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ABSTRACT

We consider an extended mixed finite element formulation for groundwater flow
and transport problems with either a tensor hydraulic conductivity or a tensor dis-
persion. While the aquifer domain can be geometrically general, in our formulation
the computational domain is rectangular. The approximating spaces for the mixed
method are defined on a smooth curvilinear grid, obtained by a global mapping
of the rectangular, computational grid. The original problem is mapped to the
computational domain, giving a similar problem with a modified tensor coefficient.
Special quadrature rules are introduced to transform the mixed method into a sim-
ple cell-centered finite difference method with a 9 point stencil in 2-D and 19 point
stencil in 3-D. The resulting scheme is locally mass conservative. In the case of flow,
linear Galerkin procedures give first order accurate velocities, while our method is
second order accurate. Both computational and theoretical results are given.

1. INTRODUCTION

We develop a numerical scheme for groundwater flow and transport problems with
tensor coefficients on a geometrically general domain  in R? (d = 2 or 3). In the
flow problem, we solve for the pressure p and the velocity u satisfying

(1.1) V-u=¢q, u=-KVp,

where K is the hydraulic conductivity tensor. In the transport problem, we solve
for the concentration ¢ such that

(1.2) 6% 4V (ue — D()Ve) = gu(c),

where ¢ is the porosity and D is the dispersion tensor with components

IR

(1.3) D.iﬁj(u) = qﬁdmé.iJ + |u|{ |11|2 (dl — dt) + dté.iﬁj}7




where d,, is the molecular diffusivity and d;, and d; are the longitudinal and trans-
verse dispersivity, respectively. For simplicity of the presentation, we consider ho-
mogeneous Neumann boundary conditions.

Our numerical scheme is based on mixed finite element methods, because they
conserve mass locally and give a good approximation of the flux variable. However,
mixed methods can be difficult to implement directly.

By using special quadrature rules for evaluating the integrals, Russell and
Wheeler [6] showed that the standard cell-centered finite difference method was
equivalent to the lowest order, RT( mixed method [5]. Thus, the RT mixed method
can be easily implemented as a five or seven point finite difference method. Weiser
and Wheeler [8] obtained superconvergence results for this scheme; that is, if & is
the maximum grid spacing, both the pressure and velocity are approximated to
order h?. A Galerkin method will approximate the velocity only to order h.

Those two works were limited to the case of a diagonal tensor and a rectan-
gular grid. To solve our flow and transport problems with tensor coefficients on
fairly geometrically general domains, we develop a new scheme to overcome these
limitations. We will not sacrifice the ease of implementation, the accuracy, or the
local mass conservation property of the approximation. In the notation of the flow
problem, we present in the next section some of the necessary background of the
expanded mixed finite element method that is the basis of our scheme [4]. We
derive our finite difference procedure [3] from it in Section 3. We summarize the
convergence results [4] in Section 4. Transport is discussed briefly in Section 5, and
computational results are given in Section 6.

Our main requirement is that there be a smooth mapping F' of a rectangular,
computational domain {2 onto the aquifer domain Q. Given a rectangular grid T, on
(), F defines a smooth, logically rectangular, curvilinear grid 7, on Q (see Fig. 1).
The Jacobian matrix of F is DF = <3Fi/3xj>, and the Jacobian of the mapping is
J = |det(DF)|. (There are grid generation codes available for creating F' and its
Jacobian matrix.)
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Fig. 1. The computational domain Q) and the physical domain £2.

2. THE EXPANDED MIXED FINITE ELEMENT METHOD ON GEN-
ERAL GEOMETRY

Following [3] and [4], we introduce an unknown @ such that

(2.1) Mi = —-Vp, u= KM,



where M = J(DF~')T DF~!. Note that M is a symmetric, positive definite matrix.
It is introduced to simplify the computations significantly, after mapping to the
rectangular grid on €.

To define the RTy mixed space on the curvilinear grid, we need first the standard
definition of this space on rectangles [5]. Let Vj, and W}, be the velocity and the
pressure space, respectively. On any rectangular element Ee 'j'h?

Vh(E) = {(0‘11'1 + (1, 99 + B2, azrs + 53)T tay, B € R},
Wi(E)={a:acR}

(where the last component in Vh(E) should be deleted if d = 2). Then,

vV, = {\7 = (v1,v2,v3) : V| € Vh(E) for all E ¢ 'j';“ and each v; is
continuous in the 7th coordinate direction},

Wy, = {ﬁ; T € Wh(E) for all £ € ']A'h},

thus, if 7 denotes the normal direction, v - 7 is well defined on the boundaries of
each element E, and 1 is piecewise discontinuous. We use the standard nodal basis,
where for V;, the nodes are at the midpoints of the edges or faces of the elements,
and for Wh, the nodes are at the midpoints of the elements (cell-centers).

Let Vj, and W3, be the RT, spaces on 7}, defined as follows [7]. For each v € Vi
andtDEWh,WedeﬁneVEVh and w € Wy, at F(2) =2 € Q by

(2.2a) v(z) = ﬁDF(@)v(@),
(2.2b) w(z) = ().

The velocity space is defined by the Piola transformation; it preserves the normal
component of the velocity across the element boundaries, and is therefore locally
mass conservative. The key property is that V- v = %@ - V.

We have the following mixed formulation for approximating the flow equation
(1.1). Find uy, € Vi, uy € Vi, and pj € W}, such that

2.3a V- u,dr = dx E T,

(2.3a) qdz, ;
E E

(2.3b) / Muy, - vdr = / prV - vdz, v e Va,
Q Q

(2.3¢) / Muy, - vdr = / MKMuy, -vdr, v eV,
Q Q

The existence and uniqueness of a solution is shown in [4].



We now transform (2.3) to the rectangular, computational domain by the map

F. The Piola transform (2.2a), (2.2b), and the definition of M (2.1) imply that

(2.4a) /ﬁ.ﬁhd@:/qd:ﬂ:/g,]d:@, EeT,
FE

FE I

(2.4D) /ﬁh.od:@:/phvod:z, v eV,
Q Q

(2.4¢) /ﬁh-\?dg?;:/ JDF'K(DF~")Tay-vdi, Ve,
Q Q

where ¢() = ¢(F(%)). Note that (2.4) is similar to the original problem (2.3) with
M = I and the modified tensor coefficient

(2.5) K=JDF'K(DF~")T,

All computations are performed on the rectangular grid of Q; we recover the true
pressure and velocity on £ using (2.2).

3. THE CELL-CENTERED FINITE DIFFERENCE METHOD

To simplify the finite element method (2.4), we use special quadrature rules for
approximating the integrals. The two divergence integrals can be computed exactly,
since the divergence of any v € Vi is piece-wise constant. The trapezoidal rule
is used for evaluating the three integrals involving a vector-vector product. This
enables us to express uy and ), in terms of pr, and therefore obtain a single equation
for the pressure. Herein, we describe this stencil for d = 2; a straightforward
generalization gives the stencil for d = 3.

We need some relatively standard cell-centered finite difference notation. De-
note the grid points by

(£i+1/27'gj+1/2)7 1= 0, "'7N17 ] =0, "'7N27
and define, for : = 1,..., Ny and 7 = 1,..., No,

Z; = %(5??1‘4-1/2 + Zi_1/2), y; = %('ﬁj+1/2 +¥i—1/2)5

Sa . R i R
hi = Titv1/2 — Ti—1/25 h]‘ =Yj+1/2 — Yj—1/2-

We write v = (v7,v?) for v.€ R?, and for any function ¢(Z,9), let g;; denote
g(ihg])? let Jit+1/2,5 denote g(£i—|—1/27@j)7 etc.
If v in (2.4b) is the basis function at node (7 + 1/2,7) or at node (7,j + 1/2),
then
Q‘i ﬁh7‘+17‘_ﬁh7‘7‘ 23;’ ﬁh7‘7‘+1_ﬁh7‘7‘
(3-1) Upi41/2,5 = — —— = Uhig+1/2 = — s =

%(hf + hf+1 %(hf? + h§+1)




which is a finite difference approximation of = —@ﬁ The same choice of v in
(2.4c¢) gives

/\f 1 Z
(3.2) Uhit1/2,5 = [(’Cll)z+1/2,] 12 T (K11)1+1/2,]+1/2} Uy, Jit+1/2,5

1
]
2(h¥ + hi
2y 2y &
[(ICl?)i+1/2,j—1/2uh,i—|—1,j—1/2 + (ICl?)i+1/2,j+1/2uh,i—|—1,j—|—1/2} h2—|—1
2y 2y 2
+ [(IC12)i—|—1/2,]‘—1/2uh7i7]‘_1/2 + (IC12)i—|—1/2,j—|—1/2uh,i,j—|—1/2} hi }7

with a similar expression for uy this is a finite difference approximation of

A hyinj+1/2)
u = Ku. Finally, for E = E;; in (2.4a), we have

J

,&i . L — ,&i . . o
(33) { hyi+1/2,5 iLi h,i—1/2,j + h,z,]—|—1/2 hy h,z,] 1/2 }hl 7y
i J

The combination of (3.1), (3.2), and (3.3) gives our finite difference stencil for
the pressure, approximating the elliptic equation ~V- ICVp = ¢J. This in turn
is an approximation of the original problem (1.1). The stencil is 9 points in two
dimensions and 19 points in three dimensions.

4. A SUMMARY OF THE CONVERGENCE RESULTS

Let || - || denote the L?-norm; that is, for a scalar or vector function ¢,
lell =/ [ ota)i da.
Q
Let |||+ |||ar and |||+ |||7 denote the L?-norm approximated, respectively, by the mid-

point and trapezoidal quadrature rules over our mesh on €2 defined either directly
or as induced by F from the computational domain. The proof of the following
theorem is given in [4].

Theorem. There exists a constant C' depending on the smoothness of F and the
solution, but independent of the mazimum grid spacing h, such that

Ju— |+ [[a—@nl] < Ch, [l —wplllr + ][ - @ll|r < CR2,

[V - (u—uy)|| <Ch.



This theorem implies optimal order convergence in the L?-norms, and, more-
over, superconvergence in L? for the computed pressure at the cell-centers, and for
the computed velocity at the grid points. Furthermore, the normal component of
the flux at the midpoints of the edges or faces is also superconvergent (see [4]).

5. TRANSPORT BY THE CHARACTERISTICS-MIXED METHOD

The characteristics-mixed method of Arbogast and Wheeler [1], [2] is a method
for approximating the transport problem (1.2)—(1.3). It treats the advection terms
¢(0c/0t) +u-Vein (1.2) as a characteristic derivative; that is, essentially (1.2) is
viewed as

0
¢3_7c' —V-D(u)Ve = g.(c) — qe,
where 7 is the characteristic direction. The characteristics are the solution to
di  u(#,t)
dt — o(%)

on the physical domain €2, or after the change of variables,

@: a(z,t)
it J(z)e(F(z))

on the computational domain Q; thus, only a factor of J enters into the computation
of the characteristics.

(5.1)

The dispersion term, —V - D(u)Ve, is then treated by a mixed method, as in
the case for flow. The dispersion tensor D is a function of the true velocity. It can
be expressed on the computational grid by the analogue of (2.5) in terms of u, or
in terms of U as
{3l

|DFal?

(5.2) D.iﬁj(fl) = JqﬁdméiJ + |DFﬁ|{ (dl — dt) + dtéiﬁj}7

where qg(;?;) = ¢(F(z)). There is a small change in the way the speed times .J,

|DF|, needs to be calculated, and J multiplies qg The other, nondispersion terms
are treated on the computational grid after multiplying by the Jacobian factor J.

6. SOME COMPUTATIONAL RESULTS

Tests show that the predicted rates of convergence are obtained by the method,
including the superconvergence [3], [4]. The only requirement is that the map F be
reasonably smooth; otherwise, there is a degeneration in the convergence rate.

We now present some results of a code that uses the finite difference scheme
presented in this paper to solve the coupled flow and transport equations (1.1)-
(1.3). The characteristics-mixed method [1], [2] is used for transport. The code is
designed to run on a massively parallel, distributed memory computer.



We present first a 2-D example on a circular domain with a single well at the
center injecting a tracer solute. Porosity and permeability are uniform; thus, the
true solution is radially symmetric. We set the dispersion to zero in this example.
Fig. 2A-B show concentration fronts at six equally spaced times. Fig. 2A shows
the solution as it appears on the square computational domain. Fig. 2B shows
the solution after mapping back to the true domain according to (2.2b). As one
can see, the solution on the computational domain is distorted just enough to give
concentric circles on the true domain. The radii of these circles increase at the
expected rate as measured by the volume swept. Fig. 2C shows the curvilinear grid
on the true domain that results from mapping the uniform computational grid.
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Fig. 2. A single injection well at the center of a circular domain.
The solution shows concentration fronts at six equally spaced times.

In Fig. 3, we demonstrate tracer injection at the WAG—6 (Waste Area Grouping
#6) site of the Oak Ridge National Laboratory (ORNL). Porosity and permeability
are again uniform. A uniform pressure drop occurs from the left face (Haw Ridge)
to the right face (White Oak Lake and Copper ridge); there is no-flow across the
other faces. Tracer injection occurs at the left face. We show the surface topography
and the concentration front at four equally spaced times. The peak of Haw ridge
is at the left corner; thus, fluid flow is slower there.

Fig. 3. A demonstration of tracer injection at ORNL WAG—6.



7. CONCLUSIONS

We presented a cell-centered finite difference mixed method that is locally mass
conservative and highly accurate, especially for the velocity. General geometry can
be handled by a mapping of a rectangular, computational domain to the physical
domain. The net result of this mapping is a simple transformation of the tensor
conductivity or dispersivity, and possibly the multiplication of certain other coef-
ficients by the Jacobian factor. The scheme is easily implemented, since the data
structures need only reflect the rectangular, computational grid.
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