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SUMMARY

We consider the application of mixed finite element and finite difference methods to
groundwater flow and transport problems. We are concerned with accurate approxima-
tion and efficient implementation, especially when the porous medium may have geometric
irregularities, heterogeneities, and either a tensor hydraulic conductivity or a tensor dis-
persion. For single-phase flow, we develop an expanded mixed finite element method
defined on a logically rectangular, curvilinear grid. Special quadrature rules are intro-
duced to transform the method into a simple cell-centered finite difference method. The
approximation is locally conservative and highly accurate. We also show that the highly
nonlinear two-phase flow problem is well approximated by mixed methods. The main
difficulty is that the true solution is typically lacking in regularity.

INTRODUCTION

Our primary goal is to develop discretization methods that accurately and efficiently
approximate the equations governing subsurface multi-phase flow and transport. We can
judge the accuracy of an approximation by many criteria. Asymptotic convergence results
tell us that we have an accurate solution when the mesh spacing h is small enough. Often,
we cannot use as fine a mesh resolution as we would like, because of the computational
effort needed to solve the equations. An equally important criterion to consider is the
ability of the numerical scheme to preserve important qualitative properties of the gov-
erning equations so that physically meaningful results are obtained on a relatively coarse
discretization scale. The most important qualitative property in subsurface simulation is
conservation of mass. Mass should be conserved locally, that is, element-by-element.

Several additional physical phenomena need to be addressed by our numerical schemes.
They should handle tensor permeabilities and dispersivities. Dispersivities are naturally
tensors, and tensor permeabilities can arise from the use of homogenization or scale-up
techniques. Subsurface aquifers are irregularly shaped and contain layers with differing
material properties. Nonlinear effects are also prevalent especially in multi-phase flow.

We present here some of our work on mixed finite element and finite difference meth-
ods [9, 6, 10, 5, 8, 4, 7]. These methods are “mixed” in that they approximate directly both
pressure and velocity (in the flow problem), and they are asymptotically accurate and con-
serve mass locally. The standard mixed finite element method was developed by Raviart
and Thomas [19, 21, 12], and we restrict our attention to their lowest-order method. It was



first used to solve subsurface problems by Douglas, Ewing, and Wheeler [14], although
Russell and Wheeler [20] pointed out that the often used cell-centered finite difference
method on rectangular grids [18] for problems with diagonal permeabilities is the lowest
order Raviart-Thomas mixed finite element method approximated by applying appropri-
ate quadrature rules to some of the integrals.

A problem with mixed methods that we address is that they can be difficult to im-
plement directly, especially if the aquifer domain is not rectangular or the permeability
is a tensor. There has also been very little theoretical basis for concluding that the
approximation of highly nonlinear multi-phase problems is accurate.

Our discretization schemes are based on an expanded mixed finite element method
that we define below. An approximation to this expanded mixed method reduces it to
cell-centered finite differences; thus, it is easy to implement and has only one unknown
per element. The elements can be deformed rectangles or bricks, although many of our
results extend to triangles and tetrahedra [6].

FINITE ELEMENT APPROXIMATION OF SINGLE-PHASE FLOW

To illustrate the numerical schemes, we begin by considering incompressible, single
phase subsurface flow on the aquifer domain @ ¢ R?, d = 2 or 3. We solve for the
pressure p and the velocity u satisfying

u=—-KVp, xe€0, 1)

(
V-u=g¢q, x€, (2)
p=rpg, XE€EINp, (3)
u-v=g, x¢&oy, (4)

where K is the hydraulic conductivity tensor, ¢ is a source term, v is the outer unit normal
vector to JS), po gives a Dirichlet boundary condition on d€p, and ¢ gives a Neumann
condition. This is a second order elliptic equation.

Lowest order Raviart-Thomas spaces.

Let L*(2) denote the space of square integrable functions, and let H(;div) denote
the space of vector functions that have a divergence; that is,

12(Q) = {w(x) [ ol de < oo},
H(Q; div) = {v(x): v € (L*(Q))? and V-v € L2(Q)}.

We suppose that the domain € is partitioned into a finite number of non-overlapping
elements or cells £ of maximal diameter h. In the lowest order Raviart-Thomas mixed
spaces [19, 16, 11], pressures can be approximated over elements or on element faces (or
edges in 2-D). Element pressures are approximated in

W), = {w : w is constant on each element} C L*(9),

and, on the Neumann part of the exterior domain boundary, element face “Lagrange
multiplier” pressures [11] are approximated in

AY ={p: pis constant on each element face of 9Qx} C L*(9Qy).



The nodal degrees of freedom can be considered as the function values at the centers of
the elements or faces.
The velocity u is approximated in a space of vector valued functions Vj, such that

V, C{ve (LQ(Q))d : V- v is constant on each
element face and continuous across elements} C H(£; div).

On a 2-D (or 3-D) rectangle E, this space of functions is
Vilg = {v:v;=a; + bz; for some constants a; and b;, + =1,2(,3)},

where we use the standard Cartesian decomposition of the vectors x = (a1, 22(, 23)) and
v = (v1,v2(,v3)); that is, the ith component of v is linear in the ith coordinate direction
and constant in the other direction(s). The important fact is that v - v is a constant;
therefore, the nodal degrees of freedom can be considered as the values of v - v at the
centers of the element faces.

For a relatively general shaped element K, assume that there is a map F : E - E
from a rectangle or brick E to E. Following Thomas [21], we use the Piola transform to
define V;|g from Vh| 7; this transform preserves normal fluxes in an average sense (i.e.,
it is locally mass conservative). Let the Jacobian matrix be DF = (0F;/0z;). Then

v(x) = S DF (%), 5)

where J = |det (DF)|.

The expanded mixed method.

Unlike the standard mixed method, we introduce a symmetric and positive definite
tensor G and define the “adjusted” pressure gradient u by

Gu = —Vp. (6)
Then the system of equations is

KGu —u =0, (7)

Gu+Vp=0, (8)

V-u=ygq. (9)

Denote inner-products over a set S by
(p0)s = [ptyudx (or [ o) vx)dx).
and inner-products over a boundary set 95 by
(o:0)s = [ _o(x)(x) da(x),

where S is omitted if S = ). The expanded mixed finite element method is then: Find
ucV,,ucVy, pc W, and A € AY such that

(GKGu,v) — (Gu,v) =0 forall ve Vy, (10)

(Gu,v) — (p,V-v)=—(po,V-V)aa, — (A, V-V)aq, forallveVy, (11)
(V-u,w) = (¢,w) forall we W, (12)

(u-v,p)aay = {9, 1)aa, forall p € Ay. (13)



We remark that if G = K", then 1 = u and we recover the standard mixed
method [19, 21, 12]. If G = I, we recover the expanded mixed method considered in
[24, 15, 13, 8, 9]. Later we will make a special choice of G.

The algebraic system of equations that results is a symmetric saddle point linear
system of the form

M —A 0 0 U 0
AT 0 B —L U P,
0 BT 0 0 Pl | o | (14)
0 —-LT 0 0 A -G

where we represent u by U/, t by U, p by P, and A by A in the nodal bases {v;} for V,,
{w;} for Wy, and {y;} for Ax. In particular,

Mij = (GKGV“V]‘) and Aij = (GV“V]‘) (15)

are symmetric and positive definite. To reduce the size of the linear system, we can solve
for the Shur complement by eliminating

U=AT"MU and U=A""(BP—LA—-P) (16)

to obtain
(BAT"M A™'BT) ( ]AD ) = ( _QG ) +(BAT'M AP, (17)
where B = ( I ) This system is symmetric, positive definite, and relatively small (one

unknown per element plus a few boundary nodes). Unfortunately, although A is sparse,
A~1is in general full. Tterative solution will require the following steps for the application

P )
AL the solution of the system Ay = x;
and another matrix vector multiply By. Thus, we need inner iterations within our overall
iterative solution, which can become somewhat expensive.

of the matrix: a matrix vector multiply z = BT

CELL-CENTERED FINITE DIFFERENCE APPROXIMATION

We now use approximate integration to reduce A in (17) to an easily inverted diagonal
matrix.

The rectangular cell-centered finite difference approximation.

Assume in this subsection that the grid is rectangular. Take G = [ and use the
trapezoidal quadrature rule to approximate the first three integrals (i.e., those involving
a vector-vector product) in (10)—(13). This diagonalizes the matrix A and the Shur
complement system becomes sparse [20, 23], even when K is a tensor [8, 9].

It is easy to unravel the procedure in terms of the nodal degrees of freedom of u,
u, p, and A. Consider an element F (not adjacent to the outer boundary). Equation
(12) requires that the divergence of u be set equal to the source term ¢. This involves
differences of the normal velocities that live on the four edges or six faces of the element.
Equation (10) relates the velocities to the gradients of pressure. The velocity u on a given



edge or face is related to the gradient u that lives on the given edge or face and to those
that live on the adjacent but perpendicular four edges or eight faces (if K is not diagonal).
Finally, (11) relates u living on an edge or face to the difference of the adjacent pressures.
Combining this together, we get a 9 point stencil for the pressure on F if d = 2, and 19
points if d = 3. More details are given later and also in [9].

The Geometry Mapping.

To handle irregular geometry, we assume that there is a smooth mapping F' of a
rectangular, computational domain ) onto the domain Q. Given a rectangular grid on 0,
F' defines a smooth, logically rectangular, curvilinear grid on Q. (In practice, there are
grid generation codes available for creating F' at the grid points. We use finite differences
to approximate DF'.)

The Transformed, Computational Problem.
In the expanded mixed method, take

G = J(DFYTDF~'. (18)

Transform (10)—(13) to the computational domain ). Vector and scalar basis functions
transform by the Piola and natural transforms, respectively; that is,

v(x) = Jé() DF (x)v(x) (velocity),
w(x) = w(x) (pressure).

A A

Thus we need to find i € Vj,, u € V,,, p € Wy, and \ € Ay, such that

(Ku,¥) = (1,¥) for all ¥ € V), (19)
(0, v) = (5, V- V) = —(po, V- D) — (A, V- 0)pq  forall v €V, — (20)
(V -, ) = (§J,4) for all i € W, (21)
(G- 0, 1), = (§J5. 1)aay for all it € Ay, (22)
where K = JDF~'K(DF~1)T. This is the discrete problem in O
a=—-KVp, x€Q, (23)
V-u=4J, %€, (24)
p=po. %€ (25)
-0 =gy, %€y (26)

All computations are performed on the rectangular grid of QO after preprocessing the
coefficients: K becomes K, ¢ becomes ¢.J, and ¢ becomes ¢.J;.

The logically rectangular Cell-Centered Finite Difference Approximation.

To problem (19)—(22), we use the trapezoidal quadrature rule for approximating the
three integrals involving a vector-vector product to obtain our cell-centered finite differ-
ence method on the logically rectangular mesh. As an illustration, consider a 2-D, uniform
grid, with a constant K. Denote the grid points and cell centers by

(ii+1/273}j+1/2) and (‘%273)])



Then u = —@}5 is

X _ Pi+1,; — Dij 2y Pij+1 — Diy
~ D) -~

Uiy1/2,5 = — 0 U412 = 5 )

and 1 = Ku is

"G _ 2 F Kig (29 29 29 29
Uig/2,5 = Kllui+1/~2,j + 1 {uz’+1,j—1/‘2 + Uig1,541/2 + U 5-1/2 + ui,j—l—l/?}?

with a similar expression for ai]‘ﬂ/z' Finally, for each element F;;, V-a= qJ 1s

AP N 12 SN L S B
1/2, —1/2, J+1/2 g=1/21%: N A
it1/24 — Mim1/zg | Miieye 2]/]h2:/A i di.
h h E

iy

The solution u on € is obtained from p = p and A = A using (16).

CONVERGENCE RESULTS

(27)

(28)

(29)

Let || || denote the L*-norm, ||¢]|* = / lo(x)|* dx, and let |||« |||ar denote the L*-norm
Q

approximated by the midpoint quadrature rule. Before stating our result that the scheme

is optimally convergent, we need the following definition.

Definition: An asymptotic family of grids is said to be generated by a C'? map if each grid
is an image by a fixed map of a grid that is uniform in each coordinate direction. Each

component of the map must be strictly monotone and in C'*().

Theorem 1: There exists a constant (' depending on the smoothness of F', K, and the
solution, but independent of the maximum grid spacing h, such that the cell-centered

finite difference approximation satisfies

||ptrue - papprOX” S Ch7
||utrue - uapprox” —I' ||ﬁtrue - 1Tlapprox” S Ch7

||v : (utrue - uappI‘OX)” < Ch.

Moreover,
|||ptrue - papprox| | |M S Ch27
|||utrue - uapprOX|||M + |||ﬁtrue - ﬁapprox|||M < ChT7

where
2 if K is diagonal and 0Qx = 01,

r =2 3/2 if K is diagonal or the grids are generated by a C? map,
1 otherwise.

When K is diagonal or the grids are generated by a C'? map, a half power of A is lost

in the super-convergence result for the velocity. This is due strictly to effects near the

boundary of the domain.



Theorem 2 (Interior estimates): Let ' be compactly contained in €, and suppose that
either K is diagonal or the grids are generated by a C'? map. For any ¢ > 0, there exists
a constant C. depending on the smoothness of F', K, and the solution, but independent
of the maximum grid spacing h, such that

|||utrue - uapprox|||M,Q’ S Ceh2_6~

The proofs of these results can be found in [6] (see also [23, 9]). These results are
sharp in the sense that they are seen computationally in practical settings [9, 6].

DISCONTINUOUS MATERIAL PROPERTIES AND THE ENHANCED
CELL-CENTERED FINITE DIFFERENCE METHOD

We show by example that our cell-centered scheme has difficulties approximating the
solution when the material properties are discontinuous. On the unit square, let the true
solution p and K be

x for x < 1/2,
pley) = { vyt (o 12y +1/2) for o> 1/ (30)

2 1 _
(1 2) for x < 1/2,

K(z,y) = ((1) ?

(31)
) for x > 1/2.

Note that the eigenvectors for K are at 45 degrees to the grid for # < 1/2. Computation-
ally, we see the following convergence rates:

|||ptrue - papprox|||M S 0.06 h0'967
|||utrue - uapprox|||M S 023 h0'50.

These are much worse that predicted by Theorem 1. The error is concentrated along the
line z = 1/2.

If K or the map F' is not smooth along an interface, then u = KGu but not u is
continuous in the normal direction. However, we have approximated u in the same space
as u, i.e., Vp, which has continuous normal components. We must relax this continuity
along any interface where the material properties change discontinuously. To do so for the
approximation of i but not u would make the matrix A in (14) non-square and therefore
not fully invertible. We therefore need to relax the continuity of V}, for both u and u.

This idea originates in the hybrid form of the mixed method of Arnold and Brezzi [11].
Introduce Lagrange multiplier pressures living on the element edges or faces of the dis-
continuity interface I' (we already have them on 9€Qy), and add a condition that specifies
that u alone is continuous across I'. That is, replace (11) in (10)—(13) and add (33):

(Gu,v) =Y (p,V-V)g = —(po, V- V)aa, — > (N V- V)apn@ayur) for all v eV, (32)
[ [

Z(u vy iWapar = 0 for all g € Ay, (33)
B



We call this scheme the enhanced cell-centered finite difference scheme. It can be formu-
lated without explicit reference to Lagrange pressures by taking a mesh with zero width
cells on T'. The infinitely thin cell’s pressure is the Lagrange pressure [22].

Using the enhanced method, the same computational example shows the following
convergence rates:

[[[Perue — Papprox||[ar < 0.18 292,
|||utrue - uapprox|||M S 0.10 h1.49-

The Hybrid Form of the Mixed Method.

It should be noted that the hybrid form of the mixed method uses Lagrange multiplier
pressures along all faces. By eliminating all but the Lagrange pressures leads to a Shur
complement system that is sparse, symmetric, and positive definite. Unfortunately, there
are more unknowns than the number of elements. In 2-D, if deformed rectangles are used,
there are two times as many unknowns. In 3-D, deformed brick elements need three times
as many unknowns.

TWO-PHASE FLOW

We consider the accuracy of mixed finite element methods for approximating the highly
nonlinear problem of two-phase flow of incompressible water and air (or oil or a NAPL).
This represents work of two of the authors and Nai-Ying Zhang [10]. The governing
equations are

65 =V [N T] = (), ()
6% VKMV = (o) (3)
Pe(s) = Pa = pu, (36)

where 0 < s(x,1) < 1 is the (normalized) wetting fluid saturation, ¢ is the porosity,
Ao = kra(8)/ 1o 1s the relative mobility of phase o = w, a, and p, is the capillary pressure.

Define total velocity
v=—-K\,Vp, — KA\, Vp,. (37)

By rearranging (34)—(35) and using (36), we can obtain the pressure equation
V-v==V-(KAy+X)Vpy+ KA. Vp.) = qu + ¢a (38)

and the saturation equation

68 Au)Aa /\w
% v (K V. — g 39
o5t <‘Aw+Aa p+Aw+Aav> 4 (39)

The pressure equation is a well behaved elliptic equation; however, the saturation equation
is degenerate parabolic, so concentrate on it.



Kirchhoff Transformation.
Define the Kirchhoff Transformation

s A,
P = = [ (50 ) do (10)
AwAa : .
Then VP(s) = WS Vp., and the saturation equation takes the form
0s
95, = V- [aVP(s) + B(P(s)] = 1(P(s)). (41)

Regularity (Smoothness) of the Solution.

We assume that P(s) is strictly monotone increasing, that P’(s) may be zero (degen-
erate parabolic), but there is a constant Cy > 0 such that

[P(¢1) — P(g2)|I” < Co(P(p1) — P(2), 01 — 2)-

We also assume that 3 and ~ are Lipschitz continuous. These assumptions can be justified
on physical grounds [10, 3].
Introduce a new variable

b= —aVP(s) = B(P(s)). (42)

It is known [2, 1, 3] that s is continuous and

s

S € LOO(LOO), a

e LH™Y), we LX((L*)"). ~(P(s)) € L¥(L?).
where H~! is the dual of H and the outer function space refers to the time interval of
interest and the inner one to ). The low regularity is due to the degenerate diffusion. As
we pass from a strictly two-phase region to a region with a single phase, the solution is
not particularly smooth; thus, it is very difficult to approximate the solution accurately.
Many authors have considered the approximation properties of the continuous, piece-
wise linear finite element Galerkin method. However, cell-centered finite difference meth-
ods are commonly used to solve this problem [18]. Since the mixed finite element method
is strongly related to cell-centered finite difference methods, we present a mixed method
analysis. Such an analysis has not previously appeared. Our approach is to consider the
problem from the point of view of optimal approximation; that is, can we approximate the
solution as well as possible, given the finite element approximating space. Since typically
the interfaces between the single and two-phase regions occupy a fairly small part of the
domain, we can then expect to have very good approximation of the solution.

A NONLINEAR MIXED METHOD

In a standard mixed variational form for (41),

<q§%,w> (V- dbyw) = (1(P(s))sw) for all w € HY. (43)



Since we can only expect in general that ds/dt € L*(H™"), the trial functions must belong
to H}(9Q). To avoid this, following Nochetto [17], we integrate (41) in time to obtain

s(x, 1) + V- /Otwf _ /Ot'y(P(s)) dr + so(x),
where sg is the initial saturation. Note that
/ “pdr € V(L)) N L2(H(div)),
so we can formulate a mixed variational form as

(s(-,1),w) + <V . /Otg/)dT, w> = </Ot'y(P(5)) dr, w> + (s0,w) forallwe L?, (44)
(a7 + B(P(s)],v) — (P(s),V-v) = —(P(sp),v-v) forall ve H(div), (45)

where sp is, say, a Dirichlet boundary condition.

Now let ) be partitioned into a conforming finite element mesh with maximal element
diameter h. Let W), x V;, C L? x H(div) be any standard mixed finite element space. Let
At >0, t, = nAt, and " = p(1,).

Our nonlinear mixed method is to find s” & S™ € W), and ¥ ~ U" € V), satistying

(S™, w) + <V . Zn: W/ At, w> = <ZZ:7(P(Sj)) At,w) + (80, w) for all w € W, (46)

i=1

(a7 0" + B(P(S™))],v) — (P(S™),V -v) = —(P(s})),v-v) forall ve V. (47)
The first equation is equivalent to the usual backward Euler form

(T2 0) (7w = GRS w) Torallwe Wi, (48)

(S w) = (so,w) for all w € W (49)

Let Py, and Py, denote L*-projection into W), and V,, respectively. Let TI denote
the usual element based flux-preserving projection operator for mixed methods [19, 12].
Such projections are optimal in their approximation properties.

Theorem 3: For the nonlinear mixed finite element approximation,

n

Z(Sj — Sj7 P(Sj) — P(Sj)) At +

2

n . tn
S W Al—Py, [Tvdr
7=1

<3 {1Pws s+ | =) [ war 4 |v-@=p) [ var]
| Sy st i |4 [* i -] Jar

=1

and

187 = 5"+ < C{hlPw,s" = 5 + |

n . tn
S W AT [y dr
i=1 0
n £,

S AP AL = [T (P(s)) dr

2}
J=1 0

+§j | P(S7) — P(s7)|| At +




t 1/2
The form {/ (S —s,P(S)— P(s)) dT} bounds the size of S — s; for example, it
0
bounds the norm [|[P(S) — P(s)||. It is not, however, a norm itself. It may even fail to

be a metric. Also, || - ||[g-1 = sup (-,¢)/||¢||z:- The theorem says that the saturation,
pEH]
in a weak H/~!-norm sense, is bounded by optimal approximation terms, time truncation

terms, and a term involving the divergence that is essentially optimal in character.

CONCLUSIONS

We have developed a cell-centered finite difference mixed method as an approximation
to an expanded mixed finite element method. It is suitable for groundwater flow and
transport problems on general geometry with tensor permeabilities or dispersivities. It is
both locally (element-by-element) mass conservative and highly accurate.

General geometry can be handled by a mapping between the computational and phys-
ical domains. The coefficients are transformed in a simple way before commencing the
computation. On a logically rectangular mesh, special quadrature rules are applied to
the expanded finite element method to transform it into a cell-centered finite difference
method with a stencil of 9 points in 2-D and 19 points in 3-D, allowing easy and efficient
implementation. Similar results hold for triangular meshes [4, 5, 6].

The solution of the logically rectangular cell-centered finite difference scheme con-
verges to the true solution at the optimal order as the mesh is refined; moreover, super-
convergence is attained by the velocity at certain discrete points of the domain on (-
smooth grids away from the boundary. We saw that grid geometry strongly affects the
approximation error, so it is necessary to define and refine grids in a C*-smooth manner.

Lagrange multiplier pressures or infinitely thin cells need to be introduced along faces
where the tensor or geometry changes discontinuously. This allows the adjusted pressure
gradient 1 to be discontinuous, so that the coefficient times u approximates well the
continuous velocity u.

Mixed methods accurately approximate two-phase flow. The Kirchoff transformation
may be useful in computations. The interface between single and two-phase regions is

captured in an approximate (H~'-norm) sense.
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