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ABSTRACT. Double porosity models are derived for various types of flow in naturally
fractured reservoirs. A single component in a single phase and two-component mis-
cible and immiscible flows are treated. These models are derived by homogenizing
the appropriate equations describing flow in a highly discontinuous single porosity
reservoir. The mathematical theory of homogenization is used only in its formal
sense.
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§1. Introduction. Petroleum reservoirs are often found in nature with many
interconnected fracture planes throughout their extent in a fairly regular geometric
pattern. These fractures, though small, have a profound effect on oil recovery
processes since fluids can flow much more readily in the fractures than in the porous
rock (the matriz). A concept of double porosity has been used to model such
reservoirs (see, e.g., [3], [4], [7], [21], [30]). The reservoir is assumed to possess
two porous structures. The matrix consists of essentially disjoint blocks that are
ordinary porous media. Connecting these blocks is a fracture system that is itself
a porous medium, though not an ordinary one.
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To describe the flow of fluid in such a reservoir, sets of equations are needed
for the fracture system and for the matrix. Normally both sets of equations are
assumed to be based on Darcy’s law. The interactions between the two systems are
crucial, and various proposals have been presented for describing these interactions
(see, e (2], [3], [4 [6], [7), [11], [12], [13], [17], (19], [18], [24], [25], [26], [28], [30]).
The purpose of this paper is to derive unique forms of double porosity models for
various flows in naturally fractured reservoirs by means of the mathematical theory
of homogenization [8], [22]. This theory has been successful in deriving Darcy’s law
from general principles [27], but it has not been applied to fractured porous media
to date (except in [5] and [16]).

Our reservoir £2 C R? is a two-connected domain with a periodic structure. We
shall scale this periodic structure by a parameter ¢ > 0 which will represent the
size of the matrix blocks. The standard (e = 1) period is a cell Q consisting of a
matrix block domain Q,, completely surrounded by a connected fracture domain
Q. The e-reservoir consists of copies of €Q covering {2. Each e-cell is adjacent to its
neighbors but not overlapping any of them (see Figure 1.1). There are four regions
that are of special interest to us, namely, the external boundary of the reservoir
012, the fractures §2%, the matrix {2, and the matrix-fracture interface I'*. These

last three can be described as

Q=00 JeQr+0Q0+¢), 2, =020 ]eQm+¢).
ceA ceA

and ['“=nN Ue(an +£),
£eA

(1.1)

where A is an appropriate infinite lattice. We shall let the time interval of interest

be denoted by J = (0,T].
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Figure 1.1

In each type of flow to be considered, our starting point is a microscopic model
which consists of the proper equations describing Darcy flow in a porous medium
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(see, e.g., [10], [20], [23]) posed over all of §2. The porosity, permeability, etc., will be
discontinuous across I'“. The equations on {2}, will be scaled by appropriate powers
of € to conserve flow in some sense; consequently, the porous medium equations
do not degenerate as € tends to zero and the form of the matrix equations of
the microscopic model and of the homogenized macroscopic model coincide. This
technique has been used in several other papers [5], [14], [15], [29]. It allows us to
derive a double porosity model rather than simply a modified single porosity model
[1], [9] which would be inadequate to describe the complexity of flow in a naturally
fractured reservoir.

We shall derive our models only in a formal sense [22]. We assume that our
solutions behave in space as if they were functions of a macroscopic variable x € 2
and, at each such z, a microscopic variable y € Q,., r = m or f. The macroscopic
and microscopic scales are related by €; that is, up to a translation,

(1.2) Yy~ e,
SO
(1.3) V~e 'V, +V,,

where V. is the gradient with respect to the z-variables. The solutions are then
assumed to have the asymptotic form

>

(14) ¢f($7t) ~ ¢0($7y7t) + 6'17/)1(.1}7y7t) T = Z €k¢k($7y7t)7

k=0

where the ¥* are periodic in y for y in Q. Next, functions of ¥ can be expanded
by Taylor’s Theorem as

(1.5) o(1h*) = ¢(¢0) + ¢/(¢0)(¢e . ¢0) . ¢(¢0) + 64,91 + 62(}92 NI

Finally, if o¢(2) = ¢(e~'2) is periodic of period €Q, then clearly

(1.6) o (x) ~ p(y).

The assumption of the asymptotic relations (1.2)—(1.6) in our microscopic models
will give separate equations in the coefficients of (1.4) for each power of e. These
will lead to a set of equations for the leading term alone. This, of course, is our
limit or macroscopic model.

Since we are primarily interested in the internal flow characteristics, and espe-
cially in the matrix-fracture interaction, we shall generally ignore the outer bound-
ary 012 below. We shall also assume that all of our quantities are smooth enough
for the formal manipulations that we perform.

In the rest of the paper we consider three kinds of flows. In §2, the flow of a
single component in a single phase is considered. This is done very briefly, as the
formal results of this section have been shown rigorously in a related paper by the

3



current authors [5]. However, this simple case is highly illustrative of the kinds of
results that we obtain for the other, two-component flows. In §3 we treat the flow
of two completely miscible fluids in a naturally fractured reservoir. In §4 we treat
the flow of two immiscible fluids (each component in a separate phase). Finally,
in the last section we modify the geometry of our reservoir somewhat to derive
a second model for immiscible flow. This second model is more sensitive to the
possible gravitational segregation of the fluids.

We close this section with a comment on the notation. Generally speaking,
fracture quantities are denoted by upper case letters and are defined on all of 2
(and used on Q})7 while the corresponding matrix quantities are denoted by the
corresponding lower case letters and are defined on 2.

§2. A single component in a single phase. The simplest type of flow in a
naturally fractured reservoir is that of a single component in a single phase. This
simple situation is ideal for describing the kind of results that we obtain since the
features of this model are in some sense common to all of the models contained
herein.

For convenience of exposition, the definitions of our symbols are collected in
Table 2.1. The matrix blocks have been assumed to possess identical properties,
so ¢ and k are periodic of period €Q,, as noted. (More generally these may vary
slowly over the reservoir: ¢(z) = ¢(x,e '), k%(x) = k(x,e 'z).) In this section
only, we shall ignore gravity for the sake of simplicity. The microscopic model
appears below in (2.1)~(2.6). Here and throughout the subscript ¢ denotes partial
differentiation in time and v denotes the outer unit normal vector with respect to
the matrix domain.

Table 2.1 — Symbols for single component, single phase flow.

Symbol Meaning
Fractures Matrix
p(x,t) o(x, 1) mass density
P*(x) o°(x) = o(%) [periodic] porosity, bounded below
K*(x) E(x) = k(%) permeability, bounded below
[periodic tensor] (positive definite)
1 viscosity
c constant of compressibility
fla,t) external source/sink
Pinit() initial density




The flow in the fracture domain is controlled by

K
(2.1) " p; — V- (M Vp© ) foin 0% xJ,
K* ke
(2.2) ' Vot -v=€e"—-Vo-v on I°x.J,
e Jite
(2.3) P = pinit on 2% x {0}.

The flow in the matrix domain is controlled by

kﬁ
(2.4) oof — €2 (—V0'6> =f in 2, xJ,
ite
(2.5) o =p° on I'“xJ,
(2.6) 0 = pinit on 2 x {0}.

The equations (2.1) and (2.4) represent conservation of mass combined with Darcy’s
law and the equations of state

pdp = cdp, o do = cdp,

where p is the pressure. The appropriate conditions on the matrix-fracture interface
I'¢ are (2.2), conservation of mass flux between the two regions, and (2.5), continuity
of pressure (actually density).

The €? in (2.2) and in (2.4) properly scales the matrix flux term. This can be
argued as follows. The critical process in any naturally fractured porous medium
is the transfer of fluid between the matrix and fractures. We cannot expect to have
a reasonable homogenized model unless we preserve this transfer in some sense as
€ tends to zero. For e = 1, the net fluid transferred is

/ ﬁVJ -vda(x);
Ie]

2, HC

this quantity should not degenerate or blow up as e tends to zero. This implies
that one of the coefficients, say permeability, must be scaled. Let us denote the
unscaled permeability by £*¢. Then a simple change of variables y = ¢~ '(2 — ¢)
shows the following, where the sum is taken over the e-cells contained in {2 at the

lattice points £ € eA and where | - | denotes the volume of the set:
%€ . %€ .
Vo -vda(z) = Z Vo - vda(x)
ang, HC ccolls Y 0(€Qm+&) HE
= Z / —e_IVJ vetda(y)
e-cells /9CLm e

e-cells

Z/ _2—V0' cvda(y)|€Qm].
29
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As € tends to zero, the sum becomes a Riemann integral, and so indeed k* = €2k
as asserted.

Note that @* and K* represent the porosity and permeability of the fractures
themselves; consequently, ®* &~ 1 and K* is very large. These change during the
homogenization process. This feature is common to all of the models to be derived
in this paper. The macroscopic fracture system porosity &(x) is always defined to

be

1971 5

(2.7) 2= 5

We need here and later the auxiliary functions w;(y) which are Q-periodic solutions
to the problems

(2.81) Viwj=0 in Qy,
(2.8i1) Vywj-v=—e;-v on 0Qpn,

where ¢; is the unit vector in the jth direction. These functions arise naturally as
in (3.15) and (4.15) below. The macroscopic fracture system permeability K(x) is
the tensor

Q]
|9

9
Ox;’

the tensor whose (7, j)-component is as written, and the overbar denotes the local
average

(2.9) K =K* [ I+ (0 ])]

where I is the identity tensor, 9; = the double subscripted symbol (J;w;) is

(210) 7= /., e

The microscopic model can be homogenized in the formal sense described in
the introduction using some of the techniques of the following sections. We omit
the details here and refer to [5] for a rigorous proof of the convergence of the
homogenization process. The macroscopic model that results is described below in
(2.11)—(2.15). The fracture system density p° is independent of y and satisfies the
equations, posed over all of {2,

K
. &)Y a?d V m 2xJ
(2.12) P’ = pinit on {2 x {0}.

As the size € of the matrix blocks tends to zero, a block @Q,, is associated with
each point = € {2 of the reservoir. The equations on this block are given in scale
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invariant form in terms of the variable y € Q,, as

213)  owole ) =V, (¥, ) = ) a2 0y
(2.14) %z, y,t) = p°(x,1) on 2 X 9Q ., X J,
(215) Uo(x7y70) - pzmt(l') on {2 x Qm

The key features of this model are the form of the matrix source term

1

=i [ ool (z.y.t)dy
12l Ja,,
of (2.11), which represents a source/sink of fluid from the fracture system (i.e. it
takes into account the fluid that flows from the fractures into the matrix) and the
condition (2.14) on the boundary of each matrix block. This boundary condition is
a constant for y € 90Q,, for the block Q,, associated with x. These two features are
reflected in the models to follow. This model is essentially identical to that derived
from physical arguments and appearing in [4]; it is also the model employed in [13].
We have presented the results of this section only in a formal framework; that
is, the convergence of the solutions (p¢,c¢) of (2.1)~(2.6) to the solution (p°,o?)
of (2.11)—(2.15) is not proved by the techniques used herein. As mentioned above,
however, this convergence has been shown to hold in a rigorous sense [5] (with
gravitational effects included in the equations). If we add an outer no-flow boundary
condition

K~
e

Vpt-vog=0 on 092 x.J

to (2.1)-(2.3), then in the sense of weak L%-convergence, (p o¢) converges to
(p°,0%) as € tends to zero, where to (2.11)~(2.12) we must add the outer boundary
condition

K_
—Vp cve=0 on 02 x.J.

e
§3. Incompressible miscible displacement. In this section we consider the
displacement of one fluid by another that is completely miscible with it. This
model applies also to a solute being transported with a fluid. We assume that both
fluids are incompressible and that they mix without changing volume.

Our list of symbols is given in Table 3.1. Note especially the parameters that
depend on the solution itself. Again, the quantities that describe the properties of
the matrix are periodic of period €Q,, as indicated. We have tacitly assumed that
only molecular diffusion occurs in the fractures on the microscopic scale; that is,
D* is independent of U™**.

The microscopic model describing such miscible displacement in a naturally frac-
tured reservoir consists of the set of equations (3.1)—(3.12) below. Pressure equa-
tions can be written as follows, with Darcy’s law being expressed by (3.1) and (3.4)



Table 3.1 — Symbols for miscible flow.

Symbol Meaning
Fractures Matrix
Un(x,t) u(x,t) Darcy velocity
Pe(x,t) p(x,t) pressure
C(x,1) c(x,t) concentration (of one of
the two components)
*(x) o°(x) = ¢( %) [periodic] porosity, bounded below
K*(x) E(x) = k(%) permeability, bounded below
[periodic tensor] (positive definite)
D*(x) d(z,u®) =d(Z,u) diffusion coefficient, bounded
[periodic (in ) tensor] below (positive definite)
p(C) p(c) density of the mixture
w(C) plc) viscosity of the mixture
g gravitational constant vector
fla,t) external source/sink
f(z,t) = max(f,0) external source (injection)
f-(x,t) = min(f,0) external sink (production)
Cinj(z,1) concentration of injected fluid
Cinit(x) initial concentration
G(C) = p(C)g G(c) = ple)y
A* (2, C°) Az, %) = A%, ¢9)
_ K@) _ k)
-~ u(C) p(e)

and conservation of mass by (3.2) and (3.5):

(3.1) U = —A%C)[VP +G(CY)] in 0% xJ,
(3.2) V.U =f in 2% xJ,
(3.3) U* v=ceu-v on I x.J,
(3.4) u® = —=A(c9)[eVp® + G(c)] in 20 x J,
(3.5) eV -u-=f in 2, xJ,
(3.6) p¢ = P°¢ on I'“x.J.

Here, (3.3) represents conservation of total mass flux between the fractures and the
matrix, while (3.6) simply represents continuity of pressure. Secondly, we have con-
centration equations, (3.7) and (3.10), which conserve the mass of each component,
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as well as the component mass flux equation (3.8) between the two domains:

(3.7) ¢*C; — V- [D*'VC-U"C"]

= Cinj f_|_ + Cef_ n Qjc X J7
(3.8) D*VC* v = d(u)Ve - v on I xJ,
(3.9) C° = Cz‘m‘t on Qjc X {0}7
(3.10) oy — eV - [ed(u)Ve — u‘ef]

= Cm]‘ + S n .an X J,
(3.11) - =C° on I xJ,
(3.12) ¢ = Cinit on 2 x {0}.

Equation (3.8) has been simplified by making use of (3.3) and (3.11); (3.11) just
represents continuity of component concentration across I'“. Note that the injected
fluid is specified, while the production fluid splits between the two components
according to the concentration. The flux terms have been scaled as described in
the previous section to keep the matrix-fracture fluid transfer terms from blowing
up as € tends to zero. In this case, u¢ is defined by (3.4), so in fact the matrix
permeability and the matrix diffusion coefficient have been scaled by €%, while
gravity in the matrix has been compensated by an e~!. This preserves the original
form of the total mass flux. If we do not compensate gravity, it will drop out of
the matrix mass flux terms in the macroscopic model; there is little difference in
practice.

In a heuristic sense, we now adopt the assumptions (1.2)—(1.6). Specifically, (1.4)
gives us the expansions

Uty EU ayt), POy EPNayt) O~y ECH )
k=0 k=0 k=0

for (z,y,t) € 2 x Q¢ x J (periodic in y) and
u ~ Z Fuk(x,y,t), p~ Z e pF(x,y,t), o~ Z ek, y,t)
k=0 k=0 k=0
for (z,y,t) € £2 x Qp, X J; moreover, it follows from (1.5) and (1.6) that
¢ (x) ~oly),  K(x) ~ k(y),

A(C) ~ A°(C0) 4 A1 1 0(&),
A () ~ Ay, ) 1 O(c).
G(E)~G(E)+0(e), (=Corc,
d(z,u®) ~ d(y,u’) + O(e).
9



Upon substitution of these formal expansions into (3.1)—(3.12) and upon equating
coefficients of like powers of €, we obtain the following relations. From (3.1), in
2 x Qs x J, the e7! and €® terms give

(3.1/-1) 0 =-A*C"Vv,P°,
(3.1/0) U0 = —AX(C[V, P +V, P’ + G(C")] + A'V, P°.

From (3.2), in 2 x Qf x J, the e~ ! and €’ terms give

(3.2/-1) v, - U*° =0,
(3.2/0) Vy U4V, U™ = f.

From (3.3), on 2 x 9Q, x J, the €’ and €' terms give

(3.3/0) U*?. v =0,
(3.3/1) Uty =4’ -0

From (3.4)—(3.6), the €’ terms give

(3.4/0) u’ = Ny, )[Vyp’ + G(")] in 2xQu xJ,
(3.5/0) Vy-u’=f in 2xQu xJ,
(3.6/0) p’ =P° on 2 x9Qm, x J.

From (3.7),1in 2 x Q¢ x .J, the e 2, ¢!, and € terms give
(3.7/2) -V, (D*V,C% =0,
(3.7/-1) —V, - [D¥(V,C'+V,C% -UC" -V, - [D*V,C°] =0,
(3.7/0) *CY) -V, [D*(V,C*+V,CH) -U'C’ - U*C
— V.- [DXV,C'+V,CO) - UC" = Cin; f+ +C° f_.

From (3.8), on 2 x 0Q, x J, the ¢!, € and €' terms give

(3.8/-1) D*Vv,C° v =0,
(3.8/0) D*(V,C' +V,.C% v =0,
(3.8/1) D*(V,C?* +V,CY) v =d(y,u")V,c" - v.

From (3.9), on 2 x Qy x {0}, the € term gives

(3.9/0) C° = Cinit.
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Finally, from (3.10)—(3.12), the € terms give

3.10/0) o(y)e! — V- [d(y, u")V,c® —uc] = Cinjfy +f-in 2 x Quy x J,

Y Y J
(3.11/0) " =¢° on 2 x Q. x J,
(3.12/0) ¢ = Cinit on 2 x Q,, x {0}.

We shall now analyze these asymptotic relations. First note that (3.7/-2) and
(3.8/-1) imply that

(3.13) C" = C%ax,t) only,
and (3.1/-1) says that
(3.14) P = P%a,t) only.

Next we relate P! to P° and C*' to C°. To this end, note that P! satisfies
(3.1/0), (3.2/-1), and (3.3/0), which can be rewritten as

V- [AX(CHV, P =0 in 2xQfxJ,
AXCOWV P v = —AX(CO)V, P+ G(C")]-v on 2 x9Q,, x J,

where we have used (3.13) and (3.14) several times. Since A*(C?) is independent
of y, this can be solved easily with the aid of the functions w;(y) introduced above

in (2.8):

3

(315) Pyt =Y wm)[0P°(x) + G5(COx))] +ale.t)

J=1

for some function « since Q is connected and P! is (assumed) periodic in y across

0Q. Similarly, from (3.7/-1), (3.2/-1), and (3.8/-1),

3

(3.16) Clryt) =Y wi(y)0,C) + Bla.)

i=1

for some f3.
We shall now derive a macroscopic Darcy law for the fracture flow. Using (3.15),

(3.1/0) becomes

(3.17) U0 = —A*(CO){Z V,w;[0;P° + G;(C)] + VP’ + G(CO)}

= —A(C°) [T+ (9] [V P° + G(CO)].
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This relation involves the microscopic variable y. We locally average this equation
(recall (2.10)) to obtain the macroscopic equation. Hence let

(3.18) U% =U*o
and define K (x) by (2.9) above; we obtain
I,’
(3.19) U'=——2_[VP'—G(C")] in 2xJ

p(C?)
Note that this is Darcy’s law, since U is a macroscopic volumetric flow rate.
We shall now verify that the total mass is conserved. Using (3.2/0), we have

that 0] .
V, U= — [ v, . Uaqy="Sy [ v, .U~ ay.
19l Jo, Q17 [l /o, *
The last term above can be related to a matrix quantity by using the divergence
theorem and the flux condition (3.3/1). With also periodicity and (3.5/0), we see

that

1

(3.20) - V, - Utdy = / Ust. v, da(y) = —/ U vda(y)
(o) 0Qj; 90Qm
:—/ uo-yda(y):—/ Vy-uody:—|Qm|f-
9Qm, Qm
Hence, indeed,
(3.21) V-U=f in 2xJ

It remains to show that the homogenized fracture concentration C° satisfies an
equation expressing conservation of the mass of the component it represents. The
local average of (3.7/0) is

1
(3.22) &C) — Q] Vv, [D*(V,C* +V,.C)—-U'C’ —U*C) dy
Qs
1Ql Jo, Q|
where @ was defined previously in (2.7). The first integral can be rewritten by

an argument similar to that given in (3.20) above. With (3.8/1), (3.3/0), (3.3/1),
(3.11/0), and then (3.10/0), we derive the matrix source term as follows:

V.- [D*(V,C'+V,.C% - U°C%dy (Cinjf+ +C°f),

(3.23) / Vv, [D*V,C* +V,CY) - U C? —U*°C dy
Qy
= /BQ [D*(V,C*+V,C) —US'C* —U*C'] - vg, da(y)
f

—— [ W)V, — v daly)
09 m

= — V- [d(y,u®)Vyc® —u’c’]dy
Qm

— [ (o + £ dy+1@ulCast

m
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The first part of the second integral of (3.22) can be rewritten with (3.16) as

3
v, - [D*Vy (Z wjajc‘))}dy

V.- (D*V,CY)dy :/

3
—101%. | Y T 0.
j=1
Hence we obtain our desired equation:
1
(3.24) &C} + @/Q d(y)dy — V- (DVC? —UC?)
1 :
= Cinjfy + —{|Qf|CO —I-/ e dy}f_ in £2xJ,
<l o
where we have set
(3.25) Da) = (o) |1+ 130

The formal derivation is now complete. The macroscopic model consists of sev-
eral equations. The fracture system follows a set of equations that are independent
of y and consist of a pressure equation (3.19) and (3.21) as well as a concentration
equation (3.24), plus the initial condition (3.9/0). To these, external boundary
conditions must of course be added. At each point x € §2 we have a matrix block,
the flow in which is described by the pressure equation (3.4/0)—(3.6/0) and the
concentration equation (3.10/0)—(3.12/0).

This is a “zeroth order” model because the size of the matrix blocks strictly
tended to zero. It possesses the features described in the last section, the matrix
source term (the second term of (3.24)) and the constant in y-space boundary
conditions (3.6/0) and (3.11/0). As noted in [2], such a zeroth order model is
inadequate because no wviscous displacement may occur between the matrix and
fracture systems. There are no pressure or concentration gradients over the surfaces
of the blocks, so fluid only transfers between the two systems by diffusion. We have,
however, discovered the leading terms of what should be the correct model. The
model of [2] incorporates these leading terms and certain higher order ones to allow
for viscous displacement.

84. Incompressible, immiscible displacement in a reservoir with moderate-
sized matrix blocks. We now consider the displacement of one fluid by another
(for convenience, oil by water) when the two fluids are incompressible and do not
mix. Hence, two phases exist in the reservoir. The displacing fluid is the wetting
phase.

Our symbols are given in Table 4.1. Generally one assumes that f, ;n;
max(f,,0) = 0 and that production splits according to the mobility: fg prod
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Table 4.1 — Symbols for immiscible flow.

Symbol Meaning
Fractures Matrix
0 phase: o (oil) or w (water)
Pi(z,t) Pz, t) pressure of # phase
HER)) sg(x,t) saturation of § phase
S(x,t) s (x, 1) saturation of o phase, say
*(x) o°(x) = ¢(%) [periodic] | porosity, bounded below
K*(x) k(x) = k(%) permeability, bounded below
[periodic tensor] (positive definite)
K, 9(5°) kro(s€) relative § permeability
P.(S°) pe(s€) capillary pressure
Sro Srg residual € saturation
Po density of 8 phase
o viscosity of 8 phase
g gravitational constant vector
folx,t) external € source/sink
Soinit(T) initial § saturation
Go = pay
Ak(x, S9) Ag(x,s9) = /\49(f7 59)
_ K*(2)K(S9) _ R(E)kre(s)
e He

min( fp,0) = Aﬁ—iz}wfpmd? where f,r04 1s the total production rate. We do not re-
quire this, however. It is important to note that the relative permeability of the
6 phase tends to zero as the 6 saturation tends to its residual value. Also, the
capillary function tends to zero as the water saturation becomes residual, and it
blows up at the residual oil saturation.

The microscopic model is presented below. Conservation of mass of each compo-
nent (phase) combined with Darcy’s law gives (4.1) and (4.4 ), while (4.2) represents
conservation of mass flux between the two regions and (4.5) represents continuity
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of the phase pressures across I'“. For § = o or w,

(A1) @S5, -V AYSHTP 4 Goll = fo(5) i 0%
(4.2) g(SVNVPy+Gy)-v==e\g(s)eVpg+Gp)-v on I'°xJ,
(4.3) S; = S&,init on Qjc X {0}7
(4.4)  @sp, — eV [No(s)(eVpy + Go)] = fo(s9) in $2;, xJ,
(4.5) pe = P; on I'°xJ,
(4.6) ng = S&,init on .Q,fn X {0}

To these equations we have the usual properties that the fluid fills the volume,

(4.7) So+Sw=1 in £} xJ,
(4.8) So+sw=1 1in 27 xJ,

and that the phase pressures are related by a strictly monotone function of the
saturation,

(4.9) Py — Py, = P(S) in 0% xJ,

(4.10) Py — D = Pe(s€)  in 25, x .

The matrix permeabilities have been scaled by €2 and gravity has been compensated.
Again, if gravity is not compensated, it drops out of the matrix equations of the
macroscopic model.

In the heuristic sense of (1.2)~(1.6), we expand the solution S, sg, P5, and pj
and we expand the functions A}, Ay, P., p., and fs. We are led to the following
formal relations. From (4.1), in 2 x Q5 x J, the €%, ¢!, and €® terms yield
(4.1/-2) =V, [45(S")V,Py] =0,

(4.1/-1) —Vy- [/12?(50)(%1%3 + prg + Gy) + AW@,P;)]

— V.- [45(S")V, P =0,
(41/0)  &"S5, = Vy - [A5(S°)(VyPf + Vo Py)

+ Ay(Vy Py + V, Py + Gg) + AV, Py

= Vo [A5(S°NVy Py + Vo Py + Go) + A4(S° )V, Pyl = fo(S°).
From (4.2), on 2 X 0Q, x J, the e7!, €’ and €' terms give
(4.2/-1) A3(S“)WV,P)-v =0,
(4.2/0)  A5(S°NV,Pg +V.P)+Gp)-v+ Ay V,P§-v =0,
(4.2/1)  A5(S°NV,P; + V. Py)-v+ AV, Py + VP +Gg)-v+ AV, P - v

= Ap(y, 8" ) (V0 + Go) - v.
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Finally, we only need the €’ terms from the other equations (4.3)—(4.10):
(4.3/0) 52 = Se)imt on {2 x Qf X {0}7

(£4/0)  6(y)sp, — Vi [Noly, ") (Vypg + Go)l = fo(s”) in 2% Qu x J.

(4.5/0)  py = Py on £2x9Q, xJ,
(4.6/0) sy = Se.init on 2 x Qn x {0},
(4.7/0)  SY+SY =1 in 2xQfxJ
(4.8/0) 242 =1 in 2xQ, xJ,
(4.9/0) P - P =P.(S) in 2xQyxJ,
(4.10/0)  p% —p% = pe(s”) in 2xQ, x.J

The analysis of these asymptotic relations proceeds in a manner very similar to
that given in §3 for the miscible case even though the equations are quite different.
First, we would like to conclude that the S and Pj are independent of y. Since
the A} are degenerate, however, we must be careful. We can easily conclude from
an energy estimate of (4.1/-2) and (4.2/-1) that

(4.11) 55"V, Py = 0.

Now (4.9/0) implies that

(4.12) v,P)—-vV,P)=P(S")V,S°,

so A%(5%)7 A%(S8°)2 P/(S°)V,S° = 0. This shows that S° is piecewise constant in
y (assuming at most the values S, ,, 1 — Sy, and possibly one value between these
two). Assuming that S° is continuous, or at least that V,S° is, say, in L*(§2), we
are led to conclude with (4.7/0) that

(4.13) Sy = Sg(x,t) only.

Now (4.11) shows that at least one of the PJ is independent of y, and then (4.12)
shows this of them both:

(4.14) P§ = Pg(x,t) only.
Next, (4.1/-1) and (4.2/0) allow us to write P} in terms of PJ as

3

(4.15) Py =Y wi(y)[0;P)(x,t)+ Ga ;] + as(x.1).

i=1
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at least if neither Sj is residual, where the w; have been defined above in (2.8) and
the ay are independent of y.

Finally, the local average of (4.1/0) leads us to a macroscopic equation for each
6 that represents mass conservation and Darcy’s law. This average is

(4.16)
1
gﬁsg,t - @ vy : [/1?5(50)(%3? + VxPel) + Aé(vypel + prg + GO)] dy
Q;
. L T A*( QO 1 0 _ |Qf| 0
Vo [A5(S")NVy Py + V. Py + Go)ldy = fo(S7),
12l Jo, 12

where (2.7) defines &(x). As in (3.23), we rewrite the first integral above as

/Q = 6(y)s3, + Fo(s")] dy.

using (4.2/1) and (4.4/0). Now with (4.15) being used to rewrite the P} term in
the second integral, (4.16) becomes our macroscopic equation

(417) @S9, + /Q O(y)s,, dy — ¥ - [Ag(S°)(VPY + Go)]

1
Q|
_ 1
el

Here we define K by (2.9) above and then set

{|Qf|f9(50)+/gm fe(so)dy} in 2 xJ.

TG o SO
(4.18) Ag(5%) = L&(S)-
1o

In summary, the fracture system, defined on §2 x .J, consists of (4.17), (4.3/0),
(4.7/0), and (4.9/0). For each x € {2, we have a matrix block, the flow in which
is described by (4.4/0)—(4.6/0), (4.8/0), and (4.10/0). Again our two features are
reflected in the model by (4.13) and (4.14). As a consequence, there is no viscous
displacement in this model as well. However, when capillary imbibition is the
dominant force, our “zeroth order” model is reasonable. It is essentially the model
described and numerically and computationally analyzed in [6], [11], [12], and [13].

The constancy in y-space of the boundary conditions (4.5/0) does not allow the
two phases to segregate along 9Q,, due to gravitational effects. Such segregation
is believed to have an important effect on the matrix-fracture interaction, at least
when the height of the matrix blocks is relatively large. Hence, the present model
is appropriate only for reservoirs with moderate-sized matrix blocks. In the next
section we consider the case of large matrix blocks.

§5. Incompressible, immiscible displacement in a reservoir with large
matrix blocks. To this point we have homogenized the reservoir by letting the
diameter of the matrix blocks tend to zero. As mentioned at the end of the last
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section, in that case gravity has no vertical distance on 0Q,, to act over as far as the
matrix-fracture interaction is concerned. To allow for a gravitational segregation
of the fluids on the surfaces of the blocks, we shall now homogenize the reservoir
only in the horizontal directions; that is, the horizontal cross-section of the blocks
will tend to zero area but the height will remain fixed.

We restrict the geometry (see Figure 5.1) by requiring that 2 = 2 x T and
Q = Q x I, where fL Q C R? are the horizontal cross sections and Z C R! is
the height. Also, for Q,, strictly contained in Q and surrounded by Q ¢ we have
Q= Qm x7Z and Q5 = 16) ¢ xTI. Note that we have allowed no horizontal fractures.
The scaled reservoir is then as described in (1.1) provided only that we interpret
each nonsuperscripted € as a tensor:

(5.1) [ —

S O
o O
_ o o

and that we drop the top and bottom faces of I'“.

Y=

Figure 5.1

Our symbols are defined in Table 4.1, where the periodic matrix quantities have
the tensor € of (5.1) and are periodic in the horizontal direction only; i.e., of pe-
riod €Q. Note that Gy = (0,0,Gy,3) in our coordinate system. The microscopic
model consists of the equations of the last section, namely (4.1)—(4.10), with the
interpretation (5.1) in (4.2) and (4.4). (To these we should add an external no-flow
condition on 2 x 9T.)

To homogenize this reservoir, we assume that y &€ Q is such that, up to a
translation,

(5.2) y~eli, &= (x1,22).

Also, we set

0 0
5.3 v,=(—. 2 o).
(5:3) Y <3y1 dys )



Then our heuristic relations (1.3)—(1.6) hold, where the periodicity of (1.4), when
(y,z3) € Qy, and (1.6) are assumed only in the horizontal directions.

Fracture quantities are defined on 2 x Qf ={(z,y): v € 2 and (y,z3) € Qr},
which is conveniently written as {2 x Q y by abusing the notation somewhat. Similar
statements hold for matrix quantities and for quantities on the matrix-fracture
interface.

Now, the formal relations that we obtain include those of the previous section
(4.1/-)~(4.3/0) and (4.5/0)—(4.10/0). The relations (4.2/-) hold since v3 = 0 on I'“.
From (4.4), in 2 X Q,, x J, the €” term gives

(5.4) B(§)sg, — Vi - [Ma(9,5°)Vy py + Go] = fo(s°),

where § = (y,23) € Q,, C R?.

As far as the analysis of these relations goes, we first obtain (4.13) and (4.14)
from (4.1/-2) and (4.2/-1) as in the previous section. Define @;, 7 = 1,2, periodic
across 0Q by
(5.51) Vio; =0 in Qy,

(5.511) Vyw;-v=—e;-v on 9O

If we now set w = (&1, w2,0), we obtain (4.15) as before. Finally, we take our local
average of (4.1/0) in two dimensions only; that is, if we replace Q by Q and Q ¢ by
Q ¢, we obtain (4.16), where (2.7) continues to define ¢. Manipulation from this
leads to our final equation:

1
(5.6) @55, + a1 /s {6(9) 6.0 — Os[Na(9,5°)(O3pg + Go,3)]} dy

—V-[Ae<50><VP3—Ge>]=é{|@f|fe<50>+ /Q mfe(so)dy} i 02xJ,

where Ay is defined in (4.18) above and

(5.7) K(o) = o5 K'(@)|19/07 + /. @ o)

where the final row and column of the tensor above defined by integrals of 0; w; are
Zero.

The fracture system of our final model is described by (5.6), (4.3/0), (4.7/0),
and (4.9/0) on £2 x J. At each point i € 2, we have an infinitely thin matrix
block, the flow in which is governed by (5.4), (4.5/0)—(4.6/0), (4.8/0), and (4.10/0)
on (y,t) € Q, x J. The boundary condition (4.5/0) is constant in y-space, that
is, in horizontal planes only; it varies in the vertical direction. The matrix source
term produces fluid in horizontal planes. It has the added component

|Q|/ D3[Xg (G, s°)(Dspg + Go3)] dy

which accounts for vertical flow contained entirely within the matrix block. This
model was described originally in [11].
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