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The primary purpose of this paper is to compare the accuracy and performance of two numerical
approaches to solving systems of partial differential equations. These equations are posed on adjoining
domains sharing boundary conditions on a common boundary interface in the important case when the
meshes used on the two domains are nonmatching across the interface. The first, widely used approach
is based on a finite volume method employing ad hoc projections to relate approximations on the two
domains across the interface. The second approach uses the mathematically founded mortar mixed finite
element method. To quantify the performance, we use a goal-oriented a posteriori error estimate that
quantifies various aspects of discretization error to the overall error. While the performance difference
may not be a surprise in some cases, we believe that there is a perception in a part of the scientific com-
munity concerned with multiphysics systems that if the solution is smooth near the interface, then there
is little effect from varying the coupling technique. We find that, on the contrary, the error associated
with ad hoc coupling approaches may be large in practical situations. Moreover, we also show that mor-
tar methods can be used with black-box component solvers, thus permitting an efficient and practical
implementation also within legacy codes.

Keywords: mortar methods; a posteriori error estimate; coupled elliptic problems; heterogeneous domain
decomposition; geometric coupling.

1. Introduction

An important class of multiphysics problems have a structure in which one physical process dominates
in one subdomain of the problem domain, while a second physical process dominates in a neighbouring
subdomain. The solutions are coupled by continuity of state and continuity of normal flux through a
shared boundary between the subdomains. Examples include general problems of the heterogeneous
domain decomposition type (Quarteroni et al., 1992; Bernardi et al., 1994; Gaiffe et al., 2002), core–
edge plasma simulations of a tokamak fusion experiment (Cary et al., 2008, 2010) and conjugate heat
transfer between a fluid and solid object (Estep et al., 2008, 2009b, 2010).

In such situations, it is common to encounter significant differences in scales of behaviour in the two
subdomains. This in turn suggests the use of different discretization grids. However, this introduces the

c© The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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1626 T. ARBOGAST ET AL.

problem of interpreting the meaning of coupling state and flux values through the common boundary in
the discretization, since exact pointwise matching is no longer possible.

Confounding this issue are the practical difficulties of solving the large linear and nonlinear dis-
crete systems associated with computing numerical solutions and the common situation in which two
different codes are used to solve the two subdomain problems. These difficulties are generally tackled
by employing some form of iterative approach that involves the sequential solution of the subdomain
problems. The particular properties of the discretizations used for each component problem, the choice
of iterative solution method and high performance computational considerations all have a large impact
on the way in which state and flux values are passed across the common interface.

In this paper, we investigate the accuracy of two approaches to computing the coupling values in
the situation in which the discretization grids in the two subdomains do not match at the interface.
The analysis is carried out for the closely related mixed finite element and cell-centred finite volume
methods. The two approaches are (1) the mortar element approach (Brezzi & Fortin, 1991; Roberts &
Thomas, 1991; Arbogast et al., 2000, 2007; Ben Belgacem, 2000; Ganis & Yotov, 2009), which uses a
rigorous variational formulation to define a weak sense of coupling and (2) a ‘geometric’ approach that
employs various ad hoc extrapolation and averaging methods. The use of mortar elements is proved to
be optimally convergent on nonmatching grids, provided the finite element space used for the interface
variables consists of piecewise polynomials of one degree higher than the trace along the interface of
the finite element space used to approximate the flux within the subdomains (Arbogast et al., 2000).
Nonetheless, while mortar elements are well known in some application domains, e.g., flow in porous
media, they are not widely employed for multiphysics problems. Rather, various ‘geometric’ techniques
are used in most practical settings, especially in situations in which one or more of the components are
solved with legacy ‘black-box’ codes. This second approach is often rationalized using a combination
of ad hoc formal stability and/or accuracy arguments combined with high performance computing expe-
diences. Moreover, in the situation in which legacy codes are used to solve either component, there is
little choice because of the very considerable investment that would be required to replace these codes.

We are not arguing for or against either mortar elements or ‘geometric’ approaches. Rather, we
address two issues: (1) what effect do these coupling approaches have on the accuracy of specified
quantities of interest? and (2) in each case, quantify the relative contributions of various aspects of
discretization to the error in the computed information. The tool we use to address these issues is an
adjoint-based a posteriori error estimate (Estep et al., 2000; Becker & Rannacher, 2001; Giles & Suli,
2002; Wheeler & Yotov, 2005; Estep et al., 2009a; Hansbro & Larson, 2011; Pencheva et al., 2013).
This goal-oriented estimate accurately quantifies various contributions to the overall error. In particular,
the estimate distinguishes contributions specifically arising from the mismatched grids and the way
in which the coupled information is approximated. We identify, through numerical examples, cases in
which the geometric projections are the dominant source of error by one to two orders of magnitude.

The remainder of this paper is organized as follows. Section 2 introduces the differential equation
and the details of the two discrete methods. Section 3 derives the a posteriori error estimate. Section 4
contains the numerical experiments. Section 5 discusses computational logistics related to iterative
solvers, and a brief conclusion is given in Section 6.

2. Definition of the problem and discretization methods

We define the coupled problem with a common interface and then describe the finite element and finite
volume discretizations. We employ the well-known equivalence between finite volume methods and the
mixed finite element method (Russell & Wheeler, 1983; Weiser & Wheeler, 1988) to recast everything
in the finite element framework. This greatly eases the derivation of a posteriori error estimates and
provides a systematic framework for describing geometric approaches to computing coupling values.
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Fig. 1. Subdomains, boundaries and definition of the normal n on the interface.

2.1 The differential equation

The differential equation (2.1–2.3) consists of a system of second-order elliptic partial differential equa-
tions (PDEs) in two spatial dimensions. The system is posed on a rectangular domain Ω consisting of
two nonoverlapping rectangular subdomains, ΩL on the left-hand side and ΩR on the right-hand side,
that share a common interface ΓI and whose union forms the entire domain, as shown in Fig. 1. The
unit normal vector n is defined to point from left to right on ΓI and is an outward-pointing normal on
ΓL = ∂ΩL \ ΓI and ΓR = ∂ΩR \ ΓI. For simplicity of presentation, we assume Dirichlet boundary con-
ditions on ∂Ω , the external boundaries of the domain. The results extend to problems with Neumann
conditions on part of the boundary in a straightforward way.

For a diffusion function a, split as aL ∈ W 1,∞(ΩL) and aR ∈ W 1,∞(ΩR), source function f , split
as fL ∈ L2(ΩL) and fR ∈ L2(ΩR), and boundary data g, split as gL ∈ H3/2(ΓL) and gR ∈ H3/2(ΓR), the
coupled system is

⎧⎪⎨
⎪⎩

a−1
L uL + ∇pL = 0, (x, y) ∈ΩL,

∇ · uL = fL, (x, y) ∈ΩL,

pL = gL, (x, y) ∈ ΓL,

(2.1)

⎧⎪⎨
⎪⎩

a−1
R uR + ∇pR = 0, (x, y) ∈ΩR,

∇ · uR = fR, (x, y) ∈ΩR,

pR = gR, (x, y) ∈ ΓR,

(2.2)

{
ξ ≡ pL = pR, (x, y) ∈ ΓI,

n · (uL − uR)= 0, (x, y) ∈ ΓI,
(2.3)

where we assume that the diffusion matrices, aL and aR, are functions of space multiplied by the identity
matrix, i.e.,

aL =
[

DL(x, y) 0
0 DL(x, y)

]
, aR =

[
DR(x, y) 0

0 DR(x, y)

]
, (2.4)

with Di ∈ W 1,∞(Ωi), i = L, R, and min(x,y)∈Ω̄i
Di(x, y)� D0 > 0, so ai is invertible and uniformly coer-

cive for i = L, R. Note that we have defined ξ as the common interface pressure in (2.3).
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1628 T. ARBOGAST ET AL.

Fig. 2. Example grid shown separated, from left to right, into the part on ΩL, ΓI and ΩR.

2.2 Mixed finite element mortar discretization

The mortar finite element discretization was developed precisely for the situation presented by the dis-
cretization of (2.1–2.3) using two different grids in the two different subdomains. We assume that each
subdomain is discretized by a (logically) rectangular finite element grid. Lagrange multipliers are intro-
duced on the interface boundary to provide a weak formulation of the pressure coupling conditions.
Since the grids are different on the two sides of the interface, the Lagrange multiplier space cannot be
the normal trace of the velocity space. So, we introduce a mortar finite element space on the interface
(Arbogast et al., 2000, 2007; Bernardi et al., 2005). As shown in Arbogast et al. (2000), the method is
optimally convergent and has several other desirable convergence properties if the boundary space has
one order higher approximability than the normal trace of the velocity space. The same order of con-
vergence is obtained for both continuous or discontinuous piecewise polynomials in the mortar space.
In our discretization, we choose an interface grid that has one cell for every two cells in the finer of the
two subdomain grids. Figure 2 shows the arrangement for a 5 × 5 grid next to an 8 × 8 grid. (Note that
our convention is that the finer grid is always used in the right-hand subdomain.)

We use standard L2 inner product notation, i.e., for functions F and G defined on Ω , split as above,

(Fi, Gi)=
∫
Ωi

Fi(x, y)Gi(x, y) dx dy, i = L, R,

and for functions defined on the boundaries, we similarly define

〈F, G〉Γi =
∫
Γi

FG ds, i = L, I, R.

The mixed finite element (mortar) method starts with the following continuous weak formulation. Find
pi ∈ Wi = L2(Ωi), ui ∈ V i = H(div;Ωi), ξ ∈Λ= H1/2(ΓI), i = L, R, satisfying

(a−1
L uL, vL)− (pL, ∇ · vL)+ 〈ξ , n · vL〉ΓI = −〈gL, n · vL〉ΓL ,

(∇ · uL, wL)= (fL, wL),

(a−1
R uR, vR)− (pR, ∇ · vR)− 〈ξ , n · vR〉ΓI = −〈gR, n · vR〉ΓR , (2.5)

(∇ · uR, wR)= (fR, wR),

〈n · (uL − uR), ν〉ΓI = 0,

for all (wi, vi, ν) ∈ (Wi, V i,Λ), i = L, R.
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ERROR ESTIMATES FOR MORTAR METHODS 1629

To discretize, we use the lowest-order Raviart–Thomas finite element space (RT0), in which the
discrete scalar unknown ph is approximated as a constant over each cell, and the components of the
discrete vector uh are approximated by functions that are piecewise linear in one spatial dimension
and constant in the other (Bernardi et al., 2005; Estep et al., 2009a). The discrete interface unknown,
ξ h, is represented by piecewise discontinuous linears on the interface grid cells (Arbogast et al., 2000,
2007). The test functions in the discretization of the weak formulation of (2.5) corresponding to w, v
and ν are restricted to these same spaces. To be precise, for a finite element partition Δ of [a, b] and for
r = 0, 1, 2, . . . , q = −1, 0, 1, . . . , we define the piecewise polynomial space

M r
q (Δ)= {v ∈ Cq([a, b]) : v is a polynomial of degree � r on each subinterval of Δ}.

When q = −1, the functions are discontinuous. The space of continuous piecewise bilinear functions is
the tensor product M 1

0 (Δx)⊗ M 1
0 (Δy). The RT0 discrete spaces are

W h
i = M 0

−1(Δx,i)⊗ M 0
−1(Δy,i), i = L, R,

V h
i = [M 1

0 (Δx,i)⊗ M 0
−1(Δy,i)] × [M 0

−1(Δx,i)⊗ M 1
0 (Δy,i)], i = L, R,

Λh = M 1
−1(ΔΓI).

The mixed finite element (mortar) method reads as follows: compute ph
i ∈ W h

i , uh
i ∈ V h

i , ξ h ∈Λh,
i = L, R, satisfying

(a−1
L uh

L, vL)− (ph
L, ∇ · vL)+ 〈ξ h, n · vL〉ΓI = −〈gL, n · vL〉ΓL ,

(∇ · uh
L, wL)= (fL, wL),

(a−1
R uh

R, vR)− (ph
R, ∇ · vR)− 〈ξ h, n · vR〉ΓI = −〈gR, n · vR〉ΓR ,

(∇ · uh
R, wR)= (fR, wR),

〈n · (uh
L − uh

R), ν〉ΓI = 0,

(2.6)

for all (wi, vi, ν) ∈ (W h
i , V h

i ,Λh), i = L, R. This yields a discrete system of the form

⎡
⎢⎢⎢⎢⎢⎣

ML −BL 0 0 CL

BT
L 0 0 0 0

0 0 MR −BR CR

0 0 BT
R 0 0

CT
L 0 CT

R 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

uh
L

ph
L

uh
R

ph
R

ξ h

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−DL

FL

−DR

FR

0

⎤
⎥⎥⎥⎥⎥⎦ , (2.7)

where we abuse notation to let uh
i , ph

i and ξ h denote the vector of nodal values for the finite element
functions.

2.3 Geometrically coupled finite volume discretization

The standard formulation of the finite volume method eschews a variational formulation of the problem,
so there is no natural description of a weak imposition of the coupling conditions in that formulation.
Moreover, the standard finite volume method provides approximate values of p only at cell centres while
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1630 T. ARBOGAST ET AL.

Fig. 3. Extrapolation to the interface. Left: Neumann values on the interface are computed by linear extrapolation of the last
two available flux values, which are differences of state values. Right: Dirichlet values on the interface are computed by linear
extrapolation of the last two available state values.

E

A

B

C

D

Fig. 4. Averaging or broadcasting of extrapolated values. Left: in the case of constant extrapolation, the last available state or flux
value is simply used as the interface value. Right: weighted averaging of state and flux values when cell widths do not share an
integer ratio.

approximate values for u along cell boundaries are obtained by differencing the p values. These charac-
teristics motivate the use of ‘geometric’ coupling techniques that employ a combination of extrapolation
and averaging to provide coupling values of both unknowns along the interface. The motivation for this
approach is reinforced in the context of iterative solution of the coupled problems, where well-posed
problems are created on each subdomain using interface boundary conditions obtained from the other
subdomain. In this approach, it is necessary to couple the coarser side using state values extrapolated
from the finer side solution, while the finer side must be coupled to flux values, which are themselves
differences of state values, extrapolated from the coarser solution. Reversing this arrangement can lead
to a singular system.

To obtain values on the interface, we employ either linear or constant extrapolation. We illustrate
linear extrapolation in Fig. 3. We compute the extrapolated values by computing a linear or constant
interpolant, which is then evaluated at the interface boundary. We denote the extrapolated values using
the operators PR→L(ph

R) and PL→R(ph
L). When the cells on either side of the interface do not match, then

weighted averaging and ‘broadcasting’ schemes are used to generate values. In Fig. 4, we illustrate the
averaging and broadcasting schemes when two cells on the right match one cell on the left. The state
values at the two circle locations are averaged and used at the square location. The flux value at the
square location is ‘broadcast’ to both of the circle locations. When the cell widths on the coarse and
fine side of the interface do not share an integer ratio, then a suitable averaging of values is used. For
example, in the arrangement of 2 cells next to 3 cells pictured in Fig. 4, the state value at location D is
set equal to 2

3 the state value at location A plus 1
3 the state value at location B. The flux value at location

A is set equal to the flux value at location D, while the flux value used at location B is set equal to half
the flux value at D plus half the flux value at E.
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ERROR ESTIMATES FOR MORTAR METHODS 1631

We formulate the finite volume method as an RT0 mixed finite element method employing a special
quadrature formula, following Russell & Wheeler (1983) and Weiser & Wheeler (1988). This provides
a foundation for deriving an a posteriori error analysis for the finite volume scheme; see Estep et al.
(2009a). The version of (2.6) equivalent to a finite volume method reads as follows: compute ph

i ∈ W h
i ,

uh
i ∈ V h

i , ξ h ∈Λh, i = L, R, satisfying

(a−1
L uh

L, vL)M,T − (ph
L, ∇ · vL)+ 〈PR→L(p

h
R), n · vL〉ΓI = −〈gL, n · vL〉ΓL,M ,

(∇ · uhL , wL)= (fL, wL),

(a−1
R uh

R, vR)M,T − (ph
R, ∇ · vR)− 〈ξ h, n · vR〉ΓI = −〈gR, n · vR〉ΓR,M ,

(∇ · uh
R, wR)= (fR, wR),

〈(PL→R(p
h
L)− n · uh

R), ν〉ΓI = 0,

(2.8)

for all (wi, vi, ν) ∈ (W h
i , V h

i ,Λh), i = L, R. Here, we employ the approximate inner product

(uh, v)M,T = (uh
x , vx)Tx,My + (uh

y , vy)Mx,Ty ,

where M(·) and T(·) denote the midpoint and trapezoidal quadrature rules in the x and y directions as
indicated, while 〈·, ·〉Γi,M denotes the midpoint rule for i = L, R. Note that the quadrature formulas are
applied internally on each cell, so potential discontinuities in a and f across ΓI cause no difficulty.

This yields a discrete system of the form

⎡
⎢⎢⎢⎢⎢⎣

ML −BL 0 QD 0

BT
L 0 0 0 0

0 0 MR −BR CR

0 0 BT
R 0 0

0 QN CT
R 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

uh
L

ph
L

uh
R

ph
R

ξ h

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−DL

FL

−DR

FR

0

⎤
⎥⎥⎥⎥⎥⎦ , (2.9)

which should be compared with (2.7).
It is possible to eliminate the unknowns uh

i , i = L, R and ξ h, to reduce (2.9) to a system for ph
i of the

form [
AL CD

CN AR

] [
ph

L

ph
R

]
=

[
FL

FR

]
. (2.10)

The averaging and broadcasting are incorporated into the ‘coupling Dirichlet’ and ‘coupling Neumann’
matrices CD and CN. This is the same system that is constructed by using a finite volume approach
directly.

We have verified through numerical experiments that the p component of the solution of (2.9) is
identical to the solution of (2.10). Furthermore, the u component of the solution of (2.9) is identical to
the u values obtained by differencing the solution of (2.10) to approximate ∇p at the cell boundaries
and evaluating the diffusivity at the cell boundaries. The ξ component of the solution of (2.9) has no
counterpart in the solution of (2.10).
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3. A posteriori error analysis

Our goal is to derive an a posteriori error estimate for the quantity of interest

(euL ,ψuL
)+ (epL ,ψpL)+ (euR ,ψuR

)+ (epR ,ψpR)+ 〈eξ ,ψξ 〉ΓI , (3.1)

where ψuL
,ψpL ,ψuR

,ψpR and ψξ are given L2 functions and e(·) denotes the error in the correspond-
ing variables. We define the generalized Green’s function corresponding to these functionals using the
adjoint problem

⎧⎪⎨
⎪⎩

a−1
L φL − ∇ζL =ψuL

on ΩL,

−∇ · φL =ψpL on ΩL,

ζL = 0 on ΓL,

(3.2)

⎧⎪⎨
⎪⎩

a−1
R φR − ∇ζR =ψuR

on ΩR,

−∇ · φR =ψpR on ΩR,

ζR = 0 on ΓR,

(3.3)

{
β ≡ ζL = ζR on ΓI,

n · (φL − φR)=ψξ on ΓI.
(3.4)

The a posteriori error estimates explicitly depend on φL, ζL,φR and ζR.

3.1 Estimate for mortar mixed finite element method

We first derive an estimate for the mortar finite element method assuming all integrals in the weak
formulation are computed exactly. We begin by substituting (3.2–3.4) for the various ψ’s in (3.1) and
applying the divergence theorem:

(euL ,ψuL
)+ (epL ,ψpL)+ (euR ,ψuR

)+ (epR ,ψpR)+ 〈eξ ,ψξ 〉ΓI

= (euL , a−1
L φL)+ (∇ · euL , ζL)− 〈n · euL ,β〉ΓI − (epL , ∇ · φL)

+ (euR , a−1
R φR)+ (∇ · euR , ζR)+ 〈n · euR ,β〉ΓI − (epR , ∇ · φR)+ 〈eξ , n · (φL − φR)〉ΓI . (3.5)

Expanding on the right and subtracting

(a−1
L uL,φL)− (pL, ∇ · φL)+ 〈ξ , n · φL〉ΓI + 〈gL, n · φL〉ΓL

+ (∇ · uL, ζL)− (fL, ζL)+ (a−1
R uR,φR)− (pR, ∇ · φR)− 〈ξ , n · φR〉ΓI + 〈gR, n · φR〉ΓR

+ (∇ · uR, ζR)− (fR, ζR)− 〈n · (uL − uR),β〉ΓI = 0,
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ERROR ESTIMATES FOR MORTAR METHODS 1633

obtained by substituting the adjoint solution as test functions into the forward weak form (2.5), gives

(euL ,ψuL
)+ (epL ,ψpL)+ (euR ,ψuR

)+ (epR ,ψpR)+ 〈eξ ,ψξ 〉ΓI

= −(a−1
L uh

L,φL)+ (ph
L, ∇ · φL)− 〈gL, n · φL〉ΓL − 〈ξ h, n · φL〉ΓI + (fL, ζL)− (∇ · uh

L, ζL)

− (a−1
R uh

R,φR)+ (ph
R, ∇ · φR)− 〈gR, n · φR〉ΓR + 〈ξ h, n · φR〉ΓI

+ (fR, ζR)− (∇ · uh
R, ζR)+ 〈n · (uh

L − uh
R),β〉ΓI . (3.6)

We rewrite this as

(euL ,ψuL
)+ (epL ,ψpL)+ (euR ,ψuR

)+ (epR ,ψpR)+ 〈eξ ,ψξ 〉ΓI

= (RuL ,φL)+ (RpL , ζL)+ (RuR ,φR)+ (RpR , ζR)+ 〈Rξ ,β〉ΓI , (3.7)

wherein the residuals are given by

RuL = −a−1
L uh

L − ∇ph
L, RuR = −a−1

R uh
R − ∇ph

R,

RpL = fL − ∇ · uh
L, RpR = fR − ∇ · uh

R, Rξ = n · (uh
L − uh

R).

Note that the divergence theorem implies

(RuL ,φL)= −(a−1
L uh

L,φL)+ (ph
L, ∇ · φL)− 〈ph

L, n · φL〉∂ΩL

= −(a−1
L uhL ,φL)+ (ph

L, ∇ · φL)− 〈gL, n · φL〉ΓL − 〈ξ h, n · φL〉ΓI .

Also note that β = ζL = ζR for the continuous adjoint solution, but β is distinct from ζL and ζR for the
discrete solution.

Next, we use Galerkin orthogonality. We introduce projection operators that map into the finite
element space of the discrete forward solution:

Ph
L : L2(ΩL)→ W h

L, Ph
R : L2(ΩR)→ W h

R,

Πh
L : L2(ΩL)→ V h

L, Πh
R : L2(ΩR)→ V h

R, Zh : L2(ΓI)→Λh.

The actual choice of projection is immaterial for the estimate. In practice, we employ a combination of
restriction and averaging. Without quadrature, Galerkin orthogonality for (2.6) is expressed as

(RuL ,Πh
LφL)+ (RpL , Ph

LζL)+ (RuR ,Πh
RφR)+ (RpR , Ph

RζR)+ 〈Rξ , Zhβ〉ΓI = 0,

and subtracting gives the following result.

Theorem 3.1 The errors for the mixed finite element method (2.6) without quadrature satisfy

(epL ,ψpL)+ (euL ,ψuL
)+ (epR ,ψpR)+ (euR ,ψuR

)+ 〈eξ ,ψξ 〉ΓI

= (RuL ,φL −Πh
LφL)+ (RpL , ζL − Ph

LζL)

+ (RuR ,φR −Πh
RφR)+ (RpR , ζR − Ph

RζR)+ 〈Rξ ,β − Zhβ〉ΓI , (3.8)

wherein the quantities on the right-hand side are computable provided the true adjoint solution is
available.
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1634 T. ARBOGAST ET AL.

In practice, we employ a numerical solution of the adjoint problem. To emphasize this, we state the
following corollary that involves numerical adjoint quantities.

Corollary 3.2 Provided that the projection operators Ph
L, Ph

R, Πh
L, Πh

R and Zh are bounded in L2, the
errors for the mixed finite element method (2.6) without quadrature can be estimated as

(epL ,ψpL)+ (euL ,ψuL
)+ (epR ,ψpR)+ (euR ,ψuR

)+ 〈eξ ,ψξ 〉ΓI

≈ (RuL ,φh
L −Πh

Lφ
h
L)+ (RpL , ζ h

L − Ph
Lζ

h
L)

+ (RuR ,φh
R −Πh

Rφ
h
R)+ (RpR , ζ h

R − Ph
Rζ

h
R)+ 〈Rξ ,βh − Zhβ

h〉ΓI , (3.9)

for numerical solutions φL ≈ φh
L, ζL ≈ ζ h

L , φR ≈ φh
R, ζR ≈ ζ h

R and β ≈ βh. In this approximation, the
errors are to be measured in the L2 norm.

The proof follows from the triangle inequality and the definition of the operator norm. That is, the
absolute value of the difference between the right-hand sides of (3.8) and (3.9) is bounded by

(1 + ‖Πh
L‖)‖RuL‖2‖φL − φh

L‖2 + (1 + ‖Ph
L‖)‖RpL‖2‖ζL − ζ h

L‖2

+ (1 + ‖Πh
R‖)‖RuR‖2‖φR − φh

R‖2 + (1 + ‖Ph
R‖)‖RpR‖2‖ζR − ζ h

R‖2

+ (1 + ‖Zh‖)‖Rξ‖2,ΓI‖β − βh‖2,ΓI .

In order to obtain accurate estimates, the numerical adjoint solutions must be sufficiently accurate.
Generally, this is satisfied by solving the adjoint problems either using a higher-order numerical method
or using a mesh sufficiently refined from the one used for the forward discretization. In the context of
finite volume discretizations, the second approach is generally easier to implement. In our numerical
examples we use a finer grid and the accuracy of this approach is illustrated in Section 4.1.

3.2 Estimate for finite volume methods using geometric coupling

3.2.1 The effect of quadrature. We first derive an estimate for the mixed finite element method (2.6)
with quadrature, which can be applied, say, if fi, gi and ai are continuous inΩi, i = L, R. With quadrature,
Galerkin orthogonality is expressed as

(RuL ,Πh
LφL)Q + (RpL , Ph

LζL)Q + (RuR ,Πh
RφR)Q + (RpR , Ph

RζR)Q + 〈Rξ , Zhβ〉Q,ΓI = 0,

where we use the subscript Q to denote the approximate inner product using quadrature. It is impor-
tant to distinguish residuals associated with approximating the solution spaces using finite-dimensional
polynomial spaces from residuals associated with approximating the integrals defining the variational
formulation. We rewrite Galerkin orthogonality as

(RuL ,Πh
LφL)+ (RpL , Ph

LζL)+ (RuR ,Πh
RφR)+ (RpR , Ph

RζR)+ 〈Rξ , Zhβ〉ΓI

− QEuL
(Πh

LφL)− QEpL
(Ph

LζL)− QEuR
(Πh

RφR)− QEpR
(Ph

RζR)− QEξ (Z
hβ)= 0,
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with

QEuL
(Πh

LφL)= (RuL ,Πh
LφL)− (RuL ,Πh

LφL)Q,

QEpL
(Ph

LζL)= (RpL , Ph
LζL)− (RpL , Ph

LζL)Q,

QEuR
(Πh

RφR)= (RuR ,Πh
RφR)− (RuR ,Πh

RφR)Q,

QEpR
(Ph

RζR)= (RpR , Ph
RζR)− (RpR , Ph

RζR)Q,

QEξ (Z
hβ)= 〈Rξ , Zhβ〉ΓI − 〈Rξ , Zhβ〉Q,ΓI .

This gives the following a posteriori estimate for the mixed finite element method with quadrature.

Theorem 3.3 If fi, gi and ai are continuous in Ωi, i = L, R, then the errors for the mixed finite element
method (2.6) with quadrature satisfy

(epL ,ψpL)+ (euL ,ψuL
)+ (epR ,ψpR)+ (euR ,ψuR

)+ 〈eξ ,ψξ 〉ΓI

= (RuL ,φL −Πh
LφL)+ (RpL , ζL − Ph

LζL)

+ (RuR ,φR −Πh
RφR)+ (RpR , ζR − Ph

RζR)+ 〈Rξ ,β − Zhβ〉ΓI

+ QEuL
(Πh

LφL)+ QEpL
(Ph

LζL)+ QEuR
(Πh

RφR)+ QEpR
(Ph

RζR)+ QEξ (Z
hβ). (3.10)

Note that in the case of using the RT0 finite element space and the midpoint/trapezoidal quadrature
rules discussed above, the mixed finite element method reduces to the finite volume method (Russell &
Wheeler, 1983; Weiser & Wheeler, 1988; Estep et al., 2009a) and some of the quadrature error terms
are zero. These terms are included for generality, so that (3.10) is valid for other combinations of finite
element spaces and quadrature.

Note that, in practice, we implement the obvious analogue of Corollary 3.2, which now requires
sufficient smoothness of the solution to obtain sufficiently accurate quadrature approximations.

3.2.2 The effect of geometric coupling. For the geometric coupling (2.8), Galerkin orthogonality
becomes

(RuL ,Πh
LφL)Q − 〈PR→L(p

h
R)− ξ h, n ·Πh

LφL〉Q,ΓI + (RpL , Ph
LζL)Q

+ (RuR ,Πh
RφR)Q + (RpR , Ph

RζR)Q + 〈Rξ , Zhβ〉Q,ΓI − 〈n · uh
L − PL→R(p

h
L), Zhβ〉Q,ΓI = 0.

Defining

QE uL(Π
h
LφL)= (RuL ,Πh

LφL)− (RuL ,Πh
LφL)Q

+ 〈PR→L(p
h
R)− ξ h,Πh

LφL〉Q,ΓI − 〈PR→L(p
h
R)− ξ h, n ·Πh

LφL〉ΓI ,

QE ξ (Z
hφ1)= 〈Rξ , Zhβ〉ΓI − 〈Rξ , Zhβ〉Q,ΓI

+ 〈nL · uh
L − PL→R(p

h
L), Zhβ〉Q,ΓI − 〈n · uh

L − PL→R(p
h
L), Zhβ〉ΓI ,

and arguing as above gives the following result.
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1636 T. ARBOGAST ET AL.

Theorem 3.4 If fi, gi and ai are continuous inΩi, i = L, R, then the error for the mixed geometric finite
volume method (2.8) satisfies

(epL ,ψpL)+ (euL ,ψuL
)+ (epR ,ψpR)+ (euR ,ψuR

)+ 〈eξ ,ψξ 〉ΓI

= (RuL ,φL −Πh
LφL)+ 〈PR→L(p

h
R)− ξ h, n ·Πh

LφL〉ΓI + (RpL , ζL − Ph
LζL)

+ (RuR ,φR −Πh
RφR)+ (RpR , ζR − Ph

RζR)

+ 〈Rξ ,β − Zhβ〉ΓI + 〈n · uh
L − PL→R(p

h
L), Zhβ〉ΓI

+ QE uL(Π
h
LφL)+ QEpL

(Ph
LζL)+ QEuR

(Πh
RφR)+ QEpR

(Ph
RζR)+ QE ξ (Z

hβ). (3.11)

Note that, in practice, we implement the obvious analogue of Corollary 3.2, assuming again suffi-
cient smoothness of the solution to obtain sufficiently accurate quadrature approximations.

4. Numerical investigations

In this section, we use the a posteriori error estimates to investigate in detail the accuracy of the two
approaches to coupling. For all of the investigations, the coarser subdomain ΩL is given by x ∈ [−1, 1]
and y ∈ [−2, 0], the finer subdomain ΩR is given by x ∈ [−1, 1] and y ∈ [0, 2] (see Fig. 1) and the inter-
face ΓI is located along y = 0. (Note that here the bottom subdomain is considered as being ‘left’ and
the top one is ‘right’, in conformance with our convention as to the finer subdomain.) The grids are
reported as nL × mL for the left domain and nR × mR for the right domain, where n(·) corresponds to
the number of cells in the x direction (which is also the number of cells along the interface) and m(·)
corresponds to the number of cells in the y direction. The boundary conditions for all tests are Dirichlet.
To avoid issues arising from iterative solution of the discrete system, we employ direct methods to find
the approximate solution to within machine precision.

The quantity of interest is specified by giving the adjoint problem data ψux , ψuy , ψp and ψξ . The
adjoint problem is solved using the same RT0 mixed finite element method, but on a grid that is signifi-
cantly finer than that of the forward problem, so that the discretization error associated with the adjoint
solution has no significant effect on the results.

The functions chosen for the source, diffusivity and adjoint data are either constants or Gaussian
functions of the form

ae−(y−b)2

√
2c2

+ K,

which gives a localized ‘ridge’ centred at y = b. In the case of the adjoint data, the Gaussian or constant
function being used is normalized so that the area under ψ is equal to 1. The parameter K is nonzero
only in the case of diffusivity, where this constant is added to the Gaussian to prevent the diffusivity
from approaching zero anywhere in the domain.

In the tests, we report values for the terms in (3.10) and (3.11) that are nonzero. For both the mixed
finite element and geometric finite volume methods the following five terms are included:

MFE1 or GFV1 = (RuL ,φh
L −Πh

Lφ
h
L),

MFE2 or GFV2 = (RuR ,φh
R −Πh

Rφ
h
R),
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MFE3 or GFV3 = (RpL , ζ h
L − Ph

Lζ
h
L),

MFE4 or GFV4 = (RpR , ζ h
R − Ph

Rζ
h
R),

MFE5 or GFV5 = 〈Rξ ,βh − Zhβ
h〉ΓI .

In the geometric finite volume case, we add two additional terms relating to the geometric projections
and two additional quadrature terms:

GFV6 = 〈PR→L(p
h
R)− ξ h, n ·Πh

Lφ
h
L〉ΓI ,

GFV7 = 〈n · uh
L − PL→R(p

h
L), Zhβh〉ΓI ,

GFV8 = QE uL(Π
h
Lφ

h
L),

GFV9 = QEuR
(Πh

Rφ
h
R).

We note that the first five expressions, common to both MFE and GFV, are often similar in size. As a
gross measure of the effect of geometric projection and of the use of quadrature, we also report the two
ratios

ratioproj =
∑7

i=6 | GFVi |∑5
i=1 | GFVi |

, ratioquad =
∑9

i=8 | GFVi |∑5
i=1 | GFVi |

.

We present three examples chosen to show the spectrum of possibilities in terms of the performance
of the methods. Test Case 1 is an ‘easy’ case in which the geometric method performs relatively well.
Test Case 2 has a narrow and severe dip in diffusivity located along the subdomain boundary and,
consequently, the geometric method performs poorly, as might be expected for a problem in which the
solution changes rapidly near the interface. Test Case 3 is based loosely on a real-world fusion problem
and demonstrates one of our main conclusions, which is that the geometric method can perform poorly
even when the solution is smooth near the interface. Note that the behaviour of the diffusivity function
approaching the common interface on both sides has more impact on the accuracy of coupling than a
discontinuity in the diffusivity across the interface.

4.1 Verification of a posteriori estimate accuracy

We begin with a problem for which we have manufactured the known solution

p(x, y)= cos
(πx

2

)
cos

(πy

4

)
. (4.1)

The diffusivity a is equal to 1 everywhere. The other solution components, the source term f and the
boundary values g for the problem follow from (4.1). Since we know the true solution, we can compute
the exact error terms (e,ψ) on the left in (3.10) and (3.11) directly and then compare with estimates of
the quantities on the right computed using a numerical solution to the adjoint problem. In this situation,
the most important issue for the accuracy of the estimates is the accuracy of the approximate adjoint
solutions. As the grid for the adjoint problem is refined, the estimates become more accurate. That is,
using the approximation to the adjoint problem, the estimated quantities

∑
MFEi or

∑
GFVi become

closer to their true value, the error in the quantity of interest MFE
∑
(e,ψ) or GFV

∑
(e,ψ). Tables 1

and 2 show this using coarse and fine forward solutions.
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Table 1 The forward problem with solution (4.1) is run at 10 × 10 next to 16 × 16. The adjoint
problem is run at several grids to show how the sum of terms approaches the direct calculation of
(e,ψ). The adjoint data components ψu and ψp are constant everywhere and ψξ = 0

Adj. grid MFE
∑
(e,ψ)

∑
MFEi Ratio GFV

∑
(e,ψ)

∑
GFVi Ratio

20 × 20 : 32 × 32 1.96E−3 1.47E−3 .749 −1.00E−3 −1.50E−3 1.49
40 × 40 : 64 × 64 1.96E−3 1.84E−3 .937 −1.00E−3 −1.13E−3 1.12
80 × 80 : 128 × 128 1.96E−3 1.93E−3 .984 −1.00E−3 −1.03E−3 1.03
160 × 160 : 256 × 256 1.96E−3 1.96E−3 .996 −1.00E−3 −1.01E−3 1.01

Table 2 The forward problem with solution (4.1) is run at 40 × 40 next to 64 × 64. The adjoint
problem is run at several grids to show how the sum of terms approaches the direct calculation of
(e,ψ). The adjoint data components ψu and ψp are constant everywhere and ψξ = 0

Adj. grid MFE
∑
(e,ψ)

∑
MFEi Ratio GFV

∑
(e,ψ)

∑
GFVi Ratio

80 × 80 : 128 × 128 1.23E−4 9.23E−5 0.750 −7.00E−5 −1.01E−4 1.44
160 × 160 : 256 × 256 1.23E−4 1.15E−4 0.937 −7.00E−5 −7.77E−5 1.11

4.2 Convergence

To compare the accuracy of the various approximations, we use the 2-norms

‖ep‖2 =
√∫

Ω

(p − ph)2, ‖eux‖2 =
√∫

Ω

(ux − uh
x)

2,

‖euy‖2 =
√∫

Ω

(uy − uh
y)

2, ‖eξ‖2 =
√∫

Γ

(ξ − ξ h)2.

We use the manufactured solution from the previous section (a = 1 and p is given by (4.1)). We compare
the 2-norm errors of the finite element and geometric finite volume methods on a sequence of grids in
order to assess the convergence rate. The coarsest grid is 10 × 10 next to 16 × 16 and the number of
cells in each dimension is doubled with each refinement.

The results in Tables 3–6 show that the convergence rate for the geometric finite volume deteriorates
for the ux, uy and ξ components when the number of cells along the fine side of the interface is not an
integer multiple of the number of cells along the coarse side of the interface. When the test is repeated
with a grid starting at 8 × 8 next to 16 × 16, the convergence rates for the two methods are equal. The
first-order convergence of p and u for the MFE is to be expected (Arbogast et al., 2000).

4.3 Test Case 1

In the next problem, we explore accuracy for a solution that is not changing rapidly near the interface.
We find that the use of geometric projections does not lead to significant effects on accuracy. We let the
diffusivity a be 1 in both ΩL and ΩR and use the manufactured solution given by (4.1). The grid for
the forward problem is 20 × 20 next to 32 × 32. The adjoint grid is 80 × 80 next to 128 × 128 and the
adjoint datum are a nonzero constant for ψux , ψuy and ψp, while ψξ = 0.
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Table 3 Convergence of solution component p, indicating a rate of O(h)

Grid MFE ‖ep‖ MFE ratio GFV ‖ep‖ GFV ratio

10 × 10 : 16 × 16 1.20E−01 N/A 1.20E−01 N/A
20 × 20 : 32 × 32 5.98E−02 2.00 5.98E−02 2.00
40 × 40 : 64 × 64 2.99E−02 2.00 2.99E−02 2.00
80 × 80 : 128 × 128 1.49E−02 2.00 1.49E−02 2.00
160 × 160 : 256 × 256 7.47E−03 2.00 7.47E−03 2.00

Table 4 Convergence of solution component ux, indicating a rate of about
O(h)

Grid MFE ‖eux‖ MFE ratio GFV ‖eux‖ GFV ratio

10 × 10 : 16 × 16 8.49E−02 N/A 8.63E−02 N/A
20 × 20 : 32 × 32 4.21E−02 2.02 4.26E−02 2.02
40 × 40 : 64 × 64 2.10E−02 2.00 2.14E−02 1.99
80 × 80 : 128 × 128 1.05E−02 2.00 1.09E−02 1.97
160 × 160 : 256 × 256 5.25E−03 2.00 5.63E−03 1.93

Table 5 Convergence of solution component uy, indicating a rate of O(h)
for MFE but less for GFV

Grid MFE ‖euy‖ MFE ratio GFV ‖euy‖ GFV ratio

10 × 10 : 16 × 16 8.41E−02 N/A 8.59E−02 N/A
20 × 20 : 32 × 32 4.20E−02 2.00 4.39E−02 1.96
40 × 40 : 64 × 64 2.10E−02 2.00 2.29E−02 1.92
80 × 80 : 128 × 128 1.05E−02 2.00 1.23E−02 1.86
160 × 160 : 256 × 256 5.25E−03 2.00 6.94E−03 1.77

Table 6 Convergence of solution component ξ , indicating a rate of O(h2)

for MFE but only O(h) for GFV

Grid MFE ‖eξ‖ MFE ratio GFV ‖eξ‖ GFV ratio

10 × 10 : 16 × 16 7.53e−03 N/A 6.11e−03 N/A
20 × 20 : 32 × 32 1.89e−03 3.99 1.79e−03 3.42
40 × 40 : 64 × 64 4.72e−04 4.00 6.37e−04 2.80
80 × 80 : 128 × 128 1.18e−04 4.00 2.77e−04 2.30
160 × 160 : 256 × 256 2.95e−05 4.00 1.33e−04 2.09

We list the error contributions in Table 7. For the geometric approach, we list results for both con-
stant and linear extrapolation. The results show that the projection error for linear extrapolation is only
about one quarter of the residual error, while the projection error for constant extrapolation is much
larger. Figure 5 shows the solution components for the finite element case. The geometric finite volume
solutions are very similar. Figure 6 shows the adjoint solution components.
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Table 7 Error terms for Test Case 1. The forward grid is 20 × 20 next to 32 ×
32. The adjoint grid is 80 × 80 next to 128 × 128

Term MFE GFV (linear) GFV (constant)

1 (RuL ,φh
L −Πh

Lφ
h
L) −1.6E−4 −1.6E−4 −1.5E−4

2 (RuR ,φh
R −Πh

Rφ
h
R) −6.1E−5 −6.1E−5 −6.1E−5

3 (RpL , ζ h
L − Ph

Lζ
h
L) 4.9E−4 4.9E−4 4.9E−4

4 (RpR , ζ h
R − Ph

Rζ
h
R) 1.9E−4 1.9E−4 1.9E−4

5 〈Rξ ,βh − Zhβ
h〉ΓI 4.2E−8 −1.3E−6 1.0E−5

6 〈PR→L(ph
R)− ξ h, n ·Πh

Lφ
h
L〉ΓI N/A 2.0E−4 1.7E−4

7 〈n · uh
L − PL→R(ph

L), Zhβh〉ΓI N/A 2.2E−5 3.9E−3

8 QE uL(Π
h
Lφ

h
L) N/A −7.1E−4 −7.0E−4

9 QEuR
(Πh

Rφ
h
R) N/A −2.8E−4 2.7E−4
Total 4.6E−4 −3.0E−4 3.6E−3

ratioproj N/A .25 4.5
ratioquad N/A 1.1 1.1

4.4 Test Case 2

The next test problem presents a more difficult solution for which the geometric projection error is by
far the largest source of error. The grid is 40 × 40 next to 64 × 64 and the boundary conditions are
g = 0 on both subdomains. Figure 7 shows profiles of the source and diffusivity, while Fig. 8 shows the
adjoint data.1

Because the source is large but the diffusivity is small along the interface, the solution changes
rapidly near this region. This leads to relatively large errors near the interface for the geometric finite
volume method. When the adjoint data is concentrated near the interface, the relative size of these
errors is revealed. Table 8 lists the error terms. For this particular example problem, and this particular
error measure, the error due to geometric projection is nearly 80 times the total error associated with
the residuals. Figure 9 shows the solution components for the finite element case, Fig. 10 shows the
solution components for the geometric finite volume case and Fig. 11 shows the adjoint solution.

4.5 Test Case 3

In our final example, we examine a problem that places only one cell in the x direction in one of
the subdomains. Such a grid is only appropriate if the solution in that subdomain is essentially one-
dimensional and varies only parallel to the interface. This situation arises in core–edge coupling in a
tokamak fusion reactor.

We construct a problem with a solution that is very nearly one-dimensional in one subdomain and
contains variation in the second dimension well away from the interface. The pressure component of

1 The shapes in Figs 7 and 8 are based on a normalized Gaussian of the form ae−(x−b)2/2c2. The parameter a is for normal-
ization and is set to a = 1/c

√
2π . The parameter b determines the location of the peak and is set to zero to coincide with the

interface. The parameter c determines the width of the peak and is set to c = 0.2. In the case of diffusivity the dip is produced
using the function 10.3 − 10(ae−(x−b)2/2c2).
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Fig. 5. Finite element solution components for Test Case 1.

the solution is

p(x, y)= cos

(
π(y + 2)

8

)
+ 0.3 sin(πx)

[
1 − tanh(2(1.5 − y))

2

]
. (4.2)

The grid is 1 × 32 next to 32 × 32 and the boundary conditions are provided by evaluating the known
solution at the outer domain boundaries. The source for the problem is computed by substituting the
chosen solution into the PDE. The diffusivity a is 1 in bothΩL andΩR. The adjoint data are concentrated
in the finer subdomain and are shown in Fig. 12.

Table 9 lists the error terms. For this example problem, the contribution due to geometric projection
with linear extrapolation is approximately 10 times the total contribution associated with the residuals,
despite the fact that the solution is changing slowly near the interface. The projection contribution is
much larger if constant extrapolation is used. Figure 13 shows the solution components for the finite
element case, Fig. 14 shows the solution components for the geometric finite volume case and Fig. 15
shows the adjoint solution components.
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Fig. 6. Adjoint solution components for Test Case 1. Shown are plots for an adjoint solution using a 40 × 40 grid next to a 64 × 64
grid. A solution on a finer grid is used to compute the estimates.
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Fig. 7. Source f (left) and diffusivity a (right) profiles for Test Case 2. The plots are shown in one dimension since the source and
diffusivity have no variation in the x direction.
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Fig. 8. Adjoint data profiles for Test Case 2. The plots of ψux , ψuy and ψp are shown in one dimension because they have no
variation in the x direction.

5. Iterative solvers and coupling strategies

In practice, an iterative solution of the coupled system is often employed. The specific choice of solution
method is often constrained by certain computational logistics, such as the state of existing codes and
data structures. We briefly discuss some aspects of iterative solution. The primary goal is to show that
iterative solution strategies applied to systems like (2.10) can also be applied to systems like (2.7) with-
out large changes to the computational structure. We do not discuss the convergence of iterative solvers.

5.1 Iteration on the primary variable

A common iterative technique for the geometric finite volume method (2.10) is to start with an initial
guess (p0

L, p0
R) and proceed with the iteration[

AL 0
0 AR

] [
pi+1

L

pi+1
R

]
=

[
FL

FR

]
−

[
0 CD

CN 0

] [
pi

L
pi

R

]
, i = 0, 1, 2, . . . . (5.1)
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Table 8 Error terms for Test Case 2. The forward grid is 40 × 40 next to 64 ×
64. The adjoint grid is 160 × 160 next to 256 × 256

Term MFE GFV(linear) GFV(constant)

1 (RuL ,φh
L −Πh

Lφ
h
L) 1.6E−5 1.9E−5 2.4E−5

2 (RuR ,φh
R −Πh

Rφ
h
R) −2.6E−5 −2.6E−5 −2.5E−5

3 (RpL , ζ h
L − Ph

Lζ
h
L) −3.1E−5 −3.1E−5 −3.1E−5

4 (RpR , ζ h
R − Ph

Rζ
h
R) 4.6E−5 4.6E−5 4.6E−5

5 〈Rξ ,βh − Zhβ
h〉ΓI 4.8E−8 9.4E−6 2.6E−5

6 〈PR→L(ph
R)− ξ h, n ·Πh

Lφ
h
L〉ΓI N/A 2.3E−3 2.7E−3

7 〈n · uh
L − PL→R(ph

L), Zhβh〉ΓI N/A 9.0E−4 8.4E−3

8 QEuL
(Πh

Lφ
h
L) N/A 1.2E−3 1.2E−3

9 QEuL
(Πh

Lφ
h
L) N/A −2.4E−4 −2.5E−4
total 5.1E−6 4.2E−3 1.2E−2

ratioproj N/A 25 73
ratioquad N/A 11 9.7
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Fig. 9. Finite element solution components for Test Case 2. Zooming in reveals that uh
y is smooth and continuous across the

interface.
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Fig. 10. Geometric finite volume solution components for Test Case 2. Zooming in reveals that uh
y is discontinuous across the

interface.

This iteration requires only the inversion of AL and AR, i.e., only single domain component solves. The
application of CD and CN can be viewed as the coupling strategy, in which information is swapped
between the subdomains.

It is possible to use an iteration of this type on the finite element system (2.7) as well. We must first
reduce to a system in p by a preprocessing procedure. We first eliminate uL and uR, which results in

⎡
⎢⎣

BT
LM −1

L BL 0 −BT
LM −1

L CL

0 BT
RM −1

R BR −BT
RM −1

R CR

CT
LM −1

L BL CT
RM −1

R BR −(CT
LM −1

L CL + CT
RM −1

R CR)

⎤
⎥⎦

⎡
⎣pL

pR

ξ

⎤
⎦

=

⎡
⎢⎣

FL + BT
LM −1

L DL

FR + BT
RM −1

R DR

CT
LM −1

L DL + CT
RM −1

R DR

⎤
⎥⎦ , (5.2)
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Fig. 11. Adjoint solution components for Test Case 2. Shown are plots for an adjoint solution using a 40 × 40 grid next to a
64 × 64 grid. A solution on a finer grid is used to compute the estimates.

which we write succinctly as⎡
⎢⎣

GL 0 −HL

0 GR −HR

HT
L HT

R −(KL + KR)

⎤
⎥⎦

⎡
⎣pL

pR

ξ

⎤
⎦ =

⎡
⎣ RL

RR

SL + SR

⎤
⎦ . (5.3)

We then eliminate ξ to obtain[
GL − HL(KL + KR)

−1HT
L −HL(KL + KR)

−1HT
R

−HR(KL + KR)
−1HT

L GR − HR(KL + KR)
−1HT

R

] [
pL

pR

]

=
[

RL − HL(KL + KR)
−1(SL + SR)

RR − HR(KL + KR)
−1(SL + SR)

]
. (5.4)

System (5.4) has the same structure as (2.10), so an iteration analogous to (5.1) can be applied. The
stencil within the diagonal blocks of (5.4) is very close, but not identical, to the stencil of a single
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Fig. 12. Adjoint data profiles for Test Case 3. The plots of ψux , ψuy and ψp are shown in one dimension because they have no
variation in the x direction, and ψξ is a one-dimensional function defined on the interface.

domain discretization. The difference occurs only in the stencil corresponding to cells touching the
interface.

In some cases, e.g., the use of black-box single domain solvers, it is necessary to construct a system
in which the diagonal blocks correspond exactly to single domain discretizations. If this is the case,
the strategy of ‘discretization-consistent interface conditions’ provides a partial solution. In this strat-
egy, the diagonal blocks are single domain discretizations, just as in (2.10). The off-diagonal blocks are
populated by writing down both the Dirichlet and Neumann boundary condition equations for every
cell touching the interface, rearranging those equations to isolate the boundary value terms and setting
those terms equal to each other across the interface. If the cell ratio along the interface is integer, such
as 4 next to 8, the resulting system is algebraically equivalent to (5.4). If the cell ratio is not an inte-
ger ratio, such as 5 next to 8, the equality of boundary value terms across the interface can only be
enforced approximately and the resulting system is not exactly equivalent to (5.4). While a complete
discussion of the implementation of discretization-consistent interface conditions is beyond the scope
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Table 9 Error terms for Test Case 3. The forward grid is 1 × 32 next to 32 × 32.
The adjoint grid is 128 × 128 next to 128 × 128

Term MFE GFV (linear) GFV (constant)

1 (RuL ,φh
L −Πh

Lφ
h
L) 3.9E−9 6.8E−7 −1.5E−5

2 (RuR ,φh
R −Πh

Rφ
h
R) 1.8E−5 1.8E−5 1.8E−5

3 (RpL , ζ h
L − Ph

Lζ
h
L) −4.0E−6 −4.0E−6 −4.0E−6

4 (RpR , ζ h
R − Ph

Rζ
h
R) 7.2E−6 7.2E−6 7.2E−6

5 〈Rξ ,βh − Zhβ
h〉ΓI 0 −3.8E−7 1.7E−5

6 〈PR→L(ph
R)− ξ h, n ·Πh

Lφ
h
L〉ΓI N/A 1.5E−4 −6.4E−3

7 〈n · uh
L − PL→R(ph

L), Zhβh〉ΓI N/A −6.8E−5 3.1E−3

8 QE uL(Π
h
Lφ

h
L) N/A −2.4E−5 2.5E−3

9 QEuR
(Πh

Rφ
h
R) N/A 2.0E−5 1.9E−5
Total 2.1E−5 1.0E−4 −8.0E−4

ratioproj N/A 7.3 155
ratioquad N/A 1.5 41

of this paper, it is worth consideration as an alternative to the full mortar method in cases where the
computational structure is constrained by black-box single-domain solvers in combination with itera-
tion on the primary variables. The concept of discretization-consistent interface conditions is similar
to strategies employed in Farhat et al. (1998) and Edwards & Rogers (1998). We should remark that
the former paper recommended against mortar methods for the fluid–structure interaction problem due
to the lack of theory on optimal convergence and a need to invert a large interface matrix. However,
for the problem considered in this paper, the mortar method does achieve optimal convergence. More-
over, we have presented several computational strategies that do not require inversion of an interface
matrix.

5.2 Iteration on interface variables

An alternative iterative strategy (Glowinski & Wheeler, 1988) uses the interface variables as the primary
variables. If we combine the u and p variables into the symbol ψ , then system (2.7) can be written as

⎡
⎢⎣

AL 0 CL

0 AR CR

C T
L C T

R 0

⎤
⎥⎦

⎡
⎣ψL

ψR

ξ

⎤
⎦ =

⎡
⎣FL

FR

0

⎤
⎦ . (5.5)

We eliminate ψ as

ψi = A −1
i (Fi − Ciξ), i = L, R,

which gives the following system for ξ :

(C T
L A −1

L CL + C T
R A −1

R CR)ξ = (C T
L A −1

L FL + C T
R A −1

R FR). (5.6)
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Fig. 13. Finite element solution components for Test Case 3.

If a Krylov method is applied to system (5.6), then only matrix–vector products involving the matrix
on the left are required. Since this matrix contains A −1

L and A −1
R , obtaining a matrix–vector product

amounts to performing single-domain component solves. Once ξ is obtained, ψ is recovered as above.
In the setting of geometric coupling, we rewrite the geometric finite volume system as

⎡
⎢⎢⎣

AL 0 UD 0
0 AR 0 UN

0 ED −I 0
EN 0 0 −I

⎤
⎥⎥⎦

⎡
⎢⎢⎣

pL

pR

D
N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

FL

FR

0
0

⎤
⎥⎥⎦ , (5.7)

where AL and AR are single-domain finite volume systems, and the coupling strategy by which Dirichlet
(D) and Neumann (N) data are provided by the opposite subdomain is defined by

EN PL = N and EDPR = D.
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Fig. 14. Geometric finite volume solution components for Test Case 3 computed using linear extrapolation.

Eliminating D and N from system (5.7) gives

[
AL UDED

UN EN AR

] [
pL

pR

]
=

[
FL

FR

]
,

which is identical to (2.10). If instead we eliminate pL and pR, system (5.7) becomes

[
I EDA−1

R UN

EN A−1
L UD I

] [
D
N

]
=

[
EDA−1

R FR

EN A−1
L FL

]
, (5.8)

which allows for an iteration of the form of (5.1) on the values D and N , from which the primary
variables can be recovered. Solving (5.8) by iteration is analogous to solving (5.6) by iteration, and both
require only component solves.
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Fig. 15. Adjoint solution components for Test Case 3. These plots are the adjoint solution using 64 × 64 next to 64 × 64 meshes.
The estimates were computed using a finer grid.

6. Conclusion

We compared the accuracy and performance of two numerical approaches to solving systems of PDEs.
The equations were posed on adjoining domains which share a common boundary interface on which
are imposed boundary conditions. We treated the important case of different and nonmatching meshes
being used on the two domains. The first, widely used approach was based on a finite volume method
employing ad hoc projections on the interface to relate approximations on the two domains. The sec-
ond approach used the mathematically founded mortar mixed finite element method. To quantify the
performance, we used a goal-oriented a posteriori error estimate that quantifies various aspects of dis-
cretization error to the overall error. The performance difference that we found may not be surprising in
some cases. However, we believe that there is a perception in part of the scientific community concerned
with multiphysics systems that if the solution is smooth near the interface, then it is not very important
exactly how the coupling is accomplished. We found that, on the contrary, the error associated with ad
hoc coupling approaches may be large in practical situations. The deterioration in accuracy was shown
to be due mainly to incorrect transfer of information (or projection error) across the interface. Moreover,
we also showed that mortar methods can be used with black-box component solves, thus permitting an
efficient and practical implementation of the mortar coupling approach within legacy codes.

 at U
niversity of T

exas at A
ustin on M

ay 20, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


1652 T. ARBOGAST ET AL.

Funding

T.A.’s work was supported as part of the Center for Frontiers of Subsurface Energy Security,
an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences under Award Number DE-SC0001114. D.E.’s work was
supported in part by the Defense Threat Reduction Agency (HDTRA1-09-1-0036), Department
of Energy (DE-FG02-04ER25620, DE-FG02-05ER25699, DE-FC02-07ER54909, DE-SC0001724,
DE-SC0005304, INL00120133), Idaho National Laboratory (00069249, 00115474), Lawrence Liv-
ermore National Laboratory (B584647, B590495), National Science Foundation (DMS-0107832,
DMS-0715135, DGE-0221595003, MSPA-CSE-0434354, ECCS-0700559, DMS-1065046, DMS-
1016268, DMS-FRG-1065046) and National Institutes of Health (#R01GM096192).

References

Arbogast, T., Cowsar, L. C., Wheeler, M. F. & Yotov, I. (2000) Mixed finite element methods on nonmatching
multiblock grids. SIAM J. Numer. Anal., 37, 1295–1315.

Arbogast, T., Pencheva, G., Wheeler, M. F. & Yotov, I. (2007) A multiscale mortar mixed finite element
method. Multiscale Model. Simul., 6, 319–346.

Becker, R. & Rannacher, R. (2001) An optimal control approach to a posteriori error estimation in finite element
methods. Acta Numer., 10, 1–102.

Ben Belgacem, F. (2000) The mixed mortar finite element method for the incompressible Stokes problem:
convergence analysis. SIAM J. Numer. Anal., 37, 1085–1100.

Bernardi, C., Maday, Y. & Patera, A. T. (1994) A new nonconforming approach to domain decomposition:
the mortar element method. Nonlinear Partial Differential Equations and their Applications. UK: Longman
Scientific and Technical.

Bernardi, C., Maday, Y. & Rapetti, F. (2005) Basics and some applications of the mortar element method.
GAMM-Mitt., 28, 97–123.

Brezzi, F. & Fortin, M. (1991) Mixed and Hybrid Finite Element Methods. New York: Springer.
Cary, J. R., Candy, J., Cohen, R. H., Krasheninnikov, S., McCune, D. C., Estep, D. J., Larson, J.,

Malony, A. D., Worley, P. H., Carlsson, J. A., Hakim, A. H., Hamill, P., Kruger, S., Mia, M.,
Muzsala, S., Pletzer, A., Shasharina, S., Wade-Stein, D., Wang, N., Balay, S., McInnes, L.,
Zhang, H., Casper, T., Diachin, L., Epperly, T., Rognlien, T. D., Fahey, M. R., Cobb, J., Morris, A.,
Shende, S., Hammett, G. W., Indireshkumar, K., Stotler, D. & Yu Pigarovd, A. (2008) First results
from core–edge parallel composition in the facets project. J. Phys. Conf. Ser., 125. Fourth Annual Scientific
Discovery Through Advanced Computing Conference (SciDAC 2008).

Cary, J. R., Hakim, A., Miah, M., Kruger, S., Pletzer, A., Shasharina, S., Vadlamani, S., Cohen, R.,
Epperly, T., Rognlien, T., Pankin, A., Groebner, R., Balay, S., McInnes, L. & Zhang, H. (2010) Facets—
a framework for parallel coupling of fusion components. The 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Computing. Pisa, Italy: IEEE, pp. 435–442.

Edwards, G. & Rogers, C. (1998) Finite volume discretization with imposed flux continuity for the general tensor
pressure equation. Comput. Geosci., 2, 259–290.

Estep, D., Larson, M. G. & Williams, R. D. (2000) Estimating the error of numerical solutions of systems of
reaction–diffusion equations. Mem. Amer. Math. Soc., 146, viii+109.

Estep, D., Pernice, M., Pham, D., Tavener, S. & Wang, H. (2009a) A posteriori analysis of a cell-centered finite
volume method for semilinear elliptic problems. J. Comput. Appl. Math., 233.

Estep, D., Tavener, S. & Wildey, T. (2008) A posteriori analysis and improved accuracy for an operator decom-
position solution of a conjugate heat transfer problem. SIAM J. Numer. Anal., 46, 2068–2089.

Estep, D., Tavener, S. & Wildey, T. (2009b) A posteriori error analysis for a transient conjugate heat transfer
problem. Fin. El. Anal. Design, 45, 263–271.

 at U
niversity of T

exas at A
ustin on M

ay 20, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


ERROR ESTIMATES FOR MORTAR METHODS 1653

Estep, D., Tavener, S. & Wildey, T. (2010) A posteriori error estimation and adaptive mesh refinement for
a multi-discretization operator decomposition approach to fluid-solid heat transfer. J. Comput. Phys., 229,
4143–4158.

Farhat, C. M. L. & LeTallec, P. (1998) Load and motion transfer algorithms for fluid/ structure interaction
problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization
and application to aeroelasticity. Comput. Methods Appl. Mech. Engrg., 157, 95–114.

Gaiffe, S., Glowinski, R. & Masson, R. (2002) Domain decomposition and splitting methods for mortar mixed
finite element approximations to parabolic equations. Numer. Math., 93, 53–75.

Ganis, B. & Yotov, I. (2009) Implementation of a mortar mixed finite element method using a multiscale flux
basis. Comp. Meth. Appl. Mech. Engng., 198, 3989–3998.

Giles, M. B. & Suli, E. (2002) Adjoint methods for PDEs: a posteriori error analysis and postprocessing by
duality. Acta Numer., 11, 145–236.

Glowinski, R. & Wheeler, M. F. (1988) Domain decomposition and mixed finite element methods for elliptic
problems. First International Symposium on Domain Decomposition Methods for Partial Differential Equa-
tions (R. Glowinski, G. H. Golub, G. A. Meurant & J. Periaux eds). Philadelphia: SIAM, pp. 144–172.

Hansbro, P. & Larson, M. G. (2011) A posteriori error estimates for continuous/discontinuous Galerkin approxi-
mations of the Kirchhoff–Love plate. Comp. Meth. Appl. Mech. Engng., 200, 3289–3295.

Pencheva, G., Vohralik, M., Wheeler, M. & Wildey, T. (2013) Robust a posteriori error control and adaptivity
for multiscale, multinumerics, and mortar coupling. SIAM J. Numer. Anal., 51, 526–554.

Quarteroni, A., Pasquarelli, F. & Valli, A. (1992) Heterogeneous domain decomposition: principles, algo-
rithms, applications. Fifth International Symposium on Domain Decomposition Methods for Partial Differen-
tial Equations. Philadelphia: SIAM, pp. 129–150.

Roberts, J. E. & Thomas, J. (1991) Mixed and hybrid methods. Handbook of Numerical Analysis. Amsterdam:
Elsevier, pp. 523–639.

Russell, T. & Wheeler, M. F. (1983) Finite element and finite difference methods for continuous flows in porous
media. The Mathematics of Reservoir Simulation (R. E. Ewing ed.). Philadelphia: SIAM, pp. 35–106.

Weiser, A. & Wheeler, M. F. (1988) On convergence of block-centered finite differences for elliptic problems.
SIAM J. Numer. Anal., 25, 351–375.

Wheeler, M. F. & Yotov, I. (2005) A posteriori error estimates for the mortar mixed finite element method. SIAM
J. Numer. Anal., 43, 1021–1042.

 at U
niversity of T

exas at A
ustin on M

ay 20, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.284 790.866]
>> setpagedevice


