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Abstract We consider the slightly compressible, two-phase

flow problem in a porous medium with capillary pressure.

The problem is solved using the implicit pressure, explicit

saturation method (IMPES), and the convergence is acceler-

ated with iterative coupling of the equations. We use discon-

tinuous Galerkin to discretize both the pressure and satura-

tion equations. We apply two improvements, which are pro-

jecting the flux to the mass conservative H(div)-space and

penalizing the jump in capillary pressure in the saturation

equation. We also discuss the need and use of slope limiters,

and the choice of primary variables in discretization. The

methods are verified with two and three dimensional numer-

ical examples. The results show that the modifications stabi-

lize the method and improve the solution.
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1 Introduction

We consider the problem of slightly compressible two-phase

flow in a porous medium, which is the simplest equation for

subsurface flow in reservoir modeling. Solving this problem

effectively and accurately is requisite for solving the more

elaborate models of, e.g., CO2 sequestration or enhanced oil

recovery [6]. We assume that each phase has its own pres-

sure, so there is capillary pressure between the phases. Tak-

ing this effect into account is essential for the validity of

the model in subsurface applications [12]. We describe our

problem in more detail in Section 2.1.

In this article we solve the system using the implicit

pressure, explicit saturation method (IMPES) [5]. In this ap-

proach the problem is decoupled to pressure and saturation

equations, and then solved sequentially. To reduce the error

of decoupling, we use iterative coupling to solve the pair

of decoupled equations. The effectiveness of this iterative

coupling was demonstrated in, e.g., [7,15,14,13]. We re-

call the IMPES algorithm in Section 2.2, using the splitting

advocated by Hoteit and Firoozabadi [12]. We also discuss

choosing the reference pressure for the problem when capil-

lary pressure is present.

We choose to discretize the equations using discontin-

uous Galerkin (DG) for both of the decoupled equations.

This DG-DG-method is briefly described in Section 3, see,

e.g., [14,8] for a more detailed derivation. Another popular

method is to solve the pressure equation using mixed finite

elements (MFE), and use DG only for the saturation equa-

tion. For more details on the MFE-DG-method, see, e.g.,

[17,1]. In Section 3.2 we show how the flux coming from

the DG-DG approach can be post processed into a locally

mass conservative H(div)-space flux, imitating the MFE-DG

approach. This post processing stabilizes the saturation part

of the problem in our DG-DG approach. The same idea is

applied also in [2,9,11,10].
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In Section 3.3, we discuss a technique for maintaining

the continuity of capillary pressure. In [9] this modification

is applied to a global pressure formulation. The idea is to

introduce a penalty for the jump in capillary pressure in the

saturation equation. In the case of only one capillary pres-

sure curve throughout the domain, this forces the saturation

to be continuous, which is physically correct. In the case of

multiple capillary pressure curves, this improvement allows

the saturation to jump at the interface between distinct capil-

lary pressure curves, and instead enforces the physically rel-

evant continuity of capillary pressure. This method is able

to capture the discontinuity of saturation even when the ab-

solute difference in capillary pressures is small.

By using several test examples, we demonstrate the nu-

merical performance of our method. Two dimensional ex-

amples are given in Section 4 to illustrate the ideas in a

simple setting. More interesting three dimensional examples

with gravity and realistic Brooks-Corey and Van Genuchten

capillary pressure functions are given in Section 5. The ex-

amples are computed with a research code developed at the

Center for Subsurface Modeling [16] of the University of

Texas at Austin.

Finally, a section summarizing our conclusions and giv-

ing further discussion ends the paper.

2 Problem formulation

In this section we recall the two-phase Darcy problem mod-

eling subsurface flow and the IMPES algorithm used for

solving the non-linear equations. The presentation is brief;

for more details see, e.g., [5].

2.1 The continuous problem

Our model problem is for slightly compressible two-phase

flow. The mass conservation equation states that

∂φρiSi

∂ t
+∇ ·ui = fi, i = w,n, (1)

in which φ is the porosity, ρi is the density, Si is the satura-

tion, ui is the flux, fi is the source/sink, and subscripts w and

n stand for the wetting and non-wetting phases respectively.

Darcy’s law gives

ui =
−kiKρi

µi

(∇pi −ρig∇D), (2)

in which ki is the relative permeability, K is the absolute

permeability, µi is the viscosity, pi is the pressure, g is the

gravity, and ∇D defines the direction of gravity (being the

gradient of depth D). The equations are coupled nonlinearly

through relative permeability, capillary pressure, and den-

sity. Relative permeability is a known function of saturation

ki = ki(Sw). (3)

The capillary pressure function models the pressure differ-

ence between the wetting and non-wetting phases. It is also

a known function of saturation

pc = pn − pw = pc(Sw). (4)

We assume slight compressibility [3,13], so

ρi = ρi(pi) = ρref,ie
ci pi , (5)

in which ci is the known compressibility coefficient and ρref,i

is the reference density at the reference pressure pref,i = 0.

The model assumes that all the pores are filled with fluid,

Sw +Sn = 1, (6)

and in what follows, we assume that porosity φ and viscosity

µi are constants for simplicity of exposition.

2.2 The IMPES algorithm with iterative coupling

The IMPES algorithm decouples the equations and solves

them sequentially. For completeness we present the IMPES

equations below. The first step is to sum the mass conserva-

tion equations (1) for both phases

∇ · (uw +un) = fw + fn −φ

(
∂ρwSw

∂ t
+

∂ρnSn

∂ t

)
. (7)

In practice, the mass conservation equations (1) are scaled

with the reference density ρref,i. If we suppose for the mo-

ment that the densities were constant, equation (6) shows

that the last term above disappears, i.e.,

∂ρwSw

∂ t
+

∂ρnSn

∂ t
= 0, (8)

and hence

∇ · (uw +un) = fw + fn. (9)

With the slight compressibility assumption, the last term in

(7) is indeed very small and is often neglected. For simplic-

ity, we will assume in the derivation that this term vanishes.

However, we emphasize that in our numerical examples, this

term is present.

Next we modify (9) by using Darcy’s law (2) and the

definition of capillary pressure (4) to obtain

−∇ · (λtK∇pw +λnK∇pc − (ρλ )tgK∇D) = ft (10)

in which λi = kiρi/µi, λt = λw +λn, (ρλ )t = ρwλw +ρnλn,

and ft = fw + fn. The subscript t stands for total. Above we

have chosen the wetting phase pressure pw to be the primary
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variable. We will discuss the choice of reference pressure in

more detail at the end of this section.

Assume we know the solution of the pressure and satu-

ration at time tk, that is, we know pk
w and Sk

w. To compute

the pressure pk+1
w at time tk+1 we time lag the saturation to

compute λ k
i and pk

c, and time lag pressure to get density ρk
i .

Rearranging the terms gives

−∇ ·(λ k
t K∇pk+1

w )= ft +∇ ·(λ k
n K∇pk

c−(ρλ )k
t gK∇D), (11)

in which the unknown pk+1
w is on the left and the right hand

side is known. This is the equation for the implicit pressure

step of the IMPES algorithm, although we will modify it to

the form (13) later.

Once we have the wetting phase pressure at time tk+1,

we solve for the say, wetting phase saturation at time tk+1 us-

ing an explicit time stepping in the mass conservation equa-

tion (1)

φρk+1
w Sk+1

w

∆ t
= fw −∇ ·uk+1

w +
φρk

wSk
w

∆ t
, (12)

in which ∆ t = tk+1 − tk and the velocity uk+1
w is computed

using Darcy’s law (2), again time lagging the saturation but

using pk+1
w , so that (12) is an explicit equation for Sk+1

w . How

to compute the velocity properly is discussed in more detail

in Section 3.2. The previous equation (12) is the explicit sat-

uration step of the IMPES algorithm.

2.3 Enhancing the IMPES algorithm

In this section we discuss enhancements to the IMPES al-

gorithm to make it more effective in practice. The enhance-

ments are taking shorter saturation steps, iterative coupling,

and choosing the reference pressure.

Shorter saturation steps. In reservoir simulation it is of-

ten the case that the saturation part of the IMPES algorithm

has much more rapid changes than the pressure part. In fact,

the pressure is almost independent of time if the wells are

operated with constant pressure or constant flow. Therefore

it is well-known to be useful to take shorter time steps in

the saturation equation. For example, if the time step in the

pressure equation is ∆ t, one can take N saturation time steps

of length ∆ t/N before taking a new pressure step. In the

intermediate steps, the pressure is interpolated linearly. Tak-

ing several saturation steps can speed up the simulation con-

siderably since the saturation equation is explicit, which is

much easier to solve than the implicit pressure equation. The

step size of the saturation equation should be determined

according to the CFL condition. This could be done auto-

matically but in this work we have predefined the number

of saturation steps. In the numerical examples presented in

this paper we have used roughly 10 saturation steps for each

pressure step. This has been a favorable ratio in terms of how

long it takes to run the simulation.

Iterative coupling. The IMPES algorithm decouples the

non-linear equations and solves them sequentially; hence,

the results are sometimes inaccurate. There may be a loss of

mass balance and a mismatch in the acquired pressure and

saturation. If either of these is detected a simple improve-

ment is to iterate by redoing the time step using the new

pressure and saturation in equation (11). The pseudo code

for one complete time step of this algorithm follows.

0. Set the iteration index ℓ= 0, p
k,0
w = pk

w, and S
k,0
w = Sk

w.

1. Given p
k,ℓ
w and S

k,ℓ
w , solve for p

k,ℓ+1
w using (11), i.e.,

−∇ · (λ k,ℓ
t K∇pk,ℓ+1

w )

= ft +∇ · (λ k,ℓ
n K∇pk,ℓ

c − (ρλ )k,ℓ
t gK∇D).

2. Given p
k,ℓ+1
w and S

k,ℓ
w , solve for S

k,ℓ+1
w using N steps of

(12). That is, for parameter m = 0,1,2, . . . ,N, we inter-

polate the pressure as

pk,ℓ,m
w = pk

w +
m

N
(pk,ℓ+1

w − pk
w),

we set S
k,ℓ,0
w = S

k,ℓ
w , and, for m = 0,1, . . . ,N−1, we solve

for Sk,ℓ,m+1 from

φρk,ℓ,m+1
w S

k,ℓ,m+1
w

∆ t/N
= fw −∇ ·uk,ℓ,m+1

w +
φρk,ℓ,m

w S
k,ℓ,m
w

∆ t/N
.

Finally, S
k,ℓ+1
w = S

k,ℓ,N
w .

3. Check for convergence. If converged, set pk+1
w = p

k,ℓ+1
w

and Sk+1
w = S

k,ℓ+1
w and continue to the next time step;

otherwise, advance ℓ →֒ ℓ+1 and go to step 1.

In the numerical examples presented in this article, we al-

ways use this iterative coupling technique.

Choosing the reference pressure. In the IMPES algo-

rithm described above we have used the wetting phase pres-

sure and saturation as the reference variables. If one chooses

the non-wetting phase variables as the reference, the pres-

sure equation (11) becomes

−∇ · (λ k
t K∇pk+1

n )

= ft +∇ · (−λ k
wK∇pk

c − (ρλ )k
t gK∇D). (13)

The difference between equations (11) and (13) is in the cap-

illary pressure term, involving λ k
n ∇pk

c for the wetting phase

and −λ k
w∇pk

c for the non-wetting phase reference pressure.

If only one of the phases is present, it is natural to use

the existing phase as the reference variable. However, nu-

merically the choice of reference variables becomes impor-

tant already near the residual saturations. For example, sup-

pose the saturation is near the wetting phase residual satura-

tion Sw,r. Then the non-wetting phase relative permeability

reaches its highest value, kn(Sw,r)∼ 1, and at the same time
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the capillary pressure tends to infinity, pc(Sw,r) → ∞. Thus

the term λ k
n ∇pk

c, needed when using the wetting phase pres-

sure as reference, tends to infinity. However, near the wet-

ting phase residual saturation, the wetting phase relative per-

meability vanishes, kw(Sw,r) = 0. Hence the term −λ k
w∇pk

c,

needed when using the non-wetting phase as reference pres-

sure, stays bounded.

Observe that the same problem will also appear for the

non-wetting phase reference pressure if the derivative of the

capillary pressure tends to infinity at the non-wetting phase

residual saturation, e.g., in a Van Genuchten model. We will

study the effect of reference pressure with numerical exam-

ples in Sections 4 and 5.

3 Discretization

3.1 DG-DG two-phase flow

We present the discrete form of the problem (1)–(6) in this

section, in the form of (11) and (12) using the discontinuous

Galerkin, (DG), method. For a more detailed derivation of

DG methods for flows in porous media see, e.g., [14,8] and

the citations therein.

Assume we are solving the problem in the domain Ω

that has piecewise smooth boundary ∂Ω . For simplicity, we

assume the boundary is divided into three non-overlapping

pieces: Γin denotes the inflow boundary where both pressure

pin
w and saturation Sin

w are defined, Γout denotes the outflow

boundary where only pressure pout
w needs to be given, and Γ0

denotes the no-flow boundary where the total normal flow is

zero.

We assume the domain Ω is divided into a set of non-

overlapping elements E, and the collection of elements, the

mesh, is denoted by Th, where h denotes the maximum di-

ameter of the elements. We assume that the mesh is quasi-

uniform, i.e., the mesh diameter is bounded from below. We

denote by Gh the collection of edges (in 2 dimensions) or

faces (in 3 dimensions) of the mesh Th. The subset G int
h de-

notes the internal edges, and the subsets G in
h , G out

h , and G 0
h

denote the inflow, outflow and no-flow boundary edges, re-

spectively.

The approximation spaces for the solution are

W
l = {q ∈ L2(Ω) : q|E ∈ P

l(E) ,∀E ∈ Th}, (14)

meaning that we use piecewise polynomials of order l and

the space is discontinuous between elements. In the numer-

ical examples, we use space W 1 for pressure and either W 0

or W 1 for the saturation.

On an edge e ⊂ ∂Ω , let ν be the outer normal to Ω . On

an edge e between elements E1 and E2, let ν be the outer

normal of element E1 and define qi as the trace of q|Ei
on

e. Then {{q}} = (q1 + q2)/2 denotes the average and [[q]] =

q1 −q2 denotes the jump.

Now we are ready to form the weak form of the pressure

step (11). Find pk+1
w ∈ W l , l ≥ 1, such that

∑
E∈Th

(
λ k

t K∇pk+1
w ,∇q

)
E

+ ∑
e∈G int

h

{
−
〈
{{λ k

t K∇pk+1
w ·ν}}, [[q]]

〉
e

−θ
〈
{{λ k

t K∇q ·ν}}, [[pk+1
w ]]

〉
e

+
γ

he

〈
[[pk+1

w ]], [[q]]
〉

e

}

+ ∑
e∈G in

h
∪G out

h

{
−
〈
λ k

t K∇pk+1
w ·ν ,q

〉
e

−θ
〈
λ k

t K∇q ·ν , pk+1
w

〉
e
+

γ

he

〈
pk+1

w ,q
〉

e

}

= ∑
E∈Th

{(
ft ,q

)
E
−
(
λ k

n K∇pk
c − (ρλ )k

t gK∇D,∇q
)

E

}

+ ∑
e∈G int

h

〈
{{(λ k

n K∇pk
c − (ρλ )k

t gK∇D) ·ν}}, [[q]]
〉

e

+ ∑
e∈G in

h
∪G out

h

〈(
λ k

n K∇pk
c −

(
ρλ

)k

t
gK∇D

)
·ν ,q

〉
e

+ ∑
e∈G in

h

{
−θ

〈
λ k

t K∇q ·ν , pin
w

〉
e
+

γ

he

〈
pin

w ,q
〉

e

}

+ ∑
e∈G out

h

{
−θ

〈
λ k

t K∇q ·ν , pout
w

〉
e
+

γ

he

〈
pout

w ,q
〉

e

}
(15)

for all q ∈ W l , where γ > 0 is the stability parameter and

θ = −1,0,1 defines the method. The three values of θ cor-

respond to NIPG, IIPG, and SIPG1, respectively. We remark

that γ should probably be scaled by the magnitude of the

permeability. For example, one could scale γ by some aver-

age of the total mobility times the permeability in the normal

direction, λtKν = λtν
T Kν . However, this was not required

in the numerical examples we discuss in Sections 4–5.

Formally, the weak form for the saturation step (12) is:

Find Sk+1
w ∈ W m, m ≥ 0, such that

∑
E∈Th

(
φρk+1

w Sk+1
w

∆ t
,z

)

E

= ∑
E∈Th

{(
φρk

wSk
w

∆ t
,z

)

E

+
(

fw,z
)

E
−
(
∇ ·uk+1

w ,z
)

E

}
(16)

for all z ∈ W m. Since we only solve for the wetting phase

pressure, pk+1
w , we do not directly have the wetting phase

velocity uk+1
w . Instead, we need to construct the velocity us-

ing Darcy’s law (2). To this end, we integrate by parts in the

1 The acronyms stand for non-symmetric (N), incomplete (I), and

symmetric (S) interior penalty Galerkin (IPG).
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last term to obtain

∑
E∈Th

(
φρk+1

w Sk+1
w

∆ t
,z

)

E

= ∑
E∈Th

{(
φρk

wSk
w

∆ t
,z

)

E

+
(

fw,z
)

E
+
(
uk+1

w ,∇z
)

E

}

− ∑
e∈G int

h
∪G in

h
∪G out

h

〈uk+1
w ·ν , [[z]]〉e. (17)

Inside the elements we can use Darcy’s law, but on the edges

e we need to take into account the discontinuities, that is, the

numerical flux. On internal edges, the flux is computed as

uk+1
w ·ν = (λ k

wK)up{{(∇pk+1
w −ρk+1

w g∇D) ·ν}}

+(
λw

λt

)up γ

he

[[pk+1
w ]], (18)

in which (·)up means that the quantities are up-winded. Up-

winding means that on an edge e, the values are computed

using the data of the outflow element. On in/outflow bound-

aries the flux is computed in similar manner; the difference

is that we do not need to use the mean value, and that the

jump is computed against the given boundary data. The last

term in (18) corresponds to the numerical flux stemming

from the discontinuity of the pressure approximation, see,

e.g., [9] for more details.

Using (18), the saturation step (16) becomes

∑
E∈Th

(
φρk+1

w Sk+1
w

∆ t
,z

)

E

= ∑
E∈Th

{(φρk
wSk

w

∆ t
,z

)

E

+
(

fw,z
)

E

+
(
(λ k

wK)up(∇pk+1
w −ρk+1

w g∇D),∇z
)

E

}

− ∑
e∈G int

h

〈
(λ k

wK)up{{(∇pk+1
w −ρk+1

w g∇D) ·ν}}

+

(
λw

λt

)up γ

he

[[pk+1
w ]], [[z]]

〉
e

− ∑
e∈G in

h

〈
(λ k

wK)up(∇pk+1
w −ρk+1

w g∇D) ·ν

+

(
λw

λt

)up γ

he

(pk+1
w − pin

w ),z
〉

e

− ∑
e∈G out

h

〈
(λ k

wK)up(∇pk+1
w −ρk+1

w g∇D) ·ν

+

(
λw

λt

)up γ

he

(pk+1
w − pout

w ),z
〉

e
. (19)

The basic overall discrete system is given by (15) and

(19). Below we discuss two important modifications.

3.2 Projection to H(div)-space

In this section we show an alternative way of handling the

flux needed in the pressure step (16) when l = 1. The idea

is to project the flux into the H(div,Ω)-space, cf., [2,9,11,

10]. In practice, we project the flux onto the space defined by

the lowest order Raviart-Thomas elements (RT0). For more

details on mixed elements see, e.g., [4].

We seek to approximate the flux in the space spanned by

RT0-elements

V = {v ∈ H(div,Ω) : v|E ∈ RT0(E) ,∀E ∈ Th}. (20)

Using the divergence theorem,

(
∇ ·v,1)E = 〈v ·ν ,1〉∂E (21)

and the fact that for RT0 elements the divergence inside the

elements is constant, as are the normal fluxes over each edge,

gives

∇ · ũ|E =
1

|E| 〈ũ ·ν ,1〉∂E (22)

for all ũ ∈ V . Using equation (18) we get

∇ · ũk+1
w |E =

1

|E|
〈
(λ k

wK)up{{(∇pk+1
w −ρk+1

w g∇D) ·ν}}

+

(
λw

λt

)up γ

he

[[pk+1
w ]],1

〉
∂E

. (23)

For edges on the no-flow boundary, the integral is zero. For

edges on either the inflow or outflow boundaries, we do not

use the mean value, and the jump is against the given bound-

ary data, similar to equation (19). After this local, interme-

diate step between the pressure and saturation steps, we now

have divergence of the wetting phase flux in each element.

Therefore, the saturation step becomes: When l = 1, find

Sk+1
w ∈ W m, m > 0, such that

∑
E∈Th

(
φρk+1

w Sk+1
w

∆ t
,z

)

E

= ∑
E∈Th

{(φρk
wSk

w

∆ t
,z
)

E
+
(

fw,z
)

E
−
(
∇ · ũk+1

w ,z
)

E

}
(24)

for all z ∈ W m. This is our alternative to (19).

Remark 1 If we use piecewise constant saturations, Sw ∈
W 0, we will naturally project the fluxes to RT0. This is be-

cause on E the test function z = 1, and hence ∇z = 0 in

equation (19), meaning that the alteration (24) is equivalent

to the original formulation (19).

Remark 2 Suppose the saturation Sk
w is piecewise constant,

and that the data is piecewise constant. Then using projected

fluxes (24) will give piecewise constant Sk+1
w , even if Sw ∈

W m, m≥ 1. This is because the saturation step is, in this par-

ticular case, just an L2-projection onto piecewise constants.
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3.3 Penalty for discontinuity in capillary pressure

In the formulation above, the effect of capillary pressure ap-

pears explicitly only in the pressure step (15). In the satu-

ration step, (19) or (24), the capillary effect appears implic-

itly through the flux that depends on the pressure. Hence

we modify the saturation equation to take the capillary ef-

fect explicitly into account also in this step. Similar to [9],

the idea is to add a penalty to discontinuity of the capillary

pressure. The presented formulation assumes that the capil-

lary pressure is continuous. The assumption may fail if the

model has entry pressures and only one phase is present.

For simplicity we will work with saturation step (24) but

the exact same procedure works for (19), as well. We pro-

pose to add to (24) the term

∑
e∈G int

h

− σ

(1+{{pk
c}})∆ t

〈[[pk+1
c ]], [[z]]〉e, (25)

in which σ > 0 is a penalty parameter. Suppose the capil-

lary pressure is a decreasing function of the wetting phase

saturation. Then the negative sign corresponds to the sign

convention chosen in equations (24) and (19). The scaling

1/
(
1+ {{pk

c}}
)

ensures that the penalty term is of the same

scale as the rest of the terms. There is no need to scale with

mesh size he, since using trace inequalities one can bound

this term with the H1(Ω)-norm of the capillary pressure and

the L2(Ω)-norm of the saturation, which correspond to the

correct solution spaces. The factor 1 in the denominator is to

prevent division by 0 when the capillary pressure is small.

Unfortunately, pk
c = pc(S

k
w) is a non-linear function of

saturation. To maintain computational efficiency, we will lin-

earize this term. Using a linear approximation

pk+1
c = pc(S

k+1
w )≈ pc(S

k
w)+ p′c(S

k
w)(S

k+1
w −Sk

w)

= pk
c + p′kc (Sk+1

w −Sk
w), (26)

we get

∑
e∈G int

h

− σ

(1+{{pk
c}})∆ t

〈[[p′kc Sk+1
w ]], [[z]]〉e

= ∑
e∈G int

h

− σ

(1+{{pk
c}})∆ t

〈[[p′kc Sk
w − pk

c]], [[z]]〉e, (27)

which is linear with respect to the unknown Sk+1
w . With this

penalty for capillary pressure in place of (25), and using the

H(div,Ω)-projection, the saturation step reads

∑
E∈Th

(
φρk+1

w Sk+1
w

∆ t
,z

)

E

− ∑
e∈G int

h

σ

(1+{{pk
c}})∆ t

〈[[p′kc Sk+1
w ]], [[z]]〉e

= ∑
E∈Th

{(φρk
wSk

w

∆ t
,z
)

E
+
(

fw,z
)

E
−
(
∇ · ũk+1

w ,z
)

E

}

− ∑
e∈G int

h

σ

(1+{{pk
c}})∆ t

〈[[p′kc Sk
w − pk

c]], [[z]]〉e. (28)

Remark 3 Suppose there is only one capillary pressure curve

for the whole domain. If the curve is constant, the added

terms will vanish, which is exactly what we want. If the

curve is monotone, the added terms will enforce the con-

tinuity of saturation, which is the correct physical behavior

for monotone capillary pressure.

To close this section, the overall discrete system is given

by (15) and (28) with (23) when one uses the alternative

H(div) velocity ũ
k+1
w , and otherwise by (15) and (19) plus

(27). Iterative coupling as described in Section 2.3 can also

be applied to the system.

4 Numerical examples in two dimensions

In this section we discuss numerical solutions to the slightly

compressible two-phase flow problem in two space dimen-

sions using the DG-DG discretization described in Section 3.

Except where noted, we choose the pressure and saturation

of the wetting phase, Pw and Sw, as the primary variables.

The simulations are run for 600 days, starting with a

time step of 0.001 days and which increases over time by

the multiplier 1.2 to a maximum time step of 0.5 days. As

mentioned earlier, it is useful to take shorter time steps in

the saturation equation, so we take 10 saturation steps for

every 1 pressure step. The computational domain is (x,y) ∈
[0,500]× [0,500] feet (and considered to be 100 feet thick).

As shown in Fig. 1, the inflow boundary Γin is (x,y) ∈ {0}×
[400,500], and the outflow boundary Γout is (x,y) ∈ {500}×
[0,100]. The rest of the boundary, Γ0, is of no flow type. The

initial pressure is set to 500 psi. The pressure boundary con-

ditions on the inflow and outflow boundaries are 550 psi and

450 psi, respectively. The initial saturation is 0.2 and, in or-

der to imitate a water flood, the inflow boundary condition

is set to Sw = 1.

To make sure there is no instability coming from the

pressure equation, we use the non-symmetric interior penalty

Galerkin (NIPG) method (θ = −1 in (15)). In all our nu-

merical examples we use a piecewise linear basis, l = 1, to

approximate the pressure. A pressure penalty of γ = 10 is

used. Theoretically any penalty greater than 0 is acceptable
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Fig. 1 Computational domain as seen from above.

and numerical tests show that the solution is not sensitive to

this parameter when it ranges from 5 to 50.

Except where noted, we use a linear approximation for

the saturation, m = 1, and the penalty for the jump in capil-

lary pressure uses σ = 10. The numerical solutions are not

sensitive to this parameter when it is between 1 and 100.

In addition, we use the projection to H(div)-space except

where noted.

4.1 Validating the method

In this section we consider the problem where there is only

one capillary pressure curve and take K = 100 millidarcy.

The capillary pressure and relative permeability curves are

similar to [12]. These capillary pressure curves are of the

form pc(Sw)=−10log(Sw)/
√

K, i.e., inversely proportional

to the permeability. Furthermore, the relative permeabilities

are given as a function of the wetting phase saturation as

kw = S2
w and kn =(1−Sw)

2, see Fig. 2. The fluids are slightly

compressible, with a water and oil compressibility of 10−12

and 10−10, respectively.

In order to determine the solution to the problem, we

model the saturation with piecewise constant functions, m =

0, and view the solution on different size meshes. For these

numerical tests the penalty for the discontinuity in capillary

pressure (27) was not used. In addition, the projection to the

H(div)-space (23) does not change the previous formulation

(see Remark 1). The numerical results are shown in Fig. 3.

Notice that as we refine the mesh, the solution remains the

same. For these reasons we take these results to be a valid

approximation of the solution that we can use as a baseline

with which to compare further results. Henceforth we will

not include the pressure curves, but we note that they are all

consistent with those shown here.

Using piecewise linear functions to approximate the sat-

uration, m = 1, we obtain the results in Fig. 4. These re-

sults include the penalty for discontinuous capillary pres-

sure. There is some grid dependance on the coarser mesh,
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Fig. 2 Validation example. The capillary pressure curve is on the top,

and the relative permeability curves are on the bottom.

but this vanishes as the mesh is refined. The flux projection

removes oscillations, so there is no need to use a local slope

limiter. However, there are overshoots at the inflow, which

increase over time. On the fine grid, the maximum value of

the saturation is 1.163, which occurs at day 600. To handle

this problem, we implemented a global slope limiter that en-

forces the saturation to stay between its maximum value 1

and minimum value 0. We use a limiter that guarantees that

the saturation stays bounded without any tuning parameters.

This limiter is discussed in [18]. We further note that the sat-

uration plume travels the same distance using the piecewise

linear basis functions as it did when we used the piecewise

constants. This validates the proposed improvements, that is,

the projection to H(div) and adding a penalty for the jump

in the capillary pressure.

We also computed the CFL time step limit for the valida-

tion runs. We report a typical case, the case of constant sat-

uration (so without slope limiter) on the finest 15× 15 grid

using eight saturation steps per pressure step to the final time

600 days. The CFL time step at the beginning of the simu-

lation is about 3 days. However, except for the first eight

steps, the CFL time step is around 100 days throughout the

simulation, ending at about 90 days. The actual saturation

time step varies from about 0.00013 days initially to about

0.203 days by the end of the simulation, which is far below
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Fig. 3 Validation Example. From right to left we use 50, 200, and 450 elements. Piecewise linear pressure solutions on the top. Piecewise constant

saturation solutions on the bottom
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Fig. 4 Validation example. Piecewise linear saturation solutions, on the top using no slope limiter, on the bottom using a global slope limiter.

the CFL limit. It could be increased, however, then the iter-

ative coupling requires more iterations to achieve the mass

balance. Since the saturation steps are explicit and cheap to

compute, it is more effective in wall clock time to increase

the number of saturation steps and reduce the number of it-

erative coupling iterations (which require solving the more

expensive implicit pressure equation).

It was previously remarked (see Remark 2) that if at

some time tk the saturation Sk
w is piecewise constant, then us-

ing projected fluxes will give a piecewise constant solution

Sk+1
w at time tk+1. We ran this case with linear saturations

but no penalty to the discontinuity of capillary pressure. The

saturation at 600 days is the same regardless if the test func-

tions are piecewise linear or piecewise constant; both satura-

tions appear the same as in Fig. 3. Observe also that here the

projection to the H(div) space removes the local oscillations

from the (in principle) piecewise linear saturation.
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4.2 Two Rock Types

In this section we look further at the improvements to the

method by considering the case where there are two rock

types. In the results in this section we are using the same

computational domain as in the previous section, except now

there is a second rock type located in the domain in the area

(x,y) ∈ [0,300]× [200,300] feet, as shown in Fig. 5.
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Fig. 5 Two rock types in 2-D. Location of the two rocks in the compu-

tational domain and the associated capillary pressure curves.

The rocks will have different capillary pressure curves

due to the difference in the permeabilities of the rocks. Rock

Type 1 has a permeability of 100 millidarcy, and the second

rock type has a permeability of 10 millidarcy. The capillary

curves are shown in Fig. 5. The compressibility of water and

oil is 10−7 and 10−5, respectively.

This time we take the initial condition for the saturation

to be piecewise constant with a value of Sw = 0.2 in Rock

Type 1, and in Rock Type 2 it is set to satisfy that the capil-

lary pressure is continuous across the boundary.

We used the global slope limiter with these results and

set the global maximum and minimum to be 1 and 0.2 re-

spectively.

Shown in Fig. 6 are the saturation and pressure results at

various times. We note that the pressure solution is smooth

as we would expect. Looking at the saturation at the bound-

ary of the rock types, we notice that the saturation is discon-

tinuous, as expected. For example, the saturation is greater

in Rock Type 2 so that it will respect the continuity of the

capillary pressure that is explicitly required in the saturation

step. We also see that because of the higher permeability in

Rock 1, the saturation front moves faster around Rock 2 than

going through it. By 1000 days the flow has come around

the bend of the second rock type and is heading towards the

outflow boundary.

4.3 Choosing the primary pressure

In this section we illustrate the problems that can occur with

using the wetting phase as the primary pressure. We look at

the same example of two rock types as before, except we

change the initial condition so that the Sw = 0 everywhere,

which is a valid choice with respect to the capillary pressure

curves in Fig. 5. We also use the global slope limiter to en-

force the global maximum and minimum value to be 1 and

0 respectively. When we do this, we get the results in Fig. 7.

This simulation shows large oscillations in both the pressure

and saturation solutions. The oscillations in the pressure are

difficult to see, but they are the main source of oscillations

to the saturation solution, which is evident in the figures.

Observe that the oscillations are worse in Rock 1 where the

capillary pressure has a steeper gradient near the residual

saturation, which supports the discussion on choosing the

reference pressure in Section 2.3.

We ran the problem with the same parameters but with

the non-wetting phase as the primary pressure. Due to a

computer code limitation, this changes our pressure bound-

ary condition to be with respect to the non-wetting phase.

Thus, this is not exactly the same problem as in the previ-

ous case, but it is very similar. We choose to look at times

where the saturation front had reached approximately the

same distance as in the previous case to compare the re-

sults, see Fig. 8. The speed of the front is different due to

the obviously incorrect results obtained when using the wa-

ter pressure. Observe that the speed of the front is similar

to Fig. 6. The main improvement is of course that using the

non-wetting phase pressure, we no longer have oscillations

in the solution. The reason for the improvement is that we

are avoiding the numerical instability problem discussed in

Section 2.3.

4.4 Mesh refinement study

We next present a mesh refinement study in order to pro-

vide some quantification of the convergence of our method.
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Fig. 6 Two rock types in 2-D. Linear water pressure on the top, and saturation on the bottom. From left to right at day 300, 600, and 1000.
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Fig. 7 Primary pressure choice in 2-D. Water pressure (top) and water saturation (bottom) with initial saturation 0 and using water pressure as

primary pressure. From left to right at day 500, 1000, and 1500.

Based on the discussion in Section 4.3, we use the non-

wetting phase as the primary pressure. In order to make

the problem run on a refined mesh with a short wall clock

time, we made a few adjustments to the problem in Sec-

tion 4.3. The computational domain is the area [0,400]×
[0,400], with a second rock type located in the region [0,200]×
[100,200]. We also added several more points to the Capil-

lary Pressure curves, as shown in Fig. 9.

This problem produced images comparable to those pre-

viously shown. We ran the problem on grids of size 8× 8,

Table 1 Mesh Refinement Study.

Grid Size Relative Pressure Error Relative Saturation Error

8 0.00341 0.197

12 0.00234 0.153

16 0.00195 0.130

24 0.00162 0.097

12×12, 16×16, 24×24, and 48×48. At day 350 we com-

puted the L2 norm of the errors of the coarser grids as com-

pared to our finest grid 48×48. The results are displayed in
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Fig. 8 Primary pressure choice in 2-D. Oil pressure (top) and water saturation (bottom) with initial saturation 0 and using oil pressure as primary

pressure. From left to right at day 300, 700, and 1000.
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Fig. 9 Capillary pressure curves for the mesh refinement study.

Table 1. We see reasonable convergence of the course solu-

tions to the fine one. In fact, linear regression shows a con-

vergence rate of about 0.68 for the pressure and 0.64 for the

saturation.

5 Numerical examples in three dimensions

In the next series of tests, we use a cubical domain of size

(x,y,z) ∈ [0,500]× [0,500]× [0,500] feet. Our tests include

those with one and two rock types, and the effect of gravity

is included in all tests.

For the single rock type examples, the initial water sat-

uration is taken to be 0.2 and the pressure 500 psi (as in

the two dimensional examples). These are actually set at

the bottom of the domain, and distributed upward accord-

ing to hydrostatic (i.e., gravity and capillary) equilibrium to

the rest of the domain. For the two rock type examples, the

initial water saturation is 0.3 in Rock 1 (at the bottom of the

reservoir), and Rock 2 is set to satisfy continuity of capillary

pressure. Again the pressure is set to 500 psi at the bottom

of the domain.

Fig. 10 Three dimensional boundary conditions. No flow except on the

blue inflow region and the green outflow region, where the pressure is

specified.

We use a computational mesh of prisms. The domain is

divided into a uniform grid of 10×10×10 elements, and the

tops of the elements are cross-hatched to form the triangular

base of the prismatic elements. The system is driven by a

vertical pressure boundary condition set to 550 psi at the

bottom of the inflow face of 2× 10 elements near a corner,

and a vertical outflow face set to 450 psi at the bottom of

2× 10 elements near the opposite corner (see Fig. 10). In

some cases, we use a grid refined near the inflow region.
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We will compare the use of the oil and water pressure

variables as the primary variable in the pressure equation.

It should be noted that the two problems are slightly differ-

ent, given the way the boundary and initial conditions are

set from the pressure, as noted in Section 4.3. In these three-

dimensional examples, we use only the case of a linear ap-

proximation for both the primary pressure and the satura-

tion.

All single rock type examples show results after 500

days of simulation. For these examples the porosity φ = 0.2

and the permeability is K = 100 millidarcies for the single

rock type examples, and K is 100 for Rock Type 1 and 50

millidarcies for Rock Type 2 when there are two rock types.

The single rock type examples have compressibility of water

and oil set to 10−12 and 10−10, respectively, while for two

rock types these are 10−7 and 10−5, respectively.

5.1 Brooks-Corey capillary pressure

The Brooks-Corey model is given by

pc(Sw) = pe S
−1/λ
w , (29)

where λ is the pore size index, typically and here taken as

λ = 2, and pe is the entry pressure, which is proportional

to
√

φ/K, with the proportionality constant taken to be 100

(and so is pe = 4.47 psi). We also test a dominant capillary

pressure case which is 10 times stronger (pe = 44.7 psi). The

relative permeabilities are given by

kw = S
(2+3λ )/λ
w and kn = (1−Sw)

2(1− s
(2+λ )/λ
w ). (30)

On a technical note, the capillary pressure blows up as Sw

approaches 0, so we modified its asymptote to hit the Sw = 0

axis on a linear trajectory from Sw = 0.01. As used in our

tests, these curves are shown in Figs. 11–12.
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Fig. 11 Brooks-Corey model. The capillary pressure (in psi).

Our results are shown in Fig. 13, using the oil pres-

sure as the primary variable in the pressure equation, and
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Fig. 12 Brooks-Corey model. The relative permeabilities.

in Fig. 14, using the water pressure. As can be seen, the oil

pressure gives a somewhat better result, since it is smoother

and cleaner, as one should expect for an elliptic problem.

We also show the same simulations using a grid refined near

the inflow region in Figs. 15 and 16. There is little differ-

ence, indicating again that the method is accurate. More-

over, although refinement gives more accurate results, it is

not strictly required for physically meaningful results. This

is an important property in reservoir simulation, since com-

putational power limitations dictate that the grid used is of-

ten coarser than one might like.

In the dominant capillary pressure case (pc is multiplied

by 10), we again see a clean pressure in Fig. 17 for the

primary oil pressure variable case. However, now we see

a broader plume for the water saturation compared to the

non dominant capillary case, as expected. For the case with

the water pressure as the primary pressure, our code did not

produce a physically reasonable solution.

5.2 Van Genuchten capillary pressure

The Van Genuchten model is given by

Sw =
[
1+

(
α pc(Sw)

)n]−m
, (31)

kw(Sw) =
√

Sw

[
1− (1−Sn

w)
m
]2
, (32)

kn(Sw) = (1−Sw)
2(1−Sn

w)
2m, (33)

where m = 1/n and we take α = 10/psi and n = 0.8. The

singularities were linearized at the ends from Sw = 0.005

and Sw = 0.9995. The linearization is not visible to the eye,

and the curves are shown in Figs. 18–19. In this test, we

have a singularity in the derivative of the capillary pressure

at both ends of the saturation range (Sw = 0 or 1). We thus

cannot say which phase pressure should be preferred as the

primary pressure in the pressure equation. Nonetheless, we

obtain better and more reliable results using the oil pressure.
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Fig. 13 Brooks-Corey model. The primary variable is the oil pressure. On top is the full domain; on the bottom is a slice at 45 degrees between in

and out flow. Linear oil pressure is on the left, and linear saturation is on the right.
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Fig. 14 Brooks-Corey model. The primary variable is the water pressure. On top is the full domain; on the bottom is a slice at 45 degrees between

in and out flow. Linear water pressure is on the left, and linear saturation is on the right.
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Fig. 15 Brooks-Corey model. The primary variable is the oil pressure, with a refined grid near inflow. On top is the full domain; on the bottom is

a slice at 45 degrees between in and out flow. Linear oil pressure is on the left, and linear saturation is on the right.
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Fig. 16 Brooks-Corey model. The primary variable is the water pressure, with a refined grid near inflow. On top is the full domain; on the bottom

is a slice at 45 degrees between in and out flow. Linear water pressure is on the left, and linear saturation is on the right.
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Fig. 17 Brooks-Corey model, capillary dominant. The capillary pressure is ten times greater than usual. The primary variable is the oil pressure,

with a refined grid near inflow. On top is the full domain; on the bottom is a slice at 45 degrees between in and out flow. Linear oil pressure is on

the left, and linear saturation is on the right.
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Fig. 20 Van Genuchten model. The primary variable is the oil pressure, with a refined grid near inflow. On top is the full domain; on the bottom

is a slice at 45 degrees between in and out flow. Linear oil pressure is on the left, and linear saturation is on the right.
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Fig. 18 Van Genuchten model. The capillary pressure (in psi).
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Fig. 19 Van Genuchten model. The relative permeabilities.

Our results on the refined grid are shown in Fig. 20,

using the oil pressure as the primary variable in the pres-

sure equation. The capillary dominated case (multiplying

the capillary pressure by a factor of 10) is shown in Fig. 21.

Reasonable results are obtained. When the water pressure

was used as the primary pressure variable, the simulations

did not run past 100 days for our code. We are not sure why,

but perhaps this was due to the slightly different problem

run. Due to the way the initial condition and boundary con-

ditions are set, the water pressure problem is somewhat more

difficult.

5.3 Two rock types in a layered configuration

The next two test cases concern domains with two rock types.

In this first test, the rock types are arranged in a layered con-

figuration. Rock Type 1 appears in the top and bottom four

layers of elements, separated by Rock Type 2 in the center

two layers of elements, as shown in Fig. 22.

The rock property curves for the two types of rock dif-

fer. For the Brooks-Corey model (29)–(30), both rocks use

Fig. 22 Two layered rock types. The center portion is Rock Type 2,

which separates Rocks of Type 1.
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Fig. 23 Two rock types. Capillary pressures for the Brooks-Corey

model.

λ = 2 but they differ in the proportionality constant pe =

100
√

φ/K, which is p1
e = pe = 4.47 for Rock Type 1, the

same as for a single rock type, and p2
e = 6.32 for Rock

Type 2. The capillary pressure curves are shown in Fig. 23.
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Fig. 24 Two rock types. Capillary pressures for the Van Genuchten

model.

For the Van Genuchten model (31)–(33), we use the same

n = 0.8 for Rock Type 1 as for the single rock type exam-
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Fig. 21 Van Genuchten model, capillary dominant. The capillary pressure is ten times greater than usual. The primary variable is the oil pressure,

with a refined grid near inflow. On top is the full domain; on the bottom is a slice at 45 degrees between in and out flow. Linear oil pressure is on

the left, and linear saturation is on the right.
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Fig. 25 Two layered rocks of Brooks-Corey type. The primary variable is the oil pressure. On top is the full domain; on the bottom is a slice at 45

degrees between in and out flow. Linear pressure solutions on the left, and linear saturation solutions on the right.
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Fig. 26 Two layered rocks of Brooks-Corey type. The primary variable is the water pressure. On top is the full domain; on the bottom is a slice at

45 degrees between in and out flow. Linear pressure solutions on the left, and linear saturation solutions on the right.
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Fig. 27 Two layered rocks of Van Genuchten type. The primary variable is the oil pressure. On top is the full domain; on the bottom is a slice at

45 degrees between in and out flow. Linear pressure solutions on the left, and linear saturation solutions on the right.
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ples, and n = 0.75 for Rock Type 2. The capillary pressure

curves are shown in Fig. 24.

We show results at 1200 days of simulation time. The

Brooks-Corey results appear in Figs. 25–26, using the oil

and water pressure as the primary variable, respectively. The

very sharp, discontinuous change in saturation at the rock

type interfaces is clearly evident, even as the pressure re-

mains continuously varying. The case of the primary wa-

ter pressure variable (Fig. 26) produces a physically unrea-

sonable pool of water above the Rock Type 2 layer. This

is perhaps due to the lack of a local slope limiter. The Van

Genuchten results are in Fig. 27 (again, the use of the water

pressure as primary variable led to nonconvergence before

100 days). The results appear very clean and reasonable.

5.4 Two rock types in a barrier configuration

Our final test has two rock types in a barrier configuration,

as depicted in Fig. 28. This is the same configuration as the

two dimensional example with two rock types, but now the

model has vertical depth. The rock and fluid properties are

the same as in the previous section (Section 5.3).

Fig. 28 Two rocks in a barrier configuration.

In this example, we show results at 200, 700, and 1200

days of simulation time, so as to show the water plume be-

fore entering the barrier, while it is entering the barrier, and

as it exits the barrier. The Brooks-Corey results appear in

Figs. 29–30, using the oil and water pressure as the pri-

mary variable, respectively. The Van Genuchten results are

in Fig. 31 (again, we did not see convergence for the wa-

ter pressure as primary variable). As can be seen, the water

moves ahead through the barrier due to the greater capillary

pressure, producing a sharp discontinuity in the solution at

the rock interfaces. The profile of saturation within the bar-

rier at time 1200 days looks good in the slice, but not in the

three dimensional rendering. This is again perhaps due to

the lack of a local slope limiter. In essence, the saturation

slopes the wrong way within the barrier (which is only two

elements thick). A good slope limiter should be able resolve

this type of problem.

6 Conclusions and discussion

In this work we implemented two improvements to the dis-

continuous Galerkin formulation of the slightly compress-

ible two phase flow solved using the IMPES scheme, which

are projecting the velocity to the H(div) space and including

an explicit penalty for the jump in the capillary pressure in

the saturation equation. We showed that projecting the ve-

locity to the H(div) space reduces the local oscillations. In

some simple cases local oscillations are reduced to the point

that one can use a a global slope limiter, which is much eas-

ier to implement and does not affect the dynamics of the

solution as severely as a local limiter.

We showed that adding the penalty for the jump in the

capillary pressure improved the saturation step considerably.

With this formulation we observed that the saturation always

fulfilled the continuity of the capillary pressure even if the

magnitude of the capillary pressure was small compared to

the phase pressures.

We also showed that choosing the non-wetting phase

pressure as the primary pressure is often more numerically

stable. This is to be expected for a Brooks-Corey type capil-

lary pressure function, where the capillary pressure function

has a steep gradient near the wetting phase residual satura-

tion, but not at the oil residual saturation. It is perhaps some-

what surprising that we found in our test cases, the oil pres-

sure was also preferred for Van Genuchten curves, which

have singular capillary behavior at both residual saturations.

Further study of this phenomenon is warranted, since we do

not believe that our test suite is rich enough for a definitive

conclusion for Van Genuchten type curves.

Research on coupled DG-DG methods for two-phase flow

is far from complete. We have shown improvements, but

much work remains. Our three dimensional results showed

that an effective local slope limiter is needed to avoid non-

monotonic behavior. Our code does not include a proper

well model, and this hampered our efforts to simulate ap-

propriate test cases. The solver technology needs to be im-

proved to speed up the wall clock time. We were forced to

use a very small time-step, which suggests that a better, per-

haps more implicit, coupling between the pressure and satu-

ration equations is needed.
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Fig. 29 Two rocks in a barrier configuration and of Brooks-Corey type. The primary variable is the oil pressure. From left to right is the solution at

200, 700, and 1200 days, respectively. The top two rows are the linear pressure solution, with the slice at the middle of the domain in the z-direction

(using a different color scale). The bottom two rows are the linear saturation solution, with the slice at the same location.
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Fig. 30 Two rocks in a barrier configuration and of Brooks-Corey type. The primary variable is the water pressure. From left to right is the

solution at 200, 700, and 1200 days, respectively. The top two rows are the linear pressure solution, with the slice at the middle of the domain in

the z-direction (using a different color scale). The bottom two rows are the linear saturation solution, with the slice at the same location.
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Fig. 31 Two rocks in a barrier configuration and of Van Genuchten type. The primary variable is the oil pressure. From left to right is the solution

at 200, 700, and 1200 days, respectively. The top two rows are the linear pressure solution, with the slice at the middle of the domain in the

z-direction (using a different color scale). The bottom two rows are the linear saturation solution, with the slice at the same location.


