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A FULLY CONSERVATIVE EULERIAN-LAGRANGIAN
STREAM-TUBE METHOD FOR ADVECTION-DIFFUSION

PROBLEMS∗

TODD ARBOGAST† , CHIEH-SEN HUANG‡ , AND CHEN-HUI HUNG§

Abstract. We present a new method for a two-dimensional linear advection-diffusion problem
of a “tracer” within an ambient fluid. The problem should have isolated external sources and sinks,
and the bulk fluid flow is assumed to be governed by an elliptic problem approximated by a standard
locally conservative scheme. The new method, the fully conservative Eulerian-Lagrangian stream-
tube method, combines the volume corrected characteristics-mixed method with the use of a stream-
tube mesh. Advection of the tracer is approximated using characteristic tracing in time of regions of
space, which maintains mass conservation. However, the shape of a characteristic trace-back region
is numerically approximated, so its volume must also be correct to maintain accurate approximation
of the tracer density (i.e., the mass of the ambient fluid must be conserved during the advection
step). Our new method has the advantages that it is fully locally conservative (both tracer and
ambient fluid mass is conserved locally), has low numerical diffusion overall and no numerical cross-
diffusion between stream-tubes, can use very large time steps (perhaps 20 to 30 times the CFL limited
step), and can use a very coarse mesh, since it is tailored to the flow pattern. Because advection
is approximated within stream-tubes, it is essentially one-dimensional, making it relatively easy to
implement and computationally efficient. We also present a grid transfer technique to approximate
more simply the physical diffusion on a rectangular grid rather than on the stream-tube mesh. The
new method can be used for many applications, but especially problems of flow and transport in
porous media, which have sources and sinks isolated to wells. Examples include the modeling of
groundwater contaminant migration, petroleum production, and carbon sequestration.

Key words. Eulerian-Lagrangian, stream-tube, finite volume, locally conservative, characteris-
tics, hyperbolic transport, porous media, grid transfer
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1. Introduction. We consider the linear hyperbolic transport problem with iso-
lated external sources and sinks in which one component (say, a tracer) is predomi-
nately advected but also mildly diffused within an ambient fluid. For such problems,
characteristic or Eulerian-Lagrangian (or semi-Lagrangian) methods have the advan-
tages that long time steps can be used without loss of stability, numerical diffusion
can be low, and relatively coarse computational meshes can be used effectively. An
important application is to flow in a porous medium with isolated wells, modeling,
e.g., groundwater contaminant migration, petroleum production, and carbon seques-
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tration. We will use terminology suitable for this case, although the problem and our
method are more general.

To be specific, we consider an incompressible bulk fluid moving with a velocity
u(x) in a bounded, two-dimensional domain Ω ⊂ R

2. We have assumed that u is
independent of time for simplicity. A dilute tracer of concentration c(x, t) within the
bulk fluid over the time interval of interest J = (0, T ] satisfies the advection-diffusion
equation

(φc)t +∇ · (cu−D∇c) = cIq+ + cq− ≡ qc(c) in Ω× J,(1.1)

(cu−D∇c) · ν = 0 on ∂Ω× J,(1.2)

c(·, 0) = c0 in Ω,(1.3)

where φ(x) is the storage factor of the medium called porosity, subscript t is time par-
tial differentiation, D(x, t) ≥ 0 is the diffusion/dispersion tensor (that may depend
on u), q(x) is a given and isolated external source or sink function (i.e., the function
modeling wells, a sum of Dirac measures), q+(x) ≥ 0 is q when q > 0 and 0 otherwise,
q−(x) = q − q+ ≤ 0, cI(x, t) is the given concentration of injected fluid, ν(x) is the
outer unit normal vector to ∂Ω, and c0(x) is the initial tracer concentration. For
simplicity, we will take φ = 1 and so drop it from the equations, but the method we
propose would apply to the full system with c below replaced by φc and any “volume”
being pore volume.

Many schemes have been developed to solve the transport equation (1.1) using an
Eulerian-Lagrangian approach [22, 32, 25, 30, 15, 2, 7, 18, 23, 21, 20, 38, 3, 13, 14, 37,
12]. Each of these schemes treats advection using a characteristic tracing algorithm
(a Lagrangian frame of reference) from a fixed Eulerian mesh over each time step. In
this paper, we use ideas from stream-tube methods [29, 39, 17, 11, 31] to better tailor
the fixed Eulerian mesh used in the method. We then apply a modified version of the
fully conservative, volume corrected characteristics-mixed method (VCCMM) devel-
oped by two of the authors [3], which uses characteristics for finite volume advective
transport and a mixed finite element method for diffusion. It has been shown that
this method, which conserves mass locally for both the tracer and the ambient fluid,
has less numerical diffusion than competing methods [3, 4, 5]. This results in a new
method, the fully conservative Eulerian-Lagrangian stream-tube method.

If we omit diffusion for the immediate discussion, VCCMM, in brief, is defined
at each time level tn+1 by first tracing the edges of a fixed Eulerian mesh element
backward in time along the flow velocity u to the previous time level tn. Next, (1.1) is
integrated over this finite volume, space-time characteristic trace-back region. Since
the fluxes across the two space-time side-lateral boundaries vanish, ignoring wells for
simplicity, the computation reduces to two terms. One term is the tracer mass at time
tn+1 within the mesh element, which is set equal to the other term, an integration of
the tracer at the earlier time level tn over the trace-back region. As long as the volumes
of the original mesh element and the trace-back element agree, the method works well.

VCCMM is defined no matter what Eulerian mesh is used. Rectangular grids
are often taken in practice, since they are simple to work with. However, there
can be numerical cross-diffusion between mesh elements when the Eulerian mesh is
fixed arbitrarily, independent of the flow. If instead we define the fixed mesh so
that many elements have boundaries that coincide with the characteristics of the flow
field, then we avoid much of this numerical cross-diffusion. Perhaps the simplest
way to accomplish this is to use characteristic streamlines that travel from injection
to production wells. A stream-tube is the region bounded by two such streamlines.
Thus our method, in the absence of physical diffusion, will properly restrict the tracer
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to be transported within a single stream-tube. Moreover, the computation simplifies,
since it basically reduces to a one-dimensional transport along the stream-tube.

The one-dimensional nature of the scheme turns out to be important in improv-
ing the efficiency of the method. As defined in [3], the VCCMM includes a critical
geometric volume balance bisection algorithm that can be computationally costly.
The structure of the method was elucidated in [6], which pointed out that the vol-
ume balance can be formulated purely as an algebraic constraint within the method.
However, in multiple dimensions, it is not clear how to balance the volume to obtain
this algebraic constraint without resorting to geometric techniques. But it is triv-
ial to apply the constraint in one dimension, and thereby avoid the costly geometric
volume balance calculation, improving the implementation of the VCCMM consider-
ably. Moreover, the complex and problem specific selection of layers in the volume
adjustment algorithm of VCCMM is no longer needed.

We will develop the method through a computational test example (and a varia-
tion of it in section 8), so that it is easier to explain the details of the method. One
difficulty will be to treat the physical diffusion, which will be handled by using opera-
tor splitting between advection and diffusion. The diffusion can be approximated on
the stream-tube mesh used for advection. However, it is perhaps more natural to use
a regular grid, since it is less computationally costly to set up and solve diffusion on
a regular grid. We present such a method. We will see that it works well as long as
our advection-diffusion problem (1.1)–(1.3) is advection dominated. (In the diffusion
dominated case, a standard method on the stream-tube mesh should be used.) Over-
all, our numerical results will show that we obtain good resolution of the advection
on very coarse grids, that we can use extremely large time steps (on the order of 10 to
30 times the CFL limited step size), and that the concentration exhibits a very small
amount of numerical diffusion.

In porous medium applications, the velocity u will be governed by the mass
conservation principle, and it will be given by Darcy’s law from the pressure p, that is,

∇ · u = q in Ω,(1.4)

u = −k∇p in Ω,(1.5)

u · ν = 0 on ∂Ω,(1.6)

where k(x) is the permeability of the medium divided by the fluid viscosity. We will
use a standard locally conservative method to approximate this equation.

We close the introduction with a brief discussion of potential generalizations.
First, Eulerian-Lagrangian methodology is generally difficult to implement in two
and three dimensions. The use of stream-tubes reduces essentially to one dimension
and thus allows solution of two-dimensional problems, as the rest of the paper shows.
However, our method can perhaps be seen as a natural approach to a feasible three-
dimensional implementation. It is perhaps clear, however, that a simple generalization
would likely be nontrivial and computationally expensive. Second, the method has po-
tential to be generalized to formally higher order methods using, e.g., one-dimensional
WENO reconstructions [28], although there are unresolved questions about how to
handle accurately the variation in the stream-tube cross-sectional width. Finally, the
simplicity of the methodology suggests that it may generalize to more complex flows,
such as two-phase flows [5] and miscible displacement. These two cases would involve
time-varying velocity fields and therefore stream-tube mesh generation at each time
step. Even though these potential generalizations might be computationally costly, it
is possible that the ability to use long time steps and coarse grids would make them
competitive with simpler Eulerian methods.
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Fig. 2.1. The permeability k of our test
problem on a log scale.
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Fig. 2.2. The speed in contour on a log
scale and the velocity vectors as arrows.

2. A locally conservative method for the flow velocity. Approximation of
our advection-diffusion problem begins with an approximation of the pressure equation
(1.4)–(1.6) for the velocity u (and pressure p). Since later we will be interested in
local mass conservation of the tracer concentration, it is recommended that we use a
locally conservative method for the pressure equation. There are many possibilities,
including the use of finite volumes, mixed finite elements, discontinuous Galerkin,
mimetic finite differences, and multipoint flux approximations. We will use mixed
finite elements [33, 19, 34].

As noted in the introduction, we present the method in the context of a specific
numerical example, to better explain our overall method. In fact, the example is taken
from [6]. In this test case, as well as in this paper, the well term q is independent
of time t, so we need only compute u(x) once at the beginning of the computations
instead of at the beginning of each time step. The domain Ω = (0, 15)× (0, 20) has a
permeability k defined as a piecewise constant function on a 50× 50 rectangular grid,
as depicted in Figure 2.1 on a log scale. It is geostatistically generated and mildly
correlated, with a mean of 10 and varying from 0.022 to 365. We place an injection
well in the lower left corner grid cell and a production well in the top right corner
cell of the opposite strength. That is, if �1 = 15/50 and �2 = 20/50 are the grid
spacings, then q(x) = 0 everywhere except that q = q̃ = 1.033, a positive constant,
for x ∈ (0, �1)× (0, �2) and q = −q̃ for x ∈ (15− �1, 15)× (20− �2, 20).

The flow was computed using the lowest order Raviart–Thomas mixed method
on the 50 × 50 rectangular grid. The velocity and speed on a log scale are depicted
in Figure 2.2. We also computed the flow on a refined 100× 100 grid with the same
permeability k(x) (i.e., the value in each original 50× 50 grid cell was repeated in the
2 × 2 refinement), but the source term q(x) is still defined only over the corner grid
cells, and so it is both four times smaller and four times stronger.

3. Operator splitting for the advection-diffusion problem. If the diffusion
tensor D vanishes, we need only compute advection. When nonzero physical diffusion
is present, we use operator splitting [35] to handle advection and diffusion separately.
We use an appropriate numerical method and mesh for each process. Let Δt > 0
be the time step and consider advancing the solution from time tn = nΔt to tn+1 =
(n + 1)Δt. (We use a constant Δt for simplicity, but this is not necessary for the
definition of the method.)

A first order in time Strang splitting would solve the advection problem

ct +∇ · (cu) = qc(c) in Ω× (tn, tn+1],(3.1)

c(·, tn) = cn in Ω(3.2)
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over the time interval (tn, tn+1], starting from the computed tracer concentration
cn(x) ≈ c(x, tn), to obtain cn+1

A (x). For this advection step, we use a fully conservative
stream-tube method with the tracer defined on the stream-tube mesh, as described
in the next section. For the diffusion problem,

ct −∇ · (D∇c) = 0 in Ω× (tn, tn+1],(3.3)

D∇c · ν = 0 on ∂Ω× (tn, tn+1],(3.4)

c(·, tn) = cn+1
A in Ω,(3.5)

we use a standard mixed finite element method on a rectangular grid, as described
in section 5, although other methods could be used for this part of the computation.
The difficulty will be to define the forward and inverse transfers of the concentration
between the stream-tube mesh and the rectangular grid.

A second order in time Strang splitting would solve the advection problem over
half the time interval (tn, tn+1/2 ≡ (n+1/2)Δt], the diffusion problem over the entire
interval (tn, tn+1], and then the advection problem over the other half of the time
interval (tn+1/2, tn+1].

For our numerical example, we used a first order Strang splitting.

4. The fully conservative stream-tube method for advection. In this sec-
tion, we describe our fully conservative Eulerian-Lagrangian stream-tube method for
solving the advection problem (3.1)–(3.2). We first describe the tracing of streamlines
and the construction of our stream-tube mesh. We then describe the approximation
of tracer transport over each time step.

4.1. Streamlines and the stream-tube mesh. In the absence of diffusion and
wells, tracer particles governed by our advection equation (3.1) travel along stream-
lines or characteristics. These lines will be parametrized by a time-like variable τ ∈ R.
The streamline x̂(τ, x) that passes initially through a given point x ∈ Ω satisfies the
ordinary differential equation

∂x̂

∂τ
= u(x̂(τ, x)), τ ∈ R,(4.1)

x̂(0, x) = x, x ∈ Ω.(4.2)

In our context, a stream-tube is a region bounded by streamlines and the bound-
aries of two wells. In the absence of diffusion, particles cannot cross the streamline
boundaries, so particles within a stream-tube travel from an injection well to a pro-
duction well.

We now describe the construction of the stream-tube mesh. For our numerical
example, its final form is shown in Figure 4.1. This is the mesh on which the tracer
concentration is defined for advection purposes. We first define the stream-tubes
themselves. In terms of our test example, recall that �1 = 15/50 and �2 = 20/50 are
the grid spacings. We locate initial points, evenly or unevenly spaced as we choose,
on the boundary of the injection well, i.e., on the set {�1} × (0, �2) ∪ (0, �1) × {�2},
including the endpoints on ∂Ω at (�1, 0) and (0, �2). We took 21 points, including the
corner (�1, �2), so that we had 11 equally spaced points on both the horizontal and the
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(a) The entire domain
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(c) Near the production well

Fig. 4.1. The stream-tube mesh, consisting of stream-tubes and stream-cells.

vertical parts of the boundary. We next trace the streamline according to (4.1)–(4.2)
from the given initial point on the injection boundary until it touches the production
well boundary, i.e., the set {15− �1}× (20− �2, 20)∪ (15− �1, 15)×{20− �2}. We will
elaborate on how we trace and represent the streamlines shortly. Each stream-tube is
composed of three consecutive streamlines; the exterior two act as the boundary of the
stream-tube, and the middle streamline is called the center-line of the stream-tube.
We thus have defined 10 stream-tubes and 10 center-lines.

Once the stream-tubes are formed, we decompose each stream-tube into a mesh
of stream-cells, which are bounded by the two exterior streamlines and two lines
transverse to the flow. To determine the transverse lines, we begin by choosing points
along the center-line. We took these to be nearly equally spaced in terms of the
arc length, from the injection well downstream to the production well. These will
be modified near the injection well shortly, so a few of them do not appear to be
equally spaced in Figure 4.1. We include the initial point on the injection well and
a final point on the production well. The transverse lines at these endpoints are the
well boundaries. At the interior center-line points, the transverse lines are given by
tracing in the direction perpendicular to the velocity u both ways to the stream-tube
boundaries. That is, the transverse line x†(τ, x) solves an equation similar to (4.1),
but with u = (u1, u2) replaced by (u2,−u1), as in

∂x†

∂τ
= u(x†(τ, x)), τ ∈ R,(4.3)

x†(0, x) = x, x ∈ Ω.(4.4)

In Figure 4.1, we have 10 stream-tubes and approximately 20 stream-cells within
each stream-tube, for a total of about 200 mesh cells, which is far fewer that the 2500
mesh cells in the rectangular grid used for the pressure equation. Since the streamlines
decompose the domain according to the physical flow, they provide good information
on how the tracer is being transported, even when a very coarse stream-tube mesh is
used.

The injection well is treated in a special way, since it acts as a source of tracer
mass. We treat each stream-tube independently. Given the time step [tn, tn+1], the
total volume of fluid injected into the stream-tube along its injection well boundary
W can be computed according to

(4.5) V =

∫ tn+1

tn

∫
W

u · ν ds dt.
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We then determine the point on the center-line of the stream-tube for which the
transverse line there, the streamline boundaries, and the well boundary enclose a
region R of the correct volume V , i.e., so that this first region R is flooded entirely
by fluid from the well. That is, we require that V = |R|, where for any set S,
|S| is its volume (actually its area, since we discuss the two-dimensional version of
the method, but we prefer to use the term “volume” of the general case). A simple
bisection strategy can be used to find this center-line point and transverse line (similar
to what is used in the VCCMM [3], but here only for a single stream-cell at a time
and not entire layers of cells). This first region R we call the injection well stream-cell.
We note in passing that it could be determined equivalently by tracing streamlines
forward from the well [27, 3].

The stream-tube mesh is now modified to include this injection well stream-cell,
possibly replacing some stream-cells and reducing the size of one stream-cell that
is only partially flooded by the well. (Such stream-cells are clearly evident in the
stream-tube mesh shown in Figure 4.1(b).)

4.2. Aspects of streamline and transverse line tracing. We approximate
each streamline and transverse line numerically as a polyline, which is a doubly linked
list of vertices. Within the 50×50 rectangular grid used to solve the pressure equation
for u, each streamline will cross many grid cells. Within each such grid cell, we
represent the polyline using about five vertices. The exact number of vertices used is
based on the total time needed for a particle, traveling at the velocity u, to traverse
the grid cell along the streamline, divided by some reference time, up to a maximum
fixed number of vertices. (We used 10, and no difference was observed between this
value and a maximum of 50.) The vertices are taken to be evenly distributed with
respect to the traversal time.

Since we use the lowest order Raviart–Thomas mixed finite element space to
approximate u, the streamlines can be computed analytically within each rectangular
grid cell [26]. That is, on a single grid cell, the velocity is simply u = (a + bx, c +
dy), and the equations for the streamlines (4.1)–(4.2) decouple into two independent
ordinary differential equations which can be solved easily. The transverse lines must
be computed numerically using an ordinary differential equations solver.

Raviart–Thomas spaces give continuous normal velocities but not fully continuous
velocity fields. We also tested the use of the lowest order spaces proposed by Arbogast
and Wheeler [8]. These are Stokes elements that provide accurate approximations to
the second order Darcy system (1.4)–(1.6), and they give fully continuous velocities.
In this case, we do not have an analytic solution to the streamlines. A numerical
solution using microstepping is then necessary. However, because the streamlines
are computed only approximately, it is easy to find that the polylines intersect, and
correction action is needed. For example, a troublesome area is seen in Figure 4.1(c)
at around (13, 17.5). Moreover, there is no fluid exchange between stream-tubes for
the pure advection problem, so the sum total of fluid volume that enters from the
injection well (4.5) must equal that which leaves the domain at the production well
within each stream-tube. This property is maintained automatically when using the
Raviart–Thomas space for the velocity, since the computed velocity u is divergence
free pointwise away from wells and streamlines are computed analytically. This is
not the case when the Arbogast–Wheeler spaces are used, and some adjustment of
the polylines is needed. In conclusion, the streamlines must be traced extremely
accurately, and analytic tracing is preferred. The natural way to implement this is to
solve the pressure equation using either the lowest order Raviart–Thomas spaces or
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t

x1

x1
x2

x2
tn+1

tn

R

Ř

R

flow

Fig. 4.2. The stream-cell R ⊂ Ω at time tn+1 is traced back in time under the flow field u to
the trace-back region Ř ⊂ Ω. The space-time trace-back region R ⊂ Ω× [tn, tn+1] is also traced.

another method combined with a projection to the Raviart–Thomas spaces in a mass
conservative fashion (see, e.g., [16]).

When using the lowest order Raviart–Thomas spaces, a complication arises in
tracing the transverse lines. The tangential component of velocity is not continuous,
so it is possible that the transverse lines bifurcate when tracing from one element to
another. In the rare case that this occurs, we average the two possibilities. No such
bifurcation was observed for our main test example, but it was observed in other tests.

4.3. Theoretical basis for the advection computation. In this subsection,
we interrupt the definition of our stream-tube method for advection to discuss some
of its theoretical aspects. As noted in [2, 7, 3], we can transport tracer mass within a
region of space R over time by simply tracing the motion of the boundary ∂R under
the influence of the velocity field. Douglas and Russell [22] found it simpler to trace
the streamline backward in time from τ = tn+1 to τ = tn, using (4.1)–(4.2). As
depicted in Figure 4.2, given any time tn+1 and region of space R, we trace each
point back in time to form a region Ř. In fact, we trace out a space-time region R,
bounded on “top” by R × {tn+1}, on the “bottom” by Ř × {tn}, and on the “sides”
by a complex space-time region. In the pure advection problem, no fluid crosses the
“sides” of R, so fluid is transported from Ř to R. For incompressible fluids, we also
note the volume balance condition [3]

(4.6) |R| = |Ř|,

which says that the volume of R agrees with the volume of Ř.
In theory, we could define the next step in our algorithm to be the tracing back

of each stream-cell R to find Ř, as in [3]. We would then set the concentration in the
stream-cell R at time tn+1 to be

(4.7) cn+1
R =

1

|R|
∫
Ř

cn(x) dx.

The key to obtaining an accurate characteristic method is to preserve the volume
balance condition (4.6). It is difficult to do this in a geometric way in multiple
dimensions, since the trace-back regions Ř are computed only approximately. A
complex volume adjustment algorithm was given in [3] to modify Ř until (4.6) is
satisfied for each R.

In this work, we advocate using the stream-tube mesh to define the transport
regions; that is, the preferred regions R are the stream-cells. In this way, fluid is
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flow

flow

R

R̄

R+

R−

|R̄|= |R|
hR

hR

Fig. 4.3. A stream-tube and its reference configuration. The reference stream-tube is defined as
a union of rectangular reference stream-cells such that that the volume of each stream-cell R agrees
with the volume of its reference stream-cell R̄, i.e., |R| = |R̄| = hRkR̄.

advected through the tube essentially in a one-dimensional way along each stream-
tube’s center-line, and no artificial numerical cross-diffusion will arise. Moreover, it
turns out that the trace-back regions Ř need not be computed in one dimension, since
the fluid is constrained to flow through the stream-tube, and the complex geometric
volume balance condition (4.6) can be replaced by a much simpler condition given in
subsection 4.5 below. That is, the use of a stream-tube mesh allows us to avoid the
complex and problem-specific geometric layer-by-layer volume adjustment technique
of the VCCMM. In fact, we only need to balance the volume of the well stream-cells,
and these independently of each other.

4.4. A reference stream-tube and postprocessed concentration. For a
fixed stream-tube, as shown in Figure 4.3, we map it to a reference configuration
consisting of rectangles, one for each stream-cell. The stream-cell R is mapped to R̄,
a rectangle of length hR, where hR is the arc length of the part of the center-line
contained in R, and width kR̄ such that the volume of R agrees with that of R̄, i.e.,
|R| = |R̄| = hRkR̄, so that we preserve volume under our map. In fact, we do not
need an explicit representation of the map to perform the advection step.

The tracer concentration is approximated by piecewise discontinuous constants
within each stream-cell. However, knowledge of the average concentration in the
stream-cells can be used to reconstruct its distribution to a formally higher order of
accuracy [36]. Since fluid is constrained within each stream-tube, this reconstruction
or postprocessing should be done in a one-dimensional way along the stream-tube. The
calculations are performed on the reference stream-tube. As is typical for hyperbolic
advection schemes, such a reconstruction can significantly sharpen fronts, and this is
exactly what we observed for our method as well.

Given concentration values

(4.8) cnR ≈ 1

|R|
∫
R

c(x, tn) dx

over each stream-cell R or R̄, we define a postprocessed concentration c̃n(x) to be a
piecewise linear function along the center-line and constant in the transverse direction.
On the reference stream-cell R̄, let y be the one-dimensional coordinate aligned with
the center-line and increasing in the downstream direction, and let ȳR̄ be the midpoint
of the center-line of R̄. Then we define on R̄

(4.9) c̃n
R̄(y) = cnR + σn

RLR̄(y),

D
ow

nl
oa

de
d 

09
/0

9/
12

 to
 1

40
.1

17
.3

5.
11

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B456 TODD ARBOGAST, CHIEH-SEN HUANG, AND CHEN-HUI HUNG

where the slope σn
R is defined next and the function

LR̄(y) = y − ȳR̄.

This implicitly defines c̃n
R(x) on R via the inverse mapping.

To define σn
R, let R

− be the stream-cell within the stream-tube adjacent to and
upstream from R (i.e., toward the injection well), and similarly let R+ be the stream-
cell adjacent to and downstream from R (i.e., toward the production well), if these
exist (otherwise, set them to be R). Recall that hR is the arc length of the part of
the center-line contained in R or, equivalently, R̄. We define the initial slopes by

(4.10) σn
R+ =

cnR+ − cnR
1
2hR

and σn
R− =

cnR − cnR−
1
2hR

,

and then slope limit these to define

(4.11) σn
R =

⎧⎪⎨
⎪⎩
0 if σn

R+σn
R− < 0,

σn
R+ if |σn

R+ | < |σn
R− |,

σn
R− otherwise.

We remark that other procedures could be used to define this postprocessing step
besides this MUSCL reconstruction [36]. This procedure is simply the one we used
for our numerical example.

4.5. The advection step. We are finally ready to define the advection step,
i.e., we define the average concentration cn+1

R at time tn+1 for each stream-cell R
(recall (4.8)) from c̃n(x). We proceed for a fixed stream-tube.

Beginning from the injection side of the stream-tube, we set the concentration
in the first stream-cell R0, the injection well stream-cell, according to the injection
concentration cI(t) of the well, since it entirely floods this stream-cell. More precisely,

(4.12) cn+1
R0

=
1

Δt

∫ tn+1

tn
cI(t) dt.

No other stream-cell is affected directly by the well.
For any noninjection well stream-cell R, inspired by (4.7), we require in theory

that

(4.13) |R| cn+1
R =

∫
Ř

c̃n(x) dx =
∑
S

∫
S∩Ř

c̃n
S (x) dx,

where the sum is taken over the stream-cells in the stream-tube. Fortunately, in one-
dimensional flow, we need not compute according to (4.13), which would require a
careful geometric representation of Ř, but rather we can compute on the reference
stream-tube.

To continue, it is helpful to set some notation, as illustrated in Figure 4.4. Within
the reference stream-tube, let us order the stream-cells downstream from the injection
well stream-cell as R̄0, R̄1 = R̄+

0 , R̄2 = R̄+
1 , and so on, i.e., R̄i = R̄+

i−1 for i ≥ 1.
Define the points y0, y1, y2, . . . so that R̄i occupies the part of the center-line from
yi to yi+1, let hi = yi+1 − yi = hRi be the length of R̄i, and let ki = kR̄i

= |R̄i|/hi be
the width of R̄i for i ≥ 0.
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y0 y1 y2 y3 y4 y5 y

h3

k3

z0 z1 z2 z3 z4

flow

in
je

ct
io

n
w

el
l R̄0 R̄1 R̄2 R̄3 R̄4

ˇ̄R1
ˇ̄R2

ˇ̄R3
ˇ̄R4

| ˇ̄Ri| = |R̄i| = hiki for each i

Fig. 4.4. Advection computations within the reference stream-tube. The points yi give the
position of the transverse lines of the reference stream-cells. The point z0 = y0 gives the position of
the boundary of the injection well. For i = 1, 2, 3, . . . , the point zi is determined by the condition that

the reference stream-tube volume between zi−1 and zi, | ˇ̄Ri| agrees with the volume of the reference

stream-cell |R̄i| = hiki. The mass in ˇ̄Ri is transported to R̄i over the time step.

Continuing with Figure 4.4, we define the reference trace-back regions ˇ̄Ri as fol-
lows. We fix the points z0 = y0, and then successively we define zi, i ≥ 1, so that the
volume (i.e., area in two dimensions) of the stream-tube between zi−1 and zi is the
same as |R̄i| = |Ri| = hiki. That is, we enforce the volume balance condition (4.6).

We then define the trace-back region ˇ̄Ri to be the part of the stream-tube that occupies

the part of the center-line from zi−1 to zi. For example, in Figure 4.4, ˇ̄R2 is composed
of parts of two stream-cells, [z1, y1]× [−k0/2, k0/2] and [y1, z2]× [−k1/2, k1/2], where
z2 was defined by the condition that (y1 − z1)k0 + (z2 − y1)k1 = h2k2.

Returning to (4.13), since the center-line of R̄j is [yj, yj+1] and of ˇ̄Ri is [zi−1, zi],
we obtain that

cn+1
Ri

=
∑
j

1

|Ri|
∫
Rj∩Ři

c̃n
Rj

(x) dx(4.14)

=
∑
j

kj
|Ri|

∫
[yj ,yj+1]∩[zi−1,zi]

(
cnRj

+ σn
Rj

LR̄j
(y)
)
dy

=
∑
j

{(
|R̄j ∩ ˇ̄Ri|

|R̄i|

)
cnRj

+

(
kj
|R̄i|

∫
[yj,yj+1]∩[zi−1,zi]

LR̄j
(y) dy

)
σn
Rj

}
.

Thus advection amounts to combining the values cnRj
for various Rj both directly

and through σn
Rj

. We need only to compute volumes of rectangular regions and the

linearly weighted integral
∫
[yj ,yj+1]∩[zi−1,zi]

LR̄j
(y) dy over an interval. The description

of the advection step is complete.

5. A locally conservative method for the diffusion. In this section we
describe how to solve the diffusion problem (3.3)–(3.5) within the Strang splitting
algorithm (assuming that D is nonzero). But first we note that we use a standard
model for the the diffusion/dispersion coefficient D. It is defined by three parameters,
the molecular diffusion coefficient dmol, which we take to be 10−11 m2/s in our main
numerical example, and two parameters modeling dispersion in a porous medium
with respect to the velocity u. Along the flow direction, we need the longitudinal
dispersion coefficient dlong, taken to be 10−5 m, and transverse to the flow, we need

D
ow

nl
oa

de
d 

09
/0

9/
12

 to
 1

40
.1

17
.3

5.
11

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B458 TODD ARBOGAST, CHIEH-SEN HUANG, AND CHEN-HUI HUNG

the transverse dispersion coefficient dtrans, taken to be 10−6 m. The full model gives
a tensor, defined by

(5.1) D(u) = φ(x) dmol I + |u(x)|[dlong E(u) + dtrans
(
I − E(u)

)]
,

where E(u) is the tensor projecting onto the vector u/|u|, i.e., onto the direction of
the flow. Recall that we take φ = 1 in this paper.

We remark that our diffusion/dispersion coefficients are generally quite small,
which is typical in certain porous medium applications. Our goal here, though, is
to emphasize the advection. But we do not omit diffusion/dispersion, since it adds
certain numerical complications that need to be addressed.

Since the advected concentration is defined on the stream-tube mesh, it seems
natural to approximate the diffusion problem on the same mesh. As always, we
should use a locally mass conservative method for the diffusion problem, such as a
discontinuous Galerkin, mimetic, or multipoint flux approximation. We would need
to refine the stream-tube mesh, however, since it is much too coarse for resolving
small diffusion. Moreover, the resulting mesh is likely to be nonconforming, since the
original stream-tubes are divided into stream-cells independently of each other.

In this paper, however, we take a different point of view, and develop a diffusion
approximation defined on a simple rectangular grid, since this is more natural for
elliptic diffusion problems. Our approximation is subject to grid transfer error and so
is not as accurate as a direct approximation on the stream-tube mesh. However, as
we will show, it is a useful approximation when the physical diffusion is small.

5.1. Diffusion step. The diffusion step has three parts. We need to (1) develop
a forward transfer operator from stream-cell concentrations to rectangular grid cell
concentrations, (2) apply a diffusion operator on a rectangular grid, and finally (3)
apply an inverse transfer from grid cell concentrations back to stream-cell concentra-
tions.

We require four properties of the process. First, the transfers should be nonneg-
ative, since negative concentrations are unphysical. Second, if we follow the forward
transfer operator directly by the inverse transfer operator, without solving the physical
diffusion problem in between, we obtain the original concentration on the stream-tube
mesh. This is a requirement that the grid transfer operators minimize numerical dif-
fusion associated purely with grid transfer effects. Third, each stage should be mass
conservative. Finally, the entire step should model diffusion as a physical process, akin
to what one would obtain if one solved the problem on the stream-tube mesh without
any grid transfers. We develop two transfer operators with these four properties, a
simple, locally constant one presented here and a somewhat improved locally linear
version in subsection 5.4.

5.1.1. Locally constant forward transfer. The first part of the diffusion
step is to transfer the concentration onto a simple mesh, which in our numerical
example is the same as the 50×50 rectangular grid used earlier for solving the pressure
equation. We start from the stream-tube concentrations, which are piecewise constant
on the stream-tube mesh, and we need to define the average concentrations on the
rectangular grid. A simple nonnegative, mass preserving, locally constant transfer
operator can be defined geometrically by dividing the mass into the intersection of the
rectangular and stream-tube meshes and then averaging the results to the rectangular
grid. This procedure can be accomplished, for example, by using the Sutherland–
Hodgman clipping algorithm [24] to find the intersection points of the two meshes.
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At this stage of the Strang operator splitting procedure, each stream-cell concen-
tration cnS is actually the concentration after applying the advection step. To define
the first (locally constant) transfer operator, consider the rectangular grid element G
and the stream-cell S. We define the transfer from the set of stream-tube concentra-
tions {cnS} to the rectangular grid concentration on G by

(5.2) cnG =
∑
S

|G ∩ S|
|G| cnS ,

where the sum is over all the stream-cells in the mesh.

5.1.2. Diffusion on the rectangular grid. We next need to solve the diffusion
problem (3.3)–(3.5) over the time step, starting from the grid concentrations {cnG}
and ending with the diffused grid concentrations {c̆n+1

G }. The definition of the inverse
transfer will require the original {cnG}, so these cannot be overwritten in computer
memory. One should use a method that both is locally mass conservative and satisfies
the maximum principle.

In fact, we use the expanded mixed finite element method with lowest order
Raviart–Thomas finite elements, approximated as cell-centered finite differences [9],
since this is easy to implement. However, because we use a scheme that does not
satisfy the maximum principle, and because we use large time steps for the advection
computation, we needed to use a smaller time step for the diffusion problem. That is,
we solve the diffusion problem (3.3)–(3.5) over the time interval [tn, tn+1] using some
number M of microsteps, each of size Δt/M . In our test example, we generally used
Δt = 20 or 30 and fixed M the same, so that always Δt/M = 1. The use of a proper
locally conservative, maximum principle preserving scheme would avoid the need for
such computational machinations. On the other hand, our numerical results show
that a poor diffusion solver can still be used effectively in the overall approximation
scheme.

5.1.3. Locally constant inverse transfer. We need to define the transfer
back to the stream-tube mesh by defining the diffused concentrations {cn+1

S } at the
advanced time level for each stream-cell S. No simple inverse transfer can satisfy the
four requirements mentioned at the beginning of this subsection. We will define the
inverse transfer operator here and leave it to subsection 5.3 to provide an heuristic
physical justification.

Using the undiffused cnG and cnS , let

(5.3) ρnSG =

{
cnS/c

n
G if cnG �= 0,

1 otherwise

and

(5.4) αn
G =

4 dGΔt

|G|+ 4 dG Δt
, dG =

1

|G|
∫
G

|D| dx.

Note that dG is the average magnitude of the diffusion coefficient on G. The locally
constant inverse transfer operator is defined by

(5.5) cn+1
S = c̆n+1

S =
∑
G

|G ∩ S|
|S|

[
(1− αn

G)ρ
n
SG + αn

G

]
c̆n+1
G ,
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(a) 50 × 50 grid, Δt = 0.97
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0
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(b) 100 × 100 grid, Δt = 0.24
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0.15
0.05

(c) Concentration scale

Fig. 5.1. The concentration (from 0 to 1) as solved by a formally second order Godunov method
using (a) 50×50 and (b) 100×100 rectangular grids at the final time T = 1200 with the CFL limited
time steps Δt = 0.965 and 0.242, respectively. The concentration scale is shown in (c).

where the sum is over the rectangular grid cells. The operator breaks into a convex
sum of two parts, since 0 ≤ αn

G ≤ 1. When αn
G = 0, we have only the first term,

which restores mass back to the stream-cell proportional to its contribution from
the forward transfer. This part of the operator is nondiffusive, and it is the entire
operator when there is no diffusion (D = 0 and c̆n+1

G = cnG). When αn
G = 1, we have

only the second term, which distributes mass in G to the stream-cell proportional to
its area. This is the appropriate grid transfer for diffused mass. The full operator,
as explained in the next section, is a combination of these two operators, accounting
for the artificial grid transfer diffusion created by the original forward transfer (5.2)
between the stream-cell and rectangular grids.

Except for the modification of a locally linear transfer operator in subsection 5.4,
the description of the diffusion step is complete.

5.2. Numerical results for our main test example. We finally report our
first stream-tube results in this subsection. For reference, we solved our transport
problem using a formally second order Godunov method [10, 1] on a rectangular grid
to a final time of T = 1200 using the CFL limited time step. The concentration is
shown in Figure 5.1. We use both a 50 × 50 grid with time step Δt = 0.965 and a
100× 100 grid with time step Δt = 0.242. We compare the stream-tube results with
these results.

The domain is initially free of tracer, meaning that c0S = 0 for all stream-cells S.
From the injection well in the lower left corner of the domain, pure tracer (of con-
centration 1) is injected. It migrates through time to the upper right corner of the
domain, where the production well resides. Our plots show the concentration over
the domain at a time that corresponds approximately to breakthrough (the time at
which tracer enters the production well), since at that time the tracer plume is well
developed.

In Figures 5.2(a)–(b), we report our stream-tube results using the 10 stream-tubes
depicted in Figure 4.1, which has about 20 stream-cells in each stream-tube, for about
only 200 total elements. Plot (a) shows the concentration as transferred to the 50×50
rectangular mesh used for the reference solution, and plot (b) shows a very sharp
concentration profile on the stream-tube mesh. The time step used is considerably
larger than that used by the reference solution: we use Δt = 30 ≈ 31.1ΔtCFL. Since
the time step is so large, there is less numerical diffusion compared to the Godunov
result in Figure 5.1(a), which uses 2500 elements. Therefore, any numerical diffusion
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(a) 10 stream-tubes, each with
20 stream-cells, Δt = 30, rect-
angular grid (smoothed)
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(b) Same as (a), but shown
on the stream-tube mesh (un-
smoothed)

0 5 10 15
0
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(c) 40 stream-tubes, each with
60 stream-cells, and Δt = 30,
rectangular grid (smoothed)

Fig. 5.2. The concentration (from 0 to 1) as solved by the stream-tube method using constant
transfer and (a), (b) 10 stream-tubes with about 20 stream-cells each and (c) 40 stream-tubes with
about 60 stream-cells each at the final time T = 1200, with Δt = 30 and 20, respectively. Plots (a)
and (c) are shown on the rectangular grid, visually smoothed. Plot (b) is shown on the stream-tube
mesh, and the concentration is shown as an unsmoothed piecewise constant function.

caused by transfer to and from the rectangular diffusion grid seems to be a minor
issue in this example.

In Figure 5.2(c), we use a refined stream-tube mesh of 40 stream-tubes, each with
about 60 stream-cells, for a total of 2400 elements. The time step is still Δt = 30.
Note that we have about the same number of elements as in Figure 5.1(a), but the
stream-tube result is superior in terms of the amount of numerical diffusion, and so it
shows very good details of the fingering effect. It is comparable and perhaps superior
in quality to the 100×100 (10,000 element) reference solution shown in Figure 5.1(b).

5.3. Theoretical justification of the grid transfer operators. As stated in
the following lemma, our transfer operator has the first three of the four properties
we set out to obtain at the beginning of this subsection.

Lemma 5.1. Let the forward and inverse locally constant transfers be defined by
(5.2) and (5.3)–(5.5), respectively.

(i) If the input concentrations are nonnegative, then both transfers result in non-
negative concentrations.

(ii) If D = 0, then the composition of the forward and inverse transfer is the
identity.

(iii) If a conservative, maximum principle preserving diffusion operator is applied
between the two transfer operators, then mass is nonnegative and conserved.

Proof. The nonnegativity of the forward and inverse transfer is clear, since the
transfer coefficients are nonnegative.

We suppress the time level (superscript n) within the proof. Without diffusion,
c̆G = cG and αG = 0, and so the composition of the two operators results in

c̆S =
∑
G

ρSG cG =
∑

G,cG �=0

|G ∩ S|
|S| cS =

∑
G

|G ∩ S|
|S| cS = cS ,

since if cG = 0, then for a given stream-cell S, either |G ∩ S| = 0 or cS = 0.
The nonnegativity is clear by (i) and the hypothesis. Let the total initial mass be

M =
∑
S

cS |S| =
∑
S

(∑
G

|G ∩ S|
|S|

)
cS |S| =

∑
G

(∑
S

|G ∩ S|
|G| cS

)
|G| =

∑
G

cG |G|,
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which is preserved after the forward transfer. Let c̆G be the grid concentrations after
applying the forward transfer and the diffusion operator. The final mass after applying
the inverse operator is

M̆ =
∑
S

c̆S |S| =
∑
S

(∑
G

|G ∩ S|
|S|

[
(1 − αG)ρSG + αG

]
c̆G

)
|S|

=
∑

G,cG �=0

∑
S

|G ∩ S|
[
(1 − αG)

cS
cG

+ αG

]
c̆G +

∑
G,cG=0

∑
S

|G ∩ S|c̆G

=
∑

G,cG �=0

{(∑
S

|G ∩ S|
|G| cS

)
(1− αG)

cG
+ αG

}
c̆G |G|+

∑
G,cG=0

c̆G |G|

=
∑

G,cG �=0

{
(1− αG) + αG

}
c̆G |G|+

∑
G,cG=0

c̆G |G|

=
∑
G

c̆G |G| = M,

because the diffusion operator is conservative.

5.3.1. A heuristic model of diffusion. The fourth and final desired property,
that the entire step should properly model diffusion as a physical process, will be
shown heuristically. Thus for the rest of this section, we relax strict mathematical
rigor and argue formally. The difficulty with the diffusion step is that the forward grid
transfer (5.2) is itself diffusive. Thus a simple inverse transfer (say, αn

G = 1 in (5.5))
would provide a physically improper sum of the physical and numerical diffusions.

We argue locally near some stream-cell S and rectangular grid cell G, and we omit
the time level (superscript n) in our argument. We model the grid transfer diffusion
by the heat equation

∂cG
∂t

−DgridΔcG ≈ 0

from the initial condition given by cS , with a diffusion coefficient Dgrid chosen so that
we obtain spreading on the order of |G|1/2, the size of the grid cells, since mass can
spread only this far by the forward transfer operator. That is, since the diffusion
length is 2

√
Dgrid tgrid, we define

Dgrid =
|G|

4 tgrid
,

where tgrid is some “grid” time scale. In terms of this heat equation, over a “time
step” of size tgrid, we have approximately that

cG ≈ cS +Dgrid tgrid
∂2
|S|cS
|S| ≈ cS +

|G|
4 |S| ∂

2
|S|cS ,

where ∂2
|S| is a standard second order difference (and |S| is the length squared factor).

Next, the physical diffusion operator is applied to cG. We again model this process
as a simple heat equation, at least locally, but with the physically relevant diffusion
coefficient D, taken here to be the constant dG defined in (5.4). Thus, over the time
step Δt,

c̆G ≈ cG + dGΔt
∂2
|G|cG
|G| .
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Combining with the previous result, we have that

c̆G ≈ cG +
dGΔt

|G| ∂2
|G|cG ≈

(
cS +

|G|
4 |S| ∂

2
|S|cS

)
+

dGΔt

|G| ∂2
|G|

(
cS +

|G|
4 |S| ∂

2
|S|cS

)

= cS +
|G|
4 |S| ∂

2
|S|cS +

dGΔt

|G| ∂2
|G|cS +

dGΔt

4 |S| ∂2
|G|∂

2
|S|cS

≈ cS +

( |G|
4 |S| +

dGΔt

|S|
)
∂2
|S|cS ,

wherein we have made two additional approximations. First, we replaced ∂2
|G|cS/|G|

by ∂2
|S|cS/|S|, since these are both approximations of the Laplace operator. Second,

we dropped the fourth order difference term, since its characteristic diffusion length
scales as the fourth root rather than the square root.

Finally, the inverse transfer is applied to obtain

c̆S =
∑
G

|G ∩ S|
|S|

[
(1 − αG)ρSG + αG

]
c̆G

≈
∑
G

|G ∩ S|
|S| ρSG (1 − αG) c̆G +

∑
G

|G ∩ S|
|S| αG

[
cS +

( |G|
4 |S| +

dGΔt

|S|
)
∂2
|S|cS

]

≈
∑
G

|G ∩ S|
|S|

(
(1− αG)

c̆G
cG

+ αG

)
cS +

∑
G

|G ∩ S|
|S| αG

( |G|
4 |S| +

dGΔt

|S|
)
∂2
|S|cS .

The first term restores mass back to the original stream-tube mesh without diffusion,
so the second term needs to be adjusted to attain the correct level of diffusion. To
this end, if we solved the diffusion problem on the stream-tube mesh without any grid
transfers (as our approximate heat equation), we would obtain

c̆S ≈ cS +
dGΔt

|S| ∂2
|S|cS ,

and so we need to define αG so that

dGΔt

|S| = αG

( |G|
4 |S| +

dGΔt

|S|
)
;

that is, (5.4) follows.

5.3.2. Numerical tests of the diffusion approximation. We now provide
a numerical study of the performance of our treatment of diffusion, especially with
respect to the grid transfer error. We reemphasize that our approach is designed
for the case of small physical diffusion and that a more computationally expensive
direct approximation on the stream-tube mesh is an alternative when high-fidelity
simulation of the diffusion operator is required.

Shown in Figure 5.3 is a test example using the stream-tube mesh from our main
test example (Figure 4.1). We set the velocity to zero, so there is no advection, and
therefore also there is only molecular diffusion D = dmol = 10−3 in (5.1). Initially,
the domain has no tracer except in the central stream-cell, where the concentration
is 1. Over time, the tracer spreads into the surrounding domain. We use a time step
of Δt = 30.

To start the test, we need to transfer the tracer to the rectangular grid using
(5.2). The top row of Figure 5.3 is the reference solution on the 50× 50 rectangular
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Diffusion with grid transfer using the 100 × 100 rectangular grid
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0.25
0.15
0.05

Fig. 5.3. A test of diffusion from a central stream-cell originally at concentration 1 in an
otherwise clean domain. From left to right are time steps 1, 2, and 5 (using Δt = 30). The results
are magnified and shown on the rectangular grid, beginning from the concentration after forward
transfer. The top set of plots shows the pure diffusion reference case; that is, the concentration is
never transfered back to the stream-tube mesh. The other two sets show the case of cycling between
one step of the diffusion operator, transfer to the stream-tube mesh, and forward transfer back to the
rectangular grid. The middle set uses the 50× 50 rectangular grid for the diffusion, and the bottom
set uses the 100 × 100 rectangular grid.

grid. It is the pure diffusion case without grid transfer, given by solving (3.3)–(3.4).
We show time steps 1, 2, and 5. Note especially the size and shape of the plume.

The second row of Figure 5.3 is our proposed method of handling diffusion. Here
each time step consists of three parts. First is an application of the diffusion operator
solving (3.3)–(3.4) as for the reference solution. But instead of proceeding to the next
diffusion step directly, we move the tracer to the stream-tube mesh using the inverse
transfer (5.5). This is inherently numerically diffusive. We finally transfer the tracer
back to the 50 × 50 rectangular grid using (5.2). In this case, αG = α = 0.5, so we
correct about half the grid diffusion, and the plume size and shape agree well with
the reference.

The third row of Figure 5.3 is the same as the second, except that the underlying
rectangular grid is refined to 100 × 100. Now αG = α = 0.8, and more of the
diffusion operator is used directly. Similar results are obtained (although the diffusion
is resolved a bit better on this finer grid).

Figure 5.4 is a second test of the diffusion, with the same parameters but a
modified stream-tube mesh. A very thin stream-tube is added, with a very small
central stream-cell containing the initial tracer. These concentrations are shown on
a log scale, so smaller concentrations can be seen more easily. Results similar to the
previous test case are obtained.
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Diffusion with grid transfer using the 50 × 50 rectangular grid
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Diffusion with grid transfer using the 100 × 100 rectangular grid
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Fig. 5.4. A second test of diffusion from a much smaller central stream-cell originally at
concentration 1 in an otherwise clean domain. From left to right are time steps 1, 2, and 5 (using
Δt = 30). The results are magnified and shown using a log scale on the rectangular grid, beginning
from the concentration after forward transfer. The top set of plots shows the pure diffusion reference
case. The other two sets show the case diffusion with grid transfer. The middle and bottom sets use
the 50 × 50 and 100× 100 rectangular grids, respectively.
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Fig. 5.5. The concentration from the stream-tube method using linear transfer on a 10 stream-
tube mesh with about 20 stream-cells each with T = 1200 and Δt = 30.

5.4. A locally linear transfer operator. It is easily seen in Figure 5.2(a) that
there is a lot of numerical diffusion near the bottom right corner of the domain. This
is caused mainly by the extremely large stream-cell in that corner (see Figure 4.1(a))
but also by an interaction with the physical diffusion step. The problem is that a
simple constant transfer from the stream-tube mesh to the rectangular grid places a
lot of mass too far advanced within the stream-tube, which diffuses downstream. To
help alleviate this problem, we devise a locally linear transfer operator. Figure 5.5
shows an improvement at the bottom right corner when the linear transfer operator
is applied.
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r s flow

Fig. 5.6. The linear transfer operator is based on a linear reconstruction depicted here.

The linear transfer operator is defined as follows. For each stream-cell R, we begin
by defining a locally piecewise linear reconstruction of the concentration, similar to
that constructed on the reference stream-cell R̄ in subsection 4.4. Here we reconstruct
on the actual stream-tube, as depicted in Figure 5.6. For time level tn, we define

(5.6) ˜̃cn
R(x) = cnR + σn

R a · (x− x̄R) + τnR a⊥ · (x− x̄R),

where σn
R is defined in (4.11) and

x̄R =
1

|R|
∫
R

x dx

is the average of x on R, so as to preserve mass. To define the other quantities, we let
a1 ∈ Ω be the most upstream center-line point of R and a2 ∈ Ω the most downstream
point. The vector a is a unit vector along the flow defined as

a =
a2 − a1
|a2 − a1| ,

and the unit vector a⊥ is orthogonal to a.
The slope τnR can be set to zero or it can be used to approximate the transverse

variation of the concentration. In the latter case, we identify the two stream-tubes
adjacent to the one containing R as stream-tubes 1 and 2, where a⊥ points from
stream-tube 1 to stream-tube 2. These stream-tubes exist unless we are near the
boundary, in which case we can identify the missing stream-tube with the one con-
taining R.

We define the concentration cn2 associated with stream-tube 2 as a weighted av-
erage of its concentration values. The weighting is in terms of the arc length of the
common streamline boundary between R and streamline 2. In the case depicted in
Figure 5.6, we would set

cn2 =
r cn

R−
2

+ s cn
R+

2

r + s
.

Similarly we define cn1 , and finally

τnR =
cn2 − cn1
kR̄

,

where, we recall, kR̄ is the width of the reference cell R̄ of R.
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(a) Piecewise constant
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(b) Rectangular grid
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(c) Stream-tube mesh

Fig. 5.7. Nonmonotonicity at (13.35, 17.8) shown as piecewise discontinuous constant concen-
tration values (a) over the domain on the rectangular diffusion grid, (b) close-up on the rectangular
diffusion grid, and (c) close-up on the stream-tube mesh.

Once the linear reconstruction is complete, we can simply transfer the mass to
the rectangular grid via

(5.7) cnG =
∑
S

1

|G|
∫
S∩G

˜̃cn
S (x) dx

in place of (5.2). The inverse transfer is defined similarly to the locally constant case
(5.3)–(5.5), but now we keep (5.4) and replace (5.5) by

(5.8) cn+1
S = c̆n+1

S =
∑
G

1

|S|
[
(1− αn

G)
1

cnG

∫
G∩S

˜̃cn
S (x) dx + αn

G |G ∩ S| c̆n+1
G

]
.

The proof of Lemma 5.1 can be modified easily to give a similar result for the linear
transfer. The only difficulty is showing that cG = 0 implies that

∫
S∩G

˜̃cn
S (x) dx = 0,

which is trivial under the added assumption that ˜̃cn
S (x) ≥ 0. We should require this

relation anyway, and it is achieved through limiting the slopes in the definition (5.6).
Lemma 5.2. Let the forward and inverse locally linear transfers be defined by (5.7)

and (5.8) with (5.4), respectively. If ˜̃cn
S (x) ≥ 0, then the conclusions of Lemma 5.1

hold for the locally linear transfer operators.

5.5. Aspects of monotonicity. Careful consideration of Figure 5.2(a) shows
that the concentration appears to be nonmonotone at around (x, y) = (12.7, 15.5).
The solution is, in fact, monotone there, and the apparent nonmonotonicity is due
to the smoothing algorithm of the graphical plotting software. We can remove it by
viewing the piecewise constants defining the numerical concentration, as shown in
Figure 5.7(a). However, when we do so, we discover a genuine nonmonotonicity at
(13.35, 17.8), as shown enlarged in Figure 5.7(b).

Figure 5.7(c) explains the situation on the stream-tube mesh. The concentra-
tion is monotonic on the stream-tube mesh used for advection, as we expect. (The
advection algorithm is both stable and monotonic—see [6].) However, the transfer
operation creates a nonmonotonicity on the rectangular grid. The key facts are that
the stream-tube width is smaller than the rectangular grid in the region of the do-
main near (13.35, 17.8) and that the stream-cell has a higher concentration than the
stream-cells around it. When we apply the transfer operator from the stream-tube
mesh to the rectangular grid, we inevitably create a slight nonmonotonicity. The use
of the linear transfer operator, as in Figure 5.5, will lessen the nonmonotonicity, but
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Fig. 5.8. Test example of monotonicity using D = dmol = 10−10. Left is the stream-tube
mesh, followed by the concentration shown on the stream-tube mesh at step 9 (plotted using the
usual linear scale, Figure 5.1(c)). It remains monotone. The final two plots are magnified images
of the concentration after transfer to the rectangular grid. Here the concentrations are clearly non-
monotone.
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Fig. 5.9. Test example of monotonicity using D = dmol = 10−2. The tracer concentration is
plotted on a log scale (from 10−3 to 1). The concentration within the stream-tube remains monotone
when shown on the stream-cell mesh.

it cannot correct it. Neither can local stream-tube refinement, described in the next
subsection, since the nonmonotonicity comes not from an insufficiently fine grid but
rather from the way the stream-tubes and stream-cells intersect with the rectangular
grid. Refining the rectangular grid used for diffusion would alleviate the problem.
However, this nonmonotonicity is probably within the range of acceptable approxi-
mation error. It is both very slight and not expected to increase with time, since both
the advection and diffusion steps are stable and the diffusion step is smoothing.

We present now two contrived test examples to further exhibit the problem of
nonmonotonicity in a simple setting using only molecular diffusion in (5.1). On the
left in Figure 5.8, we show a 240 × 240 domain with a single fine stream-tube with
a kink, and tracer is injected only into that single stream-tube. In the first test, the
diffusion is very small, D = dmol = 10−10. Forward grid transfer near that kink
must result in nonmonotone concentrations on the 30 × 30 rectangular grid, as seen
magnified at two times (steps 6 and 9 using Δt = 500) in the right-most plots in
Figure 5.8. However, the concentration within the stream-tube remains monotone,
as seen for the later test in the second plot in Figure 5.8. In this test, α = αG ≈ 0
for the inverse transfer operator (5.4). The second test is similar, except that now
D = dmol = 10−2, so there is significantly more physical diffusion, and α = αG ≈ 0.24.
It is shown for four times in Figure 5.9, plotted on a log scale. Again, the concentration
within the stream-tube remains monotone. While we do not claim that monotonicity
cannot be lost, we do see that it does not seem to be a significant problem.

We close this discussion of nonmonotonicity by pointing out that it could occur
whenever we transfer results to a rectangular grid. So, for example, even if we solved
the diffusion step on the stream-tube mesh, we would see this nonmonotonicity if we
wished to plot the concentration on a rectangular grid.
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Table 6.1

CPU timing results (in seconds) for the stream-tube and VCCMM algorithms.

Method Δt Stream-cell Advection Diffusion Grid
used or trace-back steps steps transfer

mesh generation

10 stream-tubes
N = 5 30 9.52 0.063 8.200 7.894
N = 10 30 21.62 0.090 8.182 8.119
N = 50 30 109.96 0.164 8.282 8.550

40 stream-tubes
N = 10 30 87.80 0.732 8.218 66.585

VCCMM
3 86.29 24.767 81.038 ——
6 96.38 12.712 40.964 ——

6. Performance of the basic algorithm. The advection step in section 4
and the diffusion step in section 5 give the basic algorithm for the fully conservative
Eulerian-Lagrangian stream-tube method. The next two sections will discuss exten-
sions of the algorithm to more complex situations. We record now that the method
is both mass conservative and preserves positivity of the concentration, meaning that
undershoots cannot occur.

Lemma 6.1. Assume that a positivity preserving method is used to solve the
diffusion step on either the stream-tube mesh or a rectangular mesh. In the latter
case, if the linear transfer operator is used, assume also that ˜̃cn

S (x) defined by (5.6) is
slope limited so that ˜̃cn

S (x) ≥ 0. If each stream-tube concentration cnS ≥ 0, then also
cn+1
S ≥ 0. Assuming c0 ≥ 0, the fully conservative Eulerian-Lagrangian stream-tube
method both conserves mass and produces nonnegative concentrations.

Proof. By construction, the advection step is mass conservative. We have noted
that the diffusion step is mass conservative in Lemmas 5.1 and 5.2, and so the overall
method is also mass conservative.

For the positivity, we first note that c̃n
R̄
defined by (4.9) on the reference stream-

cell R̄ is nonnegative. This is due to the MUSCL slope limiter (4.10)–(4.11). The
advection step (4.14) then clearly defines cn+1

R as nonnegative. (See especially the
second equality in (4.14).) The diffusion step preserves positivity by Lemmas 5.1
and 5.2, so every stage of the method preserves nonnegativity, and thus the method
itself does the same.

6.1. A comparison to the VCCMM. We now compare the efficiency of the
stream-tube method versus the VCCMM [3], which works completely on the 50× 50
rectangular grid. The CPU timing results are reported in Table 6.1 for our simulation
up to the final time of 1200. We include the cases of a stream-tube mesh with both 10
and 40 stream-tubes, using different numbers of maximal points per rectangular grid
cell (which we denote by N). In subsection 4.2, we noted that there is no significant
difference in the solutions between the N = 10 and N = 50 cases; however, the
N = 5 case gives a noticeably poorer solution. The stream-tube mesh generation and
advection step times scale with this number, since there are more intersections of the
rectangular and stream-tube meshes when using more points to define the streamlines.
This number also slightly increases the time to compute all the advection steps.

The VCCMM is run with two time steps, having CFL numbers 4.2 (Δt = 3)
and 8.4 (Δt = 6). The trace-back mesh generation increases only a little for the
longer time step, and the advection steps take roughly half the time.
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Comparing the stream-tube method and VCCMM, we see that the mesh gen-
eration may be more efficient for the stream-tube mesh, since we get good results
for coarser meshes. If we compare VCCMM to the 40 stream-tube case, we have
comparable spatial resolution and comparable mesh generation times.

The advection stepping time shows that the stream-tube method is more efficient.
First, we can get good results using much larger Δt, so we need only 5 to 10 times
fewer steps. But also the time per step is much improved, since the stream-tubes are
essentially one-dimensional but the VCCMM is two-dimensional. For example, the
highly refined 40 stream-tube case uses only 0.018 seconds per advection step, versus
0.064 for VCCMM with the larger time step.

Finally, the diffusion step is comparable for the two methods. Our reported
times simply reflect the use of a diffusion step for every advection step, which is not
necessary. So the stream-tube method uses only 40 diffusion steps, but the VCCMM
uses 400 or 200. The main difference here is the use of the grid transfer operators,
which are unnecessary in the VCCMM.

6.2. A comparison to Godunov’s method. Finally, we consider the error
resulting from a simple radial test example. The velocity is given by

u =
(x, y)

x2 + y2
.

Initially c0 = 0, and the tracer enters the domain through a well in the corner of the
domain (0, 20)2 at (0, 0). Since there is no diffusion (D = 0), the tracer concentration
is the characteristic function of a circle, the radius of which is determined by mass
conservation.

The numerical velocity used is the Raviart–Thomas projection of u; that is, we
only use the average normal velocity on each edge of a fixed rectangular grid (in our
case, 50× 50). Therefore, the stream-tube mesh is not given by a simple radial mesh
in polar coordinates (although it is close to this). Instead, the stream-tube mesh
is constructed as described in subsections 4.1–4.2. Stream-tubes are generated from
points spaced equally distant on the well boundary (taken as the corner element)
and so are not equally spaced in arc-length. The boundaries of the stream-tubes are
not perfectly straight due to tracing using the approximate Raviart–Thomas velocity.
The stream-cells have length determined by equal spacing along the center streamlines,
which vary from stream-tube to stream-tube. Moreover, the transverse boundaries of
the stream-cells are given by our transverse tracing algorithm, and so they are not
quite circular arcs.

The stream-tube method is used to solve the problem twice. In the first case,
20 tubes with between 17 and 21 cells per tube are used, for a total of about 400
stream-cells, and the time step is Δt = 1.0. We also use N = 6 maximal points per
rectangular grid cell (and a tracing time step of 0.6). In the second case, 40 tubes and
32 to 42 cells per tube are used, for a total of about 1600 stream-cells, and the time
step is Δt = 0.5. Here, N = 12 (and the tracing time step is 0.3). These results are
contrasted with the second order Godunov method [10, 1] using a 50× 50 rectangular
grid of 2500 grid cells. The time step used is Δt = 0.1, which is about the maximum
CFL step allowed.

The L1 error is given in Table 6.2 at four times. We see that the stream-tube
method can represent the solution more accurately for a given number of grid cells and
a much larger time step in this simple problem. We also report the CPU time used
for the simulation to the final time t = 100. The stream-tube method is significantly
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Table 6.2

Accuracy results (in L1) and CPU timings for the stream-tube and second order Godunov
algorithms. The setup time refers to the stream-tube mesh generation, and the advection time is the
time for completing the simulation to time t = 100.

Method Δt Number L1 error at time CPU time (s)
of cells 25 50 75 100 Setup Advection

Stream-tube
20 tubes 1.0 400 6.47 7.62 10.10 11.36 4.72 0.120
40 tubes 0.5 1600 2.80 4.81 5.91 6.65 99.86 0.736

Godunov 0.1 2500 4.33 6.88 9.13 11.10 —— 2.732

faster per step, since the mesh is so much coarser (and the problems are essentially
one-dimensional). Of course, the stream-tube method has a significant setup time for
generating the mesh, so it is more efficient only for long-time simulations to at least
t = 200 in this example.

7. Local stream-tube refinement. Since the stream-tubes are independent of
each other in the advection step, it is relatively easy to apply local mesh refinement.
We explore two types of refinement: refinement within a stream-tube by adding more
stream-cells, and stream-tube refinement, i.e., adding more stream-tubes.

We already noted the very large numerical diffusion in the bottom right corner
of the domain in Figure 5.2(a), due to the extremely large stream-cells in the stream-
tube mesh Figure 4.1(a). We computed this example on a refined mesh with only the
bottom right stream-tube being refined to 46 stream-cells. In Figure 7.1(a), we see
the result becomes much less numerically diffusive.

In Figures 7.1(b)–(c), we show the result of adding three stream-tubes to the
mesh, refining the two right-most stream-tubes on the top injection well boundary
and the top-most stream-tube on the right injection well boundary, i.e., stream-tubes
4 to 6 counting from the left in Figure 4.1. It is obvious that we improve resolution
at around (5, 12) and at the tip of the tracer finger near the production well. In fact,
comparing Figures 7.1(c) and 5.2(b) with 5.1(b), it is remarkable that this finger has
been resolved to so thin a stream-tube on a mesh of only about 260 total elements.

0 5 10 15
0

5

10

15

20

(a) Stream-cells added, rect-
angular grid

0 5 10 15
0

5

10

15

20

(b) Stream-tubes added, rect-
angular grid

0 5 10 15
0

5

10

15

20

(c) Same as (b), but shown on
the stream-tube mesh

Fig. 7.1. The concentration (from 0 to 1) using the same 10 stream-tubes, each with about 20
stream-cells, as used in our test example and depicted in Figure 4.1, except that in (a) we refine the
bottom right stream-tube to 46 stream-cells, and in (b)–(c) we refine stream-tubes 4 to 6 (from the
left) into two stream-tubes each, for a total of 13 stream-tubes. Results compare to Figures 5.2(a)–
(b).
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8. Multiple pressure basins. Streamlines travel between an injection and a
production well, from high to low pressure. When there is more than one pressure
basin, as when the domain contains three or more wells, special care must be employed
in the stream-tube method. In that case, the domain is divided into multiple pressure
basins, separated by dividing streamlines. It is unwise to define a stream-cell that
contains the dividing-line, since there is no well-defined center-line. In fact, most
likely either fluid from two injection wells will merge within the tube, or fluid from
one injection well will split toward two production wells.

8.1. A simple example of two pressure basins. To assess the stream-tube
method, we need to alter our test example. We keep a zero initial condition on the
concentration and the injection and production wells in their original positions, but
we halve the strength of the producer. We then add a second production well at the
top center of the domain of the same strength.

Similar to the original two-well setting, we equally space sample points around
the injection well and trace the streamlines through those points via (4.1)–(4.2). We
end up with two groups of streamlines, as depicted in Figure 8.1(a) from the velocity
depicted in Figure 8.1(c). The black set on the left side of the domain shows the
streamlines that enter the top center production well, and the blue set shows those
streamlines entering the top corner production well. In between is the pressure basin
dividing-line, shown in red. Any point located to the left of the dividing-line must
pass through a streamline which enters the left-most production well; similarly, those
points to the right of the dividing-line must pass through a streamline which enters
the right-most well.

There is a point, call it x0, where the dividing-line intersects the top portion of
the domain boundary (as in Figure 8.1(b)). At this point, the velocity must vanish.
We have already noted that it is critical to approximate the streamlines accurately
in subsection 4.2, and the same is even more true for the dividing streamline. Again
using the lowest order Raviart–Thomas mixed finite element space, it actually takes
an infinite amount of time to trace to the point x0. However, this is needless. We can
simply determine which rectangular grid cell separates left from right flow, i.e., the cell
for which u1 < 0 to the left and u1 > 0 to the right. On that cell, u = (a+bx, c+dy), so
we determine x0,1 satisfying a+ bx0,1 = 0. The point x0 = (x0,1, 20) traces vertically
down to the bottom of the cell at (x0,1, 20− �2). We can then easily continue tracing
analytically backward to the injection well. This streamline is the dividing-line.
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(a) The streamlines
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(b) Streamlines around where
the dividing-line intersects the
domain boundary
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0
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20

(c) The velocity

Fig. 8.1. (a)–(b) The streamlines used for construction of the stream-tubes in the three-well
problem. (c) The speed in contour on a log scale with the velocity vectors as arrows. Note the red
dividing-line between the two pressure basins.
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(a) Left domain (b) Right domain
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Fig. 8.2. The stream-tube mesh for the three-well problem, as separated into pressure basins.
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(a) Godunov, 50 × 50 grid,
Δt = 0.97
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(b) Godunov, 100 × 100 grid,
Δt = 0.24
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(c) 20 stream-tubes, each with
about 40 stream-cells, Δt =
30

Fig. 8.3. The three-well problem concentration (from 0 to 1) as solved by (a) a formally second
order Godunov method on a 50×50 rectangular grid using the CFL Δt = 0.968, (b) the same method
on a 100 × 100 rectangular grid using the CFL Δt = 0.242, and (c) the stream-tube method with
20 stream-tubes, each with about 40 stream-cells, using Δt = 30, with the dividing-line shown. The
results are at the final time T = 1500.

Once we have determined the dividing streamline, we use it as one boundary of a
stream-tube. In our case, we simply refined the stream-tube within which it lay, and
so we have two narrow stream-tubes adjacent to the dividing-line. We show the two
pressure basins and our stream-tube mesh in Figure 8.2.

For a single time step using first order Strang splitting, we apply the transport
step in each tube, as discussed above. Working over the entire domain Ω, we then
transfer the stream-cell concentrations to the rectangular grid and compute the dif-
fusion step as was done previously. Finally, we transfer the grid concentration values
back to the stream-cells of the two pressure basins. The results are reported in Fig-
ure 8.3(c). For comparison, we report the result of using a formally second order
Godunov method [10, 1] on both 50 × 50 and 100 × 100 grids using much smaller
CFL limited time steps in Figure 8.3(a)–(b). The stream-tube method shows much
less numerical dispersion. Moreover, this problem is difficult to approximate well,
since the flow is strong along the dividing-line, as seen in Figure 8.1. The streamline
method captures the flow on each side of the dividing-line very well.

8.2. An example of multiple pressure basins and the tracing of dividing-
lines. In our final numerical example, we consider a case with four wells. One pro-
duction and two injection wells appear within the domain, and a second production
well appears on the boundary of the domain. Moreover, a left to right pressure dif-
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4000.0
2523.8
1592.4
1004.8
634.0
400.0
252.4
159.2
100.5
63.4
40.0

(a) Flow velocity (b) Pressure basins and stream-tubes

Fig. 8.4. The four-well problem, showing (a) the flow speed on a log scale and velocity arrows,
and (b) the dividing streamlines, pressure basins, and stream-tubes.

ference is imposed on the boundary of the domain. In all, the domain is divided
into eight distinct pressure basins, as shown in Figure 8.4(b). Streamlines can en-
ter the domain either through the boundary of an injection well or through the in-
flow portion of the domain boundary. Similarly, streamlines can leave the domain
either through the boundary of a production well or through the outflow portion
of the domain boundary. This numerical example exhibits all four types of pres-
sure basins with streamlines that travel from injection to production well, injection
well to outflow boundary, inflow boundary to production well, and inflow to outflow
boundary.

To be more specific, the domain is the square (0, �)2, where � = 256. The porosity
φ = 1 and the domain is originally free of tracer. One injection well is at (�/4, �/2)
of strength 6.667e4 and the other injection well is at (3�/4, �/2) of strength 2.667e4.
Both inject pure tracer (concentration 1). The first production well is at (�/2, �/4)
of strength −8e4 and the other is at (�/2, �) of strength −2.667e4. The bottom and
top sides of the domain have homogeneous Neumann (no flow) boundary conditions.
Dirichlet conditions are imposed on the left and right sides of the domain, with pres-
sure 5e4 and in-flow concentration 1 on the left and −5e4 on the right.

The flow velocity u is solved using a fine 64× 64 uniform rectangular grid. The
velocity is shown in Figure 8.4(a). The diffusion/dispersion is applied on the same
64× 64 grid using model (5.1) with dmol = 1e−11, dlong = 1e−5, and dtrans = 1e−6.

We show the evolution of the solution in Figure 8.5, using a time step Δt = 0.045,
which is around 58 times the CFL limited step size. The figures show the solution
after 2, 5, and 10 steps. The first set of plots show the concentration at the end of
the time step. The second set shows the concentration after the diffusion step on
the rectangular grid, before transfer back to the stream-tube mesh. The results show
amazing detail, considering that a very coarse mesh and large time steps were used
for this very complex flow field.

The stream-tube mesh was constructed as follows. First, the stagnation points
of the flow field (i.e., the points where u = 0) need to be determined. Recall that we
use the lowest order Raviart–Thomas mixed method on the 64× 64 rectangular grid.
As noted in subsection 4.2, we can trace analytically within the resulting velocity
field. It is also easy to determine the stagnation points within the grid elements, since
u = (a+bx, c+dy). One must also account for stagnation points along the boundaries
of the elements.

Once the stagnation points are found, one can trace the streamlines that emanate
from these points. We discussed tracing from stagnation points that lie on the bound-
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Fig. 8.5. The four-well problem, showing the concentration at three times, steps 2, 5, and 10,
using Δt = 0.045. The first set of plots show the concentration at the end of the time step. The
second set shows the concentration after the diffusion step on the rectangular grid, before transfer
back to the stream-tube mesh.

ary of the domain in the previous subsection. Consider a stagnation point (x0, y0)
lying within a grid cell (x1, x2) × (y1, y2) inside the domain. The Raviart–Thomas
velocity is u =

(
a(x−x0), b(y−y0)

)
, and so the four streamlines that trace back from

the stagnation point pass through (x1, y0), (x2, y0), (x0, y1), and (x0, y2). We can con-
tinue tracing from these four points, and these curves will define the dividing-lines,
partitioning the domain into pressure basins (see Figure 8.4(b)). In our example,
there are three stagnation points within the domain and one on the top boundary of
the domain. These three trace to a well, to the boundary of the domain, or possibly
to another stagnation point (which does not occur in this example).

Finally, within each pressure basin, the stream-tube mesh is constructed. When
there is an injection well in the basin, the stream-tube mesh is constructed as described
earlier in subsection 4.1. That is, we choose points on the boundary of the injection
well, which are traced to either a production well or the outflow boundary. These
streamlines form the stream-tubes, and these are further divided into stream-cells as
discussed. This same procedure is used in general, tracing from select points on any
inflow region, defined either as a boundary of an injection well or as a portion of the
inflow boundary of the domain.

9. Conclusions. We presented a new method, the fully conservative Eulerian-
Lagrangian stream-tube method, that is the VCCMM combined with the use of a
stream-tube mesh. The combined method achieves the main advantages of using
both techniques. The VCCMM gives us low numerical diffusion, nonnegative concen-
trations, and the ability to use very large time steps compared to the CFL limited
step. Moreover, it is fully conservative, so both the tracer and ambient fluid mass
are locally conserved. This is important in its own right, but also when reactions are
considered, since the VCCMM conserves mass and volume, i.e., density.
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The use of a stream-tube mesh for the advection computation provides a wide
array of advantages. It gives us even lower numerical diffusion than VCCMM alone,
since numerical cross-diffusion between stream-tubes is removed entirely. It also allows
us to use a coarser mesh, since it is tailored to the flow pattern. The combined method
gives an essentially one-dimensional advection problem within each stream-tube. This
makes it relatively easy to implement and computationally efficient. In fact, the com-
plex and problem-specific geometric layer-by-layer volume adjustment technique of
VCCMM is no longer needed. The new method is easily amenable to local refinement,
either in the sense of adding more stream-cells within the stream-tubes or by adding
more stream-tubes themselves. Although the new method was presented in two dimen-
sions, in principle it should generalize to three dimensions with the same advantages.

We saw that it was important, especially in the case of multiple pressure basins,
to trace the streamlines extremely accurately. This we could do analytically using a
Raviart–Thomas mixed method for solving the pressure equation.

The new method uses a Strang splitting between advection and diffusion. The
latter can be solved using an efficient diffusion approximation on a rectangular grid.
Appropriate grid transfer operators were developed that reduce numerical diffusion
due to grid transfer. A slight nonmonotonicity can be seen on the rectangular grid, due
to the transfer between meshes. It often does not manifest itself on the stream-tube
mesh, and it seems not to be a serious problem.

The combined approach, the fully conservative Eulerian-Lagrangian stream-tube
method, has a certain simplicity that gives it the potential to allow generalizations to
more complex flows, such as two-phase flows and miscible displacement.
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