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Abstract

An efficient modification by Douglas and Kim of the usual alternating directions
method reduces the splitting error from O(k?) to O(k3) in time step k. We prove conver-
gence of this modified alternating directions procedure, for the usual non-mixed Galerkin
finite element and finite difference cases, under the restriction that k/h? is sufficiently
small, where h is the grid spacing. This improves the results of Douglas and Gunn, who
require k/h* to be sufficiently small, and Douglas and Kim, who require that the locally
one-dimensional operators commute. We propose a similar and efficient modification of
alternating directions for mixed finite element methods that reduces the splitting error
to O(k?), and we prove convergence in the noncommuting case, provided that k/h? is
sufficiently small. Numerical computations illustrating the mixed finite element results
are also presented. They show that our proposed modification can lead to a significant
reduction in the alternating direction splitting error.

1 Introduction.

We consider in this paper the approximation of a parabolic problem on a bounded domain
Q c R? of the form

cus — V- (aVu)=f, z€Q, 0<t<T, (1.1)
u=g, x€0Q 0<t<T,
u=mwug, x€, t=0,

where u; is the time partial derivative of u(z,t), ¢(z) and a(z) are uniformly positive on €,
and c(z), a(x), f(x,t), g(x,t), and ug(x) are sufficiently smooth for our purposes. Since the
1950’s, scientists have formulated time-stepping procedures to numerically approximate the
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solutions of such problems. The Alternating Direction (AD) methods were first introduced
in 1955 by Douglas, Peaceman, and Rachford [4, 8, 13]. They noted that

-V (aV)=— Z 8(3:2' <a8(?ci>

=1

is a sum of d one-dimensional operators and, thereby, treated the spatial variables of (1.1)
individually in a cyclic fashion. This locally one-dimensional approach produces a splitting
error over an approach that treats the full d-dimensional problem at once.

An AD method can be interpreted as being a perturbation of some underlying implicit
numerical time-stepping method, such as Crank-Nicolson or backward Euler. The spatial
variable splitting error terms form a perturbation of the same order in the time step k as
the truncation error terms associated with the Crank-Nicolson method, O(k?), and of higher
order with the backward Euler method, O(k). Thus, the asymptotic rate of convergence
for the AD method should be of the same order in the spatial and temporal discretization
parameters as that for its associated underlying method. However, at practical levels of
discretization, the actual errors associated with an AD method can be much larger than
that for the underlying method. To rectify this, Douglas and Kim [7] (cf. [5]) proposed the
Modified Alternating Direction iteration algorithms (AD-M), sometimes referred to as AD-II,
AD with Improved Initialization (see (2.11)—(2.13) below). They modify the right hand side
of an AD algorithm to reduce the order of the splitting error from O(k?) to O(k3).

This paper has two main results. In [7], Douglas and Kim give a convergence proof for AD-
M under the assumption that the order in which the individual spatial variables are treated
is immaterial. More precisely, if A,, is the discrete approximation to the one-dimensional
operator —0/0xy, (a0/0zy,), they require that A,,, and A,,, commute for all m; and ma.
This condition generally does not hold in practice, for example, when a is not constant. Some
40 years ago, Douglas and Gunn [6] provided a general formulation and proof of convergence
of the AD method in the non-commutative case. However, they required the restriction
that k/h* must be sufficiently small, where h is the grid spacing. Our first main result is a
convergence proof for the AD-M under the constraint that merely k/h? is sufficiently small.

Our second main result is an improved treatment of mixed finite element methods [14, 3].
These methods approximate the flux variable q = —aVu simultaneously with the scalar
variable u, and they are often employed to solve for flow fields in physics and engineering
problems. Douglas and Pietra [9] formulated an AD iterative technique for solving the alge-
braic systems associated with mixed finite element methods for second order elliptic problems.
We propose a modification similar to the AD-M method for the non-mixed formulation. Our
modification reduces the splitting error from O(k?) to O(k?). A similar convergence theory
to that our first main result is developed for this mixed AD-M method. That is, we obtain
convergence for the noncommuting case with the restriction that k/h? is sufficiently small.

The rest of the paper is organized as follows. In the next section, we define the non-mixed
AD and AD-M methods for the usual Galerkin finite element or finite difference discretizations
of parabolic equations. We present our convergence proof for AD-M in §3. After a review of
the standard mixed finite element method, given in §4, the AD-M for mixed finite element
methods is formulated in §5. Our convergence results for mixed methods are given in §6.
Finally, in §7, we present some numerical experiments illustrating the utility of our mixed
methods, and confirming our theoretical results.



2 The basic methods in non-mixed form.

Although our results do not require the following constraint, for simplicity we tacitly suppose
that © C IR? admits a rectangular spatial grid of maximal spacing h. This is the usual
situation considered since AD can be implemented efficiently in this case. Also for simplicity,
we take a uniform time step k = T/N > 0. We define discrete times t" = nk and use the
notation ¢” in place of ¢(t") and ¢"+/2 in place of p((t" + t"1)/2).

Loosely speaking, we let A be the d-dimensional linear operator obtained from finite
difference or finite element approximation of —V - (aV) over the grid on Q with order of
accuracy O(h®). We assume that

d
A= An,
m=1

where each A,, can be inverted relatively easily. Normally, A,, is a one-dimensional linear
operator obtained from approximation of —d,,(ady,), where 9,, = 0/0x,, on an x,,-line of
Omega over the grid. However, we need to be more precise about exactly what we mean by
the operator A,,, especially for the next section where we need to apply it multiple times
to the true solution. It is confusing to explain the finite difference and finite element cases
together, so we present only the more difficult finite element case and leave it to the reader
to translate things to the finite difference case.

We begin by rewriting our differential system (1.1)—(1.2) in variational form. Let (-,-)
denote the inner-product in L*(Q). We find u € H}(Q) + g, where g is extended to all of ,
such that

(cut,v) + (aVu, Vo) = (f,v), v € H(Q). (2.1)

Let V), C H&(Q) denote our finite element space, with nodal basis

Vi, = span{v; }.

We will approximate u in Vj, + ¢g. Now A and A,, are symmetric, positive semidefinite
matrices, with éj-entries

Ajj = (aVv;, Vuj) and Ay, = (a0mvi, Omvj).
We also need the positive definite matrix
Cij = (cvi, vj)
(which is diagonal is mass lumping is used) and the vector F' given by

gn+1 _ gn
F = (f,v;) — (eT,vZ) — (aV[6g™ ™ + (1 - 0)g"), Vi),

for # chosen immediately below.



2.1 The backward Euler and Crank-Nicolson methods.

The basic time-stepping algorithms for (1.1) can be written together using § = 1 for backward
Euler and 6 = 1/2 for Crank-Nicolson.
We approximate u™ by uj € Vj, + g", which has the expansion

up =Y Ulvi+g", (2.2)
7

in terms of the vector U™ which satisfies
Un+1 _yn
c—— -

k

where UY is the vector of nodal values for some given and accurate approximation to 1y — g
in Vj,. It is well known that the local time truncation error is O(k) for backward Euler and
O(k?) for Crank-Nicolson, which we can write in the compact form O(k*~2%). Unfortunately,
we must solve an implicit multi-dimensional problem for each time step.

+ AU + (1 -0)U") =F", n=0,1,..,N -1, (2.3)

0

2.2 The AD method.
The Douglas-Gunn algorithm [6] for AD time discretization of (2.3) asks that, for each
n=20,1,...., N — 1, we find w™™, for m =1,...,d, such that

n m d
C——— + D> Ai(fuw™ + (1= ") + > A =F"t, (2.4)
i=1 i=m+1

and then set w"t! = w™?, where w" approximates u” in the usual sense:

wipy = > wivi+g". (2.5)

)

Note that we need to solve implicitly only a one-dimensional problem at each stage. This
algorithm is written in the efficiently computable, equivalent form

d
(C 4 kA )w™t = <c — (1= 0)kA; — k) A,)w" + kF o, (2.6)
=2
(C + 0kA,)w™™ = Cw™™ ! + 0kA,w™, m=2,....d, (2.7)
W't = ™, (2.8)

Multiply (2.7) by (14 0kC~Ay)--- (1 +0kC~1A,,_1), sum on m, and add (2.6) to see that
n+l _ w"
C—p—+ A(fw™ + (1 - O)w™) + Bw™™ —w") = F", (2.9)

where
B=k"'C[(1+0kC A1) - (1 +0kC ' Ag) — 1 — 0kC ' A]
=0’k > A C A, + 6% ) Ap, C71 A, C7 A,

1<m1<ma<d 1<mi<ma<ms<d

4+ 0RTIA 0T A, - O Ay (2.10)



This equation is similar to (2.3), and from it we conclude, without being very precise, that
the splitting error is

B@M4—ww:k3<ﬁf%l—> Gﬁnggigf gﬂ)zo%%

provided that w (i.e., wap — ¢) is a good approximation of v — ¢, and a, ¢, g, and u are
sufficiently smooth.

2.3 The AD-M method.

The Douglas-Kim AD-M algorithm [7] adds a term to the right-hand side of (2.6); that is,
foreach n =1,2,.... N — 1, we find W™™ for m = 1,...,d such that

d
«%+%Agwmﬂz(0—«1—@@h—k§:Ame

i=2
+ kFTH 4 W — wnh), (2.11)
(C + 0kA,)W™™ = CW™ L L 0kA,, W™, m=2,....d, (2.12)
Wt = nd (2.13)
where W™ approximates u”™ via
wy, = Z Wit v + g". (2.14)

i

We retain the property that only one-dimensional problems need to be solved implicitly at
each stage. These equations imply

Wn+1 —Wwn
C———E———+Awmmﬂww1—QWM)+Bavwﬂ—2wn+mm*):FMﬁ (2.15)

from which we see that the splitting error

BW™ —owm + Wl = kB

Wn+1 — oW+ Wn—l
k2

92 9?2 92
=0 = O(k?
( zjmm&&z ”D (=)
is improved in convergence order from the AD method. The price we pay is that we need

some good approximation to W', which we might obtain, for example, by solving AD several
times with a smaller time step.

3 A new proof of convergence for AD-M.

As noted in the Introduction, Douglas and Kim [7] gave a convergence proof for AD-M under
the assumption that the A,, commute. Douglas and Gunn [6] handled non-commutative



problems, but required the restriction that kh~* be sufficiently small. We significantly relax
this constraint in this section.

Recall that (,-) is the inner-product in L?(Q2), and let || - || denote the induced L?(Q2)-
norm. We will also use some of the H*(2)-norms, denoted by || - ||. We make the following
reasonable assumptions regarding the underlying discretizations.

Assumption 3.1 For some constant C independent of h and k, kh™2 < C. Moreover, for
any vector ¥ € RI™Vn
(W] < Cllyll,

where ¢ =Y, V,v;.
The latter inequality above holds because the mesh is quasi-uniform.

Assumption 3.2 For some constant C depending on the smoothness of a, ¢, and g, but not
on h or k, the discrete spatial operators A,,, and B satisfy:

1. Each A,, is bounded in the sense that | A, | < Ch™2;
2. B satisfies the bound |Bv| < Ckh™4|v].

Moreover, 0 < ay < a<a* < oo and 0 < ¢y < ¢ < c¢* < oo on Q.

Note that Part 1 holds for the usual finite element spaces, and it (with Assumption 3.1)
implies Part 2.

Assumption 3.3 For some constant C depending on the smoothness of u, a, ¢, and g, but
not on h or k, the following hold.

1. The initial approrimation is the elliptic projection, meaning that u% = w2 € Vy+g°
satisfies
(aV(u—u)),Vv) =0, veEV,. (3.1)

Moreover,
[u® = upll + hllu® — upll < Ch”.

2. The solution uy, to the full scheme (2.3) approzimates the true solution u of (1.1)~(1.3)
in the sense that the error " = u™ — uy satisfies
gn-i—l _g&n

N-1

<n=0 k
m < s—1 3—260 )

omax [I€™ 1 < C{* + K

2\ 1/2
/<;> + max [E™] < C{h® + K32,
0<m<N

It is well known that this assumption holds for the usual s-order accurate finite element
spaces, when we carefully choose the approximation to the initial condition [15, 1]. In fact,
Part 2 can be proven to hold using techniques similar to what we use in the remainder of this
section.



To prove convergence of AD-M, let E™ = U™ — W" and subtract (2.15) from (2.3) to

obtain o
Bt — B
- =

k

In integral form, with " = u} — wy}, the ith component is

+AME™ + (1 -0)E") = BW" —2W™ + W, (3.2)

n+l _ _n
<cu, ui> + (aV[0e ! 4 (1 0)e], Vo) = (BW™ —2W™ + W) . (3.3)

Take the dot product of this with the test vector E"*1 — E™ i.e., the test function e"*! —e™,
to obtain for n =1,2,...,. N — 1,

+1_en

n 2
/28 k4 0(aVe Ve ™) + (1 — 20)(aVe™, Ver) — (1 —6)(aVe™, Ven)

— B(wn+l _ 2wn + Wn—l) X (En+l _ En)

Thus, for either § =1 or 6 =1/2,

n+1 n |2

— 1
Cx % k + 5((aVen+1, Ve'th) — (aVe™, Ve™))
< C|B(Wn+1 —_oW™" + Wn—1)| Hen+1 _ enH
en-l—l —en 2

<CIB(W™ — 2w + W26 4+ =

5 k. (3.4)

k
Now for U € RU™ Ve with ¢ = >-; ¥;v;, note that

BY =6’k > A C T AU 4+ 0T A CT Ag - CT AT

1<mi<ma<d

= 02]{3 Z Amlc_l((aamzviaam2¢))i

1<mi1<ma<d

+ .o+ edkd_lAlc_lAQ e C_l ((aadv’ia adw))
= 0%k Z Am1 C_l ((Uz'y _amzaamzw))i

1<mi<ma<d

o+ 0T A CT Ay - O ((vi, —0gaday)))

%

.
In this way, we see that B can be applied naturally to a function. Using Assumptions 3.1
and 3.2, we determine that
|B(Wn+1 —_oW™" + Wn—1)|
< [B(e" — 2" + " h)| 4+ |B(EMT — 26™ + 77|
+[B((u—g)"™ = 2(u—g)" + (u—g)" )|

cdE[| e e e
S0\ 72 p p
5n+1 _&n En _ gn—l g+l 1/2
+'T +‘T +</ ||(u—9)tt||§dt> k3/2}. (3.5)
n—1




We remark that the last term above was easily estimated to be O(k?), which is all we need
for our error estimate. However, it should be O(k?), as noted above, but this is not so easy
to prove rigorously in the finite element case.

Combining (3.4) and (3.5), we obtain

2
k+ (aVeT Vet — (aVe", Ven)

n+1 n

e — €
k
< C|B(Wn+1 —2W™ + Wn_l)|2k’

Cx

k 4 en-i—l_en 2 en_en—l 2
< A - =
<e{ (e) |+ )= 4
gntl _gn 2 gn _ gn-1 2 gl
[ EE | EE ] [ e gpedgan ).
k k t71

Summing on n from 1 to m — 1, we see that

entl _ on 2
O Z k k+ (CLVem,ng)
n=1
k 4 m—1 en-l—l_enz 61_602
1 1

S(aVe,Ve)+c{<ﬁ> nz::l . - )

m—1 9
gn+l _gn T
AP e [ - gulgaret

For k/h? sufficiently small, we can remove the second term on the right-hand side, and the
estimation of the error generated by the AD-M method is reduced to bounding the errors in
wg and w,ll. With Assumption 3.3, this gives us two of the convergence results stated below.

Theorem 3.1 Under Assumptions 3.1-3.3, the solution w} of the AD-M (2.11)—~(2.13) con-
verges to the solution u of (1.1)—(1.3) in the sense that the error 0" = u"™ — w} satisfies

(%

n

5n+1 _§n

2\ 1/2
k:> + max_ [
k 1<m<N

< C hs k3_29 11 51 - 50
< + + [lup, — wplli + T

51 _50
k

max_|[0" ] < C{hs_l + k3720 4 Hu;ll - w;llHl + ‘
1<m<N

provided that k and k/h? are sufficiently small, wherein C depends on the smoothness of u,
a, ¢, and g, but not on h or k, and uy, is the solution to the unmodified method (2.2)—(2.3).

It remains to prove the estimate on max||d™||. Returning to (3.3), we take test vector
OE" 1 4+ (1 — 0)E™ to obtain, forn =1,2,..., N — 1,

n+l _ _n
(cu ,0e" T (1 - 9)6") + (aV[fe™ + (1 — 0)e™], V[fe" T + (1 — 0)e™])

— BW"™ —2W" + W) (OB 4 (1 - 9)E").



Again, for either # =1 or § = 1/2, we can estimate

%(“cl/2en+1”2 o ”cl/2en”2)
< C|B(W™ —2W™ 4+ W h)| |6 + (1 — 0)e"||k
< C{’B(Wn-l-l —2W™ + Wn_l)‘2k‘ + (”en-i-1H2 + Hen”2)k}

en—l—l —en 2 el — en—l 2
gc{(\|e"+1||2+ lle™(1?)k + —| k+ p k
gntl _gn 2 gn _ gn-1 2 tntl
+ HT k+ ‘ — k+/t1 I(u = 9)uell3 dt K},

using (3.5) again. Now sum on n from 1 to m — 1 to obtain that

m
Je2em 2 < fcl/2e 2 +c{ S len |2

n=1
m—1

entl _ on 2 m—1 gntl _ gn 2 T ) .
=3 | [ e [ - gl
n=0 n=0

We can remove the second term on the right-hand side using the Gronwall inequality, provided
that k is sufficiently small. The third term on the right-hand side is estimated using the first
result of the theorem. Assumption 3.3 completes the proof in the finite element case. The
finite difference case is similar to the above, only simpler, since it is trivial to apply B to a
set of finite difference points of the true solution.

4 The mixed finite element formulation.

We rewrite (1.1)-(1.3) in mixed form by defining

q = —aVu, (4.1)
and then, with a(x) = 1/a(z), we have
aq+Vu=0, z€Q, 0<t<T, (4.2)
cuy +V-q=f, x2€Q, 0<t<T, (4.3)
u=g, x€0 0<t<T, (4.4)
u=mwug, €, t=0. (4.5)

Define the function spaces
V = H(div;Q) = {q € (1*(2))?: V-q € L*(Q)},
W = L*(Q).
If (4.2) is tested by a function in V and (4.3) is tested by a function in W, the weak form

of (4.2)—(4.4) of interest for the mixed method results; that is, we find for each time (q,u) €
V x W such that

(aq,v) = (V-v,u) = —(¢g,v-v), veV, (4.6)
(cu,w) + (V- qw) = (f,w), weW, (4.7)



where the inner-product (-, -) is taken in W or W¢, as appropriate, (-,-) is the inner-product
in L2(0€2), and v is the outer unit normal to OS2.

The mixed finite element method approximates the solution in a properly chosen subspace
Vi x Wy of VX W (see, e.g., [14]). In semi-discrete form (i.e., discretizing space only), we
seek (qp(t),un(t)) € Vi, x Wp, such that

(aqp,v) — (V- -v,up) = —(g,v-v), v EVy, (4.8)
(cup,w) + (V- aqp,w) = (f,w), w € Wh. (4.9)

5 AD-M for mixed finite elements.

We derive our AD-M method only for the case that d = 2; the extension to d = 3 is
straightforward. We assume that V, x W}, is the Raviart-Thomas space RTs_1 [14] of index
s —1 > 0, though spaces with similar properties could be used instead, such as the Brezzi-
Douglas-Fortin-Marini spaces [2]. The usual basis for Vy,

Vi, = span{vy, vy i},
i,
has the properties that the vector function v, ; has a vanishing y-component, is supported in
at most two grid elements sharing an edge with normal in the z-direction, and is discontinuous
in the y-direction; similarly, v, ; has a vanishing z-component, is supported in at most two
grid elements sharing an edge with normal in the y-direction, and is discontinuous in the
x-direction. The usual basis for W},

Wh = span{wé},
4

is piecewise discontinuous over the grid.

We now reduce (4.8)—(4.9) to a system of linear equations. First consider the matrix A
arising from the form (avy,vs), for two basis functions of V. Any mixture of x and y basis
functions results in

(avgi, vy ) =0,

so A is block diagonal with blocks

Ax,il,iz = (avl‘,h ’ Vx,iz);

Ay i s = (QVy 41, Vy )

Note that both A, and A, are invertible. Moreover, with the appropriate ordering, these
matrices are banded with bands densely concentrated around the diagonal. For the z-basis
functions, we use standard (i, j) ordering of the elements, with ¢ advancing fastest. Starting
from (1, 1), we progress through the grid, numbering all v, , with support in (7, j). However,
for the y-basis functions, we use (i,j) ordering of the elements with j advancing fastest.
Thus these matrices have just a few bands near the diagonal, and so it is easy to solve linear
subsystems involving A, and A,.

With any ordering of the elements, we also have the nonsingular, block diagonal matrix
C' defined by

Cél,fz = (Cw&’wéz)'

10



Finally, let
Bgio= (wg, V-vy,),
By o= (we, V- vy ),

which are sparse, but not particularly well structured.
Let us expand the solution in the basis as

up(z,y,t) = Zze(t)wé(x Y), (5.1)
n(z,y,t) ZM )WVazi(x,y) +Z)\ V.2, y). (5.2)

Then the equations (4.8)—(4.9) reduce to the system Of linear equations

Azp — Bpz = Gy, (5.3)
AyN — Byz = Gy,
Cz+ Blu+BjA=F, (5.5)

where
G:L‘,i = _<gavx,i : V>7
nyj = —<g,Vy,j ’ V>7
FE = (f7wé)'

5.1 Backward Euler and Crank-Nicolson time discretization.
When we employ backward Euler (6 = 1) or Crank-Nicolson (# = 1/2) time discretization,
we begin with some approximation of z° and define u° and A° from
Agp® — B,2° = GY, (5.6)
AN = B,2" = GY,
and then, for n =0,1,..., N — 1, our system becomes
A"t = B2 = Gt (5.8)
Ay)\n+1 _ Byzn-‘rl _ GZ+1,
Zn—i—l

O+ BI (60" + (1= ") + By (A" + (L= O\") = F™*. (5.10)

This is an indefinite saddle-point problem, and, therefore, generally difficult to solve.
Now let
M, =BlA;'B, and M,=B}A,'DB,.
By solving (5.6) and (5.7) or (5.8) and (5.9) for x™ and A", we reduce (5.10) to

Co— "+ (Mg + M) (02" + (1 = 0)2") = FH, (5.11)
where
Frt= Pt - BIATN(0GET + (1-0)GY) — BJ A (0Gy ™ + (1-0)Gy).  (5.12)

Now (5.11) is positive definite, but unfortunately, M, + M, is a full matrix, and so it is still
difficult to solve.

11



5.2 An Uzawa mixed AD method.

An efficiently computable Uzawa AD algorithm (see [9]) iterates on n = 0,1,.... N — 1 as
follows:

T-sweep:
At — B2t = Gt (5.13)
CWT_ZH + By (0u™ + (1= 0)u") + By A" = F"*, (5.14)

y-sweep:
AN Bt — gt (5.15)
CZHHT_ZH + BL(0p™ + (1 - 0)u™) + BE (X! + (1 - 0)BIA") = F*0 (5.16)

corrector step:
At — B2 = gt (5.17)

Eliminating p™ and A", the Uzawa AD algorithm becomes

n,l _ _n
C% + M (020 + (1= 0)2") + My2" = F™L, (5.18)
Zn—l—l _ n ) 1 )
C’T + My (02" + (1 — 0)2") + My (02" + (1 — 6)z") = F*H, (5.19)
where
Frbt =t — BTATN(0GEH + (1-0)GY) — BI A 'GY. (5.20)

Subtract (5.18) from (5.19), multiply the result by 0kM,C~!, and combine with (5.19) to
obtain the single equation

n+l _ _n
O+ (M + M) (9" + (1= 0)2") + 62kM,C ™ M, (=" = 27)
= FH = 0%kM,CT B A (G - GY). (5.21)

Comparing this with (5.11) shows that the splitting error is
0°kM,C [M, (2" = 2") + Bl AN (Gt — G| = 0°kM,C B (AT — A7),
which is O(k?) for a sufficiently smooth solution u and boundary condition g.

5.3 A new Uzawa mixed AD-M method.

The equations (5.21) are not efficiently computable, but they do illuminate the splitting error
and suggest, similar to [7, (2.9)], that we can reduce it to O(k3) by adding terms to make
the splitting error equal to

62k M, O [My (27— 227 4277 4+ By ASHGYT - 267 + G
= 0*kM,C B (A"T1 —2X" + X" 1) = O(K?).

12



Then the local splitting error would be higher order in k& than the local error for the backward
Euler or Crank-Nicolson approximation, and also for the local splitting error of the AD
method itself.

Although A, and A, have bands concentrated near the diagonal, their inverses may be
full, so to avoid computing the inverse of A, and A,, we propose the efficiently computable
algorithm, forn =1,2,...,. N — 1,

r-sweep:
Agp™ — Byz™' + 0kB,CT ' BL (A" — A" = G (5.22)
2”71 - 2" n n n n
CTJrB;F(Hu T4 (1= 0)u") + BLA" = (5.23)
y-sweep:
AN — Bt = gt (5.24)
Zn+1 — 2" n n n n n
C——+ BI(0p™' + (1 —0)u™) + BL (O™ + (1 — 0)A") = F™*, (5.25)
corrector step:
At — B2t = grtl, (5.26)

After some manipulation, we have

n+l _ _n
C% + (Mg + My) (02" + (1 — 0)2") + 02k M, C ™ My (2" — 22" + 2" 1)
= F" - kM, CT B AN G - 26y + Gy, (5.27)

which has the promised O(k?) splitting error.

6 Convergence of mixed AD-M.
We suppose that V;, x W), approximates V x W as in the case of RT,_1, that is,

in |lq—v| <Cllallsh® and min [u—w| < Cllush®. 6.1
min g —v[ < Cllqllsh” and - min flu —w[| < Clulls (6.1)

All the usual mixed spaces satisfy the property that V - V;, = W}, and they each have a
linear projection operator 7 : VN (LP(2))? — V,, where p > 2, such that

v —mv|| < Cllv]sh?, (6.2)
(V-(v—mv),w) =0, weWp, (6.3)
IV (v —av)|| <C[|V - v[[sh®. (6.4)

We also let P be the linear orthogonal projection operator of L?(2) onto W;,. We will also
need below Py, which is the linear orthogonal projection operator of L?(£2) onto the space of
discontinuous constants (i.e., the scalar space of RTj). Trivially,

le = PocllLee < ClIVel|Loh,

where || - || is the L>-norm.

13



Mixed methods on rectangles have many interesting and important superconvergence
properties. For example, it is known [12, 10, 11] that the weighted L?-projection Pyr, defined
by

(v —=PYv),v) =0, VEVy,

has the property that
[7v = PG| < Cllv]ssrh*H. (6.5)

Recalling (5.1)—(5.2), we have from (4.6) and either (5.6)—(5.7) or (5.26), (5.24) that the
errors " = u" —uy and o" = q" — q} satisfy, for each n =0,1,..., N,

(ama™,v) = (V-v,Pe") = (a(rq” — q",v), v EVy (6.6)

Solving either (5.6)—(5.7) or (5.26), (5.24) for p" and A", we can rewrite (5.27) as

n+l _ n
C% + BT (0™ + (1 — 0)p™) + B (OA"™! 4 (1 — 9)A")

n+1 n 2 —1pT/yn+1 n n—1
=0F" ! + (1= 0)F" — °kM,C~' By (A" —2X" + A1), (6.7)

From (4.7) at times " and t"*!, then, we obtain for w; € W}, that

en—i—l —en
<0P7,wi> + (V- 00" + (1 = O)mo™], w;)

k
= 0°k(M,C~' B (\"Th —2X" 4 A" 1)),
n+l _ . n
+ <c [P% TR H)u?] ,wi>, (6.8)

wherein we introduced 7 trivially using (6.3).
We bound the splitting error as follows. First note that

By =M,z + Bl A,'G,
= —-M,E + M,U + BI'A,'G,
= —MyE + B A, (ByU + G,),

where E and U are the vectors of finite element coefficients of Pe and Pu, respectively. Now,
if we take test function v, ; in (4.6) and let Q be the a-weighted linear orthogonal projection

of (LQ(Q))2 onto Vj,, we see that
(@Qq,vyj) = (V- vy, Pu) = (g, vy - v),
and, with @ being the vector of finite element coefficients of Qq,
A,Q — B,U = G,.

Combining, we have that
ByA=-M,E+ B]Q.

14



The second step in bounding the splitting error is to note that ||A;|| + ||4,] + [|C]] < C
and ||A;Y| + ||A;1|| + |C71|| < C, and that we have only ||B;| + || By|| < Ch~!. Thus,

02k M,C™ By (AT —2X" 4 A

< kM O~ My (E™ — 2E™ + E™Y)| + |k M, C—lBT(QnH — 20" + Q")
< Ckh™2{h72||P(e"*! — 2¢" + "~ 1)H + Haz(gq"“ 2045 + Qg2 ||}

P e
ceh (b (P ] e

tn+l 1/2
using the stability of the L?-projection Q in H'.

The overall analysis of (6.8) proceeds much as in the nonmixed case. First take the
difference of (6.6) at times ¢"*1 and #", and then choose the test function v = 7o ! + (1 —
§)mo™. Combine the result with w = P(e"*! — e") in (6.8), and obtain that

n+l1 _ _n
(CP%,P(JLH - e")) + (oz(7ro*"Jrl - WU”),@WU”H +(1- 0)7?0”)

= 0°kM,C™ B (A" —2X" + X" - (BT — BT
M _ oyt g n n+l _ _n
+ | Pqc|P ? Oy (1 —=68)uy| ¢, P(e e")
+ (a(rq™™ — PGt — nq™ + PYq"), Omo" T + (1 — O)ma™),

wherein we introduced the operators P and P$. Again assuming that k/h? is sufficiently
small, after some manipulation similar to that in §3, we obtain

2
en

1 et — 1 n+1(2 n||2

S [VeP |k + 5 (Ivare™ 1|12 - | Varo )
k: 4
<e{(i=) |

2 2
k}
tn+1 n+1

+ K /t gz, dt + HP<C [P% —uptt— (1 e)ugD

o n n o n n 2 — n n
+ (P — 7g" ™) — (Pq™ — 7™ ||k + (o™ T2k + [|o HQk}-

n __ en—l

k

en—i—l —en

k

e

»

e+ P

2
k

For the time truncation error, we expand

¢ = (c—"Poc) + Poc
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and bound

2
k

n+l _ ,n
HP((C — Poc) [P% —furt - (1 - e)uyD

n+l _ ,n
< fle= Pacl={ [P (" - 0t - 1 - 0

2
Ol — Pt (1 - O — Pu?u} k

tn+1

<cfuron [ 1ol dres (a4 ) Ok .

since P is bounded in the L2-norm. The remaining term is then

Moreover, we have that

tn+1

n+1l _ u™ 2
k< CROY / 1070w dt.
t’l’b

u
PocP [T

—fut — (1 - H)u?]

2
k_l

tn+1

P — w1 — (P — )|k = H [ Pa-ray i
t

n

tn+1 tn+1

2
g( / up%qt—wqtndt) s [ IPga -l ar
t’!L

t’!L

tn+l

< B2+ / a2, dt.
tn

Finally, Gronwall’s lemma implies that, for k and k/h? sufficiently small,

N-1

D

n=1

< C{||7T01H2 + HP

2
k4 max |ro™|?
1<n<N

” en—i—l —en
k

ol _ 0

k

N T
T e (Z 2+ [ uqtniﬂdt) } (6.10)
n=1 0

For our second estimate of (6.8), take the f-weighted average of (6.6) at times "1
and t", and choose the test function v = 6mo™ + (1 — 0)wo™. Combined with (6.8) using
w = OPe" ! + (1 — 0)Pe”, it follows that

2 T T 0
— / lqaell3 dt + K510 / 04202 dt
0 0

en—l—l —en
(@T,epe"“ +(1 - 9)%”)

+ (a(@ro™ ! + (1 — O)mo™), Ono™ ! + (1 — O)mo™)
= 0*kM,C™' Bl (A"T1 —2X" + X" 1) - [9PE" T + (1 — 0)PE"]
M o n+l o n n+1 _ n
+ | Pqc|P ’ Ouy (1 —=0)ui’| ¢,0Pe"™ 4+ (1 —0)Pe
T (aff(ra™" = PGq") + (1 - 0)(mq” — PYa™)], 0n0" ! + (1 — 6)ma™),
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Again after some manipulation, we have that
1
(IVePe 1P — [|[VePe™|?) + §||\/5(97W"Jrl + (1= 0)mo™)|*k
en—l—l —en 2

< P—— - -

< c{”p — ey Hp A
n+l _ . n
+ HP(c[P% — gt - (1 - e)uyD

P — mq 2k + [P — wq"u%}.

N —

tn+1

2
k+k4/ 1 qu,n”%dt
tn—

n _ ,n—1

2
k4 ||Pe™ Y2k + || Pe™||?k

Gronwall’s lemma and the previous estimate (6.10) implies that

N-1
n||2 n+1 ny |12
m P + 0 +(1-46 k
 ax [|[Pe” nE_l om0 + (1 = O)ma™)|

2
k

61—60

k

< C{|]Pel|]2 + ||wot|? + HP

T T
b [ gl a1 [0
0 0

N

T
e (Z (e 13 + lla" [22)% + /0 ol dt) } (611

n=1

Our results (6.10) and (6.11) lead to the following theorem.

Theorem 6.1 Assuming (6.1), the solution (u},qn) of the mized AD-M (5.22)—(5.26) con-
verges to the solution (u,q) of (4.6)—(4.7) in the sense that the errors e” = u" — u} and

o" =q" —q} satisfy

(=

n=1

n+1 _ el

k

e

2\ 1/2
P k;> + max_|Pe"| + max |[7o"||
1<n<N 1<n<N

61—60

1

T 1/2 T 1/2
+/<:2</ |yq2,tt|y§dt> +k3—29</ Ha;*—%\\?dt)
0 0

N 1/2 T 1/2
+h5+1[(2(||u?||§+||q"||§+1>k> +( / uqtnzﬂdt) ]}

n=1

< C{HPelH + ||wot| + HP

provided that k and k/h? are sufficiently small, wherein C depends on the smoothness of a,
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¢, and g, but not on h or k. Moreover,

< C{||Pel|| + [|weot| + '

n+1 n

. o2 \ 12
k:> + max |e"]|+ max |o"||
k 1<n<N 1<n<N

61—60

|| VE

T 1/2 T 1/2
- k2< / |yq2,tt\\%dt> + /<;3‘29< / (|04~ 20y)|2 dt)
0 0

+ hs[ max ||u"||s +
1<n<N

P

n
| ax. la™ls

N 1/2 T 1/2
() ([ O+ ey ae) ]
n=1

The last estimate follows from the above argument using only H®-smoothness (i.e., not
invoking superconvergence) and adding the projection errors to the right-hand side.

7 Numerical results.

In this section, we present some numerical experiments illustrating the utility of our mixed
method for RTy and confirming our theoretical results. We test only the Crank-Nicolson
procedures. The errors reported are measured in discrete L?-norms. For the scalar solution

u, this is
1/2
el iy = mac { (e |
¢

where e} = u" — uj, is the error at the center of grid cell £, wherein u is the exact solution of
(4.2)—(4.5) and uy, is the approximation from either the full Crank-Nicholson (C-N) system
(5.8)—(5.10), the AD method (5.13)—(5.17), or our AD-M method (5.22)—(5.26). This norm
is O(h?) close to ||Pe||, and so it should exhibit superconvergence of order O(h? + k2).

We also report the errors

Nedlloan = { 3 () 2,1
(L?) — L )

and, for the vector solution q,

1/2
ol = ma { (0202 + EopsPht )
J

(3

where 0™ = q" — qj, are the errors at the center of the cell edges in the x and y directions, re-
spectively, which are O(h?) close to mo. Again, these norms should exhibit superconvergence
of order O(h? + k?).

Note that we should use a scaling of h ~ k, since the overall error is O(h? + k?). However,
the condition k/h? — 0 is required for the theoretical results. We have been unable to

18



Error Method | n=20 | n=40 | n=80 | n =160 | Rate
|||e|||Loo(L2) C-N 6.51e-3 | 1.51e-3 | 3.79¢-4 | 9.47e-5 | 2.03
AD 6.05e-3 | 1.51e-3 | 3.79¢e-4 | 9.47e-5 | 2.00
AD-M | 6.09¢-3 | 1.51e-3 | 3.79¢-4 | 9.47¢-5 | 2.00
|||€t|||L2(L2) C-N 2.21e-2 | 6.18¢-3 | 1.68¢-3 | 4.46e—4 | 1.88
AD 1.90e-2 | 5.95¢-3 | 1.68¢-3 | 4.49¢-4 | 1.80
AD-M | 1.10e-2 | 3.28¢-3 | 1.15e-3 | 3.66e—4 | 1.62
l||o]| | Lo (L2) C-N 6.83e-2 | 1.77e-2 | 4.58¢-3 | 1.17e-3 | 1.95
AD 4.89¢-2 | 1.43e-2 | 4.27e-3 | 1.17e-3 | 1.79
AD-M | 8.44e-2 | 2.08¢2 | 4.91e-3 | 1.18¢-3 | 2.06

Table 1: Discrete errors with exact solution u,, and the observed convergence rates.

find an example that requires this condition, however. Thus, we use a single discretization
parameter n so that h = k = 1/n. We note in passing that the condition k/h? — 0 is natural
for the Backward Euler methods combined with RTj, since then the superconvergent errors
are O(h% + k).

In our AD-M method, for practical purposes, A! was obtained by running 10 micro-time
steps of AD using one-tenth of the time step. We use the unit square as €2 and 7" = 1.0. In
all our test cases, we choose a specific solution u(z,y,t) and coefficient a(z,y), and then we
determine f, g, and ug so that (4.2)—(4.5) are satisfied.

7.1 Smooth examples.

In this set of examples, based on those of [7]. In Table 1, we show the results for the exact
solution
ut(z,y,t) = sin(27t) + sin(27z) + sin(27y)

and a(z,y) = 1, for which f(z,y) = 2cos(2nt)T + 4sin(2rz)7? + 4sin(2ry)w?. In this
example, the AD method does not introduce a larger splitting error, so all three methods are
comparable in their errors, at least for large values of n (i.e., small values of h = k). We see
second-order convergence for the full Crank-Nicolson system for all three norms. Moreover,
we see nearly second-order convergence for the two alternating direction methods, but the
rate is somewhat degraded to about 1.6 to 1.8 for some of the norms. It appears that in this
simple example, the splitting errors actually cancel some of the approximation error, giving
less overall error for AD and AD-M than for C-N in some norms for small values of n.
In Table 2, we show the results for the exact solution

ux (z,y,t) = (sin(2xt) + 1) (sin(2rz) + 1) (sin(2my) + 1)

and diffusion coefficient a(z,y) = 1. We see second-order convergence for C-N. In this
example, the AD method has much more error than C-N. AD produces a large splitting error
that degrades the effectiveness of the algorithm. It does not even appear that we have entered
the region of asymptotic convergence for this method, since the convergence rates are less
than expected for e; and o.

On the other hand, the AD-M method produces an error larger but comparable to C-N.
The AD-M splitting error is much smaller than that for AD. We observe somewhat better
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Error Method | n=20 | n=40 | n=80 | n =160 | Rate
llell |Loo(L2) C-N 1.09¢-2 | 2.73e-3 | 6.81e-4 | 1.70e-4 | 2.00
AD 6.28¢—2 | 1.58¢—2 | 3.94e-3 | 9.86e—4 | 2.00

AD-M | 2.70e-2 | 4.50e-3 | 8.84e—4 | 1.94e-4 | 2.37

[||e]] |L2(L2) C-N 2.86e2 | 7.84e-3 | 2.12¢-3 | 5.63e—4 | 1.89
AD 2.5%-1 | 6.92¢-2 | 2.27¢-2 | 8.63e-3 | 1.63

AD-M | 9.75e-2 | 1.33¢-2 | 2.19¢-3 | 5.10e-4 | 2.53

]HaH]Loo(Lg) C-N 1.67e-1 | 4.15e-2 | 1.03e-2 | 2.59¢-3 | 2.00
AD 1.80e-0 | 6.45e-1 | 2.70e-1 | 1.17e-1 | 1.31

AD-M | 6.40e-1 | 1.14e-1 | 2.14e-2 | 4.20e-3 | 2.42

Table 2: Discrete errors with exact solution ux, and the observed convergence rate.

-1.0-
-2.0—
~~ 1
S -
(@) i
= |
(D)
— -3.0
S ]
Q -
4.0—
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0.5 1 1.5 2 2.5
log(n)

Figure 1: The log of the error |[|e[|[1o 2y versus the log of n.

rates of convergence (greater than 2), because the splitting error is being removed at the rate
of O(Kk3).

We show the reduction in splitting error in Fig. 1, where we plot the base 10 log of the
error ||[e|||pec(r2y for the base 10 log of n, where n = 5, 10, 20, 40, 80, and 160. The data
are for exact solution u(z,y,t) = (sin(rt) + 1) (sin(rz) + 1) (sin(ry) + 1). The graph clearly
shows a slope of about 3, i.e., O(k?) convergence, for small n. The slope quickly reduces to
about 2, i.e., O(k?) convergence.

In our final smooth experiment, we test our AD-M with a variable coefficient. We again
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Error Method | a=a; | a=as | a=a3
e[l oo (z2) C-N | 6.81e-4 | 6.79e4 | 6.85e—4
AD 3.94e-3 | 2.43e-3 | 6.08¢e—3
AD-M | 8.84e—4 | 7.77e—4 | 9.64e—4
[||e]] |L2(L2) C-N 2.12e-3 | 1.87¢-3 | 3.59¢-3
AD 2.27e-2 | 1.49e-2 | 3.00e-2
AD-M | 2.19e-3 | 1.91e-3 | 3.24e-3
[l|o]] \Loo(Lz) C-N 1.03e-2 | 6.40e-3 | 1.74e-2
AD 2.70e-1 | 1.37e-1 | 5.29e-1
AD-M | 2.14e-2 | 1.17e-2 | 4.49¢e-2

Table 3: Discrete L2-errors for n = 80 with exact solution wuy.

take the exact solution uy, but set a to one of the three choices

al(ﬂi,y) = 17

1
as(z,y) = 2 + cos(3mx) cos(2my)’

1+ 0.5sin(5rz) +y3, if 2 <0.5,
a3(x7y) = L.5

3 .
1+ (z—05)?2 +y°,  otherwise.

In Table 3, we present the results, which show again that AD is inferior to AD-M, which is
comparable to the full solution.

7.2 Nonsmooth examples.

In this set of examples, we consider the true solution
uq(z,y,t) = |zyt — 0.25|,

for some parameter o. Note that the solution has bounded partial derivatives (of any type)
only up to order a. According to Theorem 6.1, we should take a > 3 to have the regularity
demanded of the solution for superconvergence, and o« > 2 to obtain convergence of order
O(k + h) (since the time error will degenerate to first order).

In the first set of tests, we take a = 1, which means that the 1-D operators commute. It
is reasonable to expect that there is no requirement that k/h? be sufficiently small in this
case, assuming the results of Douglas and Kim [7] extend to mixed methods. Indeed we see
in Table 4 good convergence for this case when a = 3.1, meaning that q has 2 derivatives.

When a = 2.1, C-N behaves as expected in Table 5, which shows the convergence rate
of e; and o degrading to about O(k + h). The fact that the error norm of e retains its
superconvergence is unexpected. Both AD and AD-M follow the general results of C-N, but
with somewhat greater error (and AD is worse that AD-M). When a = 1.9 (Table 6), we
lose sufficient regularity to have full good convergence, but we nevertheless retain a fractional
rate of convergence (as we should expect) of order about 0.9 for e; and o, and a bit better
partial superconvergence rate for e.

21



Error Method | n=20 | n=40 | n=80 | n =160 | Rate
llell |Loo(L2) C-N 1.14e—4 | 2.85e-5 | 7.13e—6 | 1.78e—6 | 2.00
AD 1.32e-3 | 3.41e-4 | 8.62e-5 | 2.16e-5 | 2.00
AD-M | 2.52e-4 | 4.51e-5 | 9.10e-6 | 2.02e-6 | 2.32
[||e]] |L2(L2) C-N 1.84e—4 | 4.63e-5 | 1.18e-5 | 2.97¢—6 | 1.98
AD 1.78e¢-3 | 4.63e—4 | 1.18e—4 | 3.00e-5 | 1.97
AD-M | 5.28e-4 | 1.23e-4 | 3.12e-5 | 8.23e6 | 2.00
]HaH]Loo(Lg) C-N 8.7le-4 | 2.17e-4 | 5.49¢-5 | 1.38¢-5 | 1.99
AD 5.29e-2 | 2.02e-2 | 7.42e-3 | 2.67e-3 | 1.44
AD-M | 6.96e-3 | 1.36e-3 | 2.49e—4 | 4.79e-5 | 2.40
Table 4: Discrete errors with exact solution ug; and a = 1, and the observed convergence
rates.
Error Method | n =20 | n=40 | n =80 | n =160 | Rate
l]el] \Loo(Lz) C-N 1.04e—4 | 2.65e—5 | 9.06e—6 | 1.89e—6 | 1.89
AD 8.78e-4 | 2.22e-4 | 5.75e-5 | 1.38¢-5 | 1.99
AD-M | 1.39e—4 | 3.02e-5 | 9.43e—6 | 2.09¢—6 | 1.99
el z2(z2) C-N | 6.90e4 | 4.41e4 | 2.37e—4 | 1.08¢4 | 0.89
AD 1.02e-3 | 3.78e—4 | 1.66e—4 | 7.10e-5 | 1.27
AD-M | 7.51e-4 | 3.70e—4 | 1.85e—4 | 8.47e-5 | 1.04
||| |Loo(L2) C-N 2.04e-3 | 9.24e—4 | 4.90e—4 | 2.07e—4 | 1.08
AD 2.94e-2 | 1.07e-2 | 3.87e-3 | 1.39e-3 | 1.47
AD-M | 2.93e-3 | 9.24e-4 | 3.75e-4 | 1.62e-4 | 1.38
Table 5: Discrete errors with exact solution us; and a = 1, and the observed convergence
rates.
Error Method | n =20 | n=40 | n =80 | n =160 | Rate
l]el] \Loo(Lz) C-N 1.74e-4 | 5.07e-5 | 1.73e-5 | 5.30e-6 | 1.67
AD 8.49¢-4 | 2.15e-4 | 5.17e-5 | 1.49¢-5 | 1.96
AD-M | 1.84e-4 | 5.33¢-5 | 1.48¢-5 | 4.98¢6 | 1.75
[||ex]| |L2(L2) C-N 1.64e-3 | 1.47e-3 | 9.17e—4 | 4.43e—4 | 0.66
AD 1.37¢-3 | 9.13e—4 | 5.50e—4 | 2.56e—4 | 0.80
AD-M | 1.36e-3 | 9.48¢—4 | 5.80e—4 | 2.77e—4 | 0.76
||| |Loo(L2) C-N 4.55e-3 | 2.66e—-3 | 1.68e-3 | 7.71le—4 | 0.83
AD 2.67e-2 | 9.79¢-3 | 3.55e-3 | 1.29¢-3 | 1.46
AD-M | 3.73e-3 | 1.63e-3 | 8.19¢e—4 | 3.84¢e—4 | 1.08

Table 6: Discrete errors with exact solution u;9 and a = 1, and the observed convergence

rates.

In the second set of nonsmooth tests, we also take a nonsmooth a given by

2 + sin(zy?) + 32(x — 0.5)(y — 0.5),
2 + sin(xy?) + 8(z — 0.5)(y — 0.5),
2 + sin(zy?),

r < 0.5,y <0.5,
x> 0.5,y > 0.5,

otherwise.

a(x,y) =
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Error Method | n=20 | n=40 | n=80 | n =160 | Rate
lelllezz) | C-N | 7.0de5 | 1.77e 5 | 4.44e 6 | 1.1le 6 | 2.00
AD 5.11e-3 | 1.47¢-3 | 3.88¢-4 | 9.88¢-5 | 1.90

AD-M | 8.32¢4 | 1.11e-4 | 1.56e-5 | 2.41e-6 | 2.81

Meelllz2zz) | C-N | 1.9%e4 | 440e 5 | L12e 5 | 2.93¢ 6 | 2.01
AD 6.97e-3 | 1.97¢-3 | 5.17e-4 | 1.33e-4 | 1.91

AD-M | 1.57e-3 | 3.27e-4 | 7.77e-5 | 1.99¢-5 | 2.10

l||o]| | Lo (L2) C-N 5.03e-3 | 1.26e-3 | 3.16e-4 | 7.92¢-5 | 2.00
AD 7.89¢—1 | 3.70e—1 | 1.51e—1 | 5.76e—2 | 1.26

AD-M | 1.46e-1 | 2.87e-2 | 5.23¢-3 | 9.46e-4 | 2.43

Table 7: Discrete errors with exact solution u31 and nonsmooth a, and the observed conver-

gence rates.

Error Method | n=20 | n=40 | n=80 | n =160 | Rate
lelllzezz) | C-N | 7.14e5 | 2.34e 5 | 8.24e 6 | 1.91e 6 | 1.72
AD 3.46e-3 | 9.15¢—4 | 2.34e—4 | 5.85¢-5 | 1.96

AD-M | 3.37e4 | 5.61le-5 | 1.18¢5 | 3.09¢-6 | 2.26

[||e]] |L2(L2) C-N 9.14e-4 | 6.44e-4 | 3.49¢4 | 1.60e—4 | 0.84
AD 3.90e-3 | 1.12e-3 | 3.67e—4 | 1.37e4 | 1.61

AD-M | 1.59e-3 | 6.51e-4 | 3.09¢e-4 | 1.42e-4 | 1.15

]HaH]Loo(Lg) C-N 5.58¢-3 | 2.41e-3 | 1.24e-3 | 5.28¢—4 | 1.12
AD 4.61le-1 | 1.92e-1 | 7.37e-2 | 2.71e-2 | 1.36

AD-M | 4.64e-2 | 1.32¢2 | 4.47e-3 | 1.71e-3 | 1.59

Table 8: Discrete errors with exact solution us 1 and nonsmooth a, and the observed conver-

gence rates.

Error Method | n=20 | n=40 | n=80 | n =160 | Rate
llell |Loo(L2) C-N 1.85e—4 | 6.77e-5 | 2.50e-5 | 6.64e—6 | 1.58
AD 3.08¢-3 | 8.02e4 | 1.97e4 | 5.21e-5 | 1.97

AD-M | 3.68e—4 | 7.70e-5 | 2.35e-5 | 6.84e—6 | 1.90

[||ex]] |L2(L2) C-N 2.15e-3 | 2.20e-3 | 1.38e-3 | 6.66e—4 | 0.86
AD 3.77e-3 | 1.55e-3 | 8.30e—4 | 3.89e—4 | 1.07

AD-M | 2.41e-3 | 1.42e-3 | 8.64e—4 | 4.24e-4 | 0.82

l||o]| ]Loo(Lg) C-N 1.15e—2 | 6.72e-3 | 4.17e-3 | 1.93e-3 | 0.84
AD 3.86e-1 | 1.57e-1 | 5.97e-2 | 2.19¢-2 | 1.38

AD-M | 5.41e-2 | 1.49¢-2 | 7.24e-3 | 3.60e-3 | 1.03

Table 9: Discrete errors with exact solution u1 9 and nonsmooth a, and the observed conver-
gence rates.

In this case, the 1-D operators do not commute. Nevertheless, we do not seem to require that
k/h? be sufficiently small (contrary to what Theorem 6.1 suggests). The results for a = 3.1,
2.1, and 1.9 are given in Tables 7-9, and they agree qualitatively with the previous test cases.
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8 Conclusions.

We have shown that the AD and AD-M algorithms for finite difference and Galerkin ap-
proximations to second order parabolic equations converge optimally if only k/h? — 0 (not
k/ ht — 0).

We have shown that the AD-M modification in [7] can be applied to mixed finite ele-
ment procedures. Moreover, we formulated an efficient Uzawa AD-M implementation. The
resulting method has splitting error of size O(k®). For RT}, the Uzawa AD and AD-M con-
verge optimally at the rate O(k" + hT! provided that k/h? — 0, where r = 1 for backward
Euler and r = 2 for Crank-Nicolson time discretization. Moreover, both methods exhibit
superconvergence. In discrete norms, the scalar and vector variables converge with to order
O(k™ + h**2.

Numerical results using Crank-Nicolson and RTy show that k ~ h works well for AD and
AD-M, suggesting that the condition k/h?> — 0 is not actually needed (though we cannot
now prove this). The numerical results also clearly show that the splitting error is higher
order, and was seen to be O(k?). Generally, we saw that the AD-M error was comparable to
C-N, but AD had more error.

It is clear that from the algorithms that th AD-M modification requires little extra compu-
tation compared to AD, but it can lead to a significant reduction in the splitting perturbation
error associated with the AD method for mixed finite elements. Moreover, AD-M is much
easier to solve than C-N alone, but often produces comparable error.
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