fractures et une méthode ordinaire de
Galerkin pour la concentration matricielle. La procédure converge asymtotiquement
avec une vitesse optimale.

Abstract. — A double porosity/permeability model is presented to simulate an
incompressible, miscible displacement in a naturally fractured petroleum reservoir.
Fluid flow is described in the fracture system and in each matrix block by defining
for each an elliptic pressure equation and a parabolic concentration equation. The
matrix/fracture fluid transfer is modeled by imposing boundary conditions on the
matrix equations and by including a macroscopically distributed source/sink in the
fracture equations. A finite element procedure is defined to approximate the solution.
It uses mixed methods for the pressure equations, a modified method of characteristics
for the fracture concentration equation, and standard Galerkin methods for the matrix
concentration equations. It is shown that the procedure converges asymptotically at
the optimal rate.

Key words. — porous medium, double porosity, miscible displacement, fractured
reservoir, finite element method.
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§1. Introduction

1.1. Opening remarks. It is fairly well understood how to model the flow
of two completely miscible, incompressible fluids in a single porosity reservoir. An
elliptic pressure equation and a parabolic concentration equation are obtained [8], [9],
[19].

It is not so clear, however, how to model such flow in a double porosity/permeabil-
ity reservoir. The usual approach is to assume that the exchange of fluids between
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the matrix and fracture systems is always in a quasi-steady state [5], [29]. A single
function is defined to describe the matrix/fracture fluid transfer. The primary term of
this function is proportional to the difference between the matrix and fracture system
pressures (or flow potentials). The constant of proportionality, as well as the addition
of smaller terms, is the subject of much debate [27].

An alternate approach is to model the matrix/fracture fluid transfer explicitly
[1], [2], [4], [11]. This should give a physically more meaningful model, and no ad hoc
terms or parameters need appear.

Fluid flow within each (single porosity) matrix block can be modeled in the usual
way. One obtains pressure and concentration equations posed over each block. The
flow in the fractures affects the flow in an individual matrix block only at its surface.
This can be modeled as a boundary condition on the equations.

Fluid flow in the fractures needs to be viewed macroscopically. Provided that the
fracture system is highly interconnected and the matrix blocks are relatively small (as
compared to the size of the entire reservoir), the system of fractures may be thought of
as a porous medium distinct from that of the matrix. Flow in the fracture system can
then be considered to be of Darcy type and spread out over the entire reservoir. Again,
the usual set of equations describes this flow, except that an additional source/sink
term must appear. The fluid that flows out of (or into) the matrix blocks through
their surfaces will appear in (or leave) the fracture system. In some way, this transfer
must be modeled as a macroscopically distributed source/sink.

The flow of a single phase fluid of constant compressibility has been modeled
in this way [1], [2], [11]. An incompressible (immiscible) waterflood has also been
modeled [4], [11]. Here we shall model an incompressible, miscible displacement. The
model will be related to an extension of the single phase, single component model
described in [2].

1.2. A preview of the rest of the paper. Using the approach described
above, we shall derive our model in Section 2.

In Section 3, we shall define a finite element procedure for approximating the
solution of the differential model. The approximation of a single porosity reservoir
has recently received a good deal of attention by several authors [8], [9], [10], [14],
[16], [17], [18], [19], [20], [25], [26]. We will adapt two of the existing methods to
our double porosity/permeability model in such a way that the resulting procedure is
particularly well suited to solution on parallel computers.

We shall observe in Section 3 that the solution to the fracture system concentra-
tion equation has a tendency to develop relatively sharp fronts, though the solutions
to the matrix concentration equations do not. That is, the formally parabolic fracture
concentration equation is more nearly hyperbolic in practice. It should be discretized
in a manner that is capable of resolving the fronts in the solution. The matrix con-
centration equations may be handled in a more standard fashion.

For the matrix equations we will consider the adaptation of a procedure of Dou-
glas, Ewing, and Wheeler that uses a mixed finite element method for the elliptic
pressure equations and a relatively standard Galerkin method for the parabolic con-
centration equations [9], [10]. Concentration is the quantity of physical interest. We
will see that the concentration equations depend on the pressures only through the
Darcy velocities, so it is appropriate to approximate these directly with mixed meth-
ods. This will give a better approximation of the velocities (which is critical) than a
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more standard Galerkin approach [19] would yield.
The above approach could be used for the fracture equations as well. The resulting

procedure has been shown to converge at the optimal rate [3], and it is somewhat
simpler than that to be presented below. However, it would be unsatisfactory unless
a very small time step were used.

For the fracture equations, we shall use a modification of the method of charac-
teristics considered by Douglas, Ewing, Russell, and Wheeler [13], [17], [18], [25]. For
technical reasons, we shall consider the model in a spatially periodic setting. We shall
move the fracture concentration forward in time along the (approximate) characteris-
tics of the hyperbolic part of the equation. Along the characteristics, the concentration
should change very little; consequently, we should be able to take a reasonably large
time step.

Because the velocities change less rapidly in time than the concentrations [8], [10],
[14], we shall allow for the use of a longer time step in solving the pressure equations
than is used in solving the concentration equations. When the fracture concentration
front passes an individual matrix block, it may be desirable to reduce the time step
used in solving the matrix equations. We will allow for this possibility in the case of
the matrix concentration equations.

Because the matrix blocks themselves are small, the linear systems that arise
in the finite element approximation procedure can be expected to be fairly small.
Hence, it is appropriate to use direct solution methods on them. We shall incorporate
a technique [10] that allows one to refactor each such matrix only once per pressure
time step while retaining the order of accuracy obtained by refactoring once per matrix
concentration time step.

In the final section, which is easily half of the entire paper, we shall prove that
solutions to our approximation procedure converge asymptotically at the optimal rate
to the solution of the differential model. We shall present the analysis in a relatively
simple form that will not properly account for the smaller time step used in solving
the matrix concentration equations. To control the matrix/fracture coupling, we will
need to impose a mild but evidently artificial hypothesis.

As in most of the analyses of miscible displacement, we shall assume that the
external sources/sinks are not concentrated at points (i.e., wells), but are instead
smoothly distributed over the entire reservoir. If we allowed actual wells, the solution
would be singular near them, so any approximation attempt and analysis would require
special treatment [20], [26].

§2. The Incompressible, Miscible Displacement Model

2.1. The quantities of physical interest. LetΩ ⊂ R
3 be a naturally fractured

reservoir with disjoint, two-connected matrix blocks Ωi ⊂ Ω. It is important that the
diameters of the matrix blocks be small compared to the diameter of the reservoir
itself. Since the fractures are thin, we shall simply assume that ∪iΩi = Ω. Let
J = (0, T ], T > 0, be the time interval of interest.

Within the reservoir, two incompressible, completely miscible fluids will flow in
a single phase. Some of the fluid flows in the interconnected system of fractures,
while the rest flows in the matrix blocks. The fluid and porous structure both of the
fracture system and of the matrix must be characterized. The quantities associated to
the (macroscopic) fracture system are defined on Ω, while the quantities associated to
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the ith matrix block are defined on Ωi. We shall often use a single symbol to denote
a matrix quantity. It will be defined on Ωm = ∪iΩi, and the location x determines
the block in question. When a physical quantity exists for both of the fracture and
matrix systems, we shall use an upper case letter for the fracture quantity and the
corresponding lower case letter for the matrix.

Let the fluid properties pressure, Darcy velocity, and concentration (of one of the
two components) of the fracture system be denoted by P (x, t), U(x, t), and C(x, t),
respectively. The corresponding quantities for the matrix fluid are then p(x, t), u(x, t),
and c(x, t). Let µ and ρ denote the viscosity and density of the fluid mixture, respec-
tively; these depend on the concentration C or c.

The porous system properties of the reservoir are the permeability tensor, poros-
ity, and diffusion/dispersion tensor. Let K(x), Φ(x), and D(x, U), respectively, denote
these quantities for the fracture system, and let ki(x), φi(x), and di(x, u) denote the
corresponding quantities for the ith matrix block (where the subscript i may be omit-
ted). The diffusion/dispersion tensors are velocity dependent. Following [9] and [23],

(2.1.1) D(x, U) = Φ(x){dmolI + |U |[DlongE(U) +DtransE
⊥(U)]},

where the (j, k)-th entry of the tensor E(U) is

(2.1.2) Ejk(U) =
UjUk
|U |2

and E⊥(U) = I − E(U). A similar expression defines d(x, u):

(2.1.3) di(x, u) = φi(x){dmolI + |u|[dlong,iE(u) + dtrans,iE
⊥(u)]}.

The matrix permeabilities are much smaller than the fracture permeability; hence,
the following physical assumption is customarily made: the matrix blocks do not
directly interact with each other, nor with the external sources/sinks; they interact
only with the fracture system.

2.2. The flow in the fracture system. The flow in the fracture system is
described by the usual pressure and concentration equations [8], [9], [19], except that
a macroscopically distributed source term must appear to take into account the fluid
transfer between the matrix and fracture systems. The pressure equation will be
derived first.

Darcy’s law states that

(2.2.1) U = −A−1(C)
(
∇P − γ(C)

)
in Ω × J,

where A−1(x,C) = K(x)/µ(C) and γ(x,C) is the product of ρ(C), the gravitational
constant, and the downward directed unit vector. We assume that the fluids do
not change volume due to their mixing; that is, ρ(C) is just the linear interpolant
of the (constant) densities of the two components. Then incompressibility and the
assumption that the external volumetric source/sink f(x, t) acts only on the fracture
system requires that

(2.2.2) ∇ · U = f in Ω × J.

We have omitted any effect of the matrix above since no net volumetric fluid transfer
occurs between the matrix and fracture systems. A boundary condition is needed;
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simply take the no flow Neumann condition:

(2.2.3) U · ν = 0 on ∂Ω × J,

where ν(x) is the outer unit normal to ∂Ω. Then,
∫

Ω
f(x) dx = 0 is required for

consistency. Note that (2.2.1)–(2.2.3) defines P only up to a constant.
The concentration equation reflects conservation of mass of the fluid components.

Net component mass flow does occur between the matrix and fracture systems, so
a matrix source term must appear in this equation. Let the operator gi(x; c, u) de-
note the volumetric source/sink from the ith matrix block of the fluid component
whose concentration is c (equivalently, C). This function will be defined below in
Subsection 2.4. The fracture concentration equation is then

ΦCt + ∇ ·
(
CU −D(U)∇C

)
= Cinjf+ + C(f − f+) +

∑

i

gi(c, u) in Ω × J,

for which (2.2.2) gives the nondivergence form as

(2.2.4) ΦCt + U · ∇C −∇ ·D(U)∇C = (Cinj − C)f+ +
∑

i

gi(c, u) in Ω × J,

where the subscript t denotes partial differentiation in time, Cinj(x, t) is the concen-
tration of the injected fluid, and f+(x, t) is the positive (injection) part of f . Requiring
no net component flow across ∂Ω gives the condition, with (2.2.3),

(2.2.5) D(U)∇C · ν = 0 on ∂Ω × J.

Finally, the initial fracture concentration C0(x) must be given:

(2.2.6) C = C0 on Ω × {0}.

2.3. The flow in the matrix. We will now consider the flow of fluid in the
ith matrix block. The fracture system affects the block only at its surface, so the
equations describing interior flow are the usual ones, with no external source/sink
terms.

The pressure equation is

(2.3.1) u = −a−1(c)
(
∇p− γ(c)

)
in Ωi × J

and

(2.3.2) ∇ · u = 0 in Ωi × J,

where a−1(x, c) = k(x)/µ(c) (and a−1
i (x, c) = ki(x)/µ(c) ).

The concentration equation is

(2.3.3) φct −∇ · q(c, u) = 0 in Ωi × J,

where we have written the volumetric flux as

(2.3.4) q(c, u) = d(u)∇c− cu.

Again, the initial concentration c0(x) must be given:

(2.3.5) c = c0 on Ωi × {0}.
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At the surface of the block, matrix fluid contacts fracture fluid; we must enforce
continuity of pressure and of concentration there. Pressure is easy:

(2.3.6) p = P on ∂Ωi × J.

Continuity of concentration cannot be imposed so straightforwardly. The matrix fluid
that leaves the block at a point x ∈ ∂Ωi must be macroscopically spread out so that it
enters the fracture system in some region about x. It is inconsistent to have only the
fracture fluid at x influence the matrix flow; all the fracture fluid in the region about
x must affect the matrix flow. A consistent way for this to occur, which is related to
the procedure of [2], will be described in the next subsection. There we will define an
operator Λi so that continuity of concentration can be expressed as

(2.3.7) c = Λi(C) on ∂Ωi × J.

The matrix concentration initial and boundary conditions need to be consistent;
hence, the following relation should hold:

(2.3.8) c0 = Λi(C
0) on Ωi.

2.4. The matrix/fracture coupling. Let {χi(x)} be some partition of unity
over Ω such that each χi is or is approximately the characteristic function of Ωi.
Specifically, we require that the support of χi ≈ Ωi,

∫

Ω χi(x) dx = |Ωi| = volume of
Ωi, and 0 ≤ χi. The function χi will define and weight the region of space over which
the ith block and the fracture system influence each other.

Since the blocks are small and the fracture flow is faster than the matrix flow, let
us assume that, at each fixed time, the variation in C over Ωi is small. Following [1],
[4], and [11], we might like to assume that this variation is so small as to be negligible.
However, in that case, it is not hard to see that no transfer of fluid would occur due to
convection. Our fluids are incompressible and mix without changing volume, so there
is no net volumetric flow into or out of an individual matrix block. If the concentration
over the surface of a block was constant in space, then the net convection of a mass
component in through the block’s surface would exactly equal the net convection out
(though diffusion and dispersion could lead to some net component mass flow). Since
viscous displacement is an important physical process in the recovery of oil by miscible
techniques, we must assume some variation in the concentration over the surface of
each block. As in [2], we will assume that the variation in the fracture flow is essentially
linear.

To define the linear nature of the fracture flow near Ωi, let {λi,0, . . . , λi,3} be an
orthonormal basis of the linear functions with respect to the inner product given by
integration against the weight χi. Now define the linear operator Λi mapping L1(Ω)
onto the set of linear functions by

(2.4.1) Λi(ω)(x) =

3∑

j=0

(∫

Ω

ω(y)λi,j(y)χi(y) dy

)

λi,j(x).

A macroscopically spread matrix source/sink that is consistent with this is defined
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as

(2.4.2) gi
(
x; c( · , t), u( · , t)

)
= −

3∑

j=0

(∫

Ωi

{φ(y)ct(y, t)λi,j(y)

+ q
(
y, c(y, t), u(y, t)

)
· ∇λi,j(y)} dy

)

λi,j(x)χi(x).

That is, the fluid that flows through ∂Ωi is

−q(c, u) · νi = −
(
di(u)∇c− cu

)
· νi

(where νi(x) is the outer unit normal to ∂Ωi), and this distribution, supported on
∂Ωi, agrees with the action of gi up to the linear order of the test function used:

(2.4.3) −

∫

∂Ωi

q(c, u) · νiΛi(ω) ds =

∫

Ω

gi(c, u)ω dx, ω ∈ C∞(Ω),

by the divergence theorem, (2.3.3), and the orthonormality of {λi,0, . . . , λi,3}. With
ω ≡ 1 above, we see that (2.4.2) gives us a matrix source/sink that conserves mass
in a global sense; it also conserves mass in a local sense. Without loss of generality,
we can suppose that λi,0 is a constant. Then it is easy to see that the j = 0 term
in (2.4.2) alone accounts for the global conservation of mass, while the other terms
simply locally redistribute the matrix source/sink somewhat. Consistency has been
maintained in the mass transfer between the two porous media because each matrix
block affects and is affected by the fracture system as if the fracture system flow were
linear in the vicinity of the block.

§3. The Finite Element Approximation Procedure

In this section, we first consider whether the concentration equations tend to de-
velop fronts, as this strongly influences our choice of an approximation procedure. In
the second subsection, we clarify the mathematical assumptions that are tacitly as-
sumed throughout the rest of the paper and define some general notation. Once this is
done, in the third subsection, we can write down a weak form of our model. This weak
form is appropriate for finite element approximation, the notation for which is given
in Subsection 3.4. We are then ready in Subsection 3.5 to define our approximation
procedure. Finally, in the last subsection, we include a few words on implementing
the procedure on a computer.

3.1. The expectation of concentration fronts. It is well known that miscible
displacements in unfractured petroleum reservoir simulation are dominated by the
convection of the fluids rather than by their diffusion/dispersion [14], [17]. This means
that the formally parabolic concentration equation is almost hyperbolic, and so fronts
can and do develop in the concentration that are relatively sharp when viewed on the
scale of the entire oil field. The sharpness of the front increases with the hyperbolic
velocity, which is the Darcy velocity divided by the porosity (roughly speaking, this is
the actual microscopic velocity of the fluid), and this velocity must be scaled by the
size of the reservoir.

Estimates of the fracture system permeability and porosity and of the diameter
of the matrix blocks have appeared in the petroleum literature [21], [27], [28], [29].
Typically, the fracture system may have a permeability that is forty to several hundred
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times larger and a porosity that is ten to a few hundred times smaller than that for
an unfractured reservoir. Hence, the hyperbolic velocity in the fracture system may
be several thousand times greater than in an unfractured reservoir. It is difficult to
estimate the effect of the matrix on the front, but it does act in a regularizing manner
[1]. It will smooth out the front to some significant degree, but let it suffice to say
that the fracture concentration will develop relatively sharp concentration fronts.

The matrix has a hyperbolic velocity comparable to that for an unfractured reser-
voir. However, the diameter of a matrix block is several hundred times smaller than
that of the reservoir itself; therefore, the flow in a matrix block will have a much re-
duced tendency to develop fronts. It is also true that the small size of the block allows
us to discretize it fairly finely if we wish, so that in any case the matrix concentration
can be approximated rather easily.

3.2. Some mathematical assumptions and notation. We shall implicitly
assume that all of the quantities defined in the second section above are sufficiently
smooth; in particular, assume the quantities A, Φ, D, γ, f , Cinj , C

0, and c0, and, for
each i, ai, φi, di, and χi to be so. In addition, Φ and φ shall be bounded above and
below by positive constants, and A and a shall be uniformly positive definite. The
same will be true of D and d once we assume that the molecular diffusion coefficient
dmol is strictly positive. For convenience in the analysis to follow, let

0 < Φ∗ ≤ Φ, 0 < φ∗ ≤ φ, and D∗ = dmol.

We shall assume that Ω is a two-connected domain in R
3 with a smooth boundary.

Each Ωi should be convex; otherwise the solution may have some singular behavior
near the reentrant corners.

Under these assumptions, it is reasonable to expect that the solution is smooth
and regular enough that the approximation procedures to be defined below can be
analyzed as in the last two sections of the paper. We shall tacitly assume that this is
the case.

Each of our assumptions is physically reasonable except for those made on the
external source/sink term f (as mentioned in the introduction).

Let us now define some additional notation, most of which is relatively standard.

With ∗ being blank, i, or m, Wα,β
∗ will denote the usual Sobolev space of α times

differentiable functions in the Lebesgue space Lβ∗ over a domain Ω∗, and ‖ · ‖α,β,∗ will

denote its norm. We will simply write Hα
∗ for the Hilbert space Wα,2

∗ and ‖ · ‖α,∗ for

its norm. Denote the inner product on L2
∗ or

(
L2
∗

)3
by ( · , · )∗. Let H1

0 (Ω∗) denote the

closure in H1
∗ of C∞

0 (Ω∗), the infinitely differentiable functions of compact support in
Ω∗. For a Banach space X and a nonnegative integer α, let Wα,β(J ′;X) denote the
space of maps ϕ : J ′ −→ X with the norm

‖ϕ‖Wα,β(J′;X) =

(∫

J′

α∑

j=0

∥
∥
∥
∥

∂jϕ

∂tj

∥
∥
∥
∥

β

X

dt

)1/β

,

where the right-hand side must be modified in the usual way if β = ∞, and where J ′
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will be omitted if J ′ = J . It will be convenient to define the following spaces:

H(div;Ω∗) =
{
ψ ∈

(
L2(Ω∗)

)3
: ∇ · ψ ∈ L2(Ω∗)

}
,

HN (div;Ω∗) = {ψ ∈ H(div;Ω∗) : ψ · ν∗ = 0 on ∂Ω∗},

L2
C(Ω∗) = L2(Ω∗)/{ϕ : ϕ ≡ constant},

H1
L(Ω∗) = H1

0 (Ω∗) + span{λi,0, . . . , λi,3}.

Finally, let Q and ε denote generic positive constants, where ε may be taken as
small as we please.

3.3. A weak form of the differential system. Assuming that the differential
model has a bounded solution, it will satisfy the weak form of the equations that
follows. The weak form in ii) below is easily seen by noting that (2.3.1) can be
rewritten with (2.2.1) as

a(c)u + ∇(p− P ) = γ(c) −∇P = γ(c) +A(C)U − γ(C).

i) The fracture pressure equation:
Find maps {U,P} : J −→ HN (div;Ω) × L2

C(Ω) such that

(
A(C)U,ψ

)
− (∇ · ψ, P ) =

(
γ(C), ψ

)
, ψ ∈ HN (div;Ω),(3.3.1)

(∇ · U,ϕ) = (f, ϕ), ϕ ∈ L2
C(Ω).(3.3.2)

ii) The ith matrix block pressure equation:
Find maps {u, p} : J −→ H(div;Ωi) × L2

i such that

(
a(c)u, ψ

)

i
− (∇ · ψ, p)i =

(
γ(c), ψ

)

i
+

(
[A(C)U − γ(C)], ψ

)

i

− (∇ · ψ, P )i, ψ ∈ H(div;Ωi),

(3.3.3)

(∇ · u, ϕ)i = 0, ϕ ∈ L2
i .(3.3.4)

iii) The fracture concentration equation:
Find a map C : J −→ H1 such that

(ΦCt+U · ∇C, ω) +
(
D(U)∇C,∇ω

)
+ (Cf+, ω)

= (Cinjf+, ω) +
∑

i

(
gi(c, u), ω

)
, ω ∈ H1,(3.3.5)

C(x, 0) = C0(x), for x ∈ Ω.(3.3.6)

iv) The ith matrix block concentration equation:
Find a map c : J −→ H1

L(Ωi) such that

(φct, ω)i +
(
q(c, u),∇ω

)

i
= 0, ω ∈ H1

0 (Ωi),(3.3.7)

c(x, t) = Λi
(
C( · , t)

)
(x), for (x, t) ∈ ∂Ωi × J,(3.3.8)

c(x, 0) = c0(x), for x ∈ Ωi.(3.3.9)

Note that the boundary conditions (2.2.5) on C and (2.3.6) on p have been im-
posed implicitly above. Recall that gi, q, and Λi are defined by (2.4.2), (2.3.4), and
(2.4.1), respectively.
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3.4. Discretization of space and time. For Hp and Hc in (0, 1], let THp
(Ω)

and THc
(Ω) be partitions of Ω into simplices or rectangles of diameters bounded by

Hp and Hc, respectively. Each of these families of partitions must satisfy the nonde-
generacy condition, namely, that there is some bound on the ratio of the diameter of
each simplex or rectangle to the diameter of the largest ball inscribed within it. Fur-
thermore, the second family THc

(Ω) must be fully quasi-regular; that is, there is also
some overall bound on the ratio of the diameter of the largest simplex or rectangle to
that of the smallest for each partition. Analogously, for hp and hc in (0, 1], partition
each Ωi into Thp

(Ωi) and Thc
(Ωi). Of course, hp and hc could vary from block to

block, but for notational convenience we will not consider this possibility.
Let each of the spaces V̄Hp

× W̄Hp
and Vi × Wi = Vhp,i × Whp,i (for each i)

be that of Raviart-Thomas-Nedelec [22], [24], Brezzi-Douglas-Fortin-Marini [7], or
Brezzi-Douglas-Durán-Fortin [6] associated to the partitions THp

(Ω) and Thp
(Ωi), re-

spectively, of indexes such that the approximation properties (3.4.1)–(3.4.6) below
hold. (Actually, any mixed finite element spaces having the properties described in
Subsection 4.2 below can be used.) Let V = VHp

= V̄Hp
∩HN (div;Ω) and W = WHp

=

W̄Hp
/{ϕ : ϕ ≡ constant} ⊂ L2

C(Ω). Then, for any (v, w) ∈ HN (div;Ω) × L2
C(Ω),

inf
ψ∈V

‖v − ψ‖0 ≤ Q‖v‖RH
R
p , 0 ≤ R ≤ R∗,(3.4.1)

inf
ψ∈V

‖∇ · (v − ψ)‖0 ≤ Q‖∇ · v‖RH
R
p , 0 ≤ R ≤ R∗∗,(3.4.2)

inf
ϕ∈W

‖w − ϕ‖0 ≤ Q‖w‖RH
R
p , 0 ≤ R ≤ R∗∗,(3.4.3)

where R∗∗ = R∗ ≥ 1 for the first two spaces [7], [22], [24] and R∗∗ = R∗−1 ≥ 1 for the
other space [6], and, with r∗∗ defined analogously, for any (v, w) ∈ H(div;Ωi)×L

2(Ωi),

inf
ψ∈Vi

‖v − ψ‖0,i ≤ Q‖v‖r,ih
r
p, 0 ≤ r ≤ r∗,(3.4.4)

inf
ψ∈Vi

‖∇ · (v − ψ)‖0,i ≤ Q‖∇ · v‖r,ih
r
p, 0 ≤ r ≤ r∗∗,(3.4.5)

inf
ϕ∈Wi

‖w − ϕ‖0,i ≤ Q‖w‖r,ih
r
p, 0 ≤ r ≤ r∗∗.(3.4.6)

Note that the numbers R∗ and r∗ may be as small as one.
Let M = MHc

⊂ H1 and, for each i, M0
i = M0

hc,i
⊂ H1

0 (Ωi) be standard finite

element spaces associated to THc
(Ω) and Thc

(Ωi), respectively, such that

inf
ω∈M

‖Θ − ω‖1 ≤ Q‖Θ‖SH
S−1
c , 1 ≤ S ≤ S∗,(3.4.7)

inf
ω∈M0

i

‖θ − ω‖1,i ≤ Q‖θ‖s,ih
s−1
c , 1 ≤ s ≤ s∗,(3.4.8)

for any Θ ∈ H1 and θ ∈ H1
0 (Ωi). Here, S∗ and s∗ must be at least two. It will be

convenient to define the space

ML
i = M0

i + span{λi,0, . . . , λi,3} ⊂ H1
L(Ωi).

Next, let us define some notation that will be used to discretize the time variable.
Schematically, J will be partitioned as shown in Diagram 3.4.1. First, some ∆tc > 0
is chosen to represent the fracture concentration time step. Then for some positive
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integer l∗, we can define the matrix concentration time step δtc by

∆tc = l∗δtc.

As we will see later in the analysis, the first pressure time step should be chosen to
be smaller than the rest. Hence, for two positive integers m∗,0 and m∗, the first and
succeeding pressure time steps will be

∆t1p = m∗,0∆tc and ∆tp = m∗∆tc,

respectively. Finally, let n∗ be the number of pressure time steps in J ; that is,

T = ∆t1p + (n∗ − 1)∆tp

(extend the end time T if necessary).

——————————————————————————————————————> t

∣
∣
∣
∣

l∗

︷ ︸︸ ︷

0

|
δtc

|

∣
∣

∆tc

| |

︸ ︷︷ ︸

m∗,0

∣
∣
∣
∣ ∆t1p

| |

∣
∣

| |

∣
∣

| |

︸ ︷︷ ︸

m∗

∣
∣
∣
∣∆t1p+∆tp

| |

∣
∣ // | |

︸ ︷︷ ︸

n∗

∣
∣
∣
∣
T

Diagram 3.4.1 — The time line.

For notational purposes, let m∗,n = m∗ for n ≥ 1. In fact, there is no rea-
son why ∆tp and even ∆tc and δtc could not vary with time; moreover, while each
block is near the fracture concentration front, a temporary reduction of the matrix
discretization parameters is probably to be desired. This extension is straightforward
but cumbersome, so we will not pursue it.

Let

tn,m,l =

{
m∆tc + lδtc if n = 0

∆t1p + (n− 1)∆tp +m∆tc + lδtc if n ≥ 1,

and

ϕn,m,l = ϕ(tn,m,l),

where we omit l if l = 0 and both m and l if m = l = 0. Note that

ϕn,m,l
∗

= ϕn,m+1, ϕn,m
∗,n

= ϕn+1.

Also let

∂ϕn,m+1 =
ϕn,m+1 − ϕn,m

∆tc
, δϕn,m,l+1 =

ϕn,m,l+1 − ϕn,m,l

δtc
,

and

Jn+1 = (tn, tn+1], Jn,m+1 = (tn,m, tn,m+1].

The sum of ϕn,m+1 over all n and m for which 0 < tn,m+1 ≤ tN,M+1 shall be denoted
simply by

N,M
∑

n,m

ϕn,m+1 =

N−1∑

n=0

m∗,n
−1∑

m=0

ϕn,m+1 +

M∑

m=0

ϕN,m+1.
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We will need to extrapolate functions defined at pressure time levels. We can use
a two point linear extrapolation beyond time t1, and a constant extrapolation over
the first pressure time interval. Hence let

Eϕn,m,l =

{
ϕ0 if n = 0

ϕn + 1
m∗,n−1

(
m+ l

l∗

)
(ϕn − ϕn−1) if n ≥ 1,

where, again, we will drop the l if l = 0. We will also extrapolate to the midpoints of
the pressure time intervals. So, for half integers, let

Eϕn+ 1
2 =

{
ϕ0 if n = 0

ϕn + m∗,n

2m∗,n−1 (ϕn − ϕn−1) if n ≥ 1.

Finally, denote interpolation of the fracture concentration time levels by

Iωn,m,l =

(

1 −
l

l∗

)

ωn,m +
l

l∗
ωn,m+1.

We will approximate U , P , and C by Uh ∈ V , Ph ∈ W , and Ch ∈ M, respectively,
and we will approximate u, p, and c on each block Ωi by uh ∈ Vi, ph ∈ Wi, and
ch ∈ ML

i , respectively.
We will approximate the hyperbolic part of the fracture concentration equation

by viewing it as a directional derivative in (x, t)-space [13]. Let

(3.4.9) τ(x, t) =

(
U(x, t), Φ(x)

)

√

|U(x, t)|2 + Φ(x)2

denote the unit vector in the characteristic direction (U,Φ). Then the hyperbolic part
of the fracture concentration equation is

(3.4.10) ΦCt + U · ∇C =
√

|U |2 + Φ2
∂C

∂τ
,

and this will be approximated at (x, tn,m+1) by

√

|Un,m+1|2 + Φ2
∂Cn,m+1

∂τ
≈ Φ

Cn,m+1 − Cn,m
(
x− Un,m+1

Φ ∆tc
)

∆tc

≈ Φ
Cn,m+1
h − Ĉn,mh

∆tc
,

(3.4.11)

where

Ĉn,mh = Cn,mh (x̂n,m+1),(3.4.12)

x̂n,m+1 = x−
EUn,m+1

h

Φ
∆tc.(3.4.13)

This can be done so long as x̂n,m+1 always lies inΩ. Obviously this is not the case. It is
possible to define x̂n,m+1 when (3.4.13) would give a point outside of Ω, for example,
by an appropriate reflection [15]. However, in petroleum reservoir simulation, the
effect of the boundary is of little importance; consequently, it is reasonable to instead
consider a periodic version of our problem. This has been done in most of the papers
on the application of the modified method of characteristics to miscible displacement
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[16], [18], [25]. We can then avoid many technical details since x̂n,m+1 is always defined
in a completely natural way by (3.4.13).

We shall assume that all of our functions are Ω-periodic in x, in particular, those
of V × W and M. We must then drop the Neumann conditions on the differential
system (2.2.3) and (2.2.5), and on the approximation space V (so that then V =
V̄HP

∩ {ψ : ψ is Ω-periodic}). The weak form of the problem in Subsection 3.3 is
unchanged, except that the test functions in (3.3.1) should not have the Neumann
condition. (Also, as just mentioned, all test functions should be Ω-periodic.)

3.5. A description of the approximation procedure. Our approximation
procedure is defined by the following algorithm. The order of solution will be given
after a description of the equations.

i) The fracture velocity and pressure:
Find {Unh , P

n
h } ∈ V ×W for n = 0, . . . , n∗ such that

(
A(Cnh )Unh , ψ

)
− (∇ · ψ, Pnh ) =

(
γ(Cnh ), ψ

)
, ψ ∈ V ,(3.5.1)

(∇ · Unh , ϕ) = (fn, ϕ), ϕ ∈ W .(3.5.2)

ii) The matrix velocity and pressure:
Find {unh, p

n
h} ∈ Vi ×Wi for each i and for n = 0, . . . , n∗ such that

(
a(cnh)u

n
h, ψ

)

i
− (∇ · ψ, pnh)i =

(
γ(cnh), ψ

)

i
+

(
[A(Cnh )Unh − γ(Cnh )], ψ

)

i

− (∇ · ψ, Pnh )i, ψ ∈ Vi,

(3.5.3)

(∇ · unh, ϕ)i = 0, ϕ ∈ Wi.(3.5.4)

We will decouple the calculations for the concentrations from those for the veloc-
ities by employing the extrapolation operator E.

iii) The fracture concentration:

Find Cn,m+1
h ∈ M for n = 0, . . . , n∗ − 1 and m = 0, . . . ,m∗,n − 1 such that

(3.5.5)
(

Φ
Cn,m+1
h − Ĉn,mh

∆tc
, ω

)

+
(
D(EUn,m+1

h )∇Cn,m+1
h ,∇ω

)
+ (Cn,m+1

h fn,m+1
+ , ω)

= (Cn,m+1
inj fn,m+1

+ , ω) +
∑

i

(gn,m+1
ih , ω), ω ∈ M,

where Ĉn,mh is defined above by (3.4.12)–(3.4.13) and gn,m+1
ih is defined below by

(3.5.13) as an affine function of Cn,m+1
h .

The computation for the matrix concentration will be split into several pieces.
This will enable us to decouple it from that for the fracture concentration.

The matrix concentration problem is coupled to the fracture concentration prob-
lem through the boundary condition (2.3.7). We can approximate this condition over
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Jn,m+1 as follows:

cn,m,l+1(x) = Λi(C
n,m,l+1)(x)

≈ Λi(IC
n,m,l+1)(x)

= Λi(C
n,m)(x) +

3∑

j=0

(∂Cn,m+1, λi,jχi)
l + 1

l∗
∆tcλi,j(x), for x ∈ ∂Ωi.

By solving the matrix concentration problem over Jn,m+1 with only the first piece
Λi(C

n,m) of the boundary condition, we could determine the flow of fluid that would
occur in the block due to the concentration distribution at time tn,m if no change took
place on the boundary. On the other hand, we could also determine the flow of fluid
over Jn,m+1 due to a unit change in the boundary condition to the value l+1

l∗ ∆tcλi,j(x)
if the block originally had zero concentration everywhere. Multiplying this by the
actual change (∂Cn,m+1, λi,jχi) and summing on j, we would have (approximately)
the flow of fluid due to the actual change in the boundary condition.

We will prescribe calculations in iv) and v) below to approximate the problems
described above. In none of these problems will the fracture concentration at the
advanced time level tn,m+1 appear. The approximate matrix concentration will be

defined in vi) in terms of Cn,m+1
h implicitly before this quantity is known and explicitly

thereafter.
We can avoid changing the coefficients of the linear systems that define the matrix

concentrations at the advanced time levels during each pressure time interval by a
judicious use of the extrapolation operator E [10]. As mentioned in the introduction,
these linear systems should not be large, so it is appropriate to use direct solution
techniques on them. In that case, a single factorization for each block for each pressure
time step is needed. If, for any reason, iterative solution techniques are used instead,
then the preconditioners need not be changed over the entire pressure time step.

iv) The matrix concentration assuming no change in the fracture concentration
during the time interval:

Find cn,m,l+1
−1h ∈ ML

i for each i and for n = 0, . . . , n∗ − 1, m = 0, . . . ,m∗,n − 1,
l = 0, . . . , l∗ − 1, and j = −1 such that

(

φ
cn,m,l+1
jh − c̄n,m,ljh

δtc
, ω

)

i

+ (qn,m,l+1
jh ,∇ω)i = 0, ω ∈ M0

i ,(3.5.6)

qn,m,l+1
jh = d(Eu

n+ 1
2

h )∇cn,m,l+1
jh − cn,m,l+1

jh Eu
n+ 1

2

h

+
[
d(Eun,m,l+1

h ) − d(Eu
n+ 1

2

h )
]
∇c̄n,m,ljh

− c̄n,m,ljh

[
Eun,m,l+1

h − Eu
n+ 1

2

h

]
,

(3.5.7)

c̄n,m,l
−1h =

{

cn,mh if l = 0

cn,m,l
−1h if l ≥ 1,

(3.5.8)

cn,m,l+1
−1h (x) = Λi(C

n,m
h )(x), for x ∈ ∂Ωi.(3.5.9)

v) The matrix concentration correctors for unit changes in the boundary con-
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dition during the time interval:

Find cn,m,l+1
jh ∈ ML

i for each i and for n = 0, . . . , n∗ − 1, m = 0, . . . ,m∗,n − 1,

l = 0, . . . , l∗ − 1, and j = 0, . . . , 3 such that (3.5.6)–(3.5.7) above hold with

c̄n,m,ljh =

{
0 if l = 0

cn,m,ljh if l ≥ 1,
(3.5.10)

cn,m,l+1
jh (x) =

l + 1

l∗
λi,j(x)∆tc, for x ∈ ∂Ωi.(3.5.11)

vi) The matrix concentration itself:

Define cn,m+1
h ∈ ML

i for each i and for n = 0, . . . , n∗ − 1 and m = 0, . . . ,m∗,n − 1 by

(3.5.12) cn,m+1
h = cn,m,l

∗

−1h +

3∑

j=0

(∂Cn,m+1
h , λi,jχi) c

n,m,l∗

jh .

vii) The matrix/fracture coupling:
Define for each i and for n = 0, . . . , n∗ − 1 and m = 0, . . . ,m∗,n − 1,

gn,m+1
ih = −

1

l∗

3∑

k=0

l∗−1∑

l=0

{(

φ
cn,m,l+1
−1h − c̄n,m,l

−1h

δtc
, λi,k

)

i

+ (qn,m,l+1
−1h ,∇λi,k)i

+
3∑

j=0

(∂Cn,m+1
h , λi,jχi)

[(

φ
cn,m,l+1
jh − c̄n,m,ljh

δtc
, λi,k

)

i

+ (qn,m,l+1
jh ,∇λi,k)i

]}

λi,kχi.

(3.5.13)

viii) Initialization:
Define C0

h ∈ M and c0h ∈ ML
i for each i in any manner such that

‖C0 − C0
h‖0 + ‖C0 − C0

h‖1Hc ≤ Q‖C0‖SH
S
c , 1 ≤S ≤ S∗,(3.5.14)

‖c0 − c0h‖0,m + ‖c0 − c0h‖1,mhc ≤ Q‖c0‖s,mh
s
c, 1 ≤ s ≤ s∗.(3.5.15)

There are many ways to do this. One such procedure will be defined in Subsection 4.3
below.

This completes the description of the algorithm’s equations, though it may be
easier to conceptualize the algorithm if we include a few more. These additional
equations will, in fact, be used in the convergence analysis to follow. First let us
extend the definition of cn,m+1

h given by (3.5.12) to matrix concentration time levels.
On Ωi, let

(3.5.16) cn,m,l+1
h = cn,m,l+1

−1h +
3∑

j=0

(∂Cn,m+1
h , λi,jχi) c

n,m,l+1
jh ,

for n = 0, . . . , n∗ − 1, m = 0, . . . ,m∗,n − 1, and l = 0, . . . , l∗ − 1. Now the equations
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of iv) and v) can be combined to show that cn,m,l+1
h satisfies the equations

(φδcn,m,l+1
h , ω)i + (qn,m,l+1

h ,∇ω)i = 0, ω ∈ M0
i ,(3.5.17)

qn,m,l+1
h = d(Eu

n+ 1
2

h )∇cn,m,l+1
h − cn,m,l+1

h Eu
n+ 1

2

h

+
[
d(Eun,m,l+1

h ) − d(Eu
n+ 1

2

h )
]
∇cn,m,lh

− cn,m,lh

[
Eun,m,l+1

h − Eu
n+ 1

2

h

]
,

(3.5.18)

(3.5.19) cn,m,l+1
h (x) = Λi(IC

n,m,l+1
h )(x), for x ∈ ∂Ωi.

Finally, then, (3.5.13) can be rewritten as

(3.5.20) gn,m+1
ih = −

3∑

k=0

{

(φ∂cn,m+1
h , λi,k)i +

1

l∗

l∗−1∑

l=0

(qn,m,l+1
h ,∇λi,k)i

}

λi,kχi,

for n = 0, . . . , n∗ − 1 and m = 0, . . . ,m∗,n − 1.
The order of solution of the algorithm will now be described. After the initializa-

tion viii) for C0
h and c0h, we can solve i) for {U0

h, P
0
h} and then ii) for {u0

h, p
0
h}. Now

we can successively step through the pressure time levels. For the nth, we must first
determine the concentrations at the fracture concentration time levels. This is done
for the mth by solving iv) and v), l = 0, . . . , l∗ − 1, for the five pieces of the matrix

concentration cn,m,l+1
jh , j = −1, . . . , 3. With these, iii) and vii) must be combined

and solved to obtain Cn,m+1
h . Once Cn,m+1

h is known, vi) gives us cn,m+1
h . Finally,

when the fracture concentration time level has progressed to the (n + 1)-st pressure
time level, we can again use i) and ii) to solve for the velocities and pressures Un+1

h ,

Pn+1
h , un+1

h , and pn+1
h , completing the pressure time step.

3.6. Implementation of the procedure. We end this section with two brief
remarks on implementing the approximation procedure.

In practice, it is not necessary to know the state of the matrix fluid in each block.
The pattern of flow (and, more importantly, the total amount of oil) in an individual
block can be inferred from the situation in nearby blocks. Consequently, it is sufficient
to calculate approximate solutions to the matrix equations on a representative set of
blocks. Such a set of blocks can be determined from the fracture equations. In any
field-scale simulation, the spatial partition THc

(Ω) will necessarily be coarser than
the partition of Ω arising from the physical fractures. That is, every finite element
of the fracture system will sit over many matrix blocks. A reasonable choice for the
representative set of blocks consists only of those that contain the quadrature points
of the fracture concentration calculation. This, then, significantly reduces the number
of equations that need to be solved.

As in the case of simulating the flow of a single component in a single phase, the
approximation procedure is well suited to solution on a parallel computing network
[1], [11], since the block equations are independent of each other and there is relatively
little transfer of data between the fracture and matrix calculations.
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§4. An Analysis of the Convergence of the Procedure

In this section we give an asymptotic analysis of the convergence of the solutions
of the approximation procedure to smooth solutions of the differential model. The
quantities that have been assumed to be smooth in Subsection 3.2 above will be taken
as such without further comment. We begin by stating two theorems that describe
the convergence results. The rest of the section is devoted to their proofs. In Subsec-
tion 4.2, we derive equations for the pressure and velocity errors and bound them in
terms of the concentration errors. These concentration errors are systematically ana-
lyzed in the last five subsections. It is often valuable to analyze parabolic equations by
first considering the error associated to an elliptic projection of the true solution [30].
This we do in Subsection 4.3. Once this is done, in the following subsection we can
derive an equation for the projection of the fracture concentration error and bound
all of the terms that are not coupled to the matrix. Similarly, in the subsection after
that, an equation for the projection of the matrix concentration error is derived and
all terms not coupled to the fracture system are bounded. Then, in Subsection 4.6, we
obtain a bound for these coupling terms. Finally, an induction argument is applied
in Subsection 4.7 to control the effects of some of the nonlinearities, completing the
analysis of the concentration errors.

4.1. Statement of the convergence results. For the appropriate R, r, S,
and s, let the main error be represented by

E =

[ ∥
∥
∥
∥

∂2C

∂τ2
E

∥
∥
∥
∥
L2(L2)

+ ‖ut‖L2(L2
m) + ‖c‖H1(H1

m) + ‖ctt‖L2(L2
m)

]

∆tc

+ [ ‖Utt‖L2(L2) + ‖utt‖L2(L2
m)](∆tp)

2

+ [ ‖Ut‖L2(J1;L2) + ‖ut‖L2(J1;L2
m)]∆t

1
p

+ ‖U‖L∞(HR)H
R
p + ‖u‖L∞(Hr

m)h
r
p

+ [ ‖C‖L∞(HS) + ‖C‖H1(HS)]H
S
c

+ [ ‖c‖L∞(Hs
m) + ‖c‖H1(Hs

m)]h
s
c,

(4.1.1)

where τE is defined below in (4.4.8).
Theorem 4.1.1. If ∆tch

−2
c = o(1) as ∆tc, hc −→ 0, and if asymptotically

(
HR
p + hrp + (∆tp)

2 +∆t1p +HS
c + hsc +∆tc

)
(H

− 3
2

c + h
− 3

2
c ) = o(1)

as the discretization parameters tend to zero for some R, r, S, and s such that 1 ≤
R ≤ R∗, 1 ≤ r ≤ r∗, 2 ≤ S ≤ S∗, and 2 ≤ s ≤ s∗, then for sufficiently small

discretization parameters, the following estimate holds:

max
n,m

{
‖Cn,m − Cn,mh ‖0 + ‖cn,m − cn,mh ‖0,m + ‖Un − Unh ‖0 + ‖un − unh‖0,m

}
≤ QE .
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Moreover,

(n∗
−1,m∗

−1
∑

n,m

‖∇(C−Ch)
n,m+1‖2

0∆tc

) 1
2

+

(n∗
−1,m∗

−1
∑

n,m

l∗−1∑

l=0

‖∇(c−ch)
n,m,l+1‖2

0,mδtc

) 1
2

≤ Q
{
E + ‖C‖L∞(HS′+1)H

S′

c + ‖c‖
L∞(Hs′+1

m )
hs

′

c

}
,

where S′ = min(S, S∗ − 1) and s′ = min(s, s∗ − 1), and

max
n

{‖Pn − Pnh ‖0 + ‖pn − pnh‖0,m} ≤ Q
{
E + ‖P‖L∞(HR′ )H

R′

p + ‖p‖L∞(Hr′
m )h

r′

p

}
,

where R′ = min(R,R∗∗) and r′ = min(r, r∗∗).
Theorem 4.1.2. For any R such that 0 ≤ R ≤ R∗∗,

max
n

‖∇ · (Un − Unh )‖0 ≤ Q ‖∇ · U‖L∞(HR)H
R
p ,

and, for all n,
∇ · (un − unh) = 0.

Since S∗ ≥ 2 and s∗ ≥ 2, the assumptions of the first theorem are quite reason-
able. They merely say that Hc and hc cannot tend to zero too fast compared to the
other parameters. These two convergence theorems are a combination of (4.7.7) and
Lemmas 4.2.2 and 4.3.1 below.

4.2. Analysis of the pressure error equations. For n = 0, . . . , n∗, let

Υn = Un − Unh , Θn = Pn − Pnh ,

υn = un − unh, θn = pn − pnh.

These errors satisfy a set of equations given by subtracting (3.5.1)–(3.5.4) from an
evaluation of (3.3.1)–(3.3.4) at the time tn:

(
A(Cnh )Υn,ψ

)
− (∇ · ψ,Θn)

=
(
[γ(Cn) − γ(Cnh )], ψ

)

−
(
[A(Cn) −A(Cnh )]Un, ψ

)
, ψ ∈ V ,

(4.2.1)

(∇ · Υn, ϕ) = 0, ϕ ∈ W ,(4.2.2)

(
a(cnh)υn,ψ

)

i
− (∇ · ψ, θn)i

=
(
[γ(cn) − γ(cnh)], ψ

)

i
− (∇ · ψ,Θn)i

+
(
A(Cnh )Υn, ψ

)

i
−

(
[γ(Cn) − γ(Cnh )], ψ

)

i

−
(
[a(cn) − a(cnh)]u

n, ψ
)

i

+
(
[A(Cn) −A(Cnh )]Un, ψ

)

i
, ψ ∈ Vi,

(4.2.3)

(∇ · υn, ϕ)i = 0, ϕ ∈ Wi.(4.2.4)

Equations (4.2.1)–(4.2.2) have been analyzed in [9] by making use of a certain projec-
tion of {Un, Pn} into V ×W . The result can be refined as described in [4] by making
use of the duality ideas of Douglas and Roberts [12]. The refined estimates show that
L2-norms of the errors Υn and Θn are bounded by the sum of Hp to the optimal
power and ‖Cn − Cnh‖0, where the regularity needed of the solution is optimal and
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where quasi-regularity of the partition THp
(Ω) is required to bound the L∞-norm of

the projection of Un.
We will use a more direct approach to analyze (4.2.1)–(4.2.4). Standard projec-

tions of {Un, Pn} into V ×W and of {un, pn} into Vi ×Wi will be used rather than
the special projections of [9]. The advantage of this approach is that it is easy to
understand and it does not require that the partition be quasi-regular. Let us start
by considering the situation on V ×W .

With H1
N denoting the spaceHN (div;Ω)∩(H1)3, each of our mixed finite element

spaces [6], [7], [22], [24] has the property that there exist projection operators Π :
H1
N + V −→ V and P = L2-projection : L2

C −→ W such that for (v, w) ∈ H1
N × L2

C ,

‖v − Πv‖0 ≤ Q‖v‖RH
R
p , 1 ≤ R ≤ R∗,(4.2.5)

‖∇ · (v − Πv)‖0 ≤ Q‖∇ · v‖RH
R
p , 0 ≤ R ≤ R∗∗,(4.2.6)

‖w − Pw‖0 ≤ Q‖w‖RH
R
p , 0 ≤ R ≤ R∗∗,(4.2.7)

and, on V ,

(4.2.8) divΠ = Pdiv.

Also, divV = W ; in fact:
Lemma 4.2.1. Given w ∈ W, there exists v ∈ V such that

∇ · v = w and ‖v‖H(div;Ω) ≤ Q‖w‖0,

where the H(div;Ω)-norm is given by

‖v‖H(div;Ω) = { ‖v‖2
0 + ‖∇ · v‖2

0}
1/2.

This lemma was proven by Raviart and Thomas [24, Theorem 4] for the spaces of
their paper. The lemma is true for any of the spaces V and W satisfying the properties
mentioned above. For the sake of completeness, we present a simple proof below. A
more general version of this kind of proof appears in [12].

Proof. Modulo the constant functions, one can solve the elliptic system

∆ϕ = w in Ω,

∇ϕ · ν = 0 on ∂Ω.

It is well known that

‖ϕ‖2 ≤ Q‖w‖0.

Let

v = Π∇ϕ ∈ V .

Then, by (4.2.8),

∇ · v = ∇ · Π∇ϕ = P∆ϕ = Pw = w ∈ W

and, by (4.2.5),

‖v‖0 = ‖Π∇ϕ‖0 ≤ ‖Π∇ϕ−∇ϕ‖0 + ‖∇ϕ‖0 ≤ Q‖ϕ‖2Hp + ‖ϕ‖1 ≤ Q‖w‖0.

Analogous properties hold for the projections Πi and Pi associated to Vi ×Wi.
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With these preliminaries out of the way, it is easy to analyze (4.2.1)–(4.2.2). First,
take ψ = ΠΥn in (4.2.1) and ϕ = PΘn in (4.2.2). Add the two equations together to
see that

(
A(Cnh )Υn,ΠΥn

)
− (∇ · ΠΥn, Θn) + (∇ · Υn,PΘn)

=
(
[γ(Cn) − γ(Cnh )],ΠΥn

)
−

(
[A(Cn) −A(Cnh )]Un,ΠΥn

)

≤ Q‖Cn − Cnh ‖
2
0 + ε‖ΠΥn‖2

0.

The last two terms on the far left-hand side above cancel by (4.2.8) (since P is L2-
projection). Consequently, since Υn − ΠΥn = Un − ΠUn,

‖Υn‖2
0 ≤ Q

{(
A(Cnh )Υn,ΠΥn

)
+

(
A(Cnh )Υn, Un − ΠUn

)}

≤ Q
{
‖Un − ΠUn‖2

0 + ‖Cn − Cnh ‖
2
0

}
+ ε‖Υn‖2

0.
(4.2.9)

Next, (4.2.2) shows that ∇ · Unh = P∇ · Un (= Pfn), so

(4.2.10) ‖∇ · Υn‖0 = ‖∇ · Un − P∇ · Un‖0.

Finally, in (4.2.1) let ψ be the function associated to PΘn by Lemma 4.2.1. Then

(PΘn, Θn) = (∇ · ψ,Θn) =
(
A(Cnh )Υn, ψ

)
−

(
[γ(Cn) − γ(Cnh )], ψ

)

+
(
[A(Cn) −A(Cnh )]Un, ψ

)

≤ Q
{
‖Υn‖2

0 + ‖Cn − Cnh ‖
2
0

}
+ ε‖ψ‖2

0

≤ Q
{
‖Υn‖2

0 + ‖Cn − Cnh ‖
2
0

}
+ ε‖PΘn‖2

0.

Since Θn − PΘn = Pn − PPn and P is bounded on L2,

‖Θn‖2
0 = (Pn − PPn, Θn) + (PΘn, Θn)

≤ Q
{
‖Pn − PPn‖2

0 + ‖Υn‖2
0 + ‖Cn − Cnh‖

2
0

}
+ ε‖Θn‖2

0.

(4.2.11)

Analogously, we can analyze (4.2.3)–(4.2.4) to derive the following:

‖υn‖2
0,i ≤ Q

{
‖un − Πiu

n‖2
0,i + ‖cn − cnh‖

2
0,i

+ ‖Υn‖2
0,i + ‖Cn − Cnh‖

2
0,i

}
,

(4.2.12)

∇ · υn = 0,(4.2.13)

‖θn‖2
0,i ≤ Q

{
‖pn − Pip

n‖2
0,i + ‖υn‖2

0,i + ‖cn − cnh‖
2
0,i

+ ‖Θn‖2
0,i + ‖Υn‖2

0,i + ‖Cn − Cnh ‖
2
0,i

}
.

(4.2.14)

Combining (4.2.9)–(4.2.14) with (4.2.5)–(4.2.7) and the analogous estimates on
the Vi ×Wi gives the following lemma.
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Lemma 4.2.2. For n = 0, . . . , n∗,

‖Υn‖0 ≤ Q
{
‖Un‖RH

R
p + ‖Cn − Cnh‖0

}
, 1 ≤ R ≤ R∗,

‖∇ · Υn‖0 ≤ Q ‖∇ · Un‖RH
R
p , 0 ≤ R ≤ R∗∗,

‖Θn‖0 ≤ Q
{
‖Pn‖RH

R
p + ‖Υn‖0 + ‖Cn − Cnh‖0

}
, 0 ≤ R ≤ R∗∗,

‖υn‖0,m ≤ Q
{
‖un‖r,mh

r
p + ‖cn − cnh‖0,m

+ ‖Un‖RH
R
p + ‖Cn − Cnh ‖0

}
, 1 ≤ r ≤ r∗, 1 ≤ R ≤ R∗,

∇ · υn = 0, on Ωm,

‖θn‖0,m ≤ Q
{
‖pn‖r,mh

r
p + ‖υn‖0,m + ‖cn − cnh‖0,m

+ ‖Pn‖RH
R
p + ‖Υn‖0 + ‖Cn − Cnh ‖0

}
, 0 ≤ r ≤ r∗∗, 0 ≤ R ≤ R∗∗.

The nonoptimal regularity required of the pressures appears to be avoided in [4] at
the expense of requiring quasi-regularity of the partition. However, the concentration
estimates will depend on the velocity errors, so this additional regularity is needed in
any case.

4.3. Some projections of the concentrations. Following [9], let C̃ : J −→
M be defined by

(
D(U)∇C̃,∇ω

)
+

(
(σ + f+)C̃, ω

)

=
(
D(U)∇C,∇ω

)
+

(
(σ + f+)C, ω

)

= −(ΦCt + U · ∇C, ω) + (Cinjf+, ω)

+
∑

i

(
gi(c, u), ω

)
+ (σC, ω), ω ∈ M,

(4.3.1)

where σ is large enough to ensure coercivity of the elliptic form (σ ≥ σ∗ > 0 suffices),
and where the last equality above is from (3.3.5).

Similarly, on each Ωi, let c̃ : J −→ ML
i be defined by

(
q(c̃, u),∇ω

)

i
=

(
q(c, u),∇ω

)

i
= −(φct, ω)i, ω ∈ M0

i ,(4.3.2)

c̃(x, t) = c(x, t) = Λi
(
C( · , t)

)
(x), for (x, t) ∈ ∂Ωi × J,(4.3.3)

where we have used (3.3.7)–(3.3.8). Recall that q is defined by (2.3.4), so the form in
(4.3.2) is elliptic. It is also coercive on H1

0 (Ωi) since ∇ · u = 0.
The usual analyses of finite element methods for elliptic problems show that
Lemma 4.3.1.

‖C − C̃‖0 + ‖C − C̃‖1Hc ≤ Q‖C‖SH
S
c , 1 ≤ S ≤ S∗,

∥
∥
∥
∥

∂(C − C̃)

∂t

∥
∥
∥
∥

0

+

∥
∥
∥
∥

∂(C − C̃)

∂t

∥
∥
∥
∥

1

Hc ≤ Q
{
‖C‖S + ‖Ct‖S

}
HS
c , 1 ≤ S ≤ S∗,

‖c− c̃‖0,m + ‖c− c̃‖1,mhc ≤ Q‖c‖s,mh
s
c, 1 ≤ s ≤ s∗,

∥
∥
∥
∥

∂(c− c̃)

∂t

∥
∥
∥
∥

0,m

+

∥
∥
∥
∥

∂(c− c̃)

∂t

∥
∥
∥
∥

1,m

hc ≤ Q
{
‖c‖s,m + ‖ct‖s,m

}
hsc, 1 ≤ s ≤ s∗.
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The function Λi(C) does not appear in the norms on the right-hand sides of the last
two estimates above since ‖c− Λi(C)‖1,m ≤ Q‖c‖1,m [2].

It is also possible to show that, if the solution is sufficiently smooth, the W 1,∞-
norms of C̃ and c̃ are bounded (since the concentration partitions are quasi-regular):

(4.3.4) ‖C̃‖1,∞ + ‖c̃‖1,∞,m ≤ Q.

Let

Ξn,m = C̃n,m − Cn,mh and ξn,m,l = Ic̃n,m,l − cn,m,lh ;

it remains to estimate the sizes of these errors.
Note that Lemmas 4.2.2 and 4.3.1 together imply that

N,M
∑

n,m

‖Υn‖2
0∆tc ≤ Q

{

E2 +

N,M
∑

n,m

‖Ξn‖2
0∆tc

}

,(4.3.5)

N,M
∑

n,m

‖υn‖2
0,m∆tc ≤ Q

{

E2 +

N,M
∑

n,m

(
‖ξn‖2

0,m + ‖Ξn‖2
0

)
∆tc

}

,(4.3.6)

for any N and M .
In the rest of the analysis, we shall tacitly assume that

C0
h = C̃0 and c0h = c̃0

so that

Ξ0 = 0 and ξ0 = 0.

By (3.5.14)–(3.5.15), any other reasonable initialization will have the same final con-
vergence estimate.

4.4. An analysis of the fracture concentration error equation. We will
now analyze those terms that arise in the fracture concentration error equation that
are not coupled to the matrix quantities. Such analyses have appeared elsewhere [13],
[16], [18], [25]. For our purposes, the paper of Ewing, Russell, and Wheeler [18] is the
most convenient. Their work requires an asymptotic restriction that we shall remove
in a manner that is based on the work of Durán [16].

The above authors make use of evaluations of functions at not only x̂ (defined in
(3.4.13) above), but also at x̌, where

(4.4.1) x̌n,m+1 = x−
EUn,m+1

Φ
∆tc.

Let

ω̂n,m = ωn,m(x̂n,m+1) = ω(x̂n,m+1, tn,m),(4.4.2)

ω̌n,m = ωn,m(x̌n,m+1) = ω(x̌n,m+1, tn,m).(4.4.3)

An equation for the error Ξn,m+1 is obtained by combining (3.5.5) with an evaluation
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of (4.3.1) at time tn,m+1. We have after some manipulation that

(Φ∂Ξn,m+1, ω) +
(
D(EUn,m+1

h )∇Ξn,m+1,∇ω
)

+ (Ξn,m+1fn,m+1
+ , ω)

= −
(
[D(Un,m+1) −D(EUn,m+1

h )]∇C̃n,m+1,∇ω
)

+
(
σ(Cn,m+1 − C̃n,m+1), ω

)

−
(
Φ(∂Cn,m+1 − ∂C̃n,m+1), ω

)
−

(
[Un,m+1 − EUn,m+1] · ∇Cn,m+1, ω

)

−

(

[ΦCn,m+1
t + EUn,m+1 · ∇Cn,m+1] − Φ

Cn,m+1 − Čn,m

∆tc
, ω

)

+

(

Φ
(Č − ˇ̃C)n,m − (C − C̃)n,m

∆tc
, ω

)

+

(

Φ
Ξ̌n,m − Ξn,m

∆tc
, ω

)

−

(

Φ
ˆ̃C
n,m

− ˇ̃C
n,m

∆tc
, ω

)

+

(

Φ
Ξ̂n,m − Ξ̌n,m

∆tc
, ω

)

+
∑

i

(
gn,m+1
i − gn,m+1

ih , ω
)
, ω ∈ M.

(4.4.4)

We choose the test function ω = Ξn,m+1 ∈ M in the error equation. The left-
hand side of (4.4.4) is bounded from below by the expression

(4.4.5)
1

2∆tc
[(ΦΞn,m+1, Ξn,m+1) − (ΦΞn,m, Ξn,m)] +D∗‖∇Ξ

n,m+1‖2
0

The first four terms on the right-hand side of (4.4.4) are easily dealt with (see [9]
and [10]). Firstly, we have for n ≥ 1 that

−
(
[D(Un,m+1) −D(EUn,m+1

h )]∇C̃n,m+1,∇Ξn,m+1
)

−
(
[Un,m+1 − EUn,m+1] · ∇Cn,m+1, Ξn,m+1

)

≤ Q
{
‖Utt‖

2
L2(Jn+1∩Jn;L2)(∆tp)

3 + ‖EΥn,m+1‖2
0+‖Ξn,m+1‖2

0

}

+ ε ‖∇Ξn,m+1‖2
0

≤ Q
{
‖Utt‖

2
L2(Jn+1∩Jn;L2)(∆tp)

3 + ‖Υn‖2
0 + ‖Υn−1‖2

0+‖Ξn,m+1‖2
0

}

+ ε ‖∇Ξn,m+1‖2
0,

(4.4.6)

where we have used (4.3.4) and the Lipschitz character of D(U) (see [9, (7.4)]). If
n = 0, then we have the same bounds except that ‖Utt‖

2
L2(Jn+1∩Jn;L2)(∆tp)

3 must

be replaced by ‖Ut‖
2
L2(J1;L2)∆t

1
p since the extrapolation operator E is only first order

accurate on J1, and we must interpret the term at time level tn−1 as zero. Secondly,
with Lemma 4.3.1,

(
σ(Cn,m+1 − C̃n,m+1), Ξn,m+1

)
−

(
Φ(∂Cn,m+1 − ∂C̃n,m+1), Ξn,m+1

)

≤ Q
{
‖Cn,m+1 − C̃n,m+1‖2

0 + ‖Ct − C̃t‖
2
L2(Jn,m+1;L2)(∆tc)

−1 + ‖Ξn,m+1‖2
0

}

≤ Q
{
‖C‖2

L∞(HS)H
2S
c + ‖C‖2

H1(Jn,m+1;HS)(∆tc)
−1H2S

c + ‖Ξn,m+1‖2
0

}
.

(4.4.7)
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The next three terms are estimated with the aid of a change of variables. In
[13], [18], and [25] it is shown that the mapping x 7−→ x̌n,m+1 is, by periodicity, a
differentiable homeomorphism of Ω onto itself for ∆tc small enough. The determinant
of the Jacobian is 1 + O(∆tc). Hence, integrals involving x̌n,m+1 can be converted
into integrals involving x alone quite readily.

With the approximate characteristic direction

(4.4.8) τE(x, t) =
(EUn,m+1, Φ)

√

|EUn,m+1|2 + Φ2
≈ τ(x, t)

for t ∈ Jn,m+1, it is known that the fifth term on the right-hand side of (4.4.4) satisfies

−

(

[ΦCn,m+1
t + EUn,m+1 · ∇Cn,m+1] − Φ

Cn,m+1 − Čn,m

∆tc
, Ξn,m+1

)

= −

(
√

|EUn,m+1|2 + Φ2
∂Cn,m+1

∂τE
− Φ

Cn,m+1 − Čn,m

∆tc
, Ξn,m+1

)

≤ Q

{∥
∥
∥
∥

∂2C

∂τ2
E

∥
∥
∥
∥

2

L2(Jn,m+1;L2)

∆tc + ‖Ξn,m+1‖2
0

}

,

(4.4.9)

since ΦC
n,m+1

−Čn,m

∆tc
is essentially a backward difference approximation to the de-

rivative
√

|EUn,m+1|2 + Φ2 ∂C
n,m+1

∂τE
. It is (4.4.9) that shows the value of the mod-

ified method of characteristics. The analysis shows that the bound on the fracture

time truncation error is proportional to
∥
∥∂

2C
∂τ2

E

∥
∥
L2(L2)

∆tc; whereas, in a more standard

Galerkin approximation procedure, this bound is proportional to ‖Ctt‖L2(L2)∆tc. Be-

cause the fracture concentration equation is convection dominated, ∂C
∂τ ≈ 0, so we

expect that
∣
∣
∣
∣

∂2C

∂τ2
E

∣
∣
∣
∣
� |Ctt|.

Hence, in theory it should be acceptable to take a reasonably long fracture concen-
tration time step; this has been observed in practice for miscible displacement in an
unfractured reservoir [17].

To obtain an optimal order estimate of the sixth term on the right-hand side of
(4.4.4), the expression

(Č − ˇ̃C)n,m − (C − C̃)n,m

∆tc
,

which acts as if it were a spatial derivative, is estimated in the norm of the dual space
of H1. A change of variables argument shows that

−

(

Φ
(Č − ˇ̃C)n,m − (C − C̃)n,m

∆tc
, Ξn,m+1

)

≤ Q‖(C − C̃)n,m‖2
0 + ε‖Ξn,m+1‖2

1

≤ Q‖C‖2
L∞(HS)H

2S
c + ε‖Ξn,m+1‖2

1,

(4.4.10)

using Lemma 4.3.1. Similarly, the seventh term satisfies

(4.4.11)

(

Φ
Ξ̌n,m −Ξn,m

∆tc
, Ξn,m+1

)

≤ Q‖Ξn,m‖2
0 + ε‖Ξn,m+1‖2

1.
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The eighth and ninth terms on the right-hand side of (4.4.4) can be bounded
easily. The aforementioned papers contain the ideas needed for the simple estimate
that

∣
∣
∣
∣

(

Φ
ϕ̂n,m − ϕ̌n,m

∆tc
, ψ

)∣
∣
∣
∣

=

∣
∣
∣
∣

(∫ 1

0

∇ϕn,m
(
x̌n,m+1 +

EΥn,m+1

Φ
∆tcs

)
·EΥn,m+1 ds, ψ

)∣
∣
∣
∣

≤ ‖∇ϕn,m‖0,∞ ‖EΥn,m+1‖0 ‖ψ‖0.

(4.4.12)

Hence, with (4.3.4) and an inverse inequality,

−

(

Φ
ˆ̃C
n,m

− ˇ̃C
n,m

∆tc
, Ξn,m+1

)

+

(

Φ
Ξ̂n,m − Ξ̌n,m

∆tc
, Ξn,m+1

)

≤ [ ‖∇C̃n,m‖0,∞ + ‖∇Ξn,m‖0,∞ ]‖EΥn,m+1‖0 ‖Ξ
n,m+1‖0

≤ Q[1 + ‖∇Ξn,m‖0H
− 3

2
c ][ ‖Υn‖0 + ‖Υn−1‖0]‖Ξ

n,m+1‖0

≤ ε(‖Υn‖2
0 + ‖Υn−1‖2

0)H
−3
c ‖∇Ξn,m‖2

0

+Q
{
‖Υn‖2

0 + ‖Υn−1‖2
0 + ‖Ξn,m+1‖2

0

}
.

(4.4.13)

Upon summing (4.4.4) on n and m, we obtain from the above estimates and
(4.3.5) the result that

1

2
Φ∗‖Ξ

N,M+1‖2
0 + (D∗ − ε)

N,M
∑

n,m

‖∇Ξn,m+1‖2
0∆tc

≤ Q

{

E2 +

N,M
∑

n,m

‖Ξn,m+1‖2
0∆tc

}

+ ε

N,M
∑

n,m

(‖Υn‖2
0 + ‖Υn−1‖2

0)H
−3
c ‖∇Ξn,m‖2

0∆tc

+

N,M
∑

n,m

∑

i

(
gn,m+1
i − gn,m+1

ih , Ξn,m+1
)
∆tc.

(4.4.14)

Only the last term on the right-hand side above needs to be estimated. It is
coupled to the matrix quantities, so we leave its estimation to a later subsection.

4.5. An analysis of the matrix concentration error equations. An equa-
tion for ξn,m,l+1 is obtained by combining (3.5.17) with the interpolation of (4.3.2) at
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times tn,m and tn,m+1 to the time tn,m,l+1. That is,

(4.5.1) (φδξn,m,l+1, ω)i +
(
(Iq̃ − qh)

n,m,l+1,∇ω
)

i

= −
(
φ(Icn,m,l+1

t − ∂c̃n,m+1), ω
)

i
, ω ∈ M0

i ,

where q̃ = q(c̃, u). Also, (3.5.19) and (4.3.3) show that

ξn,m,l+1(x) = Λi(IC
n,m,l+1 − ICn,m,l+1

h )(x)

= Λi(IΞ
n,m,l+1)(x) + Λi

(
I(C − C̃)n,m,l+1

)
(x) for x ∈ ∂Ωi.

(4.5.2)

In the analysis, we will assume that l∗ is a fixed integer; distinguishing the rate
of asymptotic convergence with respect to δtc, in place of ∆tc, will not be obtained
below, though improvement in calculated values should be expected. Choose the test
function

ω = ξn,m,l+1 −
[
Λi(IΞ

n,m,l+1) + Λi
(
I(C − C̃)n,m,l+1

)]
∈ M0

i

in (4.5.1). After multiplying by δtc, summing on i, n, m, and l, and canceling two
terms, we obtain the equation

N,M
∑

n,m

l∗−1∑

l=0

{
(φδξn,m,l+1, ξn,m,l+1)m +

(
(Iq̃ − qh)

n,m,l+1,∇ξn,m,l+1
)

m

}
δtc

= −

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(Icn,m,l+1

t − ∂c̃n,m+1), ξn,m,l+1 − Λi(I(C − C̃)n,m,l+1)
)

i

}
δtc

+

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(δξn,m,l+1,Λi(I(C − C̃)n,m,l+1)

)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(I(C − C̃)n,m,l+1)
)

i

}
δtc

+

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(Icn,m,l+1

t − δcn,m,l+1
h ),Λi(IΞ

n,m,l+1)
)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(IΞ
n,m,l+1)

)

i

}
δtc.

(4.5.3)

Let us begin our analysis of this equation by estimating the L2
m-norm of the flux
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error expression. By definitions (2.3.4) and (3.5.18), it can be written as follows:

(Iq̃ − qh)
n,m,l+1 = I

(
d(u)∇c̃− c̃u

)n,m,l+1

−
[(
d(Eu

n+ 1
2

h

)
∇cn,m,l+1

h − cn,m,l+1
h Eu

n+ 1
2

h )

+
(
d(Eun,m,l+1

h ) − d(Eu
n+ 1

2

h )
)
∇cn,m,lh

− cn,m,lh (Eun,m,l+1
h − Eu

n+ 1
2

h )
]

= d(Eu
n+ 1

2

h )∇ξn,m,l+1 − ξn,m,l+1Eun+ 1
2 + ξn,m,l+1Eυn+ 1

2

+ I
(
d(u)∇c̃

)n,m,l+1
− d(Eu

n+ 1
2

h )∇Ic̃n,m,l+1

−
(
d(Eun,m,l+1

h ) − d(Eu
n+ 1

2

h )
)
∇cn,m,lh

− I(c̃u)n,m,l+1 + Ic̃n,m,l+1Eu
n+ 1

2

h

+ cn,m,lh (Eun,m,l+1
h − Eu

n+ 1
2

h ).

(4.5.4)

For now we shall leave the first term on the far right-hand side above as it is. The
L2
m-norm of the second term satisfies the trivial bound

(4.5.5) ‖ξn,m,l+1Eun+ 1
2 ‖0,m ≤ Q ‖ξn,m,l+1‖0,m.

The L2
m-norm of the third term can be estimated by using an inverse inequality

which holds on the spaces ML
i because of the quasi-regularity of the partition Thc

(Ωi).
In three space dimensions, we have that

‖ξn,m,l+1Eυn+ 1
2 ‖0,m ≤ ‖Eυn+ 1

2 ‖0,m ‖ξn,m,l+1‖0,∞,m

≤ Q[(‖υn‖0,m + ‖υn−1‖0,m)h
− 3

2
c ] ‖ξn,m,l+1‖0,m

(4.5.6)

(again, if n = 0, interpret quantities at time tn−1 as zero).
The fourth, fifth, and sixth terms on the far right-hand side of (4.5.4) can be

combined. Since

Ic̃n,m,l+1 − Ic̃n,m,l = ∂c̃n,m+1δtc,

we have that

I
(
d(u)∇c̃

)n,m,l+1
− d(Eu

n+ 1
2

h )∇Ic̃n,m,l+1

−
(
d(Eun,m,l+1

h ) − d(Eu
n+ 1

2

h )
)
∇cn,m,lh

= I
(
d(u)∇c̃

)n,m,l+1
− d(Eun,m,l+1

h )∇Ic̃n,m,l+1

+
(
d(Eun,m,l+1

h ) − d(Eu
n+ 1

2

h )
)
(∇∂c̃n,m+1δtc + ∇ξn,m,l).

(4.5.7)

The L2
m-norm of the first two terms above can be estimated easily using the Lipschitz
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nature of d(u) once we expand the expression as below.

∥
∥I

(
d(u)∇c̃

)n,m,l+1
− d(Eun,m,l+1

h )∇Ic̃n,m,l+1
∥
∥

0,m

≤
∥
∥I

(
d(u)∇c̃

)n,m,l+1
−

(
d(u)∇c̃

)n,m,l+1∥
∥

0,m

+
∥
∥d(un,m,l+1)[∇c̃n,m,l+1 −∇Ic̃n,m,l+1]

∥
∥

0,m

+
∥
∥
(
d(un,m,l+1) − d(Eun,m,l+1)

)
∇Ic̃n,m,l+1

∥
∥

0,m

+
∥
∥
(
d(Eun,m,l+1) − d(Eun,m,l+1

h )
)
∇Ic̃n,m,l+1

∥
∥

0,m

≤ Q
{∥
∥
(
d(u)∇c̃

)

t

∥
∥
L2(Jn,m+1;L2

m)
(∆tc)

1
2 + ‖∇c̃n,m,l+1 −∇Ic̃n,m,l+1‖0,m

+ ‖un,m,l+1 − Eun,m,l+1‖0,m + ‖Eυn,m,l+1‖0,m

}

≤ Q
{[
‖ut‖L2(Jn,m+1;L2

m) + ‖∇c̃t‖L2(Jn,m+1;L2
m)

]
(∆tc)

1
2

+ ‖utt‖L2(Jn+1∩Jn;L2
m)(∆tp)

3
2 + ‖υn‖0,m + ‖υn−1‖0,m

}
,

(4.5.8)

where, again, E is only first order accurate if n = 0, so ‖utt‖L2(J2∩J1;L2
m)(∆tp)

3/2 must

be replaced by ‖ut‖L2(J1;L2
m)(∆t

1
p)

1/2 in that case.

The last term of the right-hand side of (4.5.7) is more interesting. Its L2
m-norm

can be bounded by expanding the expression and applying the inverse inequality:

∥
∥
(
d(Eun,h

m,l+1) − d(Eu
n+ 1

2

h )
)
(∇∂c̃n,m+1δtc + ∇ξn,m,l)

∥
∥

0,m

=
∥
∥
[(
d(Eun,m,l+1

h ) − d(Eun,m,l+1)
)

+
(
d(Eun+ 1

2 ) − d(Eu
n+ 1

2

h )
)

+
(
d(Eun,m,l+1) − d(Eun+ 1

2 )
)](

∇∂c̃n,m+1δtc + ∇ξn,m,l
)∥
∥

0,m

≤ Q
{(

‖Eυn,m,l+1‖0,m + ‖Eυn+ 1
2 ‖0,m

)(
‖∇∂c̃n,m+1‖0,∞,mδtc + ‖∇ξn,m,l‖0,∞,m

)

+ ‖Eun,m,l+1 − Eun+ 1
2 ‖0,∞,m

(
‖∇∂c̃n,m+1‖0,mδtc + ‖∇ξn,m,l‖0,m

)}

≤ Q [(‖υn‖0,m + ‖υn−1‖0,m)h
−

3
2

c + ‖ut‖L∞(L∞
m )∆tp]

×
(
‖∇c̃t‖L2(Jn,m+1;L2

m)(∆tc)
−

1
2 δtc + ‖∇ξn,m,l‖0,m

)
.

(4.5.9)

Note that Lemma 4.3.1 implies that

‖c̃t‖L2(Jn,m+1;H1
m) ≤ ‖ct − c̃t‖L2(Jn,m+1;H1

m) + ‖ct‖L2(Jn,m+1;H1
m)

≤ Q ‖c‖H1(Jn,m+1;H1
m).

(4.5.10)

Analogously, the bounds of (4.5.8)–(4.5.9) also hold for the L2
m-norm of the last

three terms on the far right-hand side of (4.5.4), provided only that the gradients of
c̃ and ch are replaced by the corresponding functions themselves. These bounds and
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those of (4.5.5)–(4.5.6) enable us to obtain from (4.5.4) the useful estimate that

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1 − d(Eu

n+ 1
2

h )∇ξn,m,l+1‖2
0,mδtc

≤ Q

N,M
∑

n,m

l∗−1∑

l=0

{
[1 + (‖υn‖2

0,m + ‖υn−1‖2
0,m)h−3

c ] ‖ξn,m,l+1‖2
0,m

+ [‖ut‖
2
L2(Jn,m+1;L2

m) + ‖c̃t‖
2
L2(Jn,m+1;H1

m)]∆tc

+ ‖utt‖
2
L2(Jn+1∩Jn;L2

m)(∆tp)
3 + ‖υn‖2

0,m + ‖υn−1‖2
0,m

+ [(‖υn‖2
0,m + ‖υn−1‖2

0,m)h−3
c + ‖ut‖

2
L∞(L∞

m )(∆tp)
2]

× [‖c̃t‖
2
L2(Jn,m+1;H1

m)(∆tc)
−1(δtc)

2 + ‖ξn,m,l‖2
1,m]

}
δtc

≤ Q

{

E2 +

N,M
∑

n,m

(
‖ξn‖2

0,m + ‖Ξn‖2
0

)
∆tc

+

N,M
∑

n,m

l∗−1∑

l=0

{
[1 + (‖υn‖2

0,m + ‖υn−1‖2
0,m)h−3

c ]‖ξn,m,l+1‖2
0,m

+ [(‖υn‖2
0,m + ‖υn−1‖2

0,m)h−3
c + ‖ut‖

2
L∞(L∞

m )(∆tp)
2]

× [ ‖c‖2
H1(Jn,m+1;H1

m)(∆tc)
−1(δtc)

2 + ‖ξn,m,l‖2
1,m]

}
δtc

}

,

(4.5.11)

where we have used (4.5.10) and (4.3.6) in the second inequality above. Finally,
another useful result is that

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃−qh)
n,m,l+1‖2

0,mδtc

≤ Q

N,M
∑

n,m

l∗−1∑

l=0

{
‖(Iq̃ − qh)

n,m,l+1 − d(Eu
n+ 1

2

h )∇ξn,m,l+1‖2
0,m

+ ‖d(Eun+ 1
2 )∇ξn,m,l+1‖2

0,m

+
∥
∥
(
d(Eu

n+ 1
2

h ) − d(Eun+ 1
2 )

)
∇ξn,m,l+1

∥
∥

2

0,m

}
δtc

≤ Q

N,M
∑

n,m

l∗−1∑

l=0

{
‖(Iq̃ − qh)

n,m,l+1 − d(Eu
n+ 1

2

h )∇ξn,m,l+1‖2
0,m

+ [1 + (‖υn‖2
0,m + ‖υn−1‖2

0,m)h−3
c ]‖∇ξn,m,l+1‖2

0,m

}
δtc,

(4.5.12)

where an analogue to (4.5.6) has been used.
Now let us return to (4.5.3). The left-hand side can be bounded from below in
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terms of the expression in (4.5.11). We have that

N,M
∑

n,m

l∗−1∑

l=0

{
(φδξn,m,l+1, ξn,m,l+1)m +

(
(Iq̃ − qh)

n,m,l+1,∇ξn,m,l+1
)

m

}
δtc

≥

N,M
∑

n,m

l∗−1∑

l=0

{1

2
[(φξn,m,l+1, ξn,m,l+1)m − (φξn,m,l, ξn,m,l)m]

+
(
d(Eu

n+ 1
2

h )∇ξn,m,l+1,∇ξn,m,l+1
)

m
δtc

+
(
(Iq̃ − qh)

n,m,l+1 − d(Eu
n+ 1

2

h )∇ξn,m,l+1,∇ξn,m,l+1
)

m
δtc

}

≥
1

2
φ∗‖ξ

N,M+1‖2
0,m + d∗

N,M
∑

n,m

l∗−1∑

l=0

∥
∥∇ξn,m,l+1‖2

0,mδtc

−Q

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1 − d(Eu

n+ 1
2

h )∇ξn,m,l+1‖2
0,mδtc.

(4.5.13)

Since the first two terms on the right-hand side of (4.5.3) do not depend on the
approximate fracture concentration, they can be treated directly. For the first we see
that

−

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(Icn,m,l+1

t − ∂c̃n,m+1), ξn,m,l+1 − Λi(I(C − C̃)n,m,l+1)
)

i

}
δtc

≤ Q

N,M
∑

n,m

l∗−1∑

l=0

{
‖Icn,m,l+1

t − ∂c̃n,m+1‖2
0,m

+ ‖ξn,m,l+1‖2
0,m + ‖I(C − C̃)n,m,l+1‖2

0

}
δtc

≤ Q

{

‖ctt‖
2
L2(L2

m)(∆tc)
2 + ‖ct − c̃t‖

2
L2(L2

m) + ‖C − C̃‖2
L∞(L2)

+

N,M
∑

n,m

l∗−1∑

l=0

‖ξn,m,l+1‖2
0,mδtc

}

.

(4.5.14)

For the second term on the right-hand side of (4.5.3), first note that summation
by parts yields

N,M
∑

n,m

l∗−1∑

l=0

∑

i

(
φ(δξn,m,l+1,Λi(I(C − C̃)n,m,l+1)

)

i
δtc

=
∑

i

(
φξN,M+1,Λi((C − C̃)N,M+1)

)

i

−

N,M
∑

n,m

l∗−1∑

l=0

∑

i

(
φ(ξn,m,l,Λi(∂(C − C̃)n,m+1)

)

i
δtc ;

(4.5.15)
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hence,

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(δξn,m,l+1,Λi(I(C − C̃)n,m,l+1)

)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(I(C − C̃)n,m,l+1)
)

i

}
δtc

≤ ε

{

‖ξN,M+1‖2
0,m +

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1‖2

0,mδtc

}

+Q

{

‖(C − C̃)N,M+1‖2
0 +

N,M
∑

n,m

l∗−1∑

l=0

[
‖ξn,m,l‖2

0,m + ‖∂(C − C̃)n,m+1‖2
0

+ ‖I(C − C̃)n,m,l+1‖2
0

]
δtc

}

≤ ε

{

‖ξN,M+1‖2
0,m +

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1‖0,mδtc

}

+Q

{N,M
∑

n,m

l∗−1∑

l=0

‖ξn,m,l‖2
0,mδtc + ‖Ct − C̃t‖

2
L2(L2) + ‖C − C̃‖2

L∞(L2)

}

.

(4.5.16)

Here, indeed, ε can be taken as small as we please. Later we will apply (4.5.12), so
the Q there will need to be counteracted by a small enough ε here.

Finally, combining (4.5.13)–(4.5.14), (4.5.16), and Lemma 4.3.1 with (4.5.3) gives
us that

(
1

2
φ∗−ε

)

‖ξN,M+1‖2
0,m + d∗

N,M
∑

n,m

l∗−1∑

l=0

‖∇ξn,m,l+1‖2
0,mδtc

≤ Q

{

E2 +

N,M
∑

n,m

l∗−1∑

l=0

‖ξn,m,l+1‖2
0,mδtc

+

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1 − d(Eu

n+ 1
2

h )∇ξn,m,l+1‖2
0,mδtc

}

+ ε

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1‖2

0,mδtc

+

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(Icn,m,l+1

t − δcn,m,l+1
h ),Λi(IΞ

n,m,l+1)
)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(IΞ
n,m,l+1)

)

i

}
δtc,

(4.5.17)
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where (4.5.11) bounds one of the terms on the right-hand side above. The term that
is coupled to the fracture concentration error Ξ has not been estimated. We turn now
to an analysis of the coupling terms.

4.6. A bound for the main matrix/fracture coupling error. The last term
on the right-hand side of either (4.4.14) or (4.5.17) is too strong to bound in any direct
manner. The sum of these two terms, however, can be shown to be small. We shall call
this sum the main matrix/fracture coupling error. We shall now derive an expression
for it. First, the last term on the right-hand side of (4.4.14) can be rewritten with the
definitions (2.4.2) and (3.5.20), and then the integrals can be simplified by noting the
definition of Λi, namely, (2.4.1). The result is

(4.6.1)
(
gn,m+1
i − gn,m+1

ih , Ξn,m+1
)
= −

(
φ(cn,m+1

t − ∂cn,m+1
h ),Λi(Ξ

n,m+1)
)

i

−

(

qn,m+1 −
1

l∗

l∗−1∑

l=0

qn,m,l+1
h ,∇Λi(Ξ

n,m+1)

)

i

.

Now, since IΞn,m,l+1 − Ξn,m+1 = (l + 1 − l∗)∂Ξn,m+1δtc, the main matrix/fracture
coupling error is given by

N,M
∑

n,m

∑

i

{l∗−1∑

l=0

[(
φ(Icn,m,l+1

t − δcn,m,l+1
h ),Λi(IΞ

n,m,l+1)
)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(IΞ
n,m,l+1)

)

i

]
δtc

−

[
(
φ(cn,m+1

t − ∂cn,m+1
h ),Λi(Ξ

n,m+1)
)

i

+

(

qn,m+1 −
1

l∗

l∗−1∑

l=0

qn,m,l+1
h ,∇Λi(Ξ

n,m+1)

)

i

]

∆tc

}

=

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(Icn,m,l+1

t − δcn,m,l+1
h ),Λi(∂Ξ

n,m+1)
)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(∂Ξ
n,m+1)

)

i

}
(l + 1 − l∗)(δtc)

2

+

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(Ict − ct)

n,m+1,Λi(Ξ
n,m+1)

)

i

+
(
Iq̃n,m,l+1 − qn,m+1,∇Λi(Ξ

n,m+1)
)

i

}
δtc.

(4.6.2)

If l∗ = 1, most of the right-hand side of (4.6.2) vanishes; a term that is related to
the error of the matrix concentration projection remains, but no term that contains
both ξ and Ξ appears. All of the previous analyses of naturally fractured reservoir
simulation [1], [2], [4] have assumed that the time step used to solve the matrix
equations is the same as that used for solving the fracture equation; consequently, the
main matrix/fracture coupling term could be handled relatively easily. For l∗ ≥ 2, we
must give a new argument to relate quantities at matrix concentration time levels to
those at the following fracture concentration time level. It should be possible to do this
by completely analyzing the discrete time differences δξn,m,l+1 and ∂Ξn,m+1. In the
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relatively simple analysis given here, we will analyze only the matrix concentration
time difference. This cannot be done in full without including an analysis of the
fracture concentration time difference. Instead, as mentioned in the introduction, we
will impose a mild hypothesis.

The last term on the right-hand side of (4.6.2) presents no major difficulties. Note
that by definition

Iq̃n,m,l+1 − qn,m+1 = Iq̃n,m,l+1 − q̃n,m+1 + (q̃ − q)n,m+1

= (l + 1 − l∗)∂q̃n,m+1δtc − qn,m+1
(
(c− c̃), u

)
.

Hence, integration by parts with (4.3.3) gives that

(
Iq̃n,m,l+1 − qn,m+1,∇Λi(Ξ

n,m+1)
)

i

=
(
(l + 1 − l∗)∂q̃n,m+1δtc,∇Λi(Ξ

n,m+1)
)

i

−
(
d(un,m+1)∇(c− c̃)n,m+1 − (c− c̃)n,m+1un,m+1,∇Λi(Ξ

n,m+1)
)

i

=
(
(l + 1 − l∗)∂q̃n,m+1δtc,∇Λi(Ξ

n,m+1)
)

i

+
(
(c− c̃)n,m+1,∇ · d(un,m+1)∇Λi(Ξ

n,m+1)
)

i

+
(
(c− c̃)n,m+1un,m+1,∇Λi(Ξ

n,m+1)
)

i
.

(4.6.3)

We have already observed (4.5.10), so

‖∂q̃n,m+1‖0,m ≤
∥
∥q̃t

∥
∥
L2(Jn,m+1;L2

m)
(∆tc)

− 1
2

≤ Q
{
‖ut‖L2(Jn,m+1;L2

m) + ‖c‖H1(Jn,m+1;H1
m)

}
(∆tc)

− 1
2 ,

and the last term on the right-hand side of (4.6.2) satisfies the inequality

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(Icn,m,l+1

t − cn,m+1
t ),Λi(Ξ

n,m+1)
)

i

+
(
Iq̃n,m,l+1 − qn,m+1,∇Λi(Ξ

n,m+1)
)

i

}
δtc

≤ Q

N,M
∑

n,m

l∗−1∑

l=0

{
‖Icn,m,l+1

t − cn,m+1
t ‖2

0,m + ‖Ξn,m+1‖2
0

+ ‖∂q̃n,m+1‖2
0,m(∆tc)

2 + ‖(c− c̃)n,m+1‖2
0,m

}
δtc

≤ Q

{

E2 +

N,M
∑

n,m

‖Ξn,m+1‖2
0∆tc

}

.

(4.6.4)

We will now estimate the first term on the right-hand side of (4.6.2) by giving a
partial analysis of the matrix concentration time difference. Choose the test function

ω =
{[

Λi(∂Ξ
n,m+1) + Λi

(
∂(C − C̃)n,m+1

)]
− δξn,m,l+1

}
(l + 1 − l∗)(δtc)

2 ∈ M0
i

in (4.5.1). After combining two terms and summing on i, n, m, and l, we obtain an
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expression for our term:

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φ(Icn,m,l+1

t − δcn,m,l+1
h ),Λi(∂Ξ

n,m+1)
)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(∂Ξ
n,m+1)

)

i

}
(l + 1 − l∗)(δtc)

2

=

N,M
∑

n,m

l∗−1∑

l=0

{
(φδξn,m,l+1, δξn,m,l+1)m

+
(
(Iq̃ − qh)

n,m,l+1,∇δξn,m,l+1
)

m

}
(l + 1 − l∗)(δtc)

2

−

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φδξn,m,l+1,Λi(∂(C − C̃)n,m+1)

)

i

−
(
φ(Icn,m,l+1

t − ∂c̃n,m+1), δξn,m,l+1 − Λi(∂(C − C̃)n,m+1)
)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(∂(C − C̃)n,m+1)
)

i

}
(l + 1 − l∗)(δtc)

2.

(4.6.5)

The last term on the right-hand side above has an extra factor of δtc, so it is
easily bounded with (4.5.12). We have that

−

N,M
∑

n,m

l∗−1∑

l=0

∑

i

{(
φδξn,m,l+1,Λi(∂(C − C̃)n,m+1)

)

i

−
(
φ(Icn,m,l+1

t − ∂c̃n,m+1), δξn,m,l+1 − Λi(∂(C − C̃)n,m+1)
)

i

+
(
(Iq̃ − qh)

n,m,l+1,∇Λi(∂(C − C̃)n,m+1)
)

i

}
(l + 1 − l∗)(δtc)

2

≤ ε

N,M
∑

n,m

l∗−1∑

l=0

{
‖δξn,m,l+1‖2

0,m + ‖(Iq̃ − qh)
n,m,l+1‖2

0,m

}
(l∗ − l − 1)(δtc)

2

+Q

N,M
∑

n,m

l∗−1∑

l=0

{
‖∂(C − C̃)n,m+1)‖2

0 + ‖Icn,m,l+1
t − ∂c̃n,m+1‖2

0,m

}
∆tcδtc

≤ ε

N,M
∑

n,m

l∗−1∑

l=0

{
‖δξn,m,l+1‖2

0,m(l∗ − l − 1)(δtc)
2 + ‖(Iq̃ − qh)

n,m,l+1‖2
0,mδtc

}

+Q
{
‖Ct − C̃t‖

2
L2(L2) + ‖ctt‖

2
L2(L2

m)(∆tc)
2 + ‖ct − c̃t‖

2
L2(L2

m)

}
∆tc.

(4.6.6)

The first term on the right-hand side of (4.6.5) contains a nonpositive expression
that helps us and an expression containing ∇δξn,m,l+1 that is troublesome. We would
like to extract a collapsing sum from the latter expression, but the factor (l + 1 − l∗)
prevents this in general. However, it is possible to proceed by extracting a sum that
partially collapses provided that l∗ ≤ 5 [3] (recall that this part of the main coupling
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error is zero if l∗ = 1). We shall content ourselves here with an argument that holds
for all l∗. This requires that we restrict the overall size of ∆tc as compared to h2

c , as
will be seen in the next subsection. By an inverse inequality we have that

N,M
∑

n,m

l∗−1∑

l=0

(
(Iq̃ − qh)

n,m,l+1,∇δξn,m,l+1
)

m
(l + 1 − l∗)(δtc)

2

≤

N,M
∑

n,m

l∗−1∑

l=0

∑

i

‖(Iq̃ − qh)
n,m,l+1‖0,i‖∇δξ

n,m,l+1‖0,i(l
∗ − l − 1)(δtc)

2

≤ Q

N,M
∑

n,m

l∗−1∑

l=0

∑

i

‖(Iq̃ − qh)
n,m,l+1‖0,i‖δξ

n,m,l+1‖0,ih
−1
c (l∗ − l− 1)(δtc)

2

≤

N,M
∑

n,m

l∗−1∑

l=0

{
Q∆tch

−2
c ‖(Iq̃ − qh)

n,m,l+1‖2
0,m

+ ε‖δξn,m,l+1‖2
0,m(l∗ − l − 1)δtc

}
δtc.

(4.6.7)

Finally, we can combine (4.6.4)–(4.6.7) with Lemma 4.3.1 to obtain that the main
coupling error (4.6.2) is bounded by the expression

(4.6.8)

(ε− φ∗)

N,M
∑

n,m

l∗−1∑

l=0

‖δξn,m,l+1‖2
0,m(l∗ − l − 1)(δtc)

2 +Q

{

E2 +

N,M
∑

n,m

‖Ξn,m+1‖2
0∆tc

}

+

N,M
∑

n,m

l∗−1∑

l=0

(ε+Q∆tch
−2
c )‖(Iq̃ − qh)

n,m,l+1‖2
0,mδtc.

4.7. The combined analysis of the concentration error equations. We
are now ready to complete the analysis of the concentration equations by applying
an induction argument to the bounds derived in the previous three subsections. Add
(4.4.14) to (4.5.17) and bound the main coupling error by (4.6.8). We obtain the single
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inequality

1

2
Φ∗‖Ξ

N,M+1‖2
0 +

(
1

2
φ∗ − ε

)

‖ξN,M+1‖2
0,m

+ (D∗ − ε)

N,M
∑

n,m

‖∇Ξn,m+1‖2
0∆tc + d∗

N,M
∑

n,m

l∗−1∑

l=0

‖∇ξn,m,l+1‖2
0,mδtc

+ (φ∗ − ε)

N,M
∑

n,m

l∗−1∑

l=0

‖δξn,m,l+1‖2
0,m(l∗ − l − 1)(δtc)

2

≤ Q

{

E2 +

N,M
∑

n,m

‖Ξn,m+1‖2
0∆tc +

N,M
∑

n,m

l∗−1∑

l=0

‖ξn,m,l+1‖2
0,mδtc

+

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1 − d(Eu

n+ 1
2

h )∇ξn,m,l+1‖2
0,mδtc

}

+ ε

N,M
∑

n,m

(‖Υn‖2
0 + ‖Υn−1‖2

0)H
−3
c ‖∇Ξn,m‖2

0∆tc

+ (ε+Q∆tch
−2
c )

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1‖2

0,mδtc.

(4.7.1)

We need to control the right-hand side. Assume the asymptotic relations

(4.7.2) ∆tch
−2
c = o(1), E2h−3

c = o(1), E2H−3
c = o(1),

as the discretization parameters tend to zero. Also make the induction hypotheses
that

(4.7.3) (‖υn‖2
0,m + ‖υn−1‖2

0,m)h−3
c = o(1), (‖Υn‖2

0 + ‖Υn−1‖2
0)H

−3
c = o(1).

From (4.5.11) and (4.5.12), these assumptions are enough to give us the bounds

(4.7.4)

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1 − d(Eu

n+ 1
2

h )∇ξn,m,l+1‖2
0,mδtc

≤ Q1

{

E2 +

N,M
∑

n,m

‖Ξn,m+1‖2
0∆tc +

N,M
∑

n,m

l∗−1∑

l=0

‖ξn,m,l+1‖2
0,mδtc

+ o(1)

N,M
∑

n,m

l∗−1∑

l=0

‖∇ξn,m,l‖2
0,mδtc

}
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and

(4.7.5)

N,M
∑

n,m

l∗−1∑

l=0

‖(Iq̃ − qh)
n,m,l+1‖2

0,mδtc

≤ Q2

{

E2 +

N,M
∑

n,m

‖Ξn,m+1‖2
0∆tc +

N,M
∑

n,m

l∗−1∑

l=0

‖ξn,m,l+1‖2
0,mδtc

+

N,M
∑

n,m

l∗−1∑

l=0

‖∇ξn,m,l+1‖2
0,mδtc

}

.

By induction, then, we can assert that (4.7.1) implies that

‖ΞN,M+1‖2
0 + ‖ξN,M+1‖2

0,m

+

N,M
∑

n,m

‖∇Ξn,m+1‖2
0∆tc +

N,M
∑

n,m

l∗−1∑

l=0

‖∇ξn,m,l+1‖2
0,mδtc

≤Q3

{

E2 +

N,M
∑

n,m

‖Ξn,m+1‖2
0∆tc +

N,M
∑

n,m

l∗−1∑

l=0

‖ξn,m,l+1‖2
0,mδtc

}

,

(4.7.6)

provided only that the induction parameters are small enough. Gronwall’s inequality
can now be applied to see that in fact

‖ΞN,M+1‖2
0 + ‖ξN,M+1‖2

0,m

+

N,M
∑

n,m

‖∇Ξn,m+1‖2
0∆tc +

N,M
∑

n,m

l∗−1∑

l=0

‖∇ξn,m,l+1‖2
0,mδtc

≤ Q4E
2.

(4.7.7)

It remains only to verify the induction hypotheses. But it is clear that (4.3.5)–
(4.3.6) and the initialization requirements (3.5.14)–(3.5.15) enable us to start the in-
duction, and (4.3.5)–(4.3.6) with (4.7.7) at no more than two previous pressure time
levels enable us to continue the induction.
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